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Abstract—With the proliferation of Android-based devices,
malicious apps have increasingly found their way to user devices.
Many solutions for Android malware detection rely on machine
learning; although effective, these are vulnerable to attacks from
adversaries who wish to subvert these algorithms and allow
malicious apps to evade detection. In this work, we present a
statistical analysis of the impact of adversarial evasion attacks
on various linear and non-linear classifiers, using a recently
proposed Android malware classifier as a case study. We system-
atically explore the complete space of possible attacks varying in
the adversary’s knowledge about the classifier; our results show
that it is possible to subvert linear classifiers (Support Vector
Machines and Logistic Regression) by perturbing only a few
features of malicious apps, with more knowledgeable adversaries
degrading the classifier’s detection rate from 100% to 0% and
a completely blind adversary able to lower it to 12%. We show
non-linear classifiers (Random Forest and Neural Network) to
be more resilient to these attacks. We conclude our study with
recommendations for designing classifiers to be more robust to
the attacks presented in our work.

I. BACKGROUND AND INTRODUCTION

With the rise in smartphones and other hand-held devices,

mobile malware, particularly Android malware, has become

a potent threat in recent years. Android malware detection

has therefore received much attention from the research

community [10]. Among the proposed detection approaches,

machine learning remains a common thread, and has shown

high accuracy [6], [15]. However, machine learning classifiers

are threatened by adversarial attacks aiming to subvert the

classifiers by poisoning their training or adapting malicious

samples to evade detection [11]. The latter category, called

evasion attacks, are the main focus of this paper. Evasion

attacks are particularly important to consider in the context of

mobile malware, as the push-based model allows developers

to easily push updated versions of apps to users without any

user involvement. Thus, malware authors can quickly respond

to the detection of their apps by launching updated versions

to evade detection. Thus, analysing the quantitative impact of

adversarial evasion attacks on Android malware classifiers is

a timely and important problem.

Adversarial studies in the literature suffer a number of

limitations: some make the assumption that an adversary has

deep knowledge of the targeted classifier; others assume less

knowledge but still assume some aspect of the classifier to

be known [13]; still others are limited to specific problems

and algorithms and their attack strategies do not hold for

other domains [17]. Studies of adversarial attacks against

mobile malware classifiers have only recently appeared in

the literature [7]; however, a detailed analysis of the full

range of possible evasion attacks against a variety of machine

learning algorithms is not found in these efforts. In our

work, we remove all assumptions of adversarial knowledge

and systematically analyse the impact of a range of attacks,

from fully informed to completely blind, on a typical Android

malware classifier implemented with both linear and non-linear

machine learning algorithms. To the best of our knowledge,

this is the most comprehensive range of attacks studied in the

Android malware detection domain to date.
To fully explore the space of evasion attacks on a classifier,

we define a number of adversaries, differing in their knowledge

of three key characteristics of a classifier (training data,

feature set and classification algorithm), and formulate attack

strategies for each adversary. To quantify the impact of these

attack strategies on a typical Android malware classifier, as

a case study we target DREBIN [6], which trains a Linear

Support Vector Machine (SVM) and was shown to detect

94% of malware in a dataset of 123,453 apps. We find that

DREBIN is susceptible to evasion attacks where the adversary

can determine a set of features for each malicious app that

can be perturbed to reduce its chances of being detected.

Perturbing only a few features (<25) allows a fully informed

adversary to lower DREBIN’s detection rate from 100% to

0%, and a completely blind adversary to lower it to 12%.

We also re-implement DREBIN with a number of different

algorithms (Neural Network, Random Forest and Logistic

Regression) and show that it can be made more resilient simply

by replacing its Linear SVM with a non-linear classifier.
Overall, this paper makes the following contributions:

1) We propose adversarial strategies for modifying ma-978-1-5386-1465-5/17/$31.00 c©2017 IEEE



licious samples to evade detection against a range of

adversarial capabilities;

2) We analyse the quantitative impact of evasion attacks on

a real Android malware classifier, including a compar-

ison with the resilience of other linear and non-linear

classifiers to the same attacks;

3) We demonstrate a practical example of modifying a

real malicious app to evade detection, showing that our

proposed attacks represent a feasible threat.

We emphasise that while we have only demonstrated attack-

ing a specific classifier, our attack strategies are general and

not specifically adapted to the domain, and our study shows

that such attacks represent a real threat to other learning-based

malware classifiers.

The remainder of this paper is organised as follows. Sec-

tion II details our threat model; Section III introduces DREBIN

as our case study. Section IV outlines implementation details

of our attacks. Section V presents our analysis of the impact

of evasion attacks on DREBIN’s linear SVM as well as other

algorithms and a practical demonstration of an evasion attack.

