
4

Spam Mobile Apps: Characteristics, Detection, and in the
Wild Analysis

SURANGA SENEVIRATNE, Data61, CSIRO
ARUNA SENEVIRATNE, Data61, CSIRO & University of New South Wales
MOHAMED ALI KAAFAR and ANIRBAN MAHANTI, Data61, CSIRO
PRASANT MOHAPATRA, Department of CS, University of California, Davis

The increased popularity of smartphones has attracted a large number of developers to offer various ap-
plications for the different smartphone platforms via the respective app markets. One consequence of this
popularity is that the app markets are also becoming populated with spam apps. These spam apps reduce
the users’ quality of experience and increase the workload of app market operators to identify these apps
and remove them. Spam apps can come in many forms such as apps not having a specific functionality, those
having unrelated app descriptions or unrelated keywords, or similar apps being made available several
times and across diverse categories. Market operators maintain antispam policies and apps are removed
through continuous monitoring. Through a systematic crawl of a popular app market and by identifying
apps that were removed over a period of time, we propose a method to detect spam apps solely using app
metadata available at the time of publication. We first propose a methodology to manually label a sample
of removed apps, according to a set of checkpoint heuristics that reveal the reasons behind removal. This
analysis suggests that approximately 35% of the apps being removed are very likely to be spam apps. We then
map the identified heuristics to several quantifiable features and show how distinguishing these features
are for spam apps. We build an Adaptive Boost classifier for early identification of spam apps using only the
metadata of the apps. Our classifier achieves an accuracy of over 95% with precision varying between 85%
and 95% and recall varying between 38% and 98%. We further show that a limited number of features, in
the range of 10–30, generated from app metadata is sufficient to achieve a satisfactory level of performance.
On a set of 180,627 apps that were present at the app market during our crawl, our classifier predicts 2.7%
of the apps as potential spam. Finally, we perform additional manual verification and show that human
reviewers agree with 82% of our classifier predictions.

Categories and Subject Descriptors: H4 [Information Systems Applications]: Miscellaneous

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Spam, mobile apps, android, spam apps

ACM Reference Format:
Suranga Seneviratne, Aruna Seneviratne, Mohamed Ali Kaafar, Anirban Mahanti, and Prasant Mohapatra.
2017. Spam mobile apps: Characteristics, detection, and in the wild analysis. ACM Trans. Web 11, 1, Article 4
(March 2017), 29 pages.
DOI: http://dx.doi.org/10.1145/3007901

This submission is an extension of the conference paper, “Early Detection of Spam Mobile Apps” appeared in
Proceedings of the 24th WWW (2015) [Seneviratne et al. 2015].
Authors’ addresses: S. Seneviratne, A. Seneviratne, M. A. Kaafar, and A. Mahanti, 13, Garden Street,
Eveleigh, NSW, Australia; emails: {suranga.seneviratne, aruna.seneviratne, dali.kaafar}@data61.csiro.au,
anirban.mahanti@gmail.com; P. Mohapatra, Department of Computer Science, 2063 Kemper Hall, Univer-
sity of California, Davis, CA 95616; email: pmohapatra@ucdavis.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1559-1131/2017/03-ART4 $15.00
DOI: http://dx.doi.org/10.1145/3007901

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

http://dx.doi.org/10.1145/3007901
http://dx.doi.org/10.1145/3007901


4:2 S. Seneviratne et al.

1. INTRODUCTION

Recent years have seen the wide adoption of mobile apps, and the number apps that are
being offered is growing exponentially. As of mid-2016, Google Play Store is reported
to host approximately 2.2 million apps and Apple App Store hosts approximately 2
million apps [Statista, Inc. 2016]. During the first 5 months of 2016, Google Play Store
added on average 50,000 new apps per month and the corresponding value for Apple
App Store was 43,000 [AppBrain, Inc. 2016; PocketGamer.biz 2016]. These numbers
are expected to grow significantly over the next few years [App Annie 2016].

Both Google and Apple have policies governing the publication (offering) of apps
through their app markets. Google has an explicit spam policy [Google 2016c] that
describes the criteria for classifying an application as spam. These include (i) apps that
were automatically generated and as a result do not have any specific functionality or
a meaningful description; (ii) multiple instances of the same app being published to
obtain increased visibility in the app market; and (iii) apps that make excessive use of
unrelated keywords to attract users through unintended searches. Overall, spam apps
vitiate the app market experience and its usefulness as these apps will occupy search
results, app recommendations, and top charts. Moreover, such apps might mislead users
to install (or buy) apps they did not intend to install. Also, spam apps add additional
work to the app market operators to remove those apps from the app markets.

At present, Google and Apple take different approaches to detecting spam applica-
tions. Google’s approach is reactive. The app approval process does not check an app
against Google’s explicit spam app policy [Oberheide and Miller 2012], and takes action
only on the basis of customer complaints [Perez 2013a]. Such crowdsourced approach
can lead to a considerable time lag between app submission and detection of spam
apps. As a result, by the time an app is taken down from the app market some damage
might have already happened, such as some users installing the app and spam apps
occupying search results and top charts.

In contrast, Apple scrutinises the apps submitted for approval to determine whether
the submitted app conforms to Apple’s policies. The process used for detection is un-
known. Although this approach is likely to detect spam apps before they are published,
it lengthens the app approval process. Nonetheless, recent market reports indicate that
spam apps also make it into Apple App Store as well [Tecno Buffalo 2016; Farooqui
2016; Perez 2016]. Thus, with the ever increasing number of apps being submitted daily
for approval, the app market operators need to be able to detect spam apps quickly and
accurately [Perez 2013b].

In this article, we propose a methodology for spam app detection and classification
at the time of app submission without the need for any human intervention such as
manual inspection of the metadata or manual testing of the app. The proposed scheme
utilises only features that can be derived from an app’s metadata available during
the publication approval process. We validate the app classifier, by applying it to a
large dataset of apps collected between December 2013 and May 2014, by crawling and
identifying apps that were removed from Google Play Store. We make the following
contributions:

—We develop a manual app classification methodology based on a set of heuristic
checkpoints that can be used to identify reasons behind an app’s removal (Sections 2
and 3). Using this methodology shows that approximately 35% of the apps that were
removed are spam apps; problematic content and counterfeits were the other key
reasons for removal of apps.

—We present a mapping of our proposed spam checkpoints to one or more quantifiable
features that can be used to train a learning model (Section 4). We provide a charac-
terisation of these features highlighting the differences between spam and nonspam
apps and indicate which features are more discriminative.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:3

—We build an Adaptive Boost classifier for the detection of spam apps and show that
our classifier can achieve an accuracy over 95% at a precision between 85% and 95%
and a recall between 38% and 98% on the testing set. We perform further manual
verification and show that 82% of our classifier predictions were agreed upon by
human reviewers and apps that were predicted as spam by our classifier had 20%
higher likelihood of being removed from Google Play Store (Section 5).

—We provide a feature engineering analysis and show that a limited number of features
in the range of 10–30 is sufficient to a reach a satisfactory level of performance with
respect to precision and recall (Section 5).

—We apply our classifier to over 180,000 apps available in Google Play Store and show
that approximately 2.7% of them are potentially spam apps (Section 5).

This article extends our previous work [Seneviratne et al. 2015], that proposed a
classifier capable of detecting spam mobile apps solely based on features derived from
the app metadata available during the time of publication. In this extension, we com-
plement our previous study by investigating the relative importance of features using
several feature selection algorithms. We also provide additional analysis on the per-
formance of the classifier. More specifically, we first revisit the pages of the apps that
were predicted as spam and check whether they have been removed from Google Play
Store. Second, we manually label a subset of apps for which we have the classifier’s
predicted label to check whether the human reviewers agree with the predictions.

2. METHODOLOGY

2.1. Dataset

We used periodic crawls of the Google Play Store, to develop a dataset as described next.
The crawls were done using a Java client that uses jsoup1 HTML parser to determine (i)
functionally similar apps and (ii) other apps by the same developer. Then we recorded
app metadata such as the name, description, and category for all the apps we discovered
during each crawl. We then discarded the apps with a non-English description using
the language detection Application Programming Interface (API), “Detect Language.”2

We refer to this final set as the Observed Set - O.
We use apps collected in a previous study [Seneviratne et al. 2014b], as a seed for

collecting a new dataset. This initial seed contained 94,782 apps and was curated from
the lists of apps obtained from approximately 10,000 smartphone users. The user base
consisted of volunteers, Amazon mechanical turk users, and users who published their
lists of apps in social app discovery sites such as Appbrain.3

After identifying the Observed Set apps, we revisited Google Play Store to check the
availability of each app. The subset of apps that were unavailable at the time of this
second crawl is referred to as Crawl 1 - C1. This process was repeated two times, Crawl
2 - C2 and Crawl 3 - C3 with a 1 month gap between two consecutive crawls. Figure 1
illustrates the data collection process and Table I summarises the datasets in use.

We identify temporary versus long-term removal of apps by rechecking the status of
apps deemed to have been removed during an earlier crawl. For instance, all apps in
Crawl 1 were checked again during Crawl 2. We found that only 85 (∼0.13%) apps
identified as removed in Crawl 1 reappeared in Crawl 2. Similarly, only 153 apps
(∼0.02%) identified as removed in Crawl 2 reappeared in Crawl 3. These apps were
not included in our analysis.

1www.jsoup.org.
2http://detectlanguage.com.
3www.appbrain.com.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

file:www.jsoup.org
file:www.appbrain.com


4:4 S. Seneviratne et al.

Fig. 1. Chronology of the data collection.

Table I. Summary of the Dataset

Set Number of apps
Observed set (O) 232,906

Crawl 1 (C1) 6,566
Crawl 2 (C2) 9,184
Crawl 3 (C3) 18,897

Table II. Key Reasons for Removal of Apps

Reason Description
Spam These apps often have characteristics such as unrelated descriptions, keyword

misuse, and multiple instances of the same app. Section 3 presents details on
spam app characteristics.

Unofficial content Apps that provide unofficial interfaces to popular websites or services (e.g., an
app providing an interface to a popular online shopping site without any official
affiliation).

Copyrighted content Apps illegally distributing copyrighted content.
Adult content Apps with explicit sexual content.
Problematic content Apps with illegal or problematic content (e.g., hate speech and drug related).
Android counterfeit Apps pretending to be another popular app in Google Play Store.
Other counterfeit A counterfeit app, for which the original app comes from a different source than

Google Play Store (e.g., Apple App Store).
Developer deleted Apps that were removed by the developer.
Developer banned Developer’s other apps were removed due to various reasons and Google decides

to ban the developer. Thus, all of his apps get removed.

2.2. App Labelling Process

For a subset of the removed apps in our dataset, our goal was to manually identify the
reasons behind their removal.

