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Abstract—An ongoing challenge in the rapidly evolving app market ecosystem is to maintain the integrity of app categories. At the
time of registration, app developers have to select, what they believe, is the most appropriate category for their apps. Besides the
inherent ambiguity of selecting the right category, the approach leaves open the possibility of misuse and potential gaming by the
registrant. Periodically the app store will refine the list of categories available and potentially reassign the apps. However, it has been
observed that the mismatch between the description of the app and the category it belongs to, continues to persist. Although some
common mechanisms (e.g. a complaint-driven or manual checking) exist, they limit the response time to detect miscategorized apps
and still open the challenge on categorization. We introduce FRAC+: (FR)amework for (A)pp (C)ategorization. FRAC+ has the
following salient features: (i) it is based on a data-driven topic model and automatically suggests the categories appropriate for the app
store, and (ii) it can detect miscategorizated apps. Extensive experiments attest to the performance of FRAC+. Experiments on
GOOGLE Play shows that FRAC+’s topics are more aligned with GOOGLE’s new categories and 0.35%-1.10% game apps are detected

to be miscategorized.

Index Terms—App categorization, miscategorization detection, app market, von-Mises Fisher distribution, mixture model.

1 INTRODUCTION

pp markets, where app developers can make their
apps available to potential users, have been created
by mobile device and platform manufacturers. The two
dominant app markets, APPLE App Store and GOOGLE
Play Store, each hosts over one million apps spread over
15+ categories [1], [2]. Now other players, including mobile
operators, are also launching their own app markets. With
the increasing popularity arises a concomitant downside
that the app markets are becoming increasingly difficult
to navigate and app categories harder to distinguish. As
a result, app developers struggle to get visibility for their
products. App search is not as advanced as web search and
technology for “app search optimization” is still nascent.
An important factor that influences the visibility of an
app is how it is categorized in the app market. In this con-
text, miscategorization is one important problem that needs
to be addressed by the app markets. The miscategorization
problem is potentially introduced during the registration
of an app in the app market. App developers are free to
choose a category that they think is most suitable for their
apps. However, the act of selecting a category for an app
is inherently ambiguous and also opens up the possibility
of deliberate gaming in order to avoid competition and im-
proving the rank of the app [3]. The practice is attracting the
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attention of app market managers and is being discouraged
and in some cases forbidden [4], [5].

Another reason for developers to register their apps
under a less appropriate category is to avoid scrutiny. For
example, the chances of a low quality personal health infor-
mation app being able to remain in the app market without
drawing significant attention to it, is not to categorize it
under Medical category [6]. An example of miscategorization
taken from GOOGLE Play Store is shown in Table 1 where a
number puzzle app is categorized under the Words category.

TABLE 1
An Example of A Miscategorization in GOOGLE Play
App name | 2048 [7] | 2048 [8]
Registered Brain & Puzzle Words
Category
App Most addictive mobile | Slide the screen, making
Description | version of 2048 game | the box move. Moving

and almost perfect 2048
number puzzle game
for Android! ...

An example of a miscategorization: 2048 is a popular number
puzzle game'. Several implementations of this game are avail-
able in GOOGLE Play Store. This example shows a scenario
where a developer has published one implementation under
Words category, which is not relevant.

process, sliding in the
same direction with the
same...

Miscategorization of apps has several implications: (i)
it impairs the integrity of existing categories, (ii) it allows
some app developers to get an unfair advantage over others
[5], (iii) it makes auditing and ensuring quality /regulatory
control more difficult [6] and (iv) it might mislead users
and entice them to pay for apps that do not provide the
expected utility [5]. Thus, it is important to have a robust

1https: / /en.wikipedia.org/wiki/2048_(video_game)
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categorization and miscategorization detection system in
the app markets to protect end-users and maintain a healthy
competitive ecosystem.

According to existing reports [9], [10], the current meth-
ods of policy violation detection (including miscategoriza-
tion detection) are either manual or complaint-driven. For
example, APPLE appears to manually check the app meta-
data and decide whether it is allowed to be published in
the market or not. While this method works and identifies
miscategorized apps correctly, it will increase the length of
time to get an approval for an app. On the other hand,
GOOGLE seems to use a complaint-driven strategy. An app
will be removed from the GOOGLE Play Store if there are
many complaints from the users. Apart from this infor-
mation, most companies would use their own proprietary
approaches to deal with miscategorization problems. In
this paper, we propose an automated general method to
perform app categorization and detect miscategorization.
We compared our method with baseline methods and as
well as against human judgement (Section 5 and 6). We
make the following contributions.

1) We present FRAC+, (FR)ramework for (A)pp
(C)ategorization based on probabilistic modeling
to categorize and detect miscategorized apps. FRAC+
models app descriptions as normalized vectors in the
space of words. We subsequently show that FRAC+ is
more accurate than other generic models such as LDA
which are based on word-count.

2) We performed extensive experiments on synthetic,
semi-synthetic and real data sets. On synthetic data sets,
we show that FRAC+ outperforms baseline methods in
detecting the correct number of categories even though
there exists a category that has very low number of
apps in contrast to other categories. On semi-synthetic
and real data sets, we show that FRAC+ outperforms
baseline methods on categorization and detecting mis-
categorization tasks.

3) We applied FRAC+ to GOOGLE Play Store data and
show that among the game app categories there exist
approximately 0.35%-1.10% miscategorizations, under
the most conservative assumption and can be as high
as 3.32%-11.08%. We also propose a new categorization
and evaluate it against the new GOOGLE’s game app
categories.

2 RELATED WORK

To the best of our knowledge the problem of app miscatego-
rization has not been addressed before in the research litera-
ture. We summarize research in app classification, detection
of malicious apps, fraud in app rankings, classification and
topic modeling problems.

