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ABSTRACT
We propose BreathPrint, a new behavioural biometric sig-
nature based on audio features derived from an individual’s
commonplace breathing gestures. Specifically, BreathPrint
uses the audio signatures associated with the three indi-
vidual gestures: sniff, normal, and deep breathing, which
are sufficiently different across individuals. Using these
three breathing gestures, we develop the processing pipeline
that identifies users via the microphone sensor on smart-
phones and wearable devices. In BreathPrint, a user per-
forms breathing gestures while holding the device very close
to their nose. Using off-the-shelf hardware, we experimen-
tally evaluate the BreathPrint prototype with 10 users, ob-
served over seven days. We show that users can be authenti-
cated reliably with an accuracy of over 94% for all the three
breathing gestures in intra-sessions and deep breathing ges-
ture provides the best overall balance between true positives
(successful authentication) and false positives (resiliency to
directed impersonation and replay attacks). Moreover, we
show that this breathing sound based biometric is also ro-
bust to some typical changes in both physiological and en-
vironmental context, and that it can be applied on multiple
smartphone platforms. Early results suggest that breathing
based biometrics show promise as either to be used as a sec-
ondary authentication modality in a multimodal biometric
authentication system or as a user disambiguation technique
for some daily lifestyle scenarios.
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1. INTRODUCTION
Robust user authentication on small form-factor personal

devices, such as smartphones and wearables, remains an im-
portant problem, especially as such devices increasingly be-
come stores of sensitive personal data, such as daily digital
payment traces, health/wellness records, or contact e-mails.
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Ensuring that the authentication mechanisms remain secure
and user-friendly will be even more important with the up-
coming surge in IoT-rich environments, where everyday ob-
jects such as coffee makers, cabinet doors, and pantries are
embedded with sensing and actuation capabilities.

User authentication approaches are broadly organized ac-
cording to three principles: (i) “what you know” approaches,
such as PINs, passwords or memorable questions that lever-
age secret information that only you should be privy to,
and have well known usability challenges (ii) “what you
have” approaches, such as the use of smart tokens, that rely
on hardware-generated temporary credentials that only the
possessor of the device has access to, and are susceptible to
device theft, and (iii) “what you are” approaches that utilize
personal traits (biometrics) of an individual that are hard
to reproduce or mimic. Within the “what you are” category,
there are two classes of methods: physiological biometrics
(such as fingerprints or iris scans) and behavioural biomet-
rics (such as gait or heart rate measurements [75]).

In this paper, we introduce a new modality of behavioural
biometrics based authentication called BreathPrint: it uses
the sounds generated by a user’s breathing behavior, as cap-
tured by a microphone sensor in close proximity to the user’s
nose. If the biometrics of “breathing sounds” are indeed
unique (i.e., it can distinguish among multiple users) and
persistent (i.e., an individual’s signature remains relatively
unchanged over time), then BreathPrint can provide a com-
pelling mode of authentication. Among other advantages,
(i) it is universal: all living users need to breathe!, whereas
touch or gait-based biometrics pose challenges for people
with hand or foot disabilities; (ii) it is highly usable: breath-
ing is a naturally-occurring reflex activity that requires no
additional cognitive or physical effort; (iii) it has low observ-
ability: the breathing sounds are essentially inaudible even
to an observer that is 10–20 cms away, and (iv) it avoids
specialized hardware: unlike past work which needed chest
straps [42] or flow sensors [64] to monitor breathing, a com-
modity microphone sensor is almost universally available on
mobile devices.

Key Research Questions and Contributions: Using
a set of real world studies (10 users observed over a period
of seven days), we first demonstrate that breathing gestures
can indeed provide an individual specific fingerprint. We
then develop the analytics pipeline on a microphone sensor
based system (8 kHz sampling, placed 1–2 cm below the
nose) that can extract and use such a fingerprint for practical
authentication.
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Our key challenges and contributions are:

• What Natural Breathing Gestures Constitute
a Fingerprint? We develop an authentication ap-
proach that uses three distinct, natural breathing ges-
tures: sniff, normal breathing and deep breathing. We
show that users have distinctive differences in the am-
plitude and frequency components of the sound signals
for these three breathing gestures, and that each indi-
vidual breathing gesture achieves over 94% accuracy
for user authentication (among 10 users).

• What is the Processing Pipeline for Breathing-
based Authentication? We develop a classification
pipeline that uses Gammatone Frequency Cepstral Co-
efficients (GFCC) as features as part of a GMM (Gaus-
sian Mixture Model) based classifier. We describe how
BreathPrint uses a segmentation technique to isolate
individual breathing gestures, and how the selection
of an appropriate number of GMM components helps
the classifier achieve both high authentication accu-
racy and low false positive rates.

• Is the Authentication Accurate & Resilient? We
show that BreathPrint is able to achieve between 90%–
100% true positive rates (TPR) for different breathing
gestures, especially by changing the number of GMM
components. More importantly, we show that this ap-
proach is resilient to both impersonation (where an
attacker hears the breathing audio records and tries to
manually mimic the user) and replay attacks (where
an attacker eavesdrops on the sounds from a short dis-
tance). The false positive rates (FPR) due to imper-
sonation and audio replay attacks are less than 2%,
and 0% respectively. This is lower than the FPR of
comparable audio based authentication systems.

• Are Breathing Biometrics Persistent? Using
studies that trained the classifier models on 50 sam-
ples of breathing data, we show that, when users at-
tempt to authenticate 2–3 days later, the classification
accuracy degrades somewhat for deep (8%) and sniff
(6%) breathing gestures, with the drop being notice-
ably higher (23%) for normal breaths. To counteract
these medium time-scale changes, we develop a simple
online unsupervised learning technique to continually
update the GMM-based classifier. This approach par-
tially solves the persistency challenge – the breathing
gesture classification accuracy increases by 3%. Note
that the TPR for deep and sniff breathing gestures
between the initial sessions and the session done af-
ter 2–3 days did not drop using the evolutionary tech-
nique, when the number of GMM components is small.
BreathPrint’s robustness to longer-term variation re-
mains an open question.

• Is the Authentication Robust to Contextual
Changes? BreathPrint appears to be robust to
changes in the user’s breathing pattern caused by se-
lected natural daily activities: TPR remains high (over
80%) even after the episodes of walking for all the
breathing gestures except the normal breathing ges-
ture. Similarly, the microphone-based sensor is robust
to background noise. TPR drops by only 4% when the
noise level measured by a smartphone is 50 dB.

Overall, we believe that our work is the first to demon-
strate the promise of a robust and non-intrusive breathing-
based authentication mechanism. Besides enabling explicit
user authentication (e.g., where a user breathes into a smart-
watch or smartphone), our work opens up the possibility
of continuous user authentication, perhaps by incorporating
other breathing related features, e.g., the heatmap of breaths
captured by an infra-red sensor embedded in a smartglass.