Section VI presents some recommendations for designing

secure classifiers based on the insights from our study. Sec-

tion VII outlines related work in this domain, and Section VIII

concludes the paper.

II. THREAT MODEL: ADVERSARIAL GOALS,

CAPABILITIES AND STRATEGIES

We define a threat model from an adversary’s perspective,

comprising a goal and capabilities, and strategies for meeting

the goal.

A. Goal

An Android malware classifier may face adversarial threats

from malware authors whose apps may be detected by the

classifier; a typical adversary would wish to update the apps

such that they evade detection without compromising their

malicious functionality. Thus, we set the adversarial goal of

causing a classifier to mislabel a target set of malicious apps

as benign.

B. Capabilities

An adversary’s capability of carrying out a successful attack

depends on its knowledge of three defining characteristics of

the targeted classifier:

1) The labelled training data

2) The set of features to be extracted from the training data

3) The classification algorithm

In Table I, we enumerate a set of adversaries, each having

a different level of capability depending on which of the

three characteristics of a classifier are known, similar to the

taxonomy defined in [13]. Each adversary has knowledge of a

different subset of classifier components; Adversary DFA, for

example, has access to the training Data, the Feature set, and

the classification Algorithm, while Adversary A only knows

the classification Algorithm.

TABLE I: Different types of adversaries defined by their

knowledge of the three key components of a classifier.

Adversary Training
Data (D)

Feature Set
(F)

Classification
Algorithm (A)

DFA � � �

DF � � ×

DA � × �

D � × ×

FA × � �

F × � ×

A × × �

NONE × × ×

C. Adversarial Strategies

The high level idea of the attack strategy we propose is

outlined in Fig. 1. As the figure shows, each adversary takes

the following steps to carry out an attack:

1) Step 1: Replicate the targeted classifier, which involves

extracting a given set of features from training data to

learn a model. The model assigns weights to features

which represent the importance of each feature in caus-

ing a malicious classification.

2) Step 2: Extract the feature set from a target app which

is to be modified to evade detection.

3) Step 3: Using the model learned in step 1, discover the

top features of the app causing a malicious classification,

as well as the top benign features in the model.

4) Step 4: Modify the app by removing its top malicious

features and adding the top benign features to it.

As each adversary defined in Table I differs in terms of

knowledge of the original classifier, the differences between

the specific strategies of each adversary lie in how Step 1, i.e.

replicating the classifier, is implemented. Adversary DFA, who

has complete knowledge of the classifier, can simply replicate

it without any additional steps. The adversaries that do not

have access to the original training data, i.e. adversaries FA,

F, A and NONE, additionally need to generate a substitute

training set similar to the original data. As DREBIN’s original

data comprises apps downloaded from Android app markets,

we build the substitute training using a different sample of apps

from Google Play. Adversaries that do not have knowledge of

the classification algorithm used by the targeted classifier, i.e.

adversaries DF, D, F and NONE, additionally need to select

surrogate algorithms that approximate the original classifier

reasonably well. Both these strategies, i.e. using substitute

training data and surrogate classification algorithms, have been

successfully used in prior research [13]. However, to the

best of our knowledge, no prior research has suggested a

successful strategy for adversaries who do not have knowledge

of the feature set used by the classifier, i.e. adversaries DA,

D, A and NONE. Trivial obfuscation techniques have been

attempted but shown not to work [9]. We propose a “feature-

guessing” strategy, where the adversary relies on domain



Fig. 1: Process followed by an adversary to carry out evasion attacks.

knowledge to approximate the feature set. In the Android

domain, many earlier proposed solutions for malware detection

have relied on permissions, for example [24], and a recent

solution successfully uses the API call graph of apps to classify

them [15]. The adversary can use this knowledge to construct

a feature set comprising API calls and permissions. Once an

adversary has selected an original or a substitute training set,

extracted the original or a substitute set of features from it,

and run the original or a surrogate classification algorithm, the

classifier replication step can be carried out to obtain a model,

after which Steps 2 – 4 (Evasion Attack) can be performed.

III. AN INTRODUCTION TO DREBIN

In this section we introduce the targeted classifier that we

use as a case study for testing the effectiveness of our proposed

adversarial strategies. DREBIN [6], proposed in 2014, detects

Android malware by deploying a trained Linear SVM on

smartphones. We chose DREBIN to demonstrate the impact

of adversarial attacks against machine learning based mobile

malware classifiers for a number of reasons. First, DREBIN

is clearly vulnerable to adversarial evasion attacks, as it is

possible for an adversary to leverage knowledge of DREBIN

to modify malicious samples to evade detection. Secondly,

DREBIN is a recent approach and represents the state of

the art in identifying Android malware on mobile devices;

a study investigating the feasibility of attacks against such

a classifier is therefore much-needed. Finally, our focus on

Android malware, as opposed to general threats, is motivated

by the open nature of the Android app market, which makes

it relatively easy for attackers (for example, malware authors)

to modify apps and publish new variants to avoid detection.