App classification. Several work looked into the possibility
of using topic models to classify apps into meaningful
categories. Vakulenko et al. [11] applied LDA to a set of
600,000 English app descriptions obtained from Apple App
Store. Authors generated the same number of topics as that
is available in Apple App Store and compared the overlap
between the LDA topics and the existing app categories in
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Apple App Store assuming existing categories are manu-
ally curated by domain experts. Results showed that LDA
identifies some new topics in likes of radio stations, timers,
calculators, quizzes, banking, and sound effects that are ab-
sent in the original app store categorization. Al-Subaihin et
al. [12] proposed an app classification methodology based
on agglomerative hierarchical clustering and showed that
existing categorizations can be further improved. Berardi et
al. [13] used a SVM classifier to classify apps into user
defined categories using textual features generated from
app descriptions and current category of the app as defined
in Google Play Store or Apple App Store. Zhu et al. [14]
highlighted that it is a non-trivial task to effectively clas-
sify mobile apps due to the limited contextual information
available for the analysis. Zhu et al. [15] and Lulu et al. [16]
looked into the possibility of improving app classification
quality by adding external information obtained by web
search.

Malicious app behavior. Multiple work studied about
malicious app behavior [17], [18], [19], [20], [21]. Gorla et
al. [17] proposed CHABADA framework that clustered apps
based on app descriptions using the combination of a LDA
topic model and k-means clustering algorithm to identify
apps whose API usage is anomalous within the respective
topic cluster using one-class Support Vector Machines. An
example of a malicious case is that of a weather app, which
makes API calls to send SMSs. Wei et al. [18] proposed a
multi-layer system to profile apps. The proposed scheme
uses static information such as requested permissions, user
generated events such as touch events, invoked system calls,
and network traffic to profile apps. Then each layer of an
app is assigned an intensity: high, medium, or low. Apps
showing sudden changes in intensity levels in some layers
were considered as potentially malicious. Ma et al. [22]
used a semi-supervised approach to the same problem and
show that the new method outperforms CHABADA. Sanz et
al. [21] and Shabtai et al. [23] used app metadata, requested
permissions and behavior features to classify malicious apps
using machine learning techniques.

Ranking fraud and app review mining. App ranking
fraud detection was explored recently. Zhu et al. [24] used
statistical hypothesis testing on app rankings to identify de-
velopers who are fraudulently trying to improve the ranking
of their apps. The features used were, for example, how long
an app is in the top charts and its average rating when it is
in the top chart compared to its previous ratings. Chandy et
al. [25] developed a model to detect fake ratings using
rating-related features, such as the average rating of an app
and the users’ average ratings. However, the intention of
ranking fraud is only one scenario in miscategorization and
generally, ranking fraud happens after the publication of
the apps. Fu et al. [26] identified the major factors resulting
lower app ratings by mining app reviews and ratings using
LDA and linear regression. Liu et al. [27] used the similarity
between app reviews to identify relationships between apps
such as functional similarity and complementary or depen-
dent app pairs.

Classification and novelty detection problems. The prob-
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lem of app categorization is closely related to the classifi-
cation problem. In the classification problem, one aims to
identify a category (or a class) membership of an obser-
vation from a set of categories. The classification is done
by a classifier that groups observations which share similar
properties under the same category/class. Another aspect
of the classification problem is novelty detection. In novelty
detection, one aims to recognize observations that have
different patterns from other observations®. Several methods
have been used as the de-facto approaches in classification
and novelty detection including clustering-based, domain-
based methods and generative models.

Clustering-based methods group a set of observation points
to several groups/clusters. The most common method to
group a set of n observation points to k clusters is k-
means clustering algorithm. Each cluster is represented by a
centroid or a cluster center, which is a mean of all nearest ob-
servation points within that cluster. Observation points that
have large distance to the cluster center in each cluster are
considered to be anomalous. The k-means is widely adopted
in many different applications, for example, Zhou et al. [28]
and Yoon et al. [29] used k-means to cluster data and detect
outliers.

Domain-based methods separate observations based on a
boundary learned from the training data. The de-facto ap-
proach to domain-based novelty detection has been one-
class Support Vector Machines (OC-SVM) [30]. OC-SVM
defines a hyperplane that maximizes the separating mar-
gin between classes. Observation points that lie near the
boundary are called support vectors. The bigger distance of
an observation point to the defined hyperplane, the further
an observation from the commonly observed behavior. OC-
SVM has also been studied extensively for various applica-
tions. Manevitz et al. [31] reviewed OC-SVM for document
classification.

Generative models assume that normal observations are gen-
erated from some underlying distributions. Observations
that do not follow the general patterns from the underlying
distributions are identified as outliers [32]. A state-of-the-
art generative model to model text documents is Latent
Dirichlet Allocation (LDA) [33]. LDA is mainly used to infer
a set of topics from a corpus of documents. We discuss LDA
in the next paragraphs.

Topic modeling. There is a large body of work that
uses topic models in many different application domains.
Blei et al. [33] proposed Latent Dirichlet Allocation (LDA),
a generative topic model based on Bayesian statistics. LDA
has been widely adopted [34], [35]. Ahmed et al. [34] used
LDA to capture users’ long and short term interests based
on their online activities. Ramage et al. [35] introduced a
topic model that constrains LDA by defining a one-to-one
correspondence between topics from LDA and user tags.
The probabilistic modeling of normalized vector data has
recently given rise to the use of the von Mises-Fisher (vMF)
distribution for modeling directional data. For example,

2We consider observations under the same category share similar
properties. For example, apps registered in Brain & Puzzle category
should ideally be distinct from apps in Racing.

3

Banerjee et al. [36] introduced a mixture of vMF distribu-
tions to model data. Surian et al. [37] proposed a topic model
using VMF distribution to detect outlier collaborations in
DBLP bibliography data. FRAC+ also uses the vMF distri-
bution, but integrates existing app categories into the model.
Other studies about topic modeling have also included
the information from a pre-existing taxonomy in data for
classification of documents [38], [39]. Some studies have
discussed new categorization system based on the existing
ones [40], [41], [42]. Topic modeling has also been studied
in app categorization recently. For instance, Vakulenko et
al. [11] used LDA to categorize iTunes apps.