We identified factors that led to the removal of apps from the market place by
consulting numerous market reports [Perez 2013b; Apple 2014] as well as by examining
the policies of the major app markets [Google 2014, 2016a, 2016b, 2016c; Apple 2016].
We identified nine key reasons, which are summarised in Table II.

For each of these reasons, we formulated a set of heuristic checkpoints that can be
used to manually label whether or not an app is likely to be removed by observing
only the metadata of apps. The checkpoints do not require one to install the apps in
a smartphone or a virtual device. As an example, we show the checkpoints used to
label copyrighted content apps in Table III and Section 3 delves into the checkpoints
developed for identifying spam apps. A full list of checkpoints for each reason can be
found in our technical report [Seneviratne et al. 2014a].

From Crawl 1, we took a random sample of 1,500 apps and asked three independent
reviewers to identify the highest likely reason behind the removal of each app using
the heuristic checkpoints that we developed as a guideline. A reviewer’s selection of
a reason for app removal is subjective and it is based upon their judgement as to
whether one or more checkpoints conditions have been satisfied. If a reviewer could

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:5

Table III. Checklist used for Manual Labelling of Copyrighted Content Apps

Attribute ID Description and Examples
Description R1 Does the app description indicate potential copyright infringement or a

trademark infringement (unauthorized use of registered trademarks)?
For example, WP8 Surface Wallpaper HD - App description indicates
potential copyright infringement.
“.... Windows Phone 8 & Surface Tablet Wallpaper HD Official Original From
Microsoft Device. ....”
For example, GHOST IN THE SHELL SAC+2ndGIG - App description
indicates potential copyright infringement.
“.... This app includes all episodes of GHOST IN THE SHELL SAC VIDEO
Please ENJOY!!!. ....”

R2 Does the app provide copyrighted material at a price?
For example, Dungeon Keeper 2 Soundboard - According to app
description it provides sounds from a PC game and the app is priced
at AU$7.44. The developer has no affiliation to original content owner.
“A lot of sounds from the old but good Dungeon Keeper 2 PC game”
For example, Pin Search For BBM - According to app description it
provides contents from a movie and a book and the app is priced at
AU$1.49. The developer has no affiliation to original content owner.
“.... MOVIE AND BOOK BY CHUCK PALAHNIUK, THIS FIGHT CLUB
SOUNDBOARD BRINGS YOU YOUR FAVORITE QUOTES FROM THE
MOVIE RIGHT TO YOUR PHONE WITH JUST THE TOUCH OF A
FINGER! ....”

R3 Does the app description contain disclaimers related to copyrights?
For example, Love Stories - App description contains a disclaimer on
potential copyright infrigements.
“.... Smart Applications does not support plagiarism in any form. Author must
note that the story should not be copied from anywhere; it should be an
original piece of work. If found otherwise, we reserve the right to delete it. ....”

Reviews R4 Do the users mention about copyright infringements?
For example, Astro Soldier War Of The Stars - Users mention about
copyright infringements.
“.... You stole copyrighted material from TimeGate Studios. ....”, “..... Your so
icon is artwork from Section 8, one of their video games .....”
For eample, Harlem Shake Creator Pro - Users mention about
copyright infringements.
“..... Want my money back!! Payed for this app so that my kids could save and
share their video, then Facebook removed it on account of copyright
infringement!! .....”

not conclusively determine the reasons behind a removal, she labelled those apps as
unknown.

The reviewers were Android app developers and worked full time for 1.5 months
at NICTA (now known as Data61) for this task. The manual labelling process took
approximately 20 working days (7 hours per day).

2.3. Agreement Among the Reviewers

We used majority voting to merge the results of the expert’s assessments, to arrive
at the reason behind the app removal in our labelled dataset (L). We decided not to
crowdsource the labelling task to avoid issues with training and expertise.

Table IV summarises reviewer assessments. For approximately 40% (601 out of
1,500) of labelled apps, the three reviewers reached a consensus on the reason for
removal and for 90% (1,350 out of 1,500) of the apps the majority of the reviewers
agreed the reason for removal was the same. For the remaining 10% of apps, reviewers
disagreed about the reasons. We calculated the Fleiss’ Kappa coefficient to quantify
the inter-rater agreement and the value was 0.455.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:6 S. Seneviratne et al.

Table IV. Reviewer Agreement in Labelling Reason for Removal

Reason 3 reviewers agreed 2 reviewers agreed Total Percentage (%)
Spam 292 259 551 36.73%
Unofficial content 65 127 192 12.80%
Developer deleted 68 56 124 8.27%
Android counterfeit 27 61 88 5.87%
Developer banned 24 54 78 5.20%
Copyrighted content 2 34 36 2.40%
Other counterfeit 11 23 34 2.27%
Adult content 8 4 12 0.80%
Problematic content 3 4 7 0.47%
Unknown 101 127 228 15.20%
Subtotal 601 749 1350 90.00%
Reviewer disagreement NA NA 150 10.00%
Total Labelled NA NA 1500 100.00%

Fig. 2. Probability of a third reviewer’s judgement when two reviewers already agreed on a reason.

Table IV also shows the composition of labelled dataset (L) after majority voting-
based label merging. We observe that spam is the main reason for app removal, ac-
counting for approximately 37% of the removals, followed by unofficial content account-
ing for approximately 13% of the removals. Around 15% of the apps were labelled as
unknown.

Figure 2 shows the conditional probability of the third reviewer’s reasoning, given
that the other two reviewers are in agreement. There is over 50% probability of the
third reviewer’s judgement of an app being spam, when two reviewers had already
judged the app to be spam. Other reasons showing such high probability are developer
deleted and adult content apps.

Our analysis through the manual labelling process shows that the main reason
behind app removal is them being spam apps. Furthermore, the reviewer agreement

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:7

was high (more than 50%) when manually labelling spam apps indicating spam apps
stand out clearly when looking at removed apps.

We have released the labelled dataset to the research community to facilitate further
research in spam app detection.4

3. MANUAL LABELLING OF SPAM APPS

This section introduces our heuristic checkpoints, which are used to manually label
the spam apps. We also provide a characterisation of the reviewer agreement related
to nine manual spam checkpoints and show that checkpoints are unambiguous and
suitable for manual labelling. Section 4 maps the defined checkpoints into automated
features.

3.1. Spam Checkpoints

Table V presents the nine heuristic checkpoints used by the reviewers and those were
derived based on Google’s spam policy [Google 2016c]. While we are unaware of Apple’s
spam policy, we note that Apple’s app review guideline [Apple 2016] includes certain
provisions that match our spam checkpoints. For example, term 4.3 in the Apple app
review guideline, “Don’t create multiple Bundle IDs of the same app/Spamming the
store may lead to your removal from the Developer Program.” maps to our checkpoint
S6. Similarly, term 2.3.7 “Don’t try to pack any of your metadata with trademarked
terms, popular app names, or other irrelevant phrases just to game the system” is similar
to our checkpoint S2.

Reviewers were asked not to deem the apps as spam when they simply observe an
app satisfying a single checkpoint, but to consider making their decision based on
matches with multiple checkpoints according to their domain expertise.

Note that Table V includes all checkpoints relevant to spam, including those that
are considered only for manual labelling and not for automated labelling. In particular,
checkpoints S8 and S9 are only used for manual labelling as features corresponding
to these checkpoints are either not available at the time of app submission or require
significant dynamic analysis for feature discovery. For instance, we do not use user
“reviews” of the app (cf. checkpoint S8), as user reviews are not available prior to the
app’s approval. Similarly, checking for excessive advertising (cf. checkpoint S9) was
also used only for manual labelling, as it requires dynamic analysis by executing it in
a controlled environment.

3.2. Reviewer Agreement on Spam Checkpoints

Table VI shows how often the reviewers agreed upon each checkpoint. Checkpoints S2
and S6 led to the highest number of 3-reviewers agreements and 2-reviewer agree-
ments. Checkpoints S1 and S3 have a moderate number of 3-reviewer agreements
while having a high number of 2-reviewer agreements. The table also suggests that
checkpoints S1, S2, S3, and S6 are the most dominant checkpoints.

The sum of the cases where three reviewers agreed, two reviewers agreed, and
reviewers disagreed shown in Table VI, is more than the total number of spam apps
identified by merging the reviewer agreement (i.e., 551 apps) because one reviewer
might mark an app as satisfying multiple checkpoints. For example, consider a scenario
where reviewer-1 labels the app as satisfying checkpoints S1, S2 and reviewer-2 labels
as S1, S2 and reviewer-3 labels only as S1. This will cause one scenario of 3-reviewer
agreement (for S1) and another scenario of 2-reviewer agreement (for S2).

Out of the 551 spam apps, three reviewers agreed on at least one checkpoint for
210 apps (∼38%), and two reviewers agreed on at least one checkpoint for 296 apps

4http://www.privmetrics.org/publications/www15.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

http://www.privmetrics.org/publications/www15


4:8 S. Seneviratne et al.

Table V. Checkpoints used for Labelling of Spam Apps

Attribute ID Description and Examples
Description S1 Does the app description describe the app function clearly and concisely?

For example, Signature Capture App (Nonspam) - Description is clear on the functionality.
“SignIt app allows a user to sign and take notes which can be saved and shared instantly in email.”

For example, Manchester (Spam) - Description contains details about Manchester United
Football Club without any details on the functionality of the app.
“Manchester United Football Club is an English professional football club, based in Old Trafford, Greater
Manchester, that plays in the Premier League. ..... In 1998-99, the club won a continental treble of the Premier
League, the FA Cup and the UEFA Champions League, an unprecedented feat .....”

S2 Does the app description contain too much detail/incoherent/unrelated text for an app description?

For example, SpeedMoto (Nonspam) - Description is clear and concise about the functionality and
usage.
“SpeedMoto is a 3d moto racing game with simple control and excellent graphic effect. Just swipe your phone
to control moto direction. Tap the screen to accelerate the moto. In this game you can ride the motorcycle
shuttle in outskirts, forest, snow mountain, bridge.”

For example, Ferrari Wallpapers HD (Spam) - Description starts mentioning app as a wallpaper.
However, then it goes into detail about Ferrari.
“*HD WALLPAPERS *EASY TO SAVE *EASY TO SET WALLPAPER *INCLUDES ADS FOR
ESTABLISHING THIS APP FREE TO YOU THANKS FOR UNDERSTANDING AND
DOWNLOADING =) Ferrari S.p.A. is an Italian sports car manufacturer based in Maranello, Italy. Founded
by Enzo Ferrari in 1929, as Scuderia Ferrari, the company sponsored drivers and manufactured .....”

S3 Does the app description contain a noticeable repetition of words or keywords?