2. BACKGROUND
We start our exploration by providing a short background

on the physiology of breathing, how it varies across different
demographic segments and why we believe that breathing
can act as a distinguishing behavioural biometric. Lastly, we
describe three breathing gestures: sniff, normal, and deep.

2.1 Breathing Mechanics
Breathing occurs naturally, and a healthy adult takes

around 12–20 breaths per minute. Normal breathing has
two phases: inhalation (taking air in) and exhalation (push-
ing air out), and involves three major parts of the body: tra-
chea, lung, and diaphragm. Air enters and leaves the body
through the nose and reaches the lungs through the tra-
chea. A large dome-shaped muscle under the lungs, called
the diaphragm, aids the process. During inhalation, the di-
aphragm contracts, creating a vacuum that lowers the pres-
sure in the lungs; consequently, air is sucked into the lungs.
The reverse happens during exhalation: the diaphragm re-
laxes upwards, compressing the lungs and increasing the air
pressure there, forcing air out through the trachea. Nor-
mally breathing occurs through the nose. We exclude the
scenarios where breathing occurs from the mouth - e.g.,
when people are suffering from some medical condition.

Extensive medical and physiological research exists on
respiratory sounds [45] and the effect of demographic at-
tributes, such as age [46], weight [60], height [55], and gen-
der [25] on respiration. These papers studied sounds coming
from the lung and trachea, as measured either over the chest
wall, at the suprasternal notch (hollow between the neck and
the collarbone) or the lateral neck. Lung sound’s amplitude
differs between persons and different locations on the chest
surface, and primarily varies with airflow in the lungs [23].
Moreover, as shown by Pasterkamp et al. [47], the spectral
shape of tracheal sounds is highly variable across subjects.

Pasterkamp et al. [46] studied the properties of normal res-
piratory lung sounds and how they differ between children
and adults. Authors showed that infants had higher median
frequencies present, compared to older children and adults,
and concluded that this was due to the presence of less power
in low-frequency regions (small lungs and thin chest walls)
among infants. However, the roll-off in the power of higher
frequency components was similar at all ages. Sanchez et
al. [55] found that tracheal sounds of children have higher
cut-off frequency (the frequency after which the audio sig-
nal’s power drops sharply) than adults due to shorter tra-
cheal length. Sharp et al. [60] reported that the pressure,
volume and air flow is very different between a normal and
an obese person. The difference has mainly been attributed
to the different efforts needed to move the ponderous tho-
racic wall (lungs, diaphragm) and abdomen during breath-
ing. Gross et al. [25] found that the ratio of power between
two frequency bands (60–330 Hz and 330–600 Hz) is very
distinct between males and females for lung sounds.
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(c) Deep breathing

Figure 1: Spectrograms for the three breathing gestures

The role of the diaphragm is studied by Mead et al. [43],
where they demonstrated that the volume change in lungs
during breathing is influenced more by the diaphragm than
the rib cage. More recently, breathing-related parameters
have been used to detect different medical conditions [22, 6,
28, 61]. Sinues et al. [61] used mass spectrometry to analyze
the composition of the exhaled breath. They found that
individual signatures of breath composition exist, implying
that analysis of breathing can be used for metabolic studies.
We believe that we are the first to utilize the audio signal of
breathing to authenticate an individual.

2.2 Breathing Gestures
In our proposed approach, we focus on audio generated by

three distinct breathing gestures: Sniff, Normal, and Deep.
We have deliberately restricted ourselves to these three ges-
tures, because they occur “naturally” and can thus be easily
performed by a healthy person. In fact, we initially also con-
sidered a few additional more complex breathing gestures,
such as “two quick inhales followed by an exhale” and vice
versa, and “one quick exhale followed by two quick inhales”
and vice versa. However, during initial exploratory stud-
ies, our participants indicated that they found such breath-
ing gestures too cumbersome to perform and too difficult
to remember. Such complex breathing gestures were thus
excluded from deeper analysis.

Figure 1 shows the spectrograms for three breathing ges-
tures: Sniff, Normal, and Deep. Each spectrogram contains
three samples of each breathing gesture. The figure is ob-
tained using data collected during our experiments with 10
participants (see Section 3). Sniff breathing gesture has the
shortest duration of less than a second and consists of two
successive quick inhalations. Normal breathing gesture lasts
around 2–3 seconds and comprises an inhalation, followed
by an exhalation. Deep breathing gesture has longer inhala-
tion and exhalation phases than normal breathing gesture,
and lasts around 4–5 seconds.

Motivated by the aforementioned research findings over
respiratory sounds, we hypothesized that acoustic features
derived from different breathing patterns, measured by a
microphone sensor, should provide an effective approach for
authenticating people. However, we needed to discover the
key features (e.g., amount of air, forcefulness, time duration
of inhalation and exhalation, etc.) that can both be detected
through audio signal analysis and provide high discrimina-
tory power across individuals.

3. DATASET
In this section, we describe the data collection process,

including the experimental setup and user demographics.

We also present results to show what makes user’s breathing
behaviour different across the three breathing gestures.

3.1 Data Collection
We recruited 10 volunteers (two females and eight males,

aged between 20 and 35) to perform three types of breathing
gestures: sniff (two quick consecutive inhalations), normal
breathing, and deep breathing. The participants were em-
ployees and postgraduate students affiliated with Data61,
CSIRO. The user study was approved by the CSIRO Hu-
man Research Ethics Committee under Ref. No. 085/16
and was performed in a closed office room of size 1.7m (w) x
3.8m (l) x 2.7m (h). The hardware used for the data collec-
tion was a wired iPhone 6 earphone attached to a Dell XPS
13-9343 laptop running Windows 10 (see Figure 2a). We
used the free version of Gold Wave software1 to capture the
acoustic signal generated by different breathing gestures.

Each user held the microphone of the earphone 1–2 cm
below their nose and repeated each breathing gesture mul-
tiple times, while remaining seated. We used an 8000Hz
sampling rate to capture the generated acoustic signals and
store them as .wav files. We repeated the experiment on
three days; the first day (Session 1), 3–4 days after the first
day (Session 2), and 6–7 days after the first day (Session
3). In the first two experiment sessions, the participants
repeated 30 instances of each breathing gesture. During
the third session, participants repeated 10 instances of each
breathing gesture. They also performed impersonation at-
tacks by trying to mimic a target user breathing gestures
after listening to an audio recording. Additionally, to per-
form replay attacks, we also recorded the user’s breathing
sounds via a smartphone placed close to the user.