3 BACKGROUND

Inferring categories from data can be addressed using
clustering and topic modeling. For example, a popular
approach, based on topic modeling, is the use of count
statistics in conjunction with the Latent Dirichlet Allocation
(LDA) probabilistic model [33]. In LDA we are given a
corpus of documents and the objective is to infer topics
such that each document is a distribution in the topic space
and each topic is a distribution on the word space. Since
the number of topics is usually much smaller than the
number of words, LDA can be seen as a form of dimen-
sionality reduction in the topic space. The topics can then
be treated as categories. However, LDA is tightly coupled
with a viewpoint where each data instance is associated
with a feature vector consisting of discrete counts of words.
Discrete counts can be naturally modeled using the multino-
mial distribution, which is a conjugate prior of the Dirichlet
distribution and thus the name LDA. The use of conjugate
priors substantially simplifies the computational task of
estimating the parameters of the model.

Research in information retrieval and text mining has
shown that machine learning techniques yield better per-
formance when they are applied to documents (e.g., app
descriptions) which are normalized. A common normaliza-
tion for documents is to use tf-idf (term frequency inverse
document frequency) [43]. The tf-idf normalization gives
higher weight to terms in a document that characterize the
document and lower weight to those terms that occur across
many documents. Just as the multinomial distribution is
closely associated with count data, the lesser known von
Mises-Fisher (vMF) distribution plays an analogous role for
normalized vectors [44]. Before we give further details about
the vMF distribution, we illustrate the impact of count and
normalized data with the help of a simple example.

3.1 Count vs. Normalized Frequency

Assume that there are eight game apps. Each game app
is represented by a feature vector extracted from the app
description. Further assume that the vocabulary consists of
three words: “fight”, “war” and “puzzle”. Table 2 shows the
word frequencies for the example.

Assume that we want to cluster the eight game apps
shown in Table 2. Table 2 shows that only Games 7 & 8
that have the word “puzzle”, while Games 1-6 share the
words “fight” and “war” with various different proportions.
The distribution of words (Game 1-3, 4-6, 7-8) suggests that
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TABLE 2
Word Frequencies For The Example Apps

Game App ‘ fight ‘ war ‘ puzzle
Game 1 8 3 0
Game 2 9 2 0
Game 3 10 3 0
Game 4 2 10 0
Game 5 2 7 0
Game 6 2 9 0
Game 7 0 0 1
Game 8 0 0 2

the apps could be clustered into three clusters. However,
notice that the words from Games 1-6 (“fight”, “war”) are
semantically closed, thus intuitively Games 1-6 should be
in the same cluster and Games 7 & 8 should be clustered
separately. We aim to have apps with similar themes in a
same group.

A natural approach to group those eight game apps is to
use Latent Dirichlet Allocation (LDA) [33] which performs
an analysis in the topic space. However, LDA introduces
some drawbacks because it is mainly affected by the word
count statistics. We can observe that based on their word
counts, Games 1-3 are more about fight and Games 4-6
are more about war. Because both Games 7 & 8 have only
fewer words than Games 1-6 do, Games 7 & 8 will have
to choose to join either to Games 1-3 or Games 4-6,which
gives an undesirable clustering result (notice that Games 7
& 8 do not share any common words with either Games
1-6 or Games 7 & 8).Figure 1(a) shows topic proportions
and the resulting clusters from LDA in a 2-D plot.

On the other hand, if we represent the feature vectors
from the game apps as unit vectors on a sphere shown in
Figure 1(b), Games 7 & 8 are well separated from Games
1-6. Using our proposed model described later in details,
Games 1-6 and Games 7 & 8 are grouped separately.
This result follows our initial intuition®

For quantitative comparison, we use silhouette to assess
the quality of clusters. The silhouette is a method to interpret
how similar an object is to its cluster [45]. We give more
details about silhouette later in this work. The average
silhouette values for our model and LDA is 0.77 and 0.43
respectively (the value is close to 1 if each member is well
matched to its own cluster.), which suggests that if the
eight game apps are grouped into two clusters, then Games
1-6 and Games 7 & 8 are more similar among themselves
respectively.

We also experimented on REUTERS-21578 [33], a larger
and real data set which contains a number of labelled arti-
cles. We categorized the articles into: ‘earn’ (3,776 articles),
‘grain’ (574 articles), and 'not earn and not grain” (8,772 ar-
ticles). Standard pre-processing techniques were performed
(refer to Section 5.2 for feature construction) and we set the
number of topics for both LDA and our model to 3. The
resulted NMI scores for FRAC+ and LDA are 0.56 and 0.30
respectively, with higher score represents better results.

3With number of topics = 3, both models give same clustering
result. However, as described previously, two clusters is preferable.
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Fig. 1: If we set the number of topics = 2: (a) topic propor-
tions from LDA in a 2-D plot (b) representation using unit
vectors on a sphere which correctly splits the games into
two clusters. See text for details.

4 FRAC+: A FRAMEWORK FOR APP CATEGO-
RIZATION AND MISCATEGORIZATION DETECTION
4.1 The vMF Distribution For Modeling App Data

The core of FRAC+ is a topic model using vMF distribution.
The vMF distribution is like the Gaussian distribution on
a sphere [44]. The probability density function of the vMF
distribution for a d-dimensional unit random vector X is:

od/2—1

T
et X
(2m)4/2 1454 ()

f(X‘H”’%) =

where ||p]| = 1 (p is scaled to be of unit length), x > 0,
d > 2, and I,(-) represents the modified Bessel function of
the first kind of order r. The parameters p and & are called
the mean direction and concentration parameter respectively.
The parameter x characterizes how strongly the unit vectors
drawn based on probability density function f(X |u,~) are
concentrated about the mean direction . Specifically, if k =
0, the distribution is uniform and, if kK — oo, the distribution
tends to concentrate around the mean vector pt. Banerjee et
al. [36] have discussed an approximation to get x value as
in Equation 1.

rd —13
K — 1
1-712 @
where T = “—Jf,”, r =) @, T is called the mean resultant

length and N is the number of observations. Figure 2 shows
1,000 points sampled from a vMF distribution with d = 3,
k =150 (blue points - right side of sphere) and x = 10 (red
points - left side of sphere). The mean directions are shown
as solid and dashed lines from the centre of sphere. More
details about directional statistics and the vMF distribution
can be found in [36], [44].