For example, English Chinese Dictionary (Nonspam) - Keywords do not have excessive repetition.
“Keywords: ec, dict, translator, learn, translate, lesson, course, grammar, phrases, vocabulary”

For example, Best live HD TV no ads (Spam) - Excessive repetition of words.
“Keywords: live tv for free mobile tv tuner tv mobile android tv on line windows mobile tv verizon mobile tv tv
streaming live tv for mobile phone mobile tv stream mobile tv phone mobile phone tv rogers mobile tv live
mobile tv channels sony mobile tv free download mobile tv dstv mobile tv mobile tv.....”

S4 Does the app description contain unrelated keywords or references?

For example, FD Call Assistant Free (Nonspam) - All the keywords are related to the fire
department.
“Keywords: firefighter, fire department, emergency, police, ems, mapping, dispatch, 911”

For example, Diamond Eggs (Spam) - Reference to popular games Bejeweled Blitz and Diamond
Blast without any reason.
“Keywords : bejeweled, bejeweled blitz, gems twist, enjoy games, brain games, diamond, diamond blast,
diamond cash, diamond gems, Eggs, jewels, jewels star”

S5 Does the app description contain excessive references to other applications from the same developer?

For example, Kids Puzzles (Nonspam) - Description does not contain references to developer’s
other apps.
“This kids game has 55 puzzles. Easy to build puzzles. Shapes Animals Nature and more... With sound
telling your child what the puzzle is. Will be adding new puzzles very soon.”

For example, Diamond Snaker (Spam) - Excessive references to developer’s other applications.
“If you like it, you can try our other apps (Money Exchange, Color Blocks, Chinese Chess Puzzel .....”

S6 Does the developer have multiple apps with approximately the same description?

The developer “Universal App” has 16 apps having the following description, with each time
XXXX term is replaced with some other term.
“Get XXXX live wallpaper on your devices! Download the free XXXX live wallpaper featuring amazing
animation. Now with “Water Droplet”, “Photo Cube”, “3D Photo Gallery” effect! Touch or tap ..... To Use:
Home -> Menu -> Wallpaper -> Live Wallpaper -> XXXX 3D Live Wallpaper. To develop more free great live
wallpapers, we have implemented some ads in settings. Advertisement can support our develop more free
great live wallpapers... ”

Identifier S7 Does the app identifier make sense and have some relevance to the functionality of the application or does it
look like it is autogenerated?

For example, Angry Birds & Candy Crush Saga (Nonspam) - Identifiers give an idea about the
app.
“com.rovio.angrybirds”, “com.king.candycrushsaga”

For example, Game of Thrones FREE Fan App & How To Draw Graffiti (Spam) - Identifiers
appear to be autogenerated.
“com.a121828451851a959009786c1a.a10023846a”, “com.a13106102865265262e503a24a.a13796080a”

Reviews S8 Do users complain about the app being spammy in reviews?

For example, Yoga Trainer & History Cleaner (Spam) - Users complain about app being spammy.
“Junk spam app Avoid”, “More like a spam trojan! Download if you like, but this is straight garbage!!”

Adware S9 Do the online APK checking tools highlight apps having excessive advertising?

For example, Biceps & Triceps Workouts
“AVG threat labs” [AVG 2014] gives a warning about inclusion of adware.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:9

Table VI. Checkpoint-wise Reviewer Agreement for Spam

Checkpoint S1 S2 S3 S4 S5 S6 S7 S8 S9
Three reviewers agreed 22 63 20 0 4 89 11 3 3
Two reviewers agreed 52 81 75 3 6 115 11 26 15

Disagreed 45

Fig. 3. Probability of a third reviewer’s judgement when two reviewers already agreed on a checkpoint.

(∼54%). For 45 apps (∼8%), the three reviewers gave different checkpoints (i.e., when
the reviewers assess an app as spam, over 90% of the time they also agreed on at least
one checkpoint).

Figure 3 illustrates the conditional probability of the third reviewer’s checkpoint
selection given two reviewers have already agreed on a checkpoint. We observe that
for checkpoints S1, S2, S5, S6, S7, and S8, there is a high probability that the third
reviewer indicates the same checkpoint when two of the reviewers already agreed on
a checkpoint. There is, however, a noticeable anomaly for checkpoint S4, for which it
seems that reviewers are getting confused with S3. This is due to the lower frequency
of occurrences of checkpoint S4. There were no 3-reviewer agreements for S4 and there
were only three cases where two reviewers agreed as shown in Table VI. In those
three cases the other reviewer marked the checkpoint S3 in two cases giving a high
probability (∼67%) for S4 getting confused with S3. Note that Other refers to all the
checkpoints associated with reasons for app removals other than spam; the probability
of Others being chosen is high because of the accumulated sum of probabilities of
checkpoints associated with other reasons.

4. FEATURE MAPPING

Checkpoint heuristics for spam (cf. Table V) need to be mapped into features that can be
extracted and used for automatic spam detection during the app approval process. This
section presents this mapping and a characterisation of these features with respect to
spam and nonspam apps.

An app is considered spam if two out of three reviewers labelled it as spam. We
assumed top apps found by ranking apps with respect to the number of downloads,
number of user reviews, are quite likely to be nonspam. For example, according to this

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:10 S. Seneviratne et al.

Fig. 4. Frequency of manually
identified word n-grams.

Fig. 5. Example features for Checkpoint S2.

ranking, the number one ranked app was Facebook and number 100 was Evernote,5
number 500 was Tictoc,6 and number 1,000 was Saavn,7 which are all very popular
and legitimate apps. Thus, we selected top k times the number of labelled spam apps
(551) from the set O, except all removed apps, after ranking them according to total
number of downloads, total number of user reviews, and average rating as nonspam
apps. We varied k logarithmically between 1 and 32, (i.e., 1x, 2x, 4x, . . . ,32x) to obtain
six datasets of nonspam apps. At larger k values it is possible that spam apps are
considered to be nonspam, as discussed later in this section.

As noted in Section 3.1, checkpoints S8 and S9 are not used to develop features since
we intend to enable automated spam detection at the time of developer submission.

4.1. Checkpoint S1 - Does the App Description Describe the App Function
Clearly and Concisely?

We automate this heuristic by identifying word-bigrams and word-trigrams that are
used to describe a functionality and are popular among either spam or nonspam apps.

First, we manually read the descriptions of the top-100 nonspam apps and identified
100 word bigrams and word trigrams that describe app functionality, such as “this
app,” “allows you,” and “app for.” Figure 4 shows the Cumulative Distribution Function
(CDF) of the number of bigrams and trigrams observed in app descriptions in each
dataset. There is a high probability of spam apps not having these features in their
app descriptions. For example, 50% of the spam apps had more than one occurrence of
these bigrams, whereas 80% of the top-1x apps had more than one of these bigrams and
trigrams. The difference in distribution of these bigrams and trigrams between spam
and nonspam apps decreases when more and more lower ranked apps are considered in
the nonspam category. This finding is consistent across some of the features we discuss
in subsequent sections and we believe this indicates lower ranked apps can potentially
include spams that are as yet not identified by Google.

Second, as manual identification of bigrams and trigrams is not exhaustive, we
identified the word-bigrams and word-trigrams that appear in at least 10% of the spam
and 10% of the nonspam apps. We used each such word-bigram and word-trigram as
features and the frequency of occurrence as the value of the feature. Figure 6 visualises
top-50 bigrams (when ranked according to information gain); the size of the bigrams
proportional to the logarithm of the normalised information gain. Note that bigrams
such as “live wallpaper,” “wallpaper on,” and “some ads” are mostly present in spam,
whereas bigrams such as “follow us,” “to play,” and “on twitter” are popular in nonspam.

5https://evernote.com.
6http://www.tictoc.net.
7http://www.saavn.com.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

http://www.tictoc.net
http://www.saavn.com


Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:11

Fig. 6. Top-50 bigrams differentiating spam and top-1x.

Table VII. Features Associated with Checkpoint S2

Feature
1 Total number of characters in the description
2 Total number of words in the description
3 Total number of sentences in the description
4 Average word length
5 Average sentence length
6 Percentage of uppercase characters
7 Percentage of punctuations
8 Percentage of numeric characters
9 Percentage of nonalphabet characters
10 Percentage of common English words [Canales et al. 2011]
11 Percentage of personal pronouns [Canales et al. 2011]
12 Percentage of emotional words [Mukherjee and Liu 2010]
13 Percentage of misspelled words [Wikipedia 2014]
14 Percentage of words with alphabet and numeric characters
15 Automatic Readability (AR) index [Senter and Smith 1967]
16 Flesch Readability (FR) score [Flesch 1948]

4.2. Checkpoint S2 - Does the App Description Contain Too Much Detail, Incoherent Text,
or Unrelated Text?

We use writing style related “stylometry” features to map this checkpoint to a set of
features anticipating spam and nonspam apps might have a different writing style. We
used the 16 features listed in Table VII for this checkpoint. The feature list was complied
by combining the features used by Canales et al. [2011] in authorship identification in
online exams and features used by Mukherjee and Liu [2010] in gender classification
in blog authors. Further details about the features can be found in our technical report
[Seneviratne et al. 2014a].

For characterisation, we select features using the greedy forward feature selection in
wrapper method [Kohavi and John 1997]. We use a decision tree classifier with maxi-
mum depth 10 and the feature subset was selected such that the classifier optimises
the performance metric asymmetric F-Measure, Fβ = (1 + β2). precision.recall

(β2.precision)+recall , with
β = 0.5. This metric was used since in spam app detection, precision is more important
than recall [Soboroff et al. 2012]. This process identified the total number of words

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:12 S. Seneviratne et al.

Fig. 7. Vocabulary richness. Fig. 8. Mentioning popular app names.

in the description, total number of sentences in the description, percentages of numeric
characters, percentage of nonalphabet characters, and percentage of common English
words as the most discriminative features.

Figure 5(a) shows the CDF of the total number of words in the app description.
Spam apps tend to have less wordy app descriptions than nonspam apps. For instance,
nearly 30% of the spam apps have less than 100 words, whereas approximately only
15% top-1x apps and top-2x apps have less than 100 words. As we inject more and
more apps of lower popularity the difference diminishes. Figure 5(b) presents the CDF
of the percentage of common English words [Canales et al. 2011] in the app description.
It illustrates that spam apps typically use fewer common English words compared to
nonspam apps.

4.3. Checkpoint S3 - Does the App Description Contain a Noticeable Repetition
of Words or Keywords?

We quantify this checkpoint using the Vocabulary Richness (VR)=Number of unique words
Total number of words

metric. Figure 7 shows the CDF of the VR measure. We expected spam apps to have
low VR due to repetition of keywords. However, we observe this only in a limited
number of cases. According to Figure 7, if VR is less than 0.3, an app is only marginally
more likely to be spam. Perhaps the most surprising finding is that the apps with VR
close to 1 are more likely to be spam. 10% of the spam apps had VR over 0.9 and none
of the nonspam apps had such high VR values. When we manually checked these spam
apps we found that they had terse app descriptions. We showed earlier that apps with
a shorter description are more likely to be spam under checkpoint S2.