The acoustics of the breathing signal depends on various
physical conditions. Also, our data acquisition process may
be affected by ambient noise. To understand the effect of
such factors, we carried out additional “contextual” experi-
ments with three users (two of whom are part of the orig-
inal pool of 10 participants). For these users, we captured
the acoustic signal for the three breathing gestures in multi-
ple scenarios: i) normal experiment conditions (while sitting
without background noise), ii) while standing, iii) after 2-
3 min of walking, iv) after 2–3 min of going up and down
the staircases, v) while sitting under three levels of ambi-
ent noise, and vi) while keeping the microphone at different
distances from the user’s nose. The contextual experiments
are only carried out once (one session) for each user. More
details about the attacks performed and the different con-
textual experiments are presented later in Section 5.

1https://www.goldwave.com
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We also evaluated the proposed biometrics on two smart-
phones: iPhone 6 and Nexus 6P, by asking the same three
users to perform breathing gestures on the two devices. We
used the smartphone’s microphone to record the breathing
gestures. We did not use the headphone mic, as it has a
built-in AGC (Automatic Gain Control) function that we
could not disable. Experimental setups: (a) of a laptop with
an earphone and (b) smartphones only are shown in Figure
2.

(a) Laptop - Earphone (b) Smartphone

Figure 2: Experimental Setups

3.2 Breathing Gesture Characteristics
Here we discuss the characteristics of different breathing

gestures and why they are different across individuals. Ta-
ble 1 shows the statistics about the average, minimum, and
maximum length of different breathing gestures obtained
from the dataset. Sniff breathing gesture is the shortest in
length with an average duration of less than a second. Nor-
mal breathing gesture length varies between 1.7–4.3 seconds,
while deep breathing gesture is the longest gesture with an
average duration of approximately 5 seconds.

Table 1: Breathing Gesture Lengths (Seconds)

Gesture
Type

Average Minimum Maximum

Snifff 0.55 0.42 0.71
Normal 2.83 1.79 4.28
Deep 4.8 3.74 6.53

Figure 3 shows the spectrograms of the same breathing
gesture from two users. We can see that the spectrograms
are different across the two users. The energy for a sniff
breathing gesture lies mostly in the higher frequency range;
conversely, for normal breathing gesture, most of the energy
lies in the low frequency range. Also, more power exists in
the exhalation phase than the inhalation phase. The same
is true for deep breathing gesture, except that the energy
distribution across the inhalation and exhalation phases is
more evenly distributed.

To get a clearer picture of why different people might
have different breathing signatures, we plot the root mean
square of the amplitude of the breathing signal and the
power present in different frequency bands for all the three
breathing gestures for all the participants. The frequency
bands are chosen according to the Gammatone filterbank
frequency ranges, described later in Section 4. The results
are shown in Figure 4. The Root Mean Square (RMS) of the
breathing signal for all the users is distinctive. Also, the fre-
quencies, which separate the users in case of a sniff breathing
gesture, lie in the high frequency range (2000–4000 Hz). On
the other hand, the separating frequency range for normal

and deep breathing gestures lies in lower frequency ranges,
specifically normal breathing gesture between 100–1300 Hz
and deep breathing gesture between 100–1600 Hz.
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Figure 3: Spectrograms for Two Users

Inter-gesture correlation: We also investigated the
correlation, in the average RMS value of the breathing sig-
nal across different users, for each breathing gesture pair.
We found that this correlation was negligible (in the range
of [-0.27, 0.17]) between sniff and normal breathing gesture
or between sniff and deep breathing gesture. The correla-
tion was highly significant (0.75) between normal and deep
breathing gestures. These results on correlation, along with
the robustness studies performed in Section 5.4, suggest that
“sniff” and “deep” are the two distinct, independent breath-
ing gestures that provide BreathPrint the highest discrimi-
natory power.

4. THE BREATHPRINT PIPELINE
We first describe the overall design of BreathPrint, show-

ing its different components. Next, we explain the feature
extraction process we used to represent the acoustic signals
in a form that can be fed into an appropriate classifier, which
determines whether the presented acoustic signal was from
a specific individual or not. The classifier input is a discrete
breathing gesture. Finally, we present a segmentation al-
gorithm that automatically extracts episodes of individual
breathing gestures from an underlying continuous sequence
of audio sensor data.

4.1 Overall System
In this subsection, we describe the general working mecha-

nism of BreathPrint. Figure 5 provides a schematic overview
of the system setup used to generate our empirical results.
The user breathes into a microphone, mounted near his/her
nose. The acoustic signal from the microphone first goes
through the segmentation algorithm that separates out each
breathing gesture and also removes leading and trailing si-
lence periods. After this step, the audio signal of the breath-
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Figure 4: RMS and Power-Frequency Distribution

ing gesture is divided into non-overlapping frames of 10 ms.
Acoustic feature vectors (described shortly in Section 4.2)
are extracted from each frame. The feature vectors are
then fed into both GMMuser model and GMMothers model
to obtain two different log likelihood values: LLuser and
LLother. The resulting log likelihood ratio ( LLuser

LLother
) is de-

rived for each frame. Subsequently, we compute the average
of this ratio across all the frames constituting the gesture,
and accept (authenticate) the user only if this average ratio
is greater than one. In case the value of average ratio is less
than one, the user is not allowed to access the system.

User Model

Others Model

Signal 
Segmentation

Feature 
ExtractorTarget User

Others

LLR > 1

LLuser

LLothers

Yes

No

Verified

Rejected

Figure 5: BreathPrint: System Architecture

4.2 Feature Extraction
We utilize the Gammatone Frequency Cepstral Coeffi-

cients (GFCC) as features, which are based on signal power
in a set of frequency bands. While Mel Frequency Cepstral
Coefficients (MFCC) is more widely used as features in au-
dio signal processing, especially for human speech analysis,
recent research [56, 66, 31] has shown that Gammatone fil-
terbanks [2] can offer higher accuracy than Mel filterbanks.

The major reason why GFCC is more accurate than MFCC
is because GFCC provides finer resolution at low frequen-
cies than MFCC, making GFCC not only more robust in the
presence of noise [77], but also better suited for detecting low
frequency sounds. Given that a single breath is barely audi-
ble at larger distances, we anticipate that breathing has its
dominant energy at lower frequencies.