Notice from Figure 2 that larger value of x will make
the distribution to concentrate on one density. Each point
shown in Figure 2 is represented by a unit vector that defines
its position on the sphere and points with different color
represent different clusters/categories those points belong
to.

In the application of app categorization, we can use p
to represent a category (topic) and x to show how con-
centrated are the apps in a category. As the proportion of
miscategorized apps in a category is relatively small in a
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category, we can calculate « first for the existing category
and aim to cluster the apps based on their features. FRAC+
uses this concept to categorize and to find miscategorized
apps. We make an analogy as follows. A document consists
of a number of words, similarly a category in app market
consists of a number of apps and each app is represented
as a unit vector. This analogy is shown in Table 3 with the
description whether the information is available or not.

TABLE 3
Analogy: Generic Topic Modeling Concepts And
App Data Set

Generic Concepts | App Data Set H Status
Document App category Observed
Words App unit vectors Observed
Topics Inferred categories || Latent

4.2 Generative Process

We now describe a generative process which we assume
instantiates the observed data. Bold-faced variables, e.g.,
u, X, 0, represent vectors. Let X,,, denote the feature
vector for app n in category m. Algorithm 1 shows the data
generative process for FRAC+.

Algorithm 1 Generative process of FRAC+

1: for every category m € M do

2 Compute k. (Eq. 1)

3 Sample topic proportions 6., ~ Dirichlet(. | «)

4 for every app n € N,, do

5: Choose a topic Z,, ~ Multinomial(. | 0,y,)

6 Generate a unit feature vector X,n ~ VME(. | i1, £1)
7 end for

8: end for

Note, that the only variable that is visible (available) is
the set of app descriptions {X,,5} in each category. Our
objective now is to learn the latent variables and parameters
{Zmn, Om, Bk, Em). A key innovation of the model is the
coupling between p;, (Which represents a new category) and
Km from existing category. The coupling allows us to inte-
grate the existing with the new inferred categories. Due to
space constraint, we invite interested readers to our supple-
mentary material for more details on how we performed the
inference and learning process for the topic model. Figure 3

Fig. 2: Points on a sphere (d = 3) drawn from a vMF
distribution: x = 150 (blue points - right side of the sphere)
& k=10 (red points - left side of the sphere).

5

shows the graphical model of our topic model. A graphical
model uses a plate (rectangle) to represent a repetition of
a variable, instead of representing each repeated variable
individually, e.g., a variable that represents words on a
document could be drawn on a plate for words. A circle on
a plate represents the variable itself. An arrow represents a
dependency assumption. For example 8, for each category
depends upon the Dirichlet parameter «.. The dark shaded
circle represents observed variables and the unshaded circle
represents latent variables. We introduce the grey shaded
circle for variables that can be directly computed from the
data set (e.g., Km)-

v
(-G~ (O}«
k...K n...Ny,| oM

Fig. 3: A graphical model for representing the data generat-
ing process of our topic model.

4.3 FRAC+ Overall Framework

We present FRAC+ as a complete framework in Figure 4.
FRAC+ performs two main processes in order to answer
the following key research questions: 1) finding the optimal
number of categories, and 2) detecting miscategorized apps.
We present the details in the following paragraphs.

Process 1: We ignore the app category information and
treat all apps as they are in one big category (M = 1).
To find the optimal number of topics K, we run our topic
model for various number of topics K and compute the
silhouette value [46]. The silhouette value is a metric to
determine how well a point is matched to its cluster by
measuring the difference between inter-cluster and intra-
cluster (dis)similarity. Assume that we have clustered a data
setinto K clusters. Each cluster is labeled as k, k € {1,...,K}.
Let nj, represents a point (observation) n in cluster k, then
the silhouette value is calculated as:

b(nk) — a(nk)
maz{a(ng), b(ni)}

s(ng) =

where a(ny,) represents the average dissimilarity of nj with
all other points in cluster k, and, b(ny,) represents the lowest
average dissimilarity of ny, to any other clusters k', where &’
€ {1,..., K}, k¥ # k. The dissimilarity could be computed
using, e.g., distance measure. We use cosine similarity in
this work. Note that dissimilarity is equal to (1-similarity).
Higher value of silhouette means that the points are more
similar to the rest points in their cluster rather than in
neighboring clusters.
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Process 1: Find the optimal number of topics

Apps

Sports

* Let H = {KyinrsKinas}
« Compute K
« For every number of topics K €

{ Miny s max} -

% Arcade

1. Compute Z, for every app
2. Form clusters C for same topic apps

with Z, = h

D|sregard category Sports :
Arcade .) information from |
| the app store

___________________

« Set number of topics K = optK

« Compute Km for each category m

« Run the topic model to get the
topic assignment for each app

3. Compute silhouette for C
« Output the optimal number of topics K,
optK, based on the largest silhouette value |

= Topic assignment per app
= Topic proportions 6, for
each category m

)

Include category (Sports, Arcade,...
information from the app store

Analyze 6, to determine which
apps are miscategorized

Miscategorized apps: apps associated with:

Legend:
[T App’s unit feature vector

= The lowest vector component of 8, , or
= Top-P smallest vector components of 6,,

Fig. 4: Two main processes in FRAC+: Process 1. Detect the optimal number of topics and Process 2. Detect
miscategorization - which is achieved by running again the topic model using the optimal number of topics from Process

1 and the app category information. See text for details.

We take the average silhouette* values when determining
the optimal number of topics K. We choose K with the
highest silhouette value and label it as opt K.

Process 2:To find miscategorized apps, we run again our
topic model with K = opt K. Contrary to Process 1, here
we include the app category information (recall the analogy
in Table 3) to our topic model. After we run the topic model,
each app is associated with a topic k € {1,...,K}. Then for
each category m, we examine its topic proportions, which is
the vector 6,,. In order to detect miscategorized apps, we
use the following approach.