We now describe this classifier in terms of the three defining

characteristics, i.e. the feature set, the classification algorithm,

and the data that was used in its training.

A. Feature Set

DREBIN extracts features from the source code and manifest

file of an app from the following categories.

1) Permissions from the manifest file.

2) API calls from the source code of the app.

3) App components (activities, services, receivers,

providers) from the manifest file.

4) Filtered Intents from the manifest file.

5) Hardware features (hardware components used by an

app) from the manifest file.

6) Network Addresses (IP/URL) from the source code.

The full set [S] of features from the training data com-

prises thousands of elements (545000 in the original DREBIN

dataset). The features extracted from each app are mapped

to an |S|-dimensional vector where each dimension is 1
or 0 depending on whether or not the app has the feature

represented by that dimension. Fig. 1 shows an example where

the original feature set has 5 features; thus, the app’s features

are mapped to a 5-dimensional feature vector where the two

dimensions representing its features are set to 1.

B. Classification Algorithm

A linear SVM is trained over the extracted features from

the data to learn a vector w ∈ R
|S| specifying the direction of

a separating hyperplane. Each element of w can be interpreted

as a weight assigned to the corresponding feature. The classi-

fication of each app in a linear SVM where the features are all

binary is simply found by calculating f(x) =
∑

ws, where

ws is the weight of each feature. If f(x) < 0, the classification

is benign, otherwise malicious. Thus, the top features causing

a malicious classification can be determined simply by noting

the features with the largest k positive weights.

C. Training Data

The training dataset comprises 96,150 apps from Google

Play, 22,355 apps from different alternative Chinese or Rus-

sian Markets, and 13,106 samples from blogs and forums.

Each app was labelled by uploading it to VirusTotal [5];

apps declared malicious by two or more of ten well known

anti-viruses (AntiVir, AVG, BitDefender, ClamAV, ESET, F-

Secure, Kaspersky, McAfee, Panda, Sophos) were labeled

malicious. 123,453 benign and 5,560 malicious apps comprise

the final dataset.

IV. PREREQUISITE IMPLEMENTATION TASKS

In this section we describe some pre-requisite implemen-

tation tasks required for quantifying the impact of attacks on

DREBIN.



A. Replicating DREBIN

DREBIN is not publicly available, so we obtained the

training data released by its authors and implemented feature

extraction logic based on the details provided in the paper [6].

We used apktool to decompile the apps in the data and

wrote Java code to parse the xml-format manifest file and

the Smali code to extract the features. We used LibLinear

to train a Linear SVM. Despite some differences in the

calculated features (e.g. missing names of activities or extra

API calls added), our DREBIN clone was able to approximate

the accuracy of the original DREBIN, with it true positive rate

(TPR) of 92% closely matching the original TPR of 94%

reported in the paper.

B. Constructing a Substitute Training Dataset

We collected 7000 apps from Google Play, using a crawler

implemented by the authors of [12] and used the VirusTotal

API to filter out apps detected as malicious by two or more of

VirusTotal’s scanners, which left us with 3,862 benign apps.

For constructing the malicious part of the dataset, we used

1,788 malicious apps from DREBIN’s dataset (dropping them

from the training set of our version of DREBIN). Our final

substitute training dataset comprised 5,650 apps1.

C. Selecting a Substitute Feature Set

A common thread in prior research in Android malware

detection is the use of permissions declared in the Android

manifest [24]. One recent work has also used the set of

API calls in an app to build an API call graph to detect

malicious apps [15]. Jointly, the API calls and the permissions

of an app should provide reasonably good discrimination

between malicious and benign samples; we use this as our

substitute feature set. In practice, an adversary may be forced

to choose features completely orthogonal to those used by

the original classifier, but because DREBIN already extracts as

many features as possible from an app, we were unable to

select a completely orthogonal feature set. However, this is

a consequence of the specific classifier we target and not a

methodological problem.