Generally, a filterbank divides the frequency spectrum
of the signal into multiple overlapping bands (adjustable)
called filters and then calculates the log-energy (weighted
sum of the FFT magnitudes) for each filter. As, the fi-
nal step in calculating the cepstral coefficients, the Discrete
Cosine Transformation (DCT) is applied to each of the log-
energy. This yields number of cepstral coefficients equal to
the number of filters. DCT is a standard orthogonal trans-
formation technique; the most important information about
the spectrum is typically embedded in the lower order DCT
coefficients. Note that the DCT coefficients capture the en-
ergy variation across the entire spectrum; for example, the
first DCT coefficient is the sum of all the log-energies. For
our purpose, we used the GFCC implementation by Zhao
et al. [76]. We extracted 32 GFCC as features using a 32-
Gammatone filterbank, in which each filter is defined by
a center frequency, f and a bandwidth, b. We also used
GFCC delta and GFCC double delta as features, which cap-
ture the rate of change between two consecutive GFCC and
GFCC delta coefficients respectively. In total, we used 96
features. For GFCC, the filterbank centre frequencies are
distributed across frequency in proportion to their band-
width, known as the ERB (Equivalent Rectangular Band-
width) scale [24]. ERB scale provides an approximation as
how the bandwidths of the filters should be divided. The
center frequencies we used are in the range of 20–4000 Hz.
The bandwidth B of each Gammatone filter is given by 1.019
ERB, where ERB is calculated as: 24.7∗(4.37∗0.001∗f+1),
where f being the filter’s center frequency. For comparison
purposes, we also implemented our classifier using MFCC.
Similar to GFCC, we used MFCC, its delta and double delta
as features.

4.3 Classifier
We used GMM (Gaussian Mixtures Model) as a classifier

as it has been shown to perform better than DTW (Dy-
namic Time Warping) or supervised learning methods such
as SVM for speech recognition classification tasks [33, 51].
GMM is a probabilistic model, which assumes that all the
data points in a dataset are generated from a mixture of a
finite number of Gaussian distributions. Each Gaussian dis-
tribution has its own mean and covariance and is represented
as a component in the GMM based model.

By adjusting the number of components and the type of
covariance matrix, one can attempt to represent a set of
data points. We tried with 5, 10, 15, 20, 25, and 30 as
the number of components in the classifier. We stopped at
30, as the classifier’s accuracy drops below 50% beyond 30
components (as we shall see in Section 5). Moreover, larger
volumes of training data are also needed to train a model
with a higher number of GMM components. For example,
speech recognition systems typically include 256–1024 GMM
components, as they usually utilize hours of speech data
[51]. In our case, we seek to train classifiers with only limited
training data (at most a few minutes of human effort). Given
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such limited training data, the use of a greater number of
GMM components is likely to lead to overfitting.

The other parameter of the GMM, called covariance ma-
trix type, can be chosen from four options: full, tied, diago-
nal, and spherical. Full covariance matrix means that each
component has its own general covariance matrix, whereas
diagonal implies that each component has its own diagonal
covariance matrix. In this work, we used the diagonal op-
tion, as estimating the parameters of a full covariance GMM
requires more training data and is more computationally ex-
pensive. Moreover, past empirical evidence suggests that
diagonal matrix GMMs outperform full matrix GMMs [52].

To train the classifier, we first created two GMM models
for each user. The first model GMMuser is constructed only
using the breathing audio samples from the target user. The
second model GMMothers is constructed using the samples
from all other users (i.e. excluding the target user sam-
ples). Each audio sample was divided into 10ms frames
with no overlap. 10–30 ms is the preferred choice of frames
in audio processing tasks [70]. For each frame, a feature
vector of GFCC is extracted and fed to the training mod-
ule, which uses the well known Expectation Maximization
(EM) technique to compute the GMM components. Dur-
ing the test phase, the incoming audio sample is divided
into 10 ms frames, features are extracted and a log likeli-
hood ratio, LLR = LLuser/LLother is calculated by classi-
fying the incoming feature vectors with both GMMuser and
GMMothers models.

4.4 Segmentation Algorithm
To automate the feature extraction process, we designed a

waveform segmentation algorithm. While inspired by exist-
ing work, our segmentation algorithm is specially tuned to
isolate the (start, stop) duration of each individual breath.
In contrast, the majority of the respiration monitoring
works focus only on breathing rate estimation [14, 7, 71] -
e.g., reliably isolating the peak of each breath. In addition,
segmentation in speech recognition is threshold based and
is used to separate speech vs. non-speech frames [32, 38]
– such approaches do not directly work in our case as the
thresholds need to be different for different frames, over the
full breathing gesture signal. When a raw recording is given
to the algorithm, it calculates the breathing rate (number
of breathing cycles per unit time), a suitable window size
(for each breathing gesture), and the starting points of
each window. The steps of segmentation algorithm are
illustrated in Figure 6.

i) Initial activity detection - To identify the start of the
activity (i.e. where a user starts performing repeated breath-
ing gestures), we use a simple threshold method. The raw
signal is separated into frames of 10ms. If five consecutive
frames (i.e., 50ms) each have signal power higher than an
empirically predetermined threshold, the starting point of
the first frame tbegin is considered as the starting point.

ii) Envelope extraction - We then extract the envelope of
the acoustic signal by applying Hilbert transformation. For
acoustic signals, applying Hilbert transformation smooths
the signal and eliminates negative values.
iii) Low pass filter - The signal envelope is then passed
through a low-pass Butterworth filter as suggested in [14] to
get the fundamental frequency of the signal; i.e. the breath-
ing rate. The starting frequency (f) is set to be 0.1Hz (as

Figure 6: Segmentation Algorithm

the corresponding window size of 10s is sufficient for any
breathing gesture) and is iteratively incremented by 0.1Hz
until three criterion are met: (a) Number of peaks, (b) Num-
ber of phases, and (c) Duration.

a) Peak detection - When f is close enough to the fun-
damental frequency, peaks on the filtered envelope are uni-
formly distributed; otherwise, the filtered signal is irregular
in shape without clear peaks. Thus, when the number of
peaks criterion is met, the algorithm determines that it has
correctly estimated the breathing rate. Once this criterion
is met, the window length is calculated as the average dis-
tance between adjacent peaks and the starting points of the
windows are estimated by adding tbegin to the distance be-
tween the target peak to the first peak. The raw signal is
then cropped into distinct windows using the average win-
dow length and window locations.

b) Phase detection - A segment detection method is
used to check the Number of phases. A phase in a breathing
cycle corresponds to either inhalation or exhalation. There-
fore, the number of expected phases for normal breathing,
deep breathing, and sniffing breathing gestures are two, two,
and one respectively. Note that since sniffing breathing ges-
ture is two quick inhalations it does not have two phases, as
there is no significant time gap between the two inhalations.
The algorithm compares the number of phases inside each
window and if most windows contain more phases than ex-
pected, the window size is shortened by increasing f (which
indirectly decreases the distance between adjacent peaks).