A category in GOOGLE Play Store reflects the topic of that
category. For example, ideally all apps registered in Racing
are about racing (e.g., Real Racing game app®’). Due to
some reasons that we described in Section 1, some apps (e.g.,
Alpha Zoo game app®”?) with different topics could also be
listed under Racing. While it is particularly true that all apps
with different topics should be marked as miscategorized
apps, in this work we are more interested in analyzing the
apps associated with the smallest value component of the
vector 6,,. Therefore, all apps associated with the smallest
vector component are labeled as being miscategorized. A
more relaxed condition would be to include apps associated
with top-P smallest vector components. One (i.e., the app

4For simplicity, henceforth we will refer the average silhouette as
silhouette.

Shttps:/ /play.google.com/store/apps/details?id=
com.ea.games.r3_na.

®https:/ /play.google.com/store/apps/details?id=
com.funbox.game.alphaZoo.

7 As of February 2015.

store managers) could determine to use the former or latter
option based on their requirements. In Section 6, we show
our case study on GOOGLE Play Store data set using these
two options.

5 EXPERIMENTS

We conducted our experiments® on a machine with Intel®
Core(TM) Duo CPU T6400 @2.00 GHz, 1.75 GB of RAM.
Our experiments are designed to answer the following
questions:

1) Can FRAC+ be used to determine the optimal number
of categories?

2) Can the model be used to identify miscategorized apps?

3) How does the topic model algorithm scale to a large
number of apps and categories?

4) Does the framework generate categories which are se-
mantically coherent, i.e., the categories can be used by
the app store to catalog its existing suite of apps?

5.1

The key novelty in FRAC+ is a new topic model that
is based on directional distributions to generate topics
from the app descriptions. We compare the performance
of FRAC+ to Latent Dirichlet Allocation (LDA) [33], k-
means++ [47], multi-class SVM and one-class SVM.

We use the implementation of LDA from Stanford Topic
Modeling toolbox v0.4.0 [48]. For all experiments in this

Baseline Methods

80ur codes and data sets are available at
https:/ /sites.google.com/site /didisurian/home/codes.
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work, we set both LDA term and topic smoothing param-
eters to 0.01 so the distribution will be concentrated in a
few components. We use the implementation of collapsed
variational Bayes approximation with 1,000 iterations. For
SVM, we use LIBSVM 3.18 [49] with RBF kernel and select
the parameter «y from {1073, 1072, 10!} using 10-fold cross-
validation. We train one-class SVM for each category. We
assign an app to a topic with the largest proportion from
the probability vector for the baseline methods that assign a
probability to an app.

5.2 Data Sets

We used synthetic, semi-synthetic and real data sets to
perform the experiments.

Synthetic Data (SD): For Synthetic Data, we create a sce-
nario where there exist a small number of apps that have
different topic than the others. We inject some noise to the
data and included category information. The aim is to attest
our Process 1 (Figure 4) in order to detect the correct
number of topics. The data set was generated as follows.
We first fixed the number of categories M and the number
of topics K. We associated each topic k € {1,...,K} with
a unique set of words, say, wy. Let V' represents a total
vocabulary, so |V (total unique words) is K x wy. Let s}
be a set of synthetic apps in category m that contains words
randomly sampled from wj,. In other words, each synthetic
app has a feature vector where each entry represents how
many times a word appears in each synthetic app. sj*;
and s}'_, also share some random common words (c.f. the
scenario in Section 3). We set M =5 and for each category m
€f{1,..., M}, weset K =3, where s}’ | = [s]"_5| =150, |s}"_4]
=3 (1% of |sP | + |sis]), and |wg| = 3. There were 1,515
apps at the end of this process. We then picked randomly
50% these apps and injected random numbers to the feature
vectors in order to represent some noise.

Real Data (RD): We used a subset of data set collected from
GOOGLE Play Store that was used in our previous work [50].
In specific, we used: app name, category and description. The
data set was collected up to March 31st, 2014°. For this work,
we focus only on game apps as it is the most popular app
type in app markets [52], [53]. There are six categories
for game apps: Arcade & Action, Brain & Puzzle, Casual,
Racing, Cards & Casino, and Sports and 48,663 game apps
in our data set. We only included game apps that have at
least 500,000 downloads and have more than 150 words
in the description. Among the game apps in our data set,
there are 40,180 apps having less than 500,000 downloads,
4,358 game apps that do not use English in the descriptions
and 29,385 game apps have less than 150 words in the
descriptions. We filtered them out from our data set. We
used standard text mining techniques to process the app
descriptions, i.e., the removal of stop words, symbols and
punctuations, and word stemming. We only included words
(terms) that appear in at least 200 apps. After filtering and
processing, there are 5,546 game apps and 672 unique words
in the vocabulary. Each app is represented by a feature

“Before March 2014, GOOGLE Play Store had 30 app categories with
6 of them belonging to game apps. Later the number of categories in
game apps was extended to 18 [51].

7

vector with dimension equal to the size of vocabulary and
the position in the feature vector represents a word in the
vocabulary. Each entry in the feature vector is a tf-idf value
for the respective word. Figure 5 shows the distribution of
words. Figure 6 shows the distribution of game apps in
each category. For both FRAC+ and multi-class SVM, we
reduced the feature vector dimension to 35 using PCA and
scaled the feature vector to be of unit length for FRAC+. It
had been shown previously [33] that SVM performs better
on the reduced dimension of data set'®. We normalized the
feature vectors to form unit feature vectors for FRAC+ as
we have described in Section 4.1. Figure 7 shows the &
values for each category m. We set o to 1 to represent a
non-informative prior and let the model to learn the best
value during the iteration [54], [55].
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Fig. 6: Number of game apps per category in GOOGLE Play
Store.

Semi-Synthetic Data (SSD): We created a semi-synthetic
data by taking a subset of real data. Specifically, we took top-
1,000 game apps based on the number of downloads and
average ratings as our SSD. We then created new subsets
by taking randomly 200, 400, 600, 800 and 1,000 apps from
the data. To simulate miscategorization in each subset, we
took randomly a number of apps from the two largest

10Qur initial experiments showed the same results.
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Sports
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Brain & Puzzle

Game Categories in
Google Play Store

Arcade & Action

1 11 21 31
Kappa (k) Values

Fig. 7: k value for each game category. Notice that category
Casual has the lowest x value, meaning there are many apps
with different topics under this category, while game apps
in Racing have more focused topic (larger « value).

categories'!. We then changed the categories one to another
from the selected apps and swapped them. We recorded
these apps as the miscategorized apps.