4.4. Checkpoint S4 - Does the App Description Contain Unrelated Keywords or References?

Inserting unrelated keywords such that an app would appear in popular search results
is a common spamming technique. Since the topics of the apps can vary significantly, it
is difficult to find when the terms included in the description are actually related to the
functionality. In this study, we focussed on a specific strategy the developers might use,
that is, mentioning the names of the popular applications with the hope of appearing
in the search results for these applications. For each app we calculated the number of
mentions of the top-100 popular app names in the app’s description.

Figure 8(a) shows the distribution of the number of times the name of top-100 apps
appear in the description. Somewhat surprisingly, we found that only 20% of the spam
apps had at least one mention of popular apps, whereas 40%–60% of the top-kx apps
had more than a single mention of popular apps. On investigation, we find that many
top-kx apps have social networking interfaces and fan pages and as a result they
mention the names of popular social networking apps. This is evident in Figure 6 as
well where Twitter or Facebook are mentioned mostly in nonspam apps. To summarise,

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:13

the presence of social sharing features or the availability of fan pages can be used to
identify nonspam apps.

Next, we consider the sum of the tf-idf weights of the top-100 app names. This feature
attempts to reduce the effect of highly popular apps. For example, Facebook can have
a high frequency because of its sharing capability and many apps might refer to it.
However, if an app refers to another app that is not as popular as Facebook, such as
reference to popular games, it indicates a likelihood of it being a spam app. To discount
the effect of the commonly available app names, we used the sum of tf-idf weights as
a feature. For a given dataset let t fik where i = 1 : 100 is the number of times the app
name of ith app (ni) in top-100 apps appears in an app description of app k (ak). Then we
define IDFi for ith app in top-100 apps as IDFi = N

log(1+|{ni∈ak}|) ∀k. Then feature tf− idf(k)

for kth app is tf − idf(k) = ∑i=100
i=1 tfik . IDFi.

The preceding calculation is dataset dependent. Despite this, as Figure 8(b) shows,
the CDF of top-1x dataset and the results still indicates that if popular app names
are found in the app description, the app tends to be nonspam rather than spam.
We repeated the same with top-1000 app names and found that the results were
similar.

4.5. Checkpoint S5 - Does the App Description Contain Excessive References
to Other Applications from the Same Developer?

We use the number of times a developer’s other app names appear as the feature
corresponding to this checkpoint. However, none of the cases marked by the reviewers
as matching checkpoint S5 satisfied this feature because the description contained
links to the applications rather than the app names and only 10 spam apps satisfied
this feature (cf. Table VI). We do not use checkpoint S5 in our classifier.

4.6. Checkpoint S6 - Does the Developer Have Multiple Apps with Approximately
the Same Description?

For this checkpoint, for each app we considered the following features: (i) the total
number of other apps the developer has, (ii) the total number of apps with an English
language description that can be used to measure descriptions similarity, and (iii) the
number of other apps from the same developer having a description cosine similarity
(s), of over 60%, 70%, 80%, and 90%.

To calculate the cosine similarity we first preprocess the app description text by
converting the characters to lowercase and removing punctuation symbols. Then we
represent each document as a word frequency vector and calculate the cosine similarity
between the two documents a and b as Cos(a, b) = a.b

||a|| ||b|| .
We observe that the features based on the similarity between app descriptions are

the most discriminative. As examples, Figures 9(a) and 9(b), respectively, show the
CDF of the number of apps with s over 60% and 90% by the same developer.

Figure 9(a) shows that only about 10%–15% of the nonspam apps have more than five
other apps from the same developer with over 60% of description similarity. However,
approximately 27% of the spam apps have more than five apps with over 60% of
description similarity. This difference becomes more evident when the number of apps
from the same developer with over 90% description similarity is considered, indicating
that spam apps tend to have multiple clones with similar app descriptions.

4.7. Checkpoint S7 - Does the App Identifier (Appid) Make Sense and have Some Relevance
to the Functionality of the Application or Does It Appear to be Autogenerated?

Every Android app has an app identifier (appid), which is used to uniquely identify
the app in Google Play Store. Appid follows the Java package naming convention

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:14 S. Seneviratne et al.

Fig. 9. Similarity with developer’s other apps.

Table VIII. Features Associated with Checkpoint S7

Feature
1 Number of characters
2 Number of words
3 Average word length
4 Percentage of of non-letter characters to total characters
5 Percentage of upper case characters to total letter characters
6 Presence of parts of app name in appid
7 Percentage of bigrams with 1 non-letter to total bigrams
8 Percentage of bigrams with 2 non-letters to total bigrams
9 Percentage of bigrams with 1 or 2 non-letters to total bigrams
10 Percentage of trigrams with 1 non-letter to total trigrams
11 Percentage of trigrams with 2 non-letters to total trigrams
12 Percentage of trigrams with 3 non-letters to total trigrams
13 Percentage of trigrams with 1, 2 or 3 non-letters to total trigrams

Fig. 10. Example features associated with Checkpoint S7.

[Oracle 2014] and differs from the app name that is visible to the users. For exam-
ple, for the Facebook Android app, the app name is Facebook, whereas the appid is
com.facebook.katana.

Table VIII shows the features derived from the appid. We applied the feature selec-
tion method noted in Section 4.2 to identify the most discriminative features (number
of words, average word length, percentage of bigrams with two nonletters).

In Figure 10(a) we show the CDF of the number of words in the appid. The spam
apps tend to have more words compared to nonspam apps. For example, 15% of the
spam apps had more than five words in the appid, whereas only 5% of the nonspam
had the same. Figure 10(b) shows the CDF of the average word length of a word in

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:15

Table IX. Features Associated with Other App Metadata

Feature Feature
1 App category 5 Developer’s website available
2 Price 6 Developer’s website reachable
3 Length of app name 7 Developer’s email available
4 Size of the app (KB) 8 Privacy policy available

Fig. 11. App category.

appid. For 10% of the spam apps the average word length is higher than 10 and it was
so only for 2%–3% of the nonspam apps.

Figure 10(c) shows the percentage of nonletter bigrams (e.g., “01,” “8”) among all
character bigrams that can be generated from the appid. None of the nonspam apps
had more than 20% of nonletter bigrams in the appid, whereas about 5% of the spam
apps had more than 20% of nonletter bigrams. Therefore, if an appid contains more
than 20% of nonletter bigrams out of all possible bigrams that can be generated, that
app is more likely to be spam than nonspam.

4.8. Other Metadata

In addition to the features derived from the checkpoints, we added the metadata related
features listed in Table IX.

Figures 11(a) and 11(b) show category-wise app distribution of spam apps against
top-1x and top-32x app categories. We note that approximately 42% of the spam apps
belong to the categories Personalisation and Entertainment, whilst the corresponding
values for top-1x and top-32x sets are approximately 8% and 14%, respectively. Manual
inspection of spam apps in the Personalisation category showed that the majority are
wallpaper and the spam apps in the Entertainment category are Youtube Playlists.

We found a negligibly small number of spam apps in the categories Communication,
Photography, Racing, Social, Travel, and Weather. Moreover, for categories Arcade,
Tools, and Casual, the percentage of spam is significantly less than the percentage of
nonspam. Qualitatively similar observations hold for these other top-kx sets.

Figure 12(a) shows the CDF of the length of the app name. Spam apps tend to have
longer names. For example, 40% of the spam apps had more than 25 characters in the
app name. Only 20% of the nonspam apps had more than 25 characters in their app
names. Figure 12(b) shows the CDF of the size of the app in kilobytes. Spam apps tend
to have a high probability of having a size in some specific ranges. If the size of the app
is very low, those apps are more likely to be nonspam. For example, 30% of the top-kx
apps were less than 100KB in size and the corresponding percentage of spam apps

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:16 S. Seneviratne et al.

Fig. 12. Features associated with other app metadata.

Table X. Availability of Developer’s External Information

Spam Top 1x Top 2x Top 4x Top 8x Top 16x Top 32x
Website available 57% 93% 94% 93% 91% 89% 86%
Website reachable 93% 98% 97% 97% 96% 96% 95%
Email available 99% 84% 89% 91% 93% 94% 95%
Privacy policy available 9% 56% 50% 48% 38% 32% 26%

is almost zero. Almost all the spam apps were having sizes less than 30MB, whereas
10%–15% of the top-kx apps were more than 30MB in size. CDF of the spam app shows
a sharp rise between 1000KB and 3000KB indicating there are more apps in that size
range.

Table X shows the external information related features. For example, if a link to a
developer website or a privacy policy is given the app is more likely to be nonspam.

5. EVALUATION

5.1. Classifier Performance

We build a binary classifier based on the Adaptive Boost algorithm [Freund and
Schapire 1996] to detect whether or not a given app is spam. The Adaptive Boost
classifier was selected according to the performance results by testing the number of
off-the-shelf classifiers. We use the spam apps as positives and apps from a top-kx set
as negatives. Each app is represented by a vector of all the features listed in Section 4.
The classifier is trained using 80% of the data and the remaining 20% of the data is
used for testing. We repeat this experiment for k = 1, 2, 4, . . . , 32.

Some of the features discussed in Section 4 depend on the other apps in the dataset
rather than on the metadata of the individual apps. For such cases we calculate the
features based only on the training set to avoid any information propagation from
the training to the testing set that would artificially inflate the performance of the
classifier. For example, when extracting the bigrams (and trigrams) that are popular
in at least 10% of the apps, only spam and nonspam apps from the training set are
used. This vocabulary is then used to generate feature values for individual apps in
both training and testing sets.

Decision trees with a maximum depth of 5 are used as the weak classifiers in the
Adaptive Boost classifier. We select decision trees as weak classifiers based on the
observations made in multiple previous works that showed Adaptive Boost in combi-
nation with decision trees provides more accurate results [Freund and Schapire 1996;
Quinlan 1996; Margineantu and Dietterich 1997]. Through experimenting, we select

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:17

Table XI. Classifier Performance

k Precision Recall Accuracy F0.5

1 0.9310 0.9818 0.9545 0.9408
2 0.9533 0.9273 0.9606 0.9480
4 0.9126 0.8545 0.9545 0.9004
8 0.9405 0.7182 0.9636 0.8857
16 0.8833 0.4818 0.9658 0.7571
32 0.8571 0.3818 0.9793 0.6863

Table XII. Classifier Performance: k = 2 Model

k Precision Recall Accuracy F0.5

4 0.8080 0.9182 0.9400 0.8279
8 0.5549 0.9182 0.9091 0.6026
16 0.2730 0.9182 0.8513 0.3176
32 0.1164 0.9182 0.7862 0.1410

500 as the number of iterations. Table XI summarises the results. Our classifiers, while
varying the value of k, have precision over 85% with recall varying between 38% and
98%. Notably, when k is small (e.g., when the total number of nonspam apps represents
≤2x the number of spam apps) the classifier achieves up to 95% accuracy.