D. Selecting Surrogate Classifiers

We chose a number of well known machine learning

algorithms to run over the Drebin dataset, including linear

classifiers (Logistic Regression, Percepton, Stochastic Gradi-

ent Descent, Passive-Aggressive Classifier), ensemble learning

methods (Random Forest, AdaBoost), Neural Network and

Decision Tree. We noted the TPR as well as the overall

accuracy (percentage of correctly labeled samples) of these

algorithms on the original Drebin dataset, the purpose being

to select the algorithm that achieved an accuracy closest to

that of Drebin’s Linear SVM. Fig. 2 shows the results. Most

classifiers performed quite badly in terms of TPR, with linear

1Varying the construction of the substitute dataset, for example by using
malicious apps from public repositories [1], or only using apps from the same
time frame as those in DREBIN’s original training dataset, was left as future
work.

Fig. 2: Detection accuracy and true positive rate (TPR)

achieved by different classifiers on the Drebin dataset.

classifiers performing better than non-linear ones2. Logistic

Regression achieved the closest TPR and accuracy to Drebin’s

Linear SVM, (99.1% accuracy compared to Drebin’s 99.2%),

followed by Neural Network, Random Forest, AdaBoost, the

remaining linear classifiers and finally Decision Tree which

only achieved 51% accuracy. Thus, we chose Logistic Re-

gression as a surrogate classifier for our attacks on DREBIN.

Logistic Regression is a linear method similar to a Linear

SVM and thus likely to approximate it closely. In a separate

experiment, discussed in Section V-C, we investigate the effect

of using non-linear algorithms as surrogates, using Random

Forest (95.7% accuracy) as an example, as it is a non-

linear ensemble learning method. We used scikit-learn [4]

for implementing Random Forest and LibLinear for Logistic

regression.

E. Constructing a Target Set and Discovering Top Features

The target set of malicious apps should (a) not be in any

classifier’s training set, and (b) be classified malicious by

DREBIN. We split the original DREBIN data into training and

testing data in a 70/30 ratio. The training data was used to

train the replicated classifier, and the malicious apps from

the testing data that were detected by DREBIN became our

target set, comprising 1,010 malicious apps. Finally, we wrote

Java code to find the top features of each app in the target

set, simply by sorting each feature of the app by its weight

according to the model used by a given adversary.

2This may be because the original DREBIN dataset is unbalanced; malicious
samples form less than 5% of the data. Using a dataset with an equal number
of benign and malicious samples improved the TPR (e.g. Random Forest went
from 4% to 50%).



TABLE II: Removing features from each of DREBIN’s feature categories.

Feature Category Removable? Reason

Permissions No The Android permission system requires declaring permissions in the manifest. Permissions
not requested but actually used can be detected by DREBIN.

API Calls Yes API method names can be encoded, and decoded and called dynamically using reflection.

App Components Yes Activities, services, receivers and providers are implemented as Java classes and listed in the
manifest file, so they can simply be renamed.

Filtered Intents No Intents are listed in the manifest file and have standard names which cannot be renamed or
encoded to look different.

Hardware Features No The Android permission system requires declaring hardware usage, e.g. uses-microphone
in the manifest file.

Network Address Yes They can be encoded and only decoded at run-time so as to be unrecongnisable during the
static analysis.

V. EVALUATION: QUANTIFYING THE IMPACT OF ATTACKS

ON DREBIN

In this section, we quantify the impact of adversarial attacks

on a variety of algorithms. As discussed in Section II-C,

an evasion attack involves removing the most incriminating

features of malicious apps as well as adding some benign fea-

tures to them. A real adversary will make these modifications

in the source code of an app, for example by adding extra

functions or encoding object names. However, performing

these modifications in practice requires significant manual

effort and is difficult given the large number of apps in our

target set, especially as the source code of the apps has to

be obtained using decompilation tools and is often obfuscated

or full of errors. Thus, we performed the attacks entirely in

feature space by directly modifying feature vectors rather than

changing the source code (similar to [9], [20]). Specifically,

as the features of apps are stored in a binary representation

in feature vectors (as shown in the example in Fig. 1), we

hid incriminating features simply by setting their values to 0
instead of 1 in the feature vector, and likewise added benign

features by setting their values to 1 if they were 0 originally.

We present, at the end of this section, a demonstration of how

we modified one real malicious app to evade detection by

disguising some features in the source code. Overall however,

this work has a theoretical focus and represents a statistical

analysis of what the impact of these attacks would be in

practice.

Practical Considerations: In practice, adding benign fea-

tures to an app can be achieved by adding new methods or

classes that will not disturb the original app functionality.

Hiding certain malicious features such that the app’s malicious

functionality is not compromised, however, may be challeng-

ing. Table II shows that of the different categories of features

extracted by DREBIN, API calls, app components, and network

addresses can all be renamed or encoded to look different but

retain the same functionality, evading at least static analysis

based approaches. However, permissions, hardware features

and intents cannot simply be dropped, as they usually have

predefined names and must be declared in the manifest file

for an app to run successfully. Thus, we define different

experimental settings for our attacks as follows.