The following sections will try to answer our research
questions: 1, 2 and 3 respectively using SD and SSD. To
answer our research question 4, we present a case study
on GOOGLE Play Store using RD and present the results in
Section 6.

5.3 Finding Number of Optimal Topics

We performed experiments on SD to evaluate if we could
infer the correct number of topics from the data sets. Recall
that in SD we have set the number of topics K = 3. We
treated the data set without including the information which
categories (M) they originally belong to. As described in
Section 4.3, silhouette is used to measure how well an object
matches to its cluster. We varied the number of topics from 2
to 5 and computed the silhouette values. Given a number of
clusters, the silhouette will be high if the method performs
well in clustering the data. Specifically, this experiment
refers to Process 1 described previously in Section 4.3.
As shown in Table 4, FRAC+ attains the highest value for
K = 3. The other baseline methods attain their highest
values on different number of topics with the LDA selecting
K = 4 and the k-means++ selecting K = 2.

TABLE 4
Finding Optimal Number of Topics Based on The
Silhouette Value

Number of topics ‘ 2 ‘ 3 ‘ 4 ‘ 5
FRAC+ 0.7209 | T0.7376 | 0.7334 -0.1260
LDA 0.3457 | 0.7338 | 0.7343 0.0528
k-means++ 0.7209 | 0.6630 | 0.570 0.5911

"Based on the silhouette value, FRAC+ is able to detect
the correct number of topics (i.e., 3) on semi-synthetic data
set.

We keep the term “category” for the real (and semi-synthetic) data
set referring to GOOGLE Play Store categories.

5.4 Miscategorization Detection

We performed experiments on SSD to evaluate the perfor-
mance in detecting miscategorization. Recall that for SSD
that we have several subsets: 200, 400, 600, 800 and 1,000.
For each subset, we ran FRAC+, took apps that belong to the
top-5 lowest topic vector components and analyzed if these
apps were the ones that we had changed the categories.
We computed precision to see the performance of FRAC+
and the baseline methods in recognizing the miscategorized
apps. If A is the set of miscategorized apps and B is the set
of apps identified to be miscategorized, then the precision is
expressed as:

|AN B

precision =
Bl

Note that as SSD was formed from the real data, there-
fore SSD may already have some miscategorized apps that
we did not know in advance. Furthermore, the SSD con-
struction process may also create a reversing effect where
miscategorized apps are now in the correct categories. We
did not control these two possible situations and only
focused on identifying miscategorized apps that we have
altered the categories. Table 5 shows that FRAC+ outper-
forms all baseline methods in most subsets, especially in the
larger subsets, in finding the miscategorized apps in SSD.
For example, FRAC+ constantly outperforms all baseline
methods in 600, 800 and 1,000-subsets with 8% of apps were
miscategorized.

5.5 Scalability

To test how FRAC+ scales, we varied the number of syn-
thetic apps, number of categories, and number of topics
while fixing the dimensionality of the vocabulary at 500 and
1,000. Figure 8 shows that FRAC+ scales in a near linear
fashion. It takes under 30 seconds to process 8,000 synthetic
apps with dimension of vocabulary is 1,000.

6 CASE STUDY ON GOOGLE PLAY STORE DATA

We applied FRAC+ to GOOGLE Play Store data described
in Section 5.2. We present our qualitative and quantitative
analysis in the following sections.

6.1 App categories according to FRAC+

We first evaluated the optimal number of topics by evalu-
ating the silhouette values from K,,;,=4 to K,,q,=30. We
chose this thresholds heuristically to best represent a possi-
ble number of categories in the app market. Using Process
1 described in Section 4.3, we found that the “optimal”
number of topics, optK, is 18 (Figure 9). If we treat opt K
as the number of new categories, then the distribution of
game apps is as shown in Figure 10.

We then qualitatively analyzed the new topics returned
by FRAC+. We tried to give meaningful names for the new
topics by observing the word distribution in each topic. For
example, we found that Topic 4 and Topic 13 correspond
to Card and Casino games respectively. Moreover Topic 8
represents Racing games.

1041-4347 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more

information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

1109/TKDE.2017.2686851, IEEE Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING

TABLE 5
Precision Scores in Finding Miscategorized Apps From SSD

Subset | Miscategorized FRAC+ | k-means++ | LDA | M-SVM OC-SVM
200 8% 0 0 0 0.4 0
16% 0.8 0.2 02 0.67 0

400 8% 0 02 0 0.33 0
16% 0 0.4 05 0.67 0

600 8% 0.33 0 0 02 0
16% 04 05 0.6 04 04

800 8% 0.6 0.4 05 0 0
15% 0.5 04 | 033 0.4 0.2

1,000 8% 0.4 0| 025 02 0
15% 1 0.5 0.4 0.2 0.4

Best (round-up) values are highlighted. M-SVM: Multi-class SVM, OC-SVM: One-class SVM.
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Fig. 8: Scalability on synthetic data sets of sizes 1,000 to 8,000
and 10 to 25 topics. (a) Running time of vocabulary size 500,
(b) running time of vocabulary size 1,000.

Figures 11(a), 11(b), and 11(c) show the word clouds for
Topics 4, 13, and 8 respectively. These figures show that the
categorization by FRAC+ is semantically coherent.

Figure 12(a) shows the “heat map” between the topics
derived from FRAC+ and GOOGLE’s new categories. The
color intensity represents the percentage of game apps that
belong to FRAC+’s topic (row) and GOOGLE’s category
(column). As Figure 12(a) shows, there is a significant over-
lap between GOOGLE’s new app categories and the topics
from FRAC+. For example, (FRAC+)Topic 1: Casual-Casual
(GOOGLE), (FRAC+)Topic 3: Puzzle-Puzzle (GOOGLE), and

Silhouette

0.08 T T TT
4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of Topics

Fig. 9: Using Process 1 described in Section 4.3, we found
that the highest silhouette value is reached at K = 18 (the
optimal number of topics for real data set)

220 193

200 - 155
0

1 2 3456 7 8 9 101112131415161718
New Topics From FRAC+

1000 952

=]
(=]
o

614
600 -

Number of Game Apps
=3

Fig. 10: Distribution of game apps returned by FRAC+
when K is 18.