Recall drops when we increase the number of negative examples because a larger k
value implies inclusion of lower ranked apps as negative (nonspam) examples. Some of
these lower ranked apps, however, exhibit some spam features and some may indeed be
spam (not yet been detected as spam). As we have only a small number of spam apps in
the training set, when unlabelled spam apps are added as nonspam, some spam related
features become nonspam features as the number of apps satisfying that feature is high
in nonspam. As a result, recall drops when k increases. Another potential reason for
this observation is the classifier’s behaviour under class imbalance [Japkowicz and
Stephen 2002]. Since the classifier tries to improve the overall accuracy of predictions,
as the imbalance in classes increases (i.e., as k increases) the classifier might tend to
mark more samples as nonspam.

When the number of negative examples increases, the classifier becomes more con-
servative and correctly identifies a relatively small portion of spam apps. Nonetheless,
even at k = 32 we achieve a precision over 85%. This is particularly helpful in spam
detection, as marking a nonspam as spam can be more expensive than missing a spam.

Additionally, if the objective is to build an aggressive classifier that identifies as much
spam as possible so that app market operators can flag these apps to make a decision
later, a classifier built using a smaller number of negative examples (i.e., k = 1 or k = 2)
can be used. For example, in Table XII we show the k = 2 classifier’s performance in
the higher order datasets. As can be seen, this classifier identifies nearly 92% of the
spam. However, the precision goes down as we traverse down the app ranking because
of an increased number of false positives. Nonetheless, in reality some of these apps
may actually be spam and as a result may not exactly be false positives.

5.2. Feature Significance Analysis

We checked whether a limited number of features are sufficient to achieve a satisfying
level of performance. We first analyse the relative feature weights calculated based
on the trained Adaptive Boosting models. Afterwards we used two commonly used
feature selection methods, forward feature selection and entropy based feature selection,
implemented in FSelector package8 in R to identify a subset of features. For each feature

8https://cran.r-project.org/web/packages/FSelector/FSelector.pdf.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

https://cran.r-project.org/web/packages/FSelector/FSelector.pdf.


4:18 S. Seneviratne et al.

Table XIII. Significant Features According to the Average Relative Feature Importance Over All the Classifiers

Relative
Feature Feature

Feature Importance Importance
1 Total number of words in the description 0.0376 1.0000
2 Total number of characters in the description 0.0371 0.9884
3 Percentage of nonalphabet characters 0.0354 0.9448
4 Total number of sentences in the description 0.0354 0.9431
5 Automatic readability index 0.0352 0.9374
6 Average sentence length 0.0351 0.9346
7 Average word length 0.0345 0.9196
8 Percentage of punctuations 0.0342 0.9113
9 Flesch score 0.0341 0.9072
10 Vocabulary richness 0.0337 0.8967

Fig. 13. Values of relative feature importance for all the features.

selection scenario we evaluated the performance of the classifier using only the subset
of features.
Adaboost Feature Weights: We calculated the feature importance based on the
trained Adaptive Boosting models. Feature importance for a single decision tree as
defined by Breiman et al. [1984], is a measure based on the number of times a feature
appears in an internal tree node weighted by the squared improvement to the model by
introducing the node. For additive tree models such as Adaptive Boosting the feature
importance measure is generalised by averaging over all the trees in the model and it
is usually reported as a relative value by normalising to the range between zero and
one [Friedman et al. 2001]. We used the ada package9 in R to calculate the relative
feature importance values.

As we have six classifiers (one for each kx dataset), to aggregate the relative feature
importance, we ranked the features according to the average of the relative feature
importance across all the classifiers. Table XIII shows the top-10 features and their
average relative feature importance values. All the features in the top-10 are from the
checkpoint S6. Figure 13 further shows the relative feature importance values for all
the features when they are ranked according to the decreasing order of the same.

9https://cran.r-project.org/web/packages/ada/ada.pdf.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

https://cran.r-project.org/web/packages/ada/ada.pdf


Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:19

Table XIV. Classifier Performance with Selected Features

k No. of features Precision Recall Accuracy F0.5

1 9 0.9099 0.9182 0.9136 0.9116
2 8 0.9208 0.8455 0.9242 0.9047
4 10 0.8866 0.7818 0.9364 0.8635
8 13 0.8592 0.5546 0.9404 0.7741
16 3 0.8333 0.1364 0.9476 0.4121
32 2 0.7895 0.1364 0.9727 0.4032

Forward Feature Selection: We then used the same greedy forward feature selection
method mentioned in Section 4 for each k value. The difference here is that we try to
identify most significant features among all the features corresponding to manual
heuristics, whereas in Section 4 we identified significant features corresponding to
each manual checkpoint separately.

In Table XIV we show the number of features identified for each k value and the
performance of the classifier only using these features. The results show that a limited
number of features can yield performance close to the use of all features for some k
values. For example, for k = 1, 2, and 4, use of 8 to 10 features results in a F0.5
performance loss of only 3%, approximately. Moreover, when k = 16 and k = 32, three
and two features alone achieve a precision of 78% and a recall of 13%. Those features
were Percentage of bigrams with two nonletters to total bigrams in appid, Bigram
“wallpaper to,” Bigram “screen to,” and Bigram “live wallpapers.”

Table XV lists all the features that were identified for all the k values. Altogether
there were 29 distinct features. In Table XVI we show the performance of the clas-
sifier when only these 29 features were used. The results are close to the use of all
the features and differs only by 8% in F0.5 at maximum. This suggests that from all
the features considered these are the features that mostly influence the performance
of the classifier.

Entropy Based Feature Selection: We used information gain to rank all the fea-
tures. The top-10 features with highest information gain are shown in Table XVII.
Then, we progressively trained and tested the classifiers by adding features according
to their values of information gain. Figures 14(a) and 14(b) show how precision and
recall increases with the progressive addition of features. As can be seen from Fig-
ure 14(a), for all k values apart from 32, precision reaches approximately its maximum
value when the number of selected features is close to 25. Similar observation holds
for recall as illustrated in Figure 14(b) for k values up to 8.

5.3. Applying the Classifier in the Wild

To estimate the volume of potential spam that might be in Google Play Store, we used
two of our classifiers to predict whether or not an app in our dataset was spam. We
selected a conservative classifier (k = 32) and an aggressive classifier (k = 2) to obtain
a lower and upper bound.

We did this prediction only for the apps that were not used for training during the
classifier evaluation phase to avoid classifier artificially reporting higher number of
spam. Table XVIII shows the results. C1, C2, and C3 are three sets of removed apps we
identified as described in Section 2.1 and Others are the apps in O that were neither
removed nor belong up to top-32x. Thus, Others apps represent the average apps in
Google Play Store and we know that they were there in the market for at least 6
months, and by the time we stopped monitoring they were still there in the market.

According to the results, the more aggressive classifier (k = 2) predicted around 70%
of the removed apps and 55% of the other apps to be spam. The conservative classifier

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:20 S. Seneviratne et al.

Table XV. Significant Features According to Forward Feature Selection

Feature
1 Frequency of manually identified word-bigrams and word-trigrams
2 Bigram “the screen”
3 Bigram “wallpaper to”
4 Bigram “will be”
5 Bigram “you want”
6 Bigram “screen to”
7 Bigram “live wallpapers”
8 Bigram “app is”
9 Bigram “as samsung”
10 Total number of characters in the description
11 Total number of words in the description
12 Percentage of common English words
13 Percentage of emotional words
14 Percentage of nonalphabet characters
15 Percentages of numeric characters
16 Percentage of punctuations
17 Percentage of trigrams with one, two, or three nonletters to total trigrams in app id
18 Percentage of bigrams with two nonletters to total bigrams in app id
19 Mentioning popular app names top-100 TF-IDF
20 Mentioning popular app names top-1000 TF-IDF
21 Similarity with developer’s other apps (over 60%)
22 Similarity with developer’s other apps (over 70%)
23 Price
24 Size
25 Category
26 Length of the app name
27 Developer’s website available
28 Developer’s website reachable
29 Developer’s email address available

Table XVI. Classifier Performance With
29 Selected Features

k Precision Recall Accuracy F0.5

1 0.8983 0.9636 0.9273 0.9107
2 0.9143 0.8727 0.9303 0.9057
4 0.8800 0.8000 0.9382 0.8627
8 0.8816 0.6091 0.9475 0.8092
16 0.8393 0.4273 0.9615 0.7036
32 0.8788 0.2636 0.9766 0.5992

Table XVII. Significant Features According to Entropy Based Feature Selection (1x Dataset)

Feature Information Gain
1 Size 0.2154
2 Category 0.2056
3 Mentioning popular app names top-1000 TF-IDF 0.1764
4 Mentioning popular app names top-1000 0.1573
5 Privacy policy available 0.1429
6 Developer’s website available 0.0992
7 Developer’s website reachable 0.0992
8 Number of apps by the developer 0.0904
9 Frequency of manually identified word-bigrams and word-trigrams 0.0880
10 Mentioning popular app names top-100 TF-IDF 0.0831

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:21

Fig. 14. Performance against the number of features.

Table XVIII. Predictions on Spam Apps
in Google Play Store

Dataset Size k = 2 k = 32

Crawl 1 (C1) 6,566 70.37% 12.89%
Crawl 2 (C2) 9,184 73.14% 6.57%
Crawl 3 (C3) 18,897 72.99% 6.49%

Others 180,627 54.59% 2.69%

Table XIX. Manual Validation of the Predictions

Prediction
Spam Nonspam

Manual Labelling
Spam 82.47% 32.58%
Legit 5.98% 29.69%
Other 11.55% 37.73%

(k = 32) predicted 6%–12% of the removed apps and approximately 2.7% of the other
apps as spam.

As an indicator of the extent to which our predictions were correct, we perform two
additional analyses.

5.4. Manual Labelling of a Sample of Predictions

We gave the same reviewers a set of apps that contained 10% of the spam apps that
were labelled by the k = 32 classifier (485) and another 485 of nonspam apps. Reviewers
were asked to check the apps according to the guidelines provided in Section 2.2 and
it was mentioned to them that in this occasion the set might contain apps that are
legitimate (Legit).

Table XIX shows the results of this manual labelling process. As can be seen, human
reviewers marked approximately 82% of the spam predictions made by the classifier
as spam and only 6% of the spam predictions are labelled as legitimate. Reviewers
also labelled approximately 32% of the apps that were predicted as nonspam also as
spam. The reason behind this is that Others set contains the apps that are not in top
app rankings (beyond top-32k ∼ 17,632) and can potentially include spam apps or apps
showing some marginal spam characteristics.

The results of the manual labelling process is in agreement with the results of
Table XI. The precision calculated according to the human reviewing (82%) is close to
the precision obtained on the testing set (86%).

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:22 S. Seneviratne et al.