c) Duration verification - For some users, we observe
that the inhalation phase for normal or deep breathing ges-
ture is weak and hence buried in the noise. For such users,
for breathing gestures with two expected phases, two ex-
halations belonging to two adjacent but separate breathing
cycles may be cropped into one window. To avoid such fu-
sion of multiple breathing gestures, the algorithm performs
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an additional duration verification step. The duration verifi-
cation step compares the duration d1 of each detected phase
and the distance d2 between the two phases inside a window.
If d1 < d2, then it implies that the two breathing cycles are
incorrectly grouped together and the window size is short-
ened by increasing f .
iv) Window selection and silence removal - To ensure
that there is only one complete breathing gesture inside
each window, the algorithm selects windows with silence
periods at both the beginning and at the end. This is based
on the assumption that the user brings the microphone
close to his/her nose only during the authentication step
and otherwise usually the microphone is sufficiently away
from the nose at other times. A frame level, threshold based
method is used to eliminate windows with consecutive high
power frames on the sides and the silence periods (that
occur due to the pauses between the breathing gestures) of
the selected windows are later removed.

Segmentation Performance: To study the performance
of the segmentation algorithm, we fed it five waveforms con-
taining a total of 100 individual breathing gesture instances
(counted manually). For sniff, normal breathing, and deep
breathing gestures the segmentation algorithm was able to
correctly segment 95%, 93%, and 84% respectively, of the
manually annotated individual gesture instances. A seg-
ment generated by the algorithm was considered correct if
it contains a one complete (individual) breathing gesture
when manually inspected. The segmentation process ap-
plied to continuous breathing activity does not relate to the
accuracy of authentication of individual breathing gestures.
Even though our segmentation method cannot capture all
breathing cycles, a user can simply repeat the breathing
gesture until a correct segment is extracted.

5. RESULTS
As discussed in Section 3.1, we collected the data from 10

volunteers for the three breathing gestures in three sessions:
first day (Session 1), 3–4 days after the first day (Session
2), and 6–7 days after the first day (Session 3). Each user
held the microphone of the earphone 1–2 cm below their
nose. We collected 30 instances of each breathing gesture
in the first two sessions and 10 instances in the last ses-
sion. In the last session, the volunteers were also asked to
do impersonation attacks for a target user 10 times for each
breathing gesture. Three volunteers were picked to perform
data collection (out of which two were from the initial pool
of 10 participants) for an additional set of “contextual” ex-
periments, and to test robustness of BreathPrint on two ad-
ditional smartphones.

5.1 Baseline: Intra-Session User Verification
We first used all the 30 samples from Session 1 and first

20 samples from Session 2 to train the classifier for each user
and each breathing gesture. To create the“others”model, 50
samples from each other user were taken (total, 9*50=450
samples per breathing gesture). The rest of the 10 samples
from Session 2 were used as the testing set (total, 10*10=100
samples per breathing gesture). We report the values of
performances metrics – TPR and FPR – achieved by the
BreathPrint classifier. Note that TPR in this context is the
percentage of instances where a user is correctly verified (i.e.
calculated based on 100 predictions where each user’s 10

samples are fed into their corresponding GMM). FPR is the
percentage of instances where a classifier misclassifies other
user’s samples as the legitimate (actual) user’s sample (i.e.
calculated based on 900 predictions where all other users’
samples are fed into one user’s GMM). In the context of
user verification, by True Positive we mean how many times
a genuine user was correctly verified to be the claimed user
on the basis of some threshold to get legitimate access to
the system. While, False Positive means how many times
an illegitimate user gets access to the genuine user’s account
because the system fails to detect the fraudulent access. We
compare the performance of BreathPrint’s classifier, built
with GFCC, against an alternative built using the MFCC.

Figure 7 shows the results, as the number of GMM com-
ponents is varied between 5 to 30, in increments of 5. For all
the breathing gestures, TPR varies between 90% and 99%
when GFCC are used. MFCC perform worse than GFCC as
the TPR drops to 50%. For GFCC, FPR is between 0.4%
and 6.4% and for MFCC, it is between 0% and 5.2%. Al-
though, MFCC provides a slightly better FPR than GFCC,
it comes at the cost of dropped TPR. We attribute this no-
table performance difference to the fact that GFCC provides
finer resolution at low frequencies where most of the energy
of the breathing signal is located. The performance of the
classifier is promising and comparable to the other forms of
behavioural biometrics as discussed in Section 7.

Figure 7 also shows that number of GMM components
(M) plays a significant role in classification accuracy. TPR
and FPR both decrease with the number of GMM compo-
nents. TPR drops as M increases; 2%–7% for GFCC and
7%–40% for MFCC. This might be due to overfitting. As the
number of components increases, the ability of the classifier
to correctly classify the actual user diminishes. However,
the affect is more drastic for MFCC than GFCC. Overall,
the experimental results suggests that GFCC provide a bet-
ter balance, compared to MFCC, between the usability and
security of the system.

Until now, we have presented results to verify a user based
on the prediction of a single test sample. We also increase
the number of testing samples at the time of user verification
from one to three and used a majority voting based decision
to check how it affects the accuracy of the system, in terms
of TPR and FPR for GFCC based classifier only as GFCC
provided better results than MFCC. We pick three random
test samples out of 10 at each iteration and successfully au-
thenticate a user if the classifier verifies at least two of the
three test samples correctly. We run 10 such iterations for
each user. Referring back to Figure 7, we can see that ma-
jority voting (GFCC-TPR-MV) increases the TPR for deep
breathing by 1.5% (average) across all the components while
for the other two breathing gestures it has a minimal impact.
For FPR (GFCC-FPR-MV), we a see a drop of 0.6%, 0.9%
and 1.2% on average against GFCC-FPR across all compo-
nents for sniff, normal and deep breathing gestures.

The running time for building a classifier for all the 10
users using GFCC varied between 32-47 seconds, 110-275
seconds, and 165–435 seconds for sniff, normal, and deep
breathing gestures respectively across different GMM com-
ponents we tested. The time taken for testing a sample was
2 seconds for any of the three breathing gestures irrespective
of the number of GMM components. The time was calcu-
lated on a laptop running Mac OS X (Sierra version) with
2.6 GHz Intel Core i5 processor and 8 GB of RAM.
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Figure 7: TPR and FPR for the three breathing gestures
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Figure 8: TPR and FPR for the three breathing gestures - Evolution

5.2 Evolution: Inter-Session User Verification
We tested the classifier performance (built using Session 1

and Session 2 data) on 10 samples collected on Session 3 (i.e.
6-7 days after Session 1). The results are shown in Figure 8
in the form of TPR and FPR similar to Section 5.1. As Fig-
ure 8 shows the TPR varies between 75%–93%, 68%–86%,
and 87%–91% for sniff, normal, and deep breathing gestures
respectively. Compared to the intra-session TPR, there is
an average 8%, 23%, and 6% drop in inter-session TPR for
sniff, normal, and deep breathing gestures respectively. This
can be ascribed to temporal factors such as user’s physio-
logical condition and activity levels. More notably, if the
number of components M=5, the TPR for sniffing does not
drop while it drops only by 8% and 6% for the normal and
deep breathing gestures. Lower TPR for the normal breath-
ing gesture was due to the presence of a single outlier user,
for whom none of the 10 breathing gestures were correctly
authenticated.