(FRAC+)Topic 13: Casino—Casino (GOOGLE) etc.

Altogether nine topics from FRAC+ have high intensity
points along the diagonal of the heat map indicating those
topics have corresponding similar topics in GOOGLE’s new
categories. Some topics from FRAC+ have high density
points in multiple GOOGLE topics and vice versa. This is
possible as some topics can be overlapping with others.
For example, Topic 5: Zombie (FRAC+) has two high in-
tensity points at Action and Arcade (GOOGLE). Figure 12(b)
shows the “heat map” between the topics from LDA and
GOOGLE’s new categories. The heat map also shows high
intensity points along the diagonal, indicating some topics
from LDA also corresponds to GOOGLE's topics. However,
in LDA there are only seven topics strongly corresponding
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Fig. 11: (a) Word cloud for Topic 4 - which corresponds to
Card games, (b) Word cloud for Topic 13 - corresponds to
Casino games, (c) Word cloud for Topic 8 - which corresponds
to Racing games. The three figures suggest that the FRAC+’s
categorization is semantically coherent.

to GOOGLE’s categories.

We also evaluated the performance on categorizing the
apps quantitatively. There are several performance metrics
that can be used such as perplexity [33] to evaluate the first
task. However, perplexity is more suitable for discrete prob-
ability mass function than continuous probability density
function such as vMF distribution [56]. For this reason, we
used normalized mutual information [36] (NMI),
NMI(X,Y) = _IxY)

H(X)H(Y)
where X represents cluster assignments, Y represents true
labels on the data set, I and H represent mutual information
and marginal entropy. NMI — 0 represents bad clustering
quality and NMI=1 represents perfect clustering quality.
The NMI scores for FRAC+ and LDA are 0.284 and 0.217
respectively. FRAC+ returns a higher NMI score than LDA
does. This result supports our qualitative results previously.

6.2 Detected Miscategorized Apps

We analyzed the miscategorized apps detected by FRAC+.
As described in Section 4.3, we consider the miscategorized
apps be the apps associated with the smallest vector compo-
nent or from the top-P smallest vector components in the
topic proportions 6, in category m. Table 6 presents the
number of miscategorized apps for scenarios where we take:

10
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Fig. 12: The “heat map” between topics found from (a)
FRAC+, (b) LDA, and new app categories from GOOGLE
Play Store. The color intensity represents the percentage of
game apps that belong to FRAC+’s topic and GOOGLE’s
category:.

only from the (i) smallest (top-1), (ii) top-3 smallest and (iii)
top-5 smallest vector components in the topic proportions
O, of each category m. The results in Table 6 show that
under the most conservative assumption (i.e. top-1) 0.35%—
1.10% apps are found to be miscategorized in game app
categories and under a more relaxed assumption 3.32%-—
11.08% apps are found to be miscategorized.

We visualize the percentage of the top-5 smallest vector
components and the top-3 largest vector components based
on the topics from FRAC+ in each GOOGLE’s category in
Figure 13. As can be seen, the topics taken from the smallest
to top-5 smallest vector components are less related to the
GOOGLE’s category m. For instance, Adventure (0.3%), Kids
(0.3%), Zombie (0.3%), Puzzle (0.3%) and Casino (0.6%) are
less related to Racing.

Finally, we present some example miscategorized game
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TABLE 6
Number of Detected Miscategorized Apps

Category "Top-1 "Top-3 "Top-5
Arcade & Action | 6 (0.35%) | 44 (2.57%) | 85 (4.96%)
Brain & Puzzle | 5 (0.43%) | 18 (1.53%) 39 (3.32%)
Cards & Casino | 2 (0.54%) | 12 (3.23%) | 27 (7.28%)
Casual 7 (0.44%) | 33 (2.08%) | 76 (4.79%)
Racing 4(1.10%) | 15 (4.11%) | 31 (8.49%)
Sports 3(0.98%) | 11 (3.29%) | 37 (11.08%)

Note: "Top-P smallest vector components in the topic
proportions 6,, of each category m. The percentage
shows the proportion of miscategorized apps to the
number of apps per category.
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Fig. 13: Top-3 largest and top-5 smallest vector components
based on FRAC+'s topics in the six GOOGLE's categories.
All values are in percentages.

apps detected by FRAC+ in Table 7. Here we only include
some apps from the top-1 scenario described above. Due to
space constraints, we present all apps in our supplemen-
tary material. In Figure 14 we visualize the word clouds
of two miscategorized apps in Racing and Cards & Casino
categories, to illustrate how the topics of these two apps are
very different with the actual topics shown in Figures 11(a)
and 11(b).

6.3 User Study

To obtain further insights on the accuracy of FRAC+, we
carried out a small scale user study by recruiting paid
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Fig. 14: (a) Word cloud of Alpha Zoo (b) Word cloud of Tower
Blocks Classic. Alpha Zoo was identified as miscategoriezed
under Racing category and Tower Blocks Classic was identi-
fied as miscategorized under Cards & Casino category. (cf.
Figure 11 for word clouds for Racing and Cards & Casino)
categories.

users through the popular crowd-sourcing platform Crowd-
flower!? and asking them to categorize a sample of 50 apps.

We only included users with high reliability scores given
by the Crowdflower platform. To make sure that the users
knew the details of the categories upfront and to avoid
the users arbitrarily answering the survey, we took several
precautionary actions. First, we included the definition of
all categories in the beginning of survey. Then, before the
survey was started, we trained the users by asking them
to label five apps. These five apps were taken randomly
from ten apps that we had chosen prior the survey to
be correctly labeled. If the user failed to categorize them
correctly, a feedback was given to explain why the answers
were incorrect. The survey was started once the users were
trained. To avoid any bias in their responses, we did not
include the original category information of the apps in the
questions.