Table XX. Our Predictions Against Google App Removals

k Prediction Removed Not Removed

k = 2 Spam 24.47% 75.53%
Nonspam 16.97% 83.03%

k = 32 Spam 40.14% 59.86%
Nonspam 20.55% 79.45%

5.5. A 1 Year Later Recrawl

We did another crawl 1 year after Crawl-3 (in May ’15), targeting the Others set, to
check our predictions against app removals. Table XX shows the results of the crawl.
As can be seen, at k = 2, 24% apps predicted as spam got removed from the Play
Store. However, approximately 17% of the apps that were predicted as nonspam was
also removed from the Play Store resulting in only a marginal performance. k = 32
classifier’s performance was significantly better as 40% of the predicted spam apps were
removed, compared to the 21% of the predicted nonspam apps that were removed.

To elaborate further, over the year, 21% apps were removed from the app market for
various reasons. This means a random prediction will give a 21% accuracy. However,
in the set predicted as spam using the proposed classifier, 40% of apps were removed,
which indicates the classifier is performing twice as well as a random classifier. More-
over, it is unlikely that Google removes all possible spam apps during a year and thus
a number of spam apps can still remain in the market. Thus, the actual classifier
performance can be even higher.

Over this crawl, we found that approximately 19% of the apps were removed and the
percentage of removal in our nonspam predicted datasets is close to that. This further
shows that our spam predictions are meaningful and perform better than a random
prediction.

6. RELATED WORK

In this section, we discuss related work in spam detection for web pages, email, and
SMS, and the detection of malware apps and overprivileged apps.

Web spam refers to the publication of web pages that are specifically designed to
influence search engine results. Using a set of manually classified samples of web
pages obtained from “MSN Search,” Ntoulas et al. [2006] characterise the web page
features that can be used to classify a web page as spam or not. The features include
top-level domain, language of the web page, number of words in the web page, number
of words in the page title, etc.

Fetterly et al. [2004] characterise the features that can potentially be used to iden-
tify web spam through statistical analysis. The authors analyse features such as URL
properties, host name resolutions, and linkage properties and find that outliers within
each of the properties considered are spam. Castillo et al. [2007] describe a cost-
sensitive bagging classifier with decision trees, which when used individually with
link-based features and content-based features can classify web pages into spam and
nonspam. Gyöngyi et al. [2004] propose the use of the link structure in a limited set
of manually identified nonspam web pages to iteratively find spam and nonspam web
pages, and show that a significant fraction of the web spam can be filtered using only a
seed set of less than 200 sites. Krishnan and Raj [2006] use a similar approach. Erdélyi
et al. [2011] show that a computationally inexpensive feature subset, such as the num-
ber of words in a page and the average word length, is sufficient to detect web spam.

Detection of email spam has received considerable attention [Blanzieri and Bryl
2008]. Various content related features of mail messages such as email header, text
in the email body, and graphical elements have been used together with machine

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:23

learning techniques, such as naive Bayesian [Pantel and Lin 1998; Sahami et al. 1998;
Metsis et al. 2006], support vector machines [Drucker et al. 1999; Aradhye et al. 2005;
Sculley and Wachman 2007], and k nearest neighbour [Androutsopoulos et al. 2000].
Noncontent related features such as SMTP path [Leiba et al. 2005] and user’s social
network [Oscar and Roychowdbury 2005; Chirita et al. 2005] has also been used in
spam email detection.

Spam has also been studied in the context of SMS [Gómez Hidalgo et al. 2006;
Cormack et al. 2007], product reviews [Jindal and Liu 2007, 2008; Chandy and Gu
2012], blog comments [Mishne et al. 2005], and social media [Wang 2010; Benevenuto
et al. 2010]. Gómez Hidalgo et al. [2006] use content-based features such as words,
lowercased words, and character and word bigrams and trigrams to train various
classifiers including naive Bayesian and decision trees. Cormack et al. [2007] show
that due to the limited size of SMS messages, bag of words or word bigram based spam
classifiers do not perform well, and their performance can be improved by expanding
the set of features to include orthogonal sparse word bigrams, and character bigrams
and trigrams. Jindal and Liu [2008] identify spam product reviews using review centric
features such as the number of feedback reports, textual features of the reviews, and
product centric features such as price and sales rank, as well as reviewer centric features
such as the average rating given by the reviewer. Wang [2010] study detection of
spammers in Twitter.

In contrast to aforementioned spam such as web spam, email spam, or SMS spam,
spamming in mobile app markets is a new problem and not as well established as other
forms. To the best of our knowledge, our previous work [Seneviratne et al. 2015] is the
first attempt at characterising spam mobile apps and developing an automated means
of detecting them when they are submitted for publication approval. As mentioned in
the Introduction, this work is an extension of our previous work with further analysis
of significant features that defines the performance of the classifier and further perfor-
mance evaluation with manual labelling and validation by revisiting the app market
again for the predicted apps.

More recently, malware mobile apps [Zhou et al. 2012; Grace et al. 2012; Burguera
et al. 2011; Yang et al. 2015; Feng et al. 2014], overprivileged apps (i.e., apps with
overpermissions) [Peng et al. 2012; Gorla et al. 2014; Avdiienko et al. 2015], and similar
apps (i.e., clones: similar apps by different developers and rebranding: similar apps by
the same developer) [Viennot et al. 2014; Crussell et al. 2013; Chen et al. 2014] have
received attention. Zhou et al. [2012] propose DroidRanger, which uses permission-
based behavioural fingerprinting to detect new samples of known Android malware
families and heuristics-based filtering to identify inherent behaviours of unknown
malware families. Gorla et al. [2014] regroup app descriptions using a Latent Dirichlet
Allocation and k-means clustering to identify apps that have unexpected API usage
characteristics. Viennot et al. [2014] clustered apps based on the Jaccard Similarity
of app resources such as images and layout XMLs, to identify similar apps and used
developer information such as the name and the certificate included in the app to
differentiate clones from rebranding. Crussell et al. [2013] clustered apps according to
the code level similarity features to identify similar apps. Spam apps are not necessarily
malware and the objective of spam is to attract keyword search results or obtain more
visibility for apps by unfair means, compared to malicious intentions such as personal
data collection or ransomware.

Several studies use app review mining as a means of identifying bugs, new feature
requirements, and user complaints and praises [Iacob and Harrison 2013; Maalej and
Nabil 2015; Panichella et al. 2015; Di Sorbo et al. 2016; Guzman and Maalej 2014; Fu
et al. 2013]. As mentioned in Section 3, app reviews can be helpful in identifying spam
apps. However, as the reviews are not available when the developer submits the app

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:24 S. Seneviratne et al.

for approval, they cannot be used in a solution for early identification of potential spam
apps. Factors affecting app popularity such as reviews, price, and app category have
also been studied [Harman et al. 2012; Petsas et al. 2013]. In our work, we used the
features that are available during the time of publication and as our analysis showed,
detection of spam apps requires delving into text description based features.

7. DISCUSSION

In this section, we discuss the potential end users of the proposed methodology, limita-
tions, and possible future extensions.

Applicability. Our proposed classifier is relevant to app market operators such as
Google Play Store and Apple App Store to enable faster app approval times. As men-
tioned in the Introduction, spam apps are increasingly becoming an issue in app mar-
kets [Perez 2013a, 2013b] and it is essential to come up with automated checks for apps
in order to achieve a faster approval process whilst ensuing users’ quality of experience.
As of now, while major app markets have spam policies [Google 2016c; Apple 2016],10

enforcement of these policies is complaint-driven and/or semimanual. As a result, spam
apps enter the app markets before they are periodically removed. For example, more
recently a number of spam apps made it to the feature charts of Apple App Store before
they were taken down [Tecno Buffalo 2016; Farooqui 2016; Perez 2016]. We believe
a mechanism similar to the proposed classifier will enable app market operators to
automate the vetting of new apps that will be much faster than if it were to be done
manually.

The Manual Labelling Challenge. In this work, we used a relatively small set (551)
of labelled spam apps and used the top apps from the market place as proxies for
nonspam apps. Our choices were dictated largely by the time-consuming nature of
the labelling process as mentioned in Section 2.2. Obviously, the performance of the
classifier can be improved by increasing the number of labelled spam apps and further
labelling nonspam apps through an extension of our manual effort. Moreover, having
more than three reviewers will enhance the quality of the manual labelling process as
more judgements will reduce the effect of noise.

One approach is to rely on crowdsourcing and recruit app-savvy users as reviewers.
This would require a major effort of providing individualised guidelines and interac-
tions with the reviewers, and a need to deal with assessment inconsistencies due to
the variability in technical expertise. Nonetheless, from an app market provider per-
spective, this is a plausible option to consider. Alternatively, hybrid schemes can be
developed where apps are flagged during the approval process and removed based on
a limited number of customer complaints. Another potential direction is to consider a
mix of supervised and unsupervised learning, namely, semisupervised learning [Basu
et al. 2004]. The basic idea behind semisupervised learning is to use “unlabelled data”
to improve the classification model that was previously being built using only labelled
data. Semisupervised learning has previously being successfully applied to real-time
traffic classification problems [Erman et al. 2007].

Improving Classifier’s Performance. In addition to increasing the number of la-
belled samples, a few other options can be explored to further improve the performance
of the classifier. For example, to alleviate the class imbalance effect that happens as
k increases, modified versions of Adaptive Boosting such as RUSBoost [Seiffert et al.

10As mentioned in Section 3, Apple has a single policy for app developers and only some sections are
applicable for spam.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:25

2010] and SMOTEBoost [Chawla et al. 2003] can be tested. Also, a classifier’s perfor-
mance can be further evaluated by adjusting the classifier threshold value for each k
value and checking the trade-off between precision and recall.

Additional Features. The proposed classifier in this article used only the app meta-
data to make a decision at the time of publication. The feature set can be augmented
by adding features related to the source code obtained by decompiling the applications
following the intuition that some spam apps might show a high level of similarity in the
source code as they might have been generated in bulk, potentially using automated
techniques. However, such features need to consider the fact that there is a significant
amount of code level redundancy between apps due to the third-party Software Devel-
opment Kits (SDKs) such as advertising and analytics libraries and open source utility
libraries [Viennot et al. 2014]. Also, code obfuscation and encryption methods are be-
coming increasingly popular and the use of such methods eliminate the possibility of
source code inspection [Zhang et al. 2015]. Another set of features can be added based
on user reviews if the app store wants to make a decision on the app after publishing
it in the market. Similarly, availability of app updates and changes in app metadata
can also be leveraged to generate features in such a setting as most of the legitimate
apps are likely to be updated based on user feedback, whereas updates are unlikely for
spam.