To counteract these medium scale temporal changes, we
develop a simple online unsupervised learning technique to
continually update the GMM-based classifier. We replaced
the first 10 samples belonging to Session 1 from the user’s
model with the 10 testing samples from Session 2. The re-
sults are labeled as GFCCR. This approach partially solves
the persistency issues as it improves the authentication accu-
racy by 3%. The TPR for deep and sniff breathing gestures
did not drop using the technique, when the number of GMM
components is small.

We also performed majority voting for inter-session user
verification. As we can see from Figure 8, majority voting
increases the TPR for all three breathing gestures: 7% for
sniff, 0.3% for normal, and 4% for deep on an average across
all the components. Overall, majority voting improves the

accuracy of the system by decreasing the FPR while having
slight increase in the TPR.

5.3 Security Evaluation: Attacks
We evaluated the security of the breathing based biomet-

rics system under three different types of attacks; i) random
attacks, ii) impersonation attacks, and iii) audio replay at-
tacks. In random attacks, an attacker does not know how a
target user performs a certain breathing gesture. To simu-
late random attacks, we used last 10 samples from Session
2 of each user against a target user’s classifier and obtained
the FPR at different GMM components. This is exactly the
process that is used to calculate the FPR in Section 5.1.
FPR is in the range of 0.4%–2% when the number of GMM
components is between 15–30 indicating that the proposed
biometrics is safe against random attacks.

Recall that in the final session (c.f. Section 3.1), all the
users were asked to act as an attacker by trying to imperson-
ate a target user. The attackers had to listen to the audio
recording of the target user breathing gesture and then at-
tempt to mimic the breathing gesture 10 times. The attacker
could play the audio recordings any number of times. We
collected 10 impersonation attack samples from each user
and in total 100 samples for each breathing gesture.

To simulate audio replay attacks, we placed a smartphone
near the laptop at a distance of 40-50 cm. The smartphone
was recording the breathing gestures. In total, 100 samples
for each breathing gesture were collected for audio replay at-
tacks. These samples were then replayed on the microphone
of the earphone so that the system thinks that an actual
user is performing the breathing gesture. One can argue that
recording breathing sounds from a smaller distance (4–5 cm)
will increase the likelihood of a successful attack against a
target user. However, launching attacks from smaller dis-
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tances will be easily observable to the target user and hence
would be difficult to be launched successfully.

Table 2 shows the results. For impersonation attacks, the
number of successful attacks is: 7% for sniff breathing ges-
ture and more than 10% for normal and deep breathing ges-
tures. However, as the number of components increases the
successful impersonation attacks drop to less than 4% across
all the breathing gestures. The same is true for audio re-
play attacks. The successful attacks go to 0% across all the
breathing gestures when using GFCC. More replay attacks
on sniff and deep breathing gestures are successful because
sniff and deep breathing gestures contain higher energy than
a normal breathing gesture, which makes them audible at a
larger distance compared to a normal breathing gesture.

Table 2: Results of Attack Scenarios

GFCC MFCC
Gesture
Type

M∗ Imper. Replay Imper. Replay

5 7 7 7 12
10 3 0 0 10

Sniff 15 1 0 0 7
20 2 0 0 5
25 1 0 0 4
30 0 0 0 0

5 16 10 19 0
10 3 1 9 0

Normal 15 3 1 9 0
20 2 1 8 0
25 2 1 6 0
30 2 0 3 0

5 18 19 26 10
10 6 0 7 10

Deep 15 9 0 6 10
20 3 0 4 10
25 2 0 6 10
30 2 0 1 10

(M∗ - Number of GMM components)

To summarize, our results show that highest TPR is
achieved when the number of GMM components (M) is 5.
However, the system also becomes more prone to imperson-
ation and audio replay attacks at lower values of M . When
the number of GMM components is 30, the exact opposite
is true. The TPR is too low for a usable system but very
high security (low FPR) can be achieved by the system.
Nonetheless, BreathPrint can achieve a good balance be-
tween security and usability by using GFCC and a GMM
classifier with 15–20 components. The number of compo-
nents can be increased at the expense of collecting more
training data. Our results suggest that the deep breathing
gesture provides the best balance between TPR and FPR
while preventing targeted attacks. The deep breathing ges-
ture also has the highest TPR rate during evolution. For the
rest of this section, we use GFCC for classification purposes
as they perform better than MFCC.

5.4 Contextual Results
We check the accuracy of the classifier in following scenar-

ios: (a) having the user perform some physical activity, (b)
having the user stand, (c) increasing distance between the
user (3–5 cm and 6–8 cm) and the microphone of the ear-
phone, and (d) increasing the level of ambient noise. These
results are obtained using data from three users (c.f. Sec-
tion 3). 30 samples are collected for training from each user
for each breathing gesture under normal experiment condi-
tions (sitting without background noise). Then 10 samples
are collected for each breathing gesture under eight different

scenarios. The physical activity scenarios include: (a) walk-
ing for 2-3 minutes and (b) going up and down the staircase
for 2-3 minutes. The ambient noise is generated by playing
music from a smartphone at three levels. We chose music
because playing a recorded audio can be done repeatedly
easily for all the participants. The noise levels are achieved
by dividing the maximum volume of the smartphone speaker
into three equal parts. The average decibel values measured
from the user device side are 50 dB, 54 dB, 66 dB for Level
1, Level 2, and Level 3 respectively. 50–55 dB is equivalent
to general activities in a business office. 65 dB corresponds
to average road traffic heard at a distance of 25 m.

Table 3 shows the results. We can clearly see that the ac-
curacy of the classifier only lies between 40%–60% in most
of the cases across breathing gestures for 3–5 cm. For 6–8
cm, the accuracy hovers around 33%. This implies that the
microphone needs to be really close (0–2 cm) to the user’s
nose for BreathPrint to perform well. However, on the other
hand, this very disadvantage makes breathing gestures ex-
tremely safe against audio replay and similar attacks. With
respect to ambient noise, the breathing gestures are quite
resilient at Level 1 and Level 2 except the normal breathing
gestures for which accuracy ranges between 40%–60%. This
is due to the fact that more energy is present in sniff and
deep breathing gestures, thereby making them highly un-
susceptible to the ambient noise. The standing posture also
has relatively low impact on the accuracy of the classifier.