Experimental Settings: We refer to the full set of features

as Standard Features and the set of features from the three

modifiable categories according to Table II, i.e. API calls,

app components and network addresses as Reduced Features,

and consider four different adversarial settings. In Addition

and Removal, Standard Features, the adversary can freely

add or remove any feature of an app. In Addition and Re-

moval, Reduced Features, the adversary can add any feature

but remove only features belonging to the reduced set. In

Removal Only, Standard Features, the adversary cannot add

features but may remove any feature, and in Removal Only,

Reduced Features, the adversary can only remove features

from the reduced set. The results observed in settings where

any feature can be removed represent the theoretical limit of

an attack’s effectiveness, and can only be achieved in practice

if the adversary can disguise the permission, hardware and

intent features without compromising the app. Results for

the remaining settings are practically achievable against static

analysis based approaches. Practical evasion of classifiers that

extract more complex and dynamic features may be a more

difficult problem and one that we leave for future research.

A. Relationship Between Adversarial Knowledge and Attack

Effectiveness

Our analysis is shown in Fig. 3, where each plot represents

an attack by an adversary having knowledge of a different

subset of the three classifier components. Removing n features

from an app means that the adversary has changed n elements

of the feature vector from 1 to 0, while adding and removing

n features means that the adversary has changed n elements

from 1 to 0 and another n elements from 0 to 1. We now

discuss the effect of knowing each classifier component on

the effectiveness of an attack.

Training data: Adversaries in this category are able to

access the original training data of the targeted classifier.

Figures 3(a) to 3(d) show these attacks to be highly effective;

Drebin’s detection rate on the target set is reduced to 0% in

the Addition and Removal, Reduced Features setting. However,

attacks in the Removal Only categories are less effective;



(a) Adversary DFA (b) Adversary DF (c) Adversary DA (d) Adversary D

(e) Adversary FA (f) Adversary F (g) Adversary A (h) Adversary NONE

Fig. 3: Degradation in Drebin’s detection rate as a result of attacks by adversaries with varying levels of knowledge about the

classifier. Where the algorithm is unknown (DF, D, F and NONE) the surrogate algorithm is Logistic Regression.

Adversary D is only able to reduce Drebin’s detection rate

to 55% when features can only be removed from apps,

compared to 0% when features can be added as well. In some

attacks, Drebin’s detection rate rises again as more features

are modified; this usually occurs when an app only has a

few positively weighted features – after they get selected

for removal, features with negative weights (associated with

benign classification) begin to get removed, increasing chances

of a malicious classification. This point therefore represents

the limit to which Drebin’s detection rate can be degraded.

Feature Set: Adversaries FA and F are aware of the feature

set used by the classifier but do not have access to its original

training data. As shown in Fig 3(e) and (f), despite using

substitute data to train a replicate model of Drebin, both

adversaries can degrade Drebin’s detection rate to 0% if they

can add as well as remove features, even from a reduced

feature set. When only able to remove features, both still

degrade the detection rate to below 30%.

Algorithm: We determine the importance of knowing the

algorithm by comparing the performance of adversaries who

differ only in knowledge of the algorithm. Based on a com-

parison of Adversary DFA’s attack with that of Adversary

DF, of Adversary DA’s attack with that of Adversary D, and

so on, we conclude that knowledge of the algorithm makes

little difference, and adversaries unaware of it can generate

attacks equally effective as those aware of it. In fact, in case

of a completely blind attack (Adversary NONE), a surrogate

algorithm may even perform better than the original. However,

it is important that the adversary uses a surrogate algorithm

to train a replicate model of the targeted classifier that closely

approximates the original. In the results reported in this figure,

the adversaries use Logistic Regression as a surrogate, which

is also a linear classification algorithm and similar to the

Linear SVM. We explore the effect of using different surrogate

algorithms in Section V-C.

Overall, the results show even the most limited adversaries

(Adversary A and Adversary NONE) can reduce DREBIN’s

detection rate to 12% from an intial 100%, and those with

knowledge of the feature set or training data alone can

reduce it to 0%. DREBIN implemented as a Linear SVM

therefore appears to be highly vulnerable to evasion attacks.

We acknowledge that these results cannot necessarily be

generalised to all machine learning classifiers, as our analysis

is currently limited to the Android malware domain and static

feature extraction. Investigating whether similar results can be

achieved against learners in different settings is left as an open

problem.