The classification arms race. It is possible that spammers adapt to the spam
app detection framework and change their strategies according to the selected fea-
tures to avoid the detection. The relevant questions in this context are the following:
(i) how frequently should the classifier be retrained? and (ii) how can one detect when
retraining is required? We believe that spam app developers will find it challenging
and have significant cost overheads to adapt their apps to avoid features that allow
discriminating between spam and nonspam apps. For instance, to avoid the similarity
of descriptions of multiple apps, the spammer has to edit the different descriptions of
the apps and customise each of the app descriptions to contain sufficient details and co-
herent text, etc. An important direction for future work is to study the longevity of our
classifier and investigate how the process of identifying retraining requirements can be
automated. Prior work on traffic classification suggests that automated identification
of retraining points is possible using semisupervised learning approaches [Erman et al.
2007].

Other Problematic Apps. Our manual app analysis process revealed multiple other
types of problematic apps in app markets such as counterfeits, unofficial content apps,
and apps violating copyrights. While these apps are not as common as spam apps, it is
necessary to detect them and remove them from app markets for a healthier app mar-
ket ecosystem. Thus, another interesting research direction is to come up with efficient
prediction models to detect other types of problematic apps. The category that also
requires immediate attention is counterfeits. According to our labelling, counterfeits
contribute to approximately 8% of the app removals. Counterfeits represent a hin-
drance to the evolution of the app ecosystem with potential security risks, ultimately
disrupting the economy and interests of legitimate and successful apps.

8. CONCLUSION

In this article, we propose a classifier for automated detection of spam apps at the
time of app submission. Our app classifier utilises only those features that can be
derived from an app’s metadata available during the publication approval process. It
does not require any human intervention such as manual inspection of the metadata

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.



4:26 S. Seneviratne et al.

or manual app testing. We validate our app classifier, by applying it to a large dataset
of apps collected between December 2013 and May 2014, by crawling and identifying
apps that were removed from Google Play Store. Our results show that it is possible to
automate the process of detecting spam apps solely based on apps’ metadata available
at the time of publication and achieve both high precision and recall.

Our predictions on a set of 180,627 apps that were present in Google Play Store
during our crawl, suggest that approximately 2.7% of the apps can be potential spam.
We provide additional analysis of our predictions by performing a new crawl as well
as applying our rigorous manual labelling process to a sample of the apps for which
we made predictions. This analysis shows human reviewers agreed with 82% of the
classifier’s spam predictions and apps that were predicted as spam by our classifier had
20% higher likelihood of being removed from Google Play Store. We also showed that
a smaller number of features in the range of 10–30 is sufficient to reach a satisfactory
level of performance with respect to precision and recall.

REFERENCES

Ion Androutsopoulos, Georgios Paliouras, Vangelis Karkaletsis, Georgios Sakkis, Constantine D.
Spyropoulos, and Panagiotis Stamatopoulos. 2000. Learning to filter spam e-mail: A comparison of
a naive Bayesian and a memory-based approach. arXiv preprint cs/0009009 (2000).

App Annie. 2016. App Forecast: Over $100 Billion In Revenue by 2020. Retrieved from http://blog.appannie.
com/app-annie-releases-inaugural-mobile-app-forecast/.

AppBrain, Inc. 2016. New Android apps per month. Retrieved from http://www.appbrain.com/stats/
number-of-android-apps.

Apple. 2014. Common App Rejections. Retrieved from https://developer.apple.com/app-store/review/
rejections/.

Apple. 2016. App Store Review Guidelines. Retrieved from https://developer.apple.com/app-store/review/
guidelines/.

Hrishikesh B. Aradhye, Gregory K. Myers, and James A. Herson. 2005. Image analysis for efficient catego-
rization of image-based spam e-mail. In Proceedings of the 8th International Conference on Document
Analysis and Recognition. IEEE, 914–918.

Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, Andreas Zeller, Steven Arzt, Siegfried Rasthofer,
and Eric Bodden. 2015. Mining apps for abnormal usage of sensitive data. In Proceedings of the 2015
IEEE/ACM 37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 426–436.

AVG. 2014. Website Safety Ratings and Reputation. Retrieved from http://www.avgthreatlabs.com/
website-safety-reports/app.

Sugato Basu, Mikhail Bilenko, and Raymond J. Mooney. 2004. A probabilistic framework for semi-supervised
clustering. In Proceedings of the 10th International Conference on Knowledge Discovery and Data Mining.
ACM, 59–68.

Fabrıcio Benevenuto, Gabriel Magno, Tiago Rodrigues, and Virgılio Almeida. 2010. Detecting spammers on
twitter. In Proceedings of the 7th Annual Collaboration, Electronic Messaging, Anti-Abuse and Spam
Conference.

Enrico Blanzieri and Anton Bryl. 2008. A survey of learning-based techniques of email spam filtering.
Artificial Intelligence Review 29, 1 (2008), 63–92.

Leo Breiman, Jerome Friedman, Charles J. Stone, and Richard A. Olshen. 1984. Classification and Regression
Trees. CRC Press.

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. 2011. Crowdroid: Behavior-based malware de-
tection system for android. In Proceedings of the 1st Workshop on Security and Privacy in Smartphones
and Mobile Devices. ACM, 15–26.

Omar Canales, Vinnie Monaco, Thomas Murphy, Edyta Zych, John Stewart, Charles Tappert, Alex Castro,
Ola Sotoye, Linda Torres, and Greg Truley. 2011. A stylometry system for authenticating students taking
online tests. In Proceedings of the Student-Faculty CSIS Research Day (2011).

Carlos Castillo, Debora Donato, Aristides Gionis, Vanessa Murdock, and Fabrizio Silvestri. 2007. Know your
neighbors: Web spam detection using the web topology. In Proceedings of the 30th Annual International
Conference on Research and Development in Information Retrieval. ACM, 423–430.

Rishi Chandy and Haijie Gu. 2012. Identifying spam in the iOS app store. In Proceedings of the 2nd Joint
WICOW/AIRWeb Workshop on Web Quality. ACM, 56–59.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

http://blog.appannie.com/app-annie-releases-inaugural-mobile-app-forecast/
http://blog.appannie.com/app-annie-releases-inaugural-mobile-app-forecast/
http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
https://developer.apple.com/app-store/review/rejections/
https://developer.apple.com/app-store/review/rejections/
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
http://www.avgthreatlabs.com/website-safety-reports/app
http://www.avgthreatlabs.com/website-safety-reports/app


Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:27

Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer. 2003. SMOTEBoost:
Improving prediction of the minority class in boosting. In Proceedings of the European Conference on
Principles of Data Mining and Knowledge Discovery. Springer, 107–119.

Kai Chen, Peng Liu, and Yingjun Zhang. 2014. Achieving accuracy and scalability simultaneously in detecting
application clones on android markets. In Proceedings of the 36th International Conference on Software
Engineering. ACM, 175–186.

Paul-Alexandru Chirita, Jörg Diederich, and Wolfgang Nejdl. 2005. MailRank: Using ranking for spam detec-
tion. In Proceedings of the 14th International Conference on Information and Knowledge Management.
ACM, 373–380.

Gordon V. Cormack, José Marı́a Gómez Hidalgo, and Enrique Puertas Sánz. 2007. Spam filtering for short
messages. In Proceedings of the 16th Conference on Information and Knowledge Management. ACM,
313–320.

Jonathan Crussell, Clint Gibler, and Hao Chen. 2013. AnDarwin: Scalable detection of semantically similar
android applications. In Computer Security–ESORICS 2013. Springer, 182–199.

Andrea Di Sorbo, Sebastiano Panichella, Carol V. Alexandru, Junji Shimagaki, Corrado A. Visaggio, Gerardo
Canfora, and Harald Gall. 2016. What would users change in my app? Summarizing app reviews for
recommending software changes. In Proceedings of the 2016 ACM SIGSOFT International Symposium
on the Foundations of Software Engineering (FSE).

Harris Drucker, S. Wu, and Vladimir N. Vapnik. 1999. Support vector machines for spam categorization.
IEEE Transactions on Neural Networks 10, 5 (1999), 1048–1054.

Miklós Erdélyi, András Garzó, and András A. Benczúr. 2011. Web spam classification: A few features worth
more. In Proceedings of the 2011 Joint WICOW/AIRWeb Workshop on Web Quality. ACM, 27–34.

Jeffrey Erman, Anirban Mahanti, Martin Arlitt, Ira Cohen, and Carey Williamson. 2007. Offline/realtime
traffic classification using semi-supervised learning. Performance Evaluation 64, 9–12 (Oct. 2007), 1194–
1213.

Adnan Farooqui. 2016. Apple Promises To Clamp Down On Spam Apps. Retrieved from http://www.
ubergizmo.com/2016/03/apple-promises-to-clamp-down-on-spam-apps/.

Yu Feng, Saswat Anand, Isil Dillig, and Alex Aiken. 2014. Apposcopy: Semantics-based detection of android
malware through static analysis. In Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. ACM, 576–587.

Dennis Fetterly, Mark Manasse, and Marc Najork. 2004. Spam, damn spam, and statistics: Using statistical
analysis to locate spam web pages. In Proceedings of the 7th International Workshop on the Web and
Databases. ACM, 1–6.

Rudolph Flesch. 1948. A new readability yardstick. Journal of Applied Psychology 32, 3 (1948), 221.
Yoav Freund and Robert E. Schapire. 1996. Experiments with a new boosting algorithm. In Proceedings of

the 13th International Conference on Machine Learning, Vol. 96. Morgan Kaufmann, 148–156.
Jerome Friedman, Trevor Hastie, and Robert Tibshirani. 2001. The Elements of Statistical Learning. Vol. 1.

Springer Series in Statistics. Springer, Berlin. 367–370.
Bin Fu, Jialiu Lin, Lei Li, Christos Faloutsos, Jason Hong, and Norman Sadeh. 2013. Why people hate your

app: Making sense of user feedback in a mobile app store. In Proceedings of the 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. ACM, 1276–1284.

José Marı́a Gómez Hidalgo, Guillermo Cajigas Bringas, Enrique Puertas Sánz, and Francisco Carrero Garcı́a.
2006. Content based SMS spam filtering. In Proceedings of the 2006 Symposium on Document Engineer-
ing. ACM, 107–114.

Google. 2014. Rating your application content for Google Play. Retrieved from https://support.google.com/
googleplay/android-developer/answer/188189.

Google. 2016a. Google Play Developer Policy Center. Retrieved from https://play.google.com/about/
developer-content-policy-print/.

Google. 2016b. Impersonation and Intellectual Property. Retrieved from https://play.google.com/about/
ip-deception-spam/impersonation-ip/.

Google. 2016c. Spam. Retrieved from https://play.google.com/about/ip-deception-spam/spam.
Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. 2014. Checking app behavior against

app descriptions. In Proceedings of the 36th International Conference on Software Engineering. 1025–
1035.