The sample consisted of 26 apps that were identified as
miscategorized by FRAC+ under top-1 scenario described
in Section 6.2. The sample also contained other 21 apps
selected from the top list in the six game categories. We also
included other three selected apps, which were correctly
categorized from non-game categories. We included an app
name, description and its screenshots for each question in
the survey. Each user in the survey was then asked to select
the appropriate category for the app from the categories
Arcade & Action, Brain & Puzzle, Cards & Casino, Casual,
Racing, Sports Game, and Others. Each app was evaluated
by 20 users. For each app, we calculated the percentages of
users who assigned the same category as the app’s original
category and users who did not.

In Figure 15, we show the users” responses for the 24
correctly categorized apps (21 apps from the top list and 3
apps from non-game category). As shown, over 80% of the
users gave the same categories to 17 out of those 24 apps.
Overall, over 50% of the users gave the same categories
as the original apps’ categories. These results suggest that
in general the users agreed with the categories of the 24

popular apps.

2www.crowdflower.com
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TABLE 7
Some Detected Miscategorized Game Apps From GOOGLE Play Store Detected By FRAC+.

App Original App Description Comment

Name Category

Alpha Racing A for "Alligator" B for "Bear"; T for "Tiger" S for "Seal"! Wow!! There | Based on the descrip-

Zoo are so many lovely animals here! Little ones will have lots of fun | tion this is a kids’ al-
with this addictive memory game learning letters and animals. How | phabet game. Thus it is
to play: To achieve the highest score match the pictures of the cute | more appropriate to the
animals with their name’s initial letter as soon as possible. When | category Brain & Puzzle.
kids press one card in the grid a picture of animal or letter will
appear responding with the sound of the animal makes or of the
letter...

Tower Cards & | Welcome to Build The Tower! Exciting and colorful type of tower | This game does not

Blocks Casino building games for all ages. A tower builder Tower Blocks will train | have any relevance to

Classic your reflection. There are two modes to choose Build city & quick | Cards & Casino. It is an
game: Build city: In Build City mode your goal is to create a thriving | Arcade & Action game
Megalopolis! Build towers and place them wisely in the city grid | which involves multi-
to reach the goal. Increasing your city’s population and level will | ple levels.
unlock new building types...

Scratch Racing "Scratch Me" is the first and only virtual back scratch game for | This is a casual game

Me android. It allows the player to be in the virtual situation of helping
someone be relieved by scratching their itchy back. In Scratch Me
you have to find people in need of back scratching to help them get
rid of their itch. When you help by scratching the in game characters
you will be prompted what part of the back to scratch and will be
told which ways and directions to change scratching....

and has no relevance to
Racing

Plants vs | Casual
Zombies
Game

Guide

Plants vs Zombies videos ...

Plants vs Zombies Game Guide Tips Cheats Free App This is my
first app for Plants vs Zombies This tip will guide you and save
your time & Money. This guide begins at the basic and change to
difficulties methods and stratgies which will help you to cleared the
level game. Tags: Plants vs Zombies cheats Plants vs Zombies help

This app provides a
guide to another game
called Plants vs Zom-
bies. Ideally this must
be under non-game cat-

egory.

Note that some game apps have been removed from GOOGLE Play Store and some the categories have been changed now.
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Fig. 15: User study results: Users’ responses for the 24

correctly categorized apps. In majority, the users gave the
same categories as the original apps’ categories

Based on our experiments on GOOGLE Play Store data
(Section 6.2), there are 26 apps'’, which were identified as
miscategorized apps (we present the complete list in our
supplementary material). Figure 16 shows that over 80% of
the users gave different categories to 11 out of those 26 apps.
In general, over 50% of the users gave different categories to
22 out of those 26 apps. These results suggest that we have
only four false positives (~85%) for the 26 apps identified as

13In Table 6 there are in total 27 apps under Scenario 1. However,
among the results there are two instances of game app Plants vs.
Zombies. Thus here we have 26.
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Fig. 16: User study results: Users’ responses for the 26

miscategorized apps return by FRAC+. Over 50% of the
users agreed that those apps were miscategorized.

miscategorized by FRAC+, which support the performance
of FRAC+ in identifying miscategorized apps.

7 CONCLUSION

We proposed FRAC+, (FR)ramework for (A)pp
(C)ategorization, to infer app categories and detect
miscategorized apps. The key ideas include: (i) expressing
the app descriptions as normalized word frequency counts
which are modeled using a topic model based on directional
distributions, (ii) integrating existing app categories with
inferred categories. We have shown that our topic model is
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able to effectively separate small number of apps that have
different word distributions from the rest apps.

We performed extensive experiments on synthetic, semi-
synthetic and real data sets to evaluate two main tasks: (i)
detecting the correct number of categories, and (ii) detecting
miscategorized apps. We created synthetic data with pre-
defined number of topics and some noise. The experiment
on synthetic data was designed to answer the first task.
Our experiments show that FRAC+ detected the number
of topics correctly comparing to the baseline methods (LDA
and k-means++). We formed semi synthetic data by taking
a subset of real data taken from GOOGLE Play Store and
performed experiments to evaluate the second task. We
shown that FRAC+ outperformed popular methods such
as multi-class SVM, one-class SVM, LDA and k-means++
clustering algorithm in most settings, especially for larger
size of data. Finally, we evaluated the performance of
FRAC+ on real data extracted from GOOGLE Play Store.
Several evaluation methods were used to validate FRAC+’s
performance. FRAC+ gave higher normalized mutual in-
formation (NMI) score (0.284) than LDA did (0.217) on real
data. We also showed that the categorization from FRAC+ is
more aligned with GOOGLE ’s new categories. Furthermore,
the survey carried out using crowdsourcing showed that
~85% of the users agreed with the miscategorization results
returned by FRAC+.

Finally, FRAC+ model stems further research directions
in related to topic modeling. In this work we considered a
flat topic structure for apps as it is used in the current app
markets. It is also interesting to extend the framework to
handle hierarchical categories such as by using the nested
Chinese Restaurant Process and to include the app source
code analysis. We leave this research direction as our future
work.
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