B. Resilience of Linear Vs. Non-Linear Classification Algo-

rithms to Attacks

Our attacks on DREBIN have highlighted the vulnerability of

the Linear SVM to adversarial attacks based on feature pertur-

bation. We now evaluate the impact of the same attacks against

another linear classifier (Logistic Regression), a non-linear

classifier (Random Forest), and another non-linear classifier

(Neural Network, as it has recently gained much popularity

in deep-learning applications). We do this by implementing

modified versions of DREBIN that run one of these algorithms

instead of a Linear SVM, and implement the attacks exactly as

with DREBIN, for all eight adversaries. We only show results



(a) Adversary DFA (b) Adversary DF (c) Adversary DA (d) Adversary D

(e) Adversary FA (f) Adversary F (g) Adversary A (h) Adversary NONE

Fig. 4: Comparison of the resilience of various algorithms to attacks by adversaries with varying levels of knowledge. Best

performing surrogate algorithm is used for attacking each algorithm by adversaries unaware of the targeted classifier’s algorithm

(i.e. DF, D, F and NONE).

for the Addition and Removal, Reduced Features setting as

it represents a practically feasible setting. We also assume

that adversaries that are unaware of the targeted algorithm

(Adversaries DF, D, F and NONE) choose the following

(best) surrogates: Logistic Regression for attacking Linear

SVM and Neural Network, Linear SVM for attacking Logistic

Regression, and AdaBoost for attacking Random Forest. Sec-

tion V-C presents a comparison of the effectiveness of different

surrogate algorithms in attacking a given classifier. Finally,

the Neural Network has not been attacked by adversaries who

are aware of the algorithm (Adversaries DFA, DA, FA and

A) as it does not generate a model that can be intuitively

understood or mapped to feature weights. Adversaries cannot

determine the most important features to be modified by

replicating the Neural Network, but will instead have to use a

surrogate algorithm to determine important features; therefore,

knowledge of the algorithm brings no advantage, and, for

example, an attack by Adversary DFA will be the same as

that by Adversary DF. Thus, we do not show attacks on the

Neural Network by these adversaries.

Fig. 4 shows that both linear classifiers – Logistic Regres-

sion and Linear SVM – are significantly more vulnerable to

adversarial attacks in most scenarios compared to the non-

linear classifiers, with Logistic Regression showing slightly

more resilience than the Linear SVM as its detection rate

degrades more gradually, especially when the adversary has

limited knowledge (adversaries F, A and NONE). In attacks

against the Neural Network, knowledge of the feature set

appears important when training data is known: Adversary DF

performs a more effective attack than Adversary D. However,

when the adversary uses a substitute training set, a blind

attack (Adversary NONE) performs better than an attack in

which the feature set is known (Adversary F). Adversary

NONE is unaware of the feature set and can modify a very

limited set of features; it appears that this yields a better

attack for the substitute training data. This is not predictable

behaviour and a real adversary may need to try perturbing

various feature subsets to see which yields the best attack.

The Random Forest classifier proves to be the most difficult

to successfully attack, showing almost no degradation when

the feature set is unknown to the adversary (Adversay DA,

D, A and NONE). Adversaries having access to training data

(DFA, DF) outperform those without it (FA, F), but knowing

the algorithm makes little difference in attacking this classifier.

Based on this analysis, linear classifiers appear clearly more

susceptible to attack than non-linear ones for our experi-

ments. While in other settings, non-linear classifiers may not

necessarily be more resilient, the insight gained from our

experiments is that when designing a malware classifier, it

may be advantageous to implement different versions of it

with different algorithms, simulate adversarial attacks against

all versions, and select the most resilient version. In this case,

replacing DREBIN’s Linear SVM with the Random Forest

algorithm greatly improves its resilience to attacks.

C. Comparison of Surrogate Algorithms

We now analyse the effect of using different surrogate

algorithms for attacking both linear and non-linear classifiers

with no knowledge of the targeted classification algorithm.



The purpose is to analyse whether linear algorithms always

approximate other linear algorithms better than non-linear

classifiers do, and vice versa. Fig 5 shows the degradation in

the detection rate of Drebin’s Linear SVM as Adversary DF

and Adversary NONE attack it using Logistic Regression and

Random Forest as surrogate algorithms. Results for Adversary

D show a trend similar to Adversary DF, and those for

Adversary F are similar to Adversary NONE; we omit these

for brevity. Fig 6 shows the corresponding results for attacking

Drebin implemented as a Logistic Regression classifier, using

Logistic Regression and Random Forest as surrogates. We also

show, as a baseline for comparison, the degradation achieved

when the adversary has knowledge of the algorithm – e.g.

attacking a Linear SVM using another replicated Linear SVM.

We observe that attacks against Linear SVM and Logistic

Regression are most effective when a linear classifier is used

as a surrogate (i.e. Logistic Regression for Linear SVM and

vice versa), while using Random Forest as the surrogate yields

a significantly less effective attack.