Michael Grace, Yajin Zhou, Qiang Zhang, Shihong Zou, and Xuxian Jiang. 2012. Riskranker: Scalable and
accurate zero-day android malware detection. In Proceedings of the 10th International Conference on
Mobile Systems, Applications, and Services. ACM, 281–294.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

http://www.ubergizmo.com/2016/03/apple-promises-to-clamp-down-on-spam-apps/
http://www.ubergizmo.com/2016/03/apple-promises-to-clamp-down-on-spam-apps/
https://support.google.com/googleplay/android-developer/answer/188189
https://support.google.com/googleplay/android-developer/answer/188189
https://play.google.com/about/developer-content-policy-print/
https://play.google.com/about/developer-content-policy-print/
https://play.google.com/about/ip-deception-spam/impersonation-ip/
https://play.google.com/about/ip-deception-spam/impersonation-ip/
https://play.google.com/about/ip-deception-spam/spam


4:28 S. Seneviratne et al.

Emitza Guzman and Walid Maalej. 2014. How do users like this feature? A fine grained sentiment analysis of
app reviews. In Proceedings of the 2014 IEEE 22nd International Requirements Engineering Conference
(RE). IEEE, 153–162.

Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen. 2004. Combating web spam with trustrank. In
Proceedings of the 13th International Conference on Very Large Databases. VLDB Endowment, 576–587.

Mark Harman, Yue Jia, and Yuanyuan Zhang. 2012. App store mining and analysis: MSR for app stores. In
Proceedings of the 9th IEEE Working Conference on Mining Software Repositories. IEEE Press, 108–111.

Claudia Iacob and Rachel Harrison. 2013. Retrieving and analyzing mobile apps feature requests from online
reviews. In Proceedings of the 2013 10th IEEE Working Conference on Mining Software Repositories
(MSR). IEEE, 41–44.

Nathalie Japkowicz and Shaju Stephen. 2002. The class imbalance problem: A systematic study. Intelligent
Data Analysis 6, 5 (2002), 429–449.

Nitin Jindal and Bing Liu. 2007. Review spam detection. In Proceedings of the 16th International Conference
on World Wide Web. ACM, 1189–1190.

Nitin Jindal and Bing Liu. 2008. Opinion spam and analysis. In Proceedings of the 2008 International
Conference on Web Search and Data Mining. ACM, 219–230.

Ron Kohavi and George H. John. 1997. Wrappers for feature subset selection. Artificial Intelligence 97, 1
(1997), 273–324.

Vijay Krishnan and Rashmi Raj. 2006. Web spam detection with anti-trust rank. In Proceedings of the 2nd
International Workshop on Adversarial Information Retrieval on the Web, Vol. 6. 37–40.

Barry Leiba, Joel Ossher, V. T. Rajan, Richard Segal, and Mark N. Wegman. 2005. SMTP path analysis. In
Proceedings of the 2nd Conference on Email and Anti-Spam.

Walid Maalej and Hadeer Nabil. 2015. Bug report, feature request, or simply praise? On automatically
classifying app reviews. In Proceedings of the 2015 IEEE 23rd International Requirements Engineering
Conference (RE). IEEE, 116–125.

Dragos D. Margineantu and Thomas G. Dietterich. 1997. Pruning adaptive boosting. In ICML, Vol. 97.
211–218.

Vangelis Metsis, Ion Androutsopoulos, and Georgios Paliouras. 2006. Spam filtering with naive Bayes—
Which naive Bayes? In Proceedings of 3rd Conference on Email and Anti-Spam. 27–28.

Gilad Mishne, David Carmel, and Ronny Lempel. 2005. Blocking blog spam with language model disagree-
ment. In Proceedings of the 1st International Workshop on Adversarial Information Retrieval on the Web,
Vol. 5. 1–6.

Arjun Mukherjee and Bing Liu. 2010. Improving gender classification of blog authors. In Proceedings of the
2010 Conference on Empirical Methods in Natural Language Processing. Association for Computational
Linguistics, 207–217.

Alexandros Ntoulas, Marc Najork, Mark Manasse, and Dennis Fetterly. 2006. Detecting spam web pages
through content analysis. In Proceedings of the 15th International Conference on World Wide Web. ACM,
83–92.

Jon Oberheide and Charlie Miller. 2012. Dissecting the Android bouncer. Retrieved from https://jon.
oberheide.org/files/summercon12-bouncer.pdf.

Oracle. 2014. Naming a Package. Retrieved from http://docs.oracle.com/javase/tutorial/java/package/
namingpkgs.html.

Boykin P. Oscar and Vwani P. Roychowdbury. 2005. Leveraging social networks to fight spam. IEEE Computer
38, 4 (2005), 61–68.

Sebastiano Panichella, Andrea Di Sorbo, Emitza Guzman, Corrado A. Visaggio, Gerardo Canfora, and Harald
C. Gall. 2015. How can I improve my app? Classifying user reviews for software maintenance and
evolution. In Proceedings of the 2015 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 281–290.

Patrick Pantel and Dekang Lin. 1998. Spamcop: A spam classification & organization program. In Proceed-
ings of the AAAI-98 Workshop on Learning for Text Categorization. 95–98.

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju, Cristina Nita-Rotaru, and
Ian Molloy. 2012. Using probabilistic generative models for ranking risks of android apps. In Proceedings
of the Conference on Computer and Communications Security. ACM, 241–252.

Sarah Perez. 2013a. Developer Spams Google Play With Ripoffs of Well-Known Apps Again. Retrieved from
http://techcrunch.com.

Sarah Perez. 2013b. Nearly 60K Low-Quality Apps Booted From Google Play Store in February, Points To
Increased Spam-Fighting. (2013). http://tcrn.ch/14SwCQj.

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

https://jon.oberheide.org/files/summercon12-bouncer.pdf
https://jon.oberheide.org/files/summercon12-bouncer.pdf
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://docs.oracle.com/javase/tutorial/java/package/namingpkgs.html
http://techcrunch.com
http://tcrn.ch/14SwCQj


Spam Mobile Apps: Characteristics, Detection, and in the Wild Analysis 4:29

Sarah Perez. 2016. Apple’s Phil Schiller promises to address the issue of spammy apps being featured
in the App Store. Retrieved from https://techcrunch.com/2016/03/14/apples-phil-schiller-promises-to-
address-the-issue-of-spammy-apps-being-featured-in-the-app-store/.

Thanasis Petsas, Antonis Papadogiannakis, Michalis Polychronakis, Evangelos P. Markatos, and Thomas
Karagiannis. 2013. Rise of the planet of the apps: A systematic study of the mobile app ecosystem. In
Proceedings of the 2013 Conference on Internet Measurement Conference. ACM, 277–290.

PocketGamer.biz. 2016. Count of Application Submissions. Retrieved from http://www.pocketgamer.biz/
metrics/app-store/submissions/.

J. R. Quinlan. 1996. Bagging, boosting, and C4.S. In Proceedings of the 13th National Conference on Artificial
Intelligence - Volume 1. AAAI Press, 725–730.

Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. 1998. A Bayesian approach to filtering
junk e-mail. In Learning for Text Categorization: Papers from the 1998 Workshop, Vol. 62. 98–105.

David Sculley and Gabriel M. Wachman. 2007. Relaxed online SVMs for spam filtering. In Proceedings of
the 30th Annual International Conference on Research and Development in Information Retrieval. ACM,
415–422.

Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano. 2010. RUSBoost: A hybrid
approach to alleviating class imbalance. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans 40, 1 (2010), 185–197.

Suranga Seneviratne, Aruna Seneviratne, Dali Kaafar, Anirban Mahanti, and Prasant Mohapatra. 2014a.
Why My App Got Deleted: Detection of Spam Mobile Apps. Technical Report. NICTA, Australia.

Suranga Seneviratne, Aruna Seneviratne, Mohamed Ali Kaafar, Anirban Mahanti, and Prasant Mohapatra.
2015. Early detection of spam mobile apps. In Proceedings of the 24th International Conference on World
Wide Web (WWW’15). International World Wide Web Conferences Steering Committee, 949–959.

Suranga Seneviratne, Aruna Seneviratne, Prasant Mohapatra, and Anirban Mahanti. 2014b. Predicting
user traits from a snapshot of apps installed on a smartphone. ACM SIGMOBILE Mobile Computing
and Communications Review 18, 2 (2014), 1–8.

R. J. Senter and E. A. Smith. 1967. Automated Readability Index. Technical Report AMRL-TR-66-220.
Aerospace Medical Research Laboratories.

Ian Soboroff, Iadh Ounis, J. Lin, and I. Soboroff. 2012. Overview of the TREC-2012 microblog track. In
Proceedings of the 21st Text Retrieval Conference.

Statista, Inc. 2016. Number of apps available in leading app stores as of June 2016. Retrieved from
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/.

Tecno Buffalo. 2016. Apple exec responds flood of spam apps in App Store. Retrieved from http://www.
technobuffalo.com/2016/03/14/apple-exec-responds-flood-of-spam-apps-in-app-store/.

Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of google play. In Proceedings
of the 2014 International Conference on Measurement and Modeling of Computer Systems. ACM, 221–
233.

Alex Hai Wang. 2010. Don’t follow me: Spam detection in twitter. In Proceedings of the 2010 International
Conference on Security and Cryptography. IEEE, 1–10.

Wikipedia. 2014. Wikipedia: Lists of common misspellings. Retrieved from http://en.wikipedia.org/wiki/.
Wei Yang, Xusheng Xiao, Benjamin Andow, Sihan Li, Tao Xie, and William Enck. 2015. Appcontext: Differen-

tiating malicious and benign mobile app behaviors using context. In Proceedings of the 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, Vol. 1. IEEE, 303–313.

Yueqian Zhang, Xiapu Luo, and Haoyang Yin. 2015. Dexhunter: Toward extracting hidden code from packed
android applications. In Computer Security–ESORICS 2015. Springer, 293–311.

Yajin Zhou, Zhi Wang, Wu Zhou, and Xuxian Jiang. 2012. Hey, you, get off of my market: Detecting malicious
apps in official and alternative android markets. In Proceedings of the 2012 Network and Distributed
System Security Symposium. The Internet Society.

Received November 2015; revised November 2016; accepted November 2016

ACM Transactions on the Web, Vol. 11, No. 1, Article 4, Publication date: March 2017.

https://techcrunch.com/2016/03/14/apples-phil-schiller-promises-to-address-the-issue-of-spammy-apps-being-featured-in-the-app-store/
https://techcrunch.com/2016/03/14/apples-phil-schiller-promises-to-address-the-issue-of-spammy-apps-being-featured-in-the-app-store/
http://www.pocketgamer.biz/metrics/app-store/submissions/
http://www.pocketgamer.biz/metrics/app-store/submissions/
http://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://www.technobuffalo.com/2016/03/14/apple-exec-responds-flood-of-spam-apps-in-app-store/
http://www.technobuffalo.com/2016/03/14/apple-exec-responds-flood-of-spam-apps-in-app-store/
http://en.wikipedia.org/wiki/