For activity scenarios, we find that the after stairs climb-
ing results are worse than after walking scenario. Naturally,
walking puts less strain on the user body and hence the
chances of breathing gestures being changed are less com-
pared to the stairs scenario. We also observe better results
for deep and sniff breathing gestures compared to normal
breathing gesture, which suggests that normal breathing is
affected more compared to the other two gestures after a
physical activity is performed by a person. We expected the
accuracy of the classifier to go down with physical activity
scenarios. We leave increasing the accuracy of our system
in different physiological contexts as future work.

5.5 Multi Platform Results
We tested the feasibility of using breathing gestures on two

other devices: an iPhone 6 and a Google Nexus 6P Android
smartphone. The three users who participated in contextual
experimental scenarios performed each breathing gesture 30
times on both the smartphones. The first 20 samples are
used for training and the remaining 10 are used for test-
ing. The TPR of the classifier is 100% on both the devices
for all the breathing gestures across all the GMM compo-
nents. However, we used a different threshold to remove
silence from the segmented breathing gestures in case of
iPhone 6 compared to Android smartphone breathing sam-
ples. For samples collected using iPhone, we used 0.1 times
the threshold value being used for samples collected using
Android phone. The samples collected using Android phone
used the same threshold as used for the earphones.

6. RELATED WORK
We divide related work into i) detecting non-speech body

sounds and their applications, ii) breath control for interac-
tive gaming, iii) breath monitoring for respiratory disorder
detection, and iv) behavioural biometrics for authentication.
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Table 3: Contextual Results (TPR)

Distance Ambient Noise User Activity
Gesture
Type

M∗ 3-5cm 6-8cm Level 1 Level 2 Level 3 After Stairs After Walking Standing Idle

5 70 66 100 73 76 73 83 96
10 50 33 96 56 60 46 83 86

Sniff 15 43 33 93 60 46 46 83 90
20 43 33 96 90 46 43 83 83
25 36 33 96 83 40 43 83 76
30 40 33 90 76 40 50 80 73
5 63 23 100 63 36 63 53 76
10 63 20 100 43 36 43 33 56

Normal 15 60 30 100 53 36 50 33 66
20 56 16 100 50 40 46 26 76
25 56 36 100 43 40 53 36 73
30 66 20 96 43 40 50 33 76
5 43 33 100 96 36 66 86 100
10 40 50 100 96 36 63 83 100

Deep 15 43 33 100 96 33 66 90 100
20 43 36 100 100 36 66 96 100
25 43 43 100 100 33 66 93 100
30 43 43 100 100 33 66 90 100

(M∗ - Number of GMM components)

i) Non-speech body sounds: Bodybeat [49], SymDe-
tector [62], BodyScope [74], CoughSense [35], iSleep [26],
Woosh [50], UbiBreathe [1], Zephyr [4], and ApneaApp [44],
are some of the earlier works on detecting various types of
body sounds for applications under different contexts. Body-
Beat [49] is a mobile sensing platform that captures and
recognizes four different types of non-speech body sounds:
eating, drinking, breathing, and coughing using a custom-
built piezoelectric microphone placed near the user’s throat.
Such a system can be used for food journaling and detecting
illness conditions like coughing. SymDetector [62] detects
multiple respiratory sounds such as coughing, sneezing, snif-
fling, and throat clearing with a smartphone microphone. It
handles users’ privacy and reduces power consumption to
record users’ respiratory symptoms for a longer duration of
time.

BodyScope [74] aims at detecting sounds produced in a
user’s throat area, such as eating, drinking, speaking, laugh-
ing, and coughing using a special sensor working at 22 kHz.
A similar mobile system named CoughSense [35] aims at
detecting cough sounds with high accuracy while maintain-
ing the users’ privacy using a smartphone worn around the
user’s neck or placed in a shirt pocket. Woosh [50] relies on
air blown from the mouth as a way to interact with smart-
watches. UbiBreathe [1] uses WiFi RSS (Received Signal
Strength) patterns to enable ubiquitous and non-invasive
respiratory rate estimation. ApneaApp [44] monitors the
minute movements in chest and abdomen caused by breath-
ing on smartphones to detect sleep apnea. Our research is
different compared to the earlier works because we are in-
terested in using different type of breathing sounds for user
authentication on commodity hardware (an earphone or a
smartphone) using a microphone placed near the user’s nose.
.
iii) Breath control for interactive gaming: Breath can
be used to control a wide range of gaming applications [42,
64]. Marshall et al. [42] demonstrated the feasibility and
benefits of breath control over thrill rides. Breathing phases
including inhaling, exhaling, and holding the breath were
detected by a chest strap and directly mapped to the hori-
zontal rotation of a thrill chair. Tennent et al. [64] examined
breath control via a gas mask embedded with flow sensors.
Five customized games were chosen to investigate breath as

a mechanism to control them. Besides the aforementioned
breathing phases, breathing frequency was used as an addi-
tional control mechanism. Instead our primary focus is to
use breathing gestures as a means for user authentication.

iii) Breath monitoring for respiratory disorder de-
tection: Auscultation of body sounds has long been an im-
portant part in both sleep and breathing related studies.
Many systems were proposed to continuously monitor and
detect abnormal breathing activities such as wheezes [63,
29], crackles [40, 58], and snores [5, 73]. Azarbarzin et al. [5]
devloped a snoring detection algorithm for breathing sounds
captured by two microphones, one over the tracheal and the
other one in the air. A vertical box method was applied to
detect activity episodes and frame level features were then
extracted in each episode. Using an unsupervised fuzzy C-
means clustering algorithm, episodes with snoring activities
were labeled. A similar segmentation method was also used
by Yadollahi et al. [73] to study sleep apnea detection. Jain
et al. [29] developed a wheeze detection method using frame-
level FFT on 50 ms Hamming windows. A frame was se-
lected if a frequency peak is detected and subsequent frames
have frequency peaks within the 30 Hz range. A continuity
check was performed to find episodes with more than 250
ms of duration.