Fig 7 shows results for attacking Random Forest using

Logistic Regression and AdaBoost as surrogates. In Adver-

sary DF’s attack, Logistic Regression, predictably, does not

approximate the Random Forest classifier well, and using it

as a surrogate yields the least effective attack. AdaBoost,

however, yields an attack as effective as it would be if the

algorithm was known, i.e. if Random Forest itself was used

to build a replicate model. In the blind attack by Adversary

NONE, however, using Random Forest itself is almost com-

pletely unsuccessful in degrading the detection rate, while

AdaBoost initially performs better and achieves the minimum

rate of 78%. As more features are modified (> 4), Logistic

Regression achieves the maximum degradation (82%) while

AdaBoost and Random Forest are completely unsuccessful. If

Linear SVM is used instead of Logistic Regression (not shown

in the figure), the results remain very similar. Thus, both linear

classifiers perform the same. Overall, as the key metric we

consider is the minimum detection rate achieved, we conclude

that AdaBoost forms a better surrogate for attacking Random

Forest rather than a linear classifier.

Fig 8 shows results for attacking a Neural Network. We do

not show a baseline as a Neural Network cannot be attacked

by building a replicate Neural Network model. We attack

the Neural Network using Linear SVM, Logistic Regression

and Random Forest as surrogates. For the adversary with

more knowledge (Adversary DF) Linear SVM is the best

surrogate, but is closely followed by both Logistic Regression

and Random Forest. For a blind adversary (NONE), using

Linear SVM does not degrade the detection rate beyond 23%,

after which the detection rate rises again. In scenarios with less

knowledge and fewer features available to modify, Random

Forest and Logistic Regression perform almost equally well.

Thus, Figures 5 to 8 show that linear algorithms certainly form

better surrogates for other linear algorithms to be attacked,

but non-linear algorithms may or may not form better surro-

gates for non-linear algorithms; different levels of adversarial

knowledge may show different trends.

(a) Adversary DF (b) Adversary NONE

Fig. 5: Attacking Linear SVM.

(a) Adversary DF (b) Adversary NONE

Fig. 6: Attacking Logistic Regression.

(a) Adversary DF (b) Adversary NONE

Fig. 7: Attacking Random Forest.

(a) Adversary DF (b) Adversary NONE

Fig. 8: Attacking Neural Network.



TABLE III: Top-weighted 15 features of a malware sample

from the DroidKungFu family.

Category Feature List

API Calls android/net/wifi/WifiManager

/getWifiState,

java/net/URL/openConnection,

android/net/ConnectivityManager

/getNetworkInfo,

java/net/HttpURLConnection,

android/telephony/TelephonyManager

/getDeviceId, android/net/wifi

/WifiManager/setWifiEnabled,

android/telephony/TelephonyManager

/getLine1Number

Restricted
API Calls

system/bin/su, Cipher(ad),

HttpPost, printStackTrace,

getWifiState, getSystemService

Components com.google.search.Receiver

D. Practical Demonstration of Evasion Attack

We now demonstrate a practical evasion attack by modifying

the source code of a malicious app detected by DREBIN.

We obtained a variant of the DroidKungFu malware and its

source code from Project Kharon [3] which is detected by

our DREBIN clone. We then extracted the top-weighted 25

features, excluding permissions, hardware features or intents,

as they are not easy to hide. By removing one feature at a time,

we found that removing 15 of these 25 features, summarised

in Table III, allowed the app to evade detection. To hide

API calls, we implemented a simple encoding scheme that

replaces each character of a string with the next character

in the ASCII table, and replaced the original API calls with

their encoded names. We wrote a decoding function to obtain

the original API calls at runtime, and then used reflection to

dynamically invoke the decoded calls. Thus, the functionality

of the call was retained but it could not be picked up by

DREBIN. While this strategy worked for evading static analysis

based approaches, classifiers that perform dynamic analysis

would still see the original API calls once they are invoked. We

left this as an open issue for future work. The app component

feature (com.google.search.Receiver) is a receiver,

represented as a Java class; we hid this by renaming the

Java class. Our adversarial strategy was therefore a form of

obfuscating the features such that DREBIN’s feature extraction

module would be unable to find them, as actually removing

features would compromise the malicious functionality of the

app. We then recompiled the modified app and ran DREBIN

to obtain the modified feature vector, and verified that the

new feature vector no longer contained the top 15 features.

Classifying the modified feature vector using our version

of DREBIN yielded a benign classification, showing that the

attacks we implement in feature space are viable in reality

and present a valid threat to mobile malware classifiers.

VI. RECOMMENDATIONS

Based on the insights gained in this study, we make some

recommendations for designing machine learning based An-

droid malware classifiers in order to achieve robustness against

adversarial attacks:

1) As knowledge of the feature set appears to play a

very important role in the effectiveness of an attack,

frequently retraining a classifier using different random

subsets of the full feature set may make it difficult for

adversaries to replicate the classifier, as they do not

know which features the current version of the classifier

is extracting.

2) Building classifiers to use features that are difficult to

remove without affecting the malicious functionality

of the app would allow less room for an adversary

to modify samples to evade detection, and defeat an

adversarial strategy based on feature perturbation.

3) Classifier-fusion, under which several algorithms are run

on different training sets and the results of a random

subset of the algorithms is combined to generate a clas-

sification result [22], can make the feature ranking (i.e.

calculation of feature weights) unpredictable, lowering

the success of adversarial strategies based on removing

highly weighted features.

VII. RELATED WORK

The vulnerability of machine-learning based approaches to

adversarial attacks has been frequently acknowledged in the

literature, and several efforts have been made to taxonomise

these attacks and discuss countermeasures [8]. Training poi-

soning attacks, which involve inserting deliberately misleading

data into a classifier’s training set, have been demonstrated

against, among others, spam filters [16], and network anomaly

detectors [18]. Evasion attacks such as those presented in

our work have targeted anomaly-based intrusion detection

systems [21], as well as spam filters [14]. The limitation of

most of these attacks is assuming a highly knowledgeable

adversary. As this may not be true in practice, we remove

all such assumptions in our work.

Recently, more realistic attack approaches have been pro-

posed that assume less adversarial knowledge [23]. A close

inspiration for our research is [13], where the authors propose

a range of attacks against a malicious PDF file detector,

assuming limited adversarial knowledge. However, knowledge

of the feature set used by the classifier is still assumed. Some

completely blind attacks have been proposed very recently [17]

but evaluated only on deep learning neural networks for image

classification, in which the feature set used by the classifier

is implicitly known, as it is simply the set of pixel values

of an image. Thus, the problem of not knowing the feature

set has not been addressed. Completely blind attacks have

also been attempted, albeit unsuccessfully, in a very recent

effort that is closely related to our work [9] and also simulates

attacks against DREBIN. However, unlike our work, not all

eight possible variations of adversarial knowledge have been



investigated, and the resilience of linear and non-linear algo-

rithms has not been compared, nor the effect of using different

surrogate algorithms to approximate classifiers. In fact, as the

focus of the work in [9] is on proposing security measures

against such attacks, its main contribution remains orthogonal

to ours. Investigating defences against our proposed attacks

is currently beyond the scope of our work; thus, other efforts

towards proposing solutions against adversarial attacks [19]

remain orthogonal to ours.

Overall, to the best of our knowledge, ours is the first work

in which we (a) quantify the impact of the full range of evasion

attacks given all possible levels of adversarial knowledge, and

(b) compare the resilience of linear and non-linear classifiers

to adversarial attacks.

VIII. CONCLUSION AND FUTURE DIRECTIONS

In this work we have studied the vulnerability of machine

learning based Android malware classifiers to adversarial

evasion attacks aiming to cause misclassification of malicious

mobile apps. As a case study, we have performed diverse

evasion attacks, ranging from fully informed to completely

blind attacks, against DREBIN, an Android malware classifier

implemented as a Linear SVM and other linear and non-linear

classifiers. We show that adversaries with perfect knowledge

of a linear classifier can degrade its detection rate from 100%

to 0%, and even completely blind adversaries can lower it to

12%. However, non-linear classifiers are more resilient to such

attacks. We practically demonstrate an evasion attack for a real

malicious app and show that the attacks we have investigated

are practically possible and represent a valid threat to mobile

malware classifiers; moreover we make recommendations for

designing robust classifiers based on the insights gained from

our study. We acknowledge that we have only demonstrated

attacking one classifier in certain settings; it remains to be

investigated whether our results can be generalised to all

machine learning classifiers for Android or other malware. It

is possible that classifiers in other settings may show different

levels of vulnerability to adversarial attacks. An important

future direction in this regard is to investigate whether using

more complex, dynamically extracted features as opposed

to the statically extracted simple features used by DREBIN

increases a classifier’s robustness against attacks. Secondly,

practically testing the security recommendations we have made

for designing robust classifiers, especially the idea of classifier

fusion, remains an open problem. Overall, we believe that our

work not only contributes significantly to current adversarial

research by carrying out a comprehensive analysis of the

impact of evasion attacks, but also opens many interesting

avenues for future research in this area.
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