In our case, one recording only contains one periodically
repetitive pattern and no classification is needed for the ini-
tial cropping stage. Therefore instead of using moving win-
dows and comparing signal powers across the whole original
recording, our cropping algorithm simply cuts the recording
into pieces according to the detected frequency.
iv) Behavioural biometrics for user authentication:
Acoustic features from user speech have been used to design
systems for speaker recognition [19, 57, 52, 10, 17, 8]. How-
ever, voice can be easily spoofed, especially using replay [39]
(27.3% and 70.0% FPR), text to speech [16], and voice con-
version attacks [48, 34]. Various works [20, 37, 59, 54, 72,
11] have used touch gestures such as taps, swipes, and mul-
tiple fingers for user authentication on touchscreen devices.
These works report a very low EER (Equal Error Rate) in
the range of 1%-5%. However, all these works fail to test the
security of touch gestures in the presence of sophisticated
attacks such as shoulder surfing or video based observation
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Table 4: Comparison Between Different Systems
(x – Not Applicable)

Work Modality Hardware Application FPR (Random) FPR (Targeted) TPR

Woosh [50] Blow air (mouth) Commodity Gesture Recognition x x x
Tennet et al. [64] Breath Flow Specialized Game Control x x x
Zhao et al. [75] ECG Specialized Authentication 8.7 x 91.3

Venugopalan et al. [67] EMG Specialized Authentication 10.0 x 97.3
Eberz et al. [18] Eye Movements Specialized Authentication 4.0 x 96.0

Shahzad et al. [59] Swipes Commodity Authentication 4.0 2.1 94.6
Gafurov et al. [21] Gait Commodity Authentication 13.0 15.0 87.0

Hautamaki et al. [27] Audio Commodity Authentication 9.0 11.6 91.0
Ours Breathing Gestures Commodity Authentication 0.5 2.0 98.0

attacks. Recently, a study from Khan et al. [30] pointed out
that touch gestures are highly susceptible to such attacks.
The way a person walks (gait) has also been proposed in
the literature [41, 65, 78] for user authentication. The EER
achieved with gait in these works varied between 4%-9%.
However, gait based biometrics are vulnerable to sophisti-
cated attackers [21]. Additionally, a person has to walk in
order to be authenticated.

Behavioural biometrics based on heart rate (ECG) [75],
electrical activity of skeleton muscles (EMG) [9], eye move-
ments [18], and electrical activity of the brain (EEG) [13]
have been proposed in the literature. All of these methods
require special apparatus to be attached to the body of the
person. On the contrary, the major advantage of our pro-
posed modality is its pervasive nature: a simple smartphone-
embedded microphone is more widely available and ubiqui-
tously usable than specialized hardware (fingerprint sensor,
or heart rate sensor), which can achieve higher accuracy but
often needs to be mounted on specific body locations (e.g.,
on the chest). Table 4 shows the comparison between our
work and some of the existing works. For our work we show
the results of deep breathing gesture as it provides the best
balance between TPR and FPR while preventing targeted
attacks.

Complementing the earlier works, we have introduced a
new behavioural biometric, which is usable, easily deploy-
able, accessible, highly resilient to several kind of attacks
and can be combined with other modalities to provide highly
secure multimodal biometric authentication systems.

7. DISCUSSION AND LIMITATIONS
Additional Attack Modalities: We have demonstrated
that our proposed biometric is resilient to basic imperson-
ation and audio replay attacks. However, we have not con-
sidered more sophisticated attacks, such as the voice con-
version attack (well-known in speaker recognition systems).
In this attack, an expert attacker can perform fine-grained
manipulation of the frequency components and amplitude
of audio samples. In another example, a sophisticated at-
tacker equipped with a large directional array of sensitive
microphones and good signal processing skills can pick up
the signal from a considerable distance (a microphone ar-
ray could be built using tightly time synchronized discrete
units rather than a large visible physical array of antenna).
We believe that although such attacks are possible, they re-
quire highly motivated attackers with significant time and
resources at their disposal. Also, as breathing-based authen-
tication involves both frequencies, as well as temporal, com-
ponents (the duration of breathing gestures), it may prove

more resilient to such attacks. Nonetheless, they need to be
investigated. Techniques from speech verification systems to
counter replay attacks [68, 69] and voice conversion attacks
[3] can be borrowed to prevent such attacks in any acoustics
based authentication system.
Physiological Context: Our studies in Section 5.4 demon-
strate the robustness of the system under certain short-
term extrinsic contextual factors, such as physical activ-
ity. However, breathing-related features are also likely to
exhibit longer timescale changes, due to intrinsic physio-
logical changes, such as aging and decrease in the lung ca-
pacity. Longitudinal studies are needed to establish how
sensitive BreathPrint is to such changes. We also did not
study BreathPrint’s sensitivity to short-term intrinsic con-
text, such as when someone is sick or has breathing difficul-
ties. Such sensitivity is common to other biometrics-based
authentication approaches as well. For example, fingerprint-
based authentication is known to fail if there is a severe cut
on the user′s finger. Additionally, to understand other possi-
ble unexpected context related deficiencies, we need to per-
form an extensive longitudinal study, which involves collect-
ing data from a large number of users. We are developing
a smartphone app to enable such large-scale, longitudinal
data collection. As collecting data for all possible contexts
is challenging, we plan to also use data augmentation tech-
niques [53, 36] to synthesize new data.
Intermittent vs. Continuous Authentication: Our
canonical usage model has involved the use of deliber-
ate breathing gestures, performed solely for authentication
purposes–e.g., the user breathing into the microphone of a
smartphone. Given the non-stop nature of breathing, fu-
ture possibilities include the use of one or more microphones
that provide continuous, breathing-based authentication of
a user in a non-intrusive way. A particularly exciting case
might be that of a smartglass: a microphone embedded in
the lower rim of the glass should be able to pick up the natu-
ral breathing sounds. Such breathing-based authentication
and interaction might be especially appealing in assisted-
living environments, where breathing gestures may be used
to control lights, turn on/off appliances etc.

Realizing this vision will require additional advances, such
as (i) Improved segmentation: our current pipeline segments
breathing gestures based on the knowledge that the user is
deliberately performing one of the three predefined breath-
ing gestures. This does not apply to the case of continuous,
natural breathing; and (ii) Energy efficiency: Microphones
on wearable platforms typically incur high energy overhead
and cannot be operated continuously. However, it may be
possible to design special-purpose microphones, operating
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at low duty cycles and low sampling frequency for detecting
the low-frequency breathing-based features.
Multimodal Sensing and Authentication: Breath-
Print currently uses only audio sensing of selected breath-
ing gestures. There is a body of work that uses addi-
tional sensor data as an attestation mechanism–e.g., the use
of motion estimates, based on inertial sensing to provide
greater resiliency to 2-D face authentication systems against
photo/video attacks [12]. Similar approaches can be applied
to breathing gestures as well, especially if additional sensors
are placed at locations that can sense the breathing-related
motion artifacts (e.g., inertial sensing on a smartglass).
Device-independence: In this study, we primarily eval-
uated the model using the data collected from same hard-
ware (either a laptop or a smartphone). To explore the
device-dependence of such models, we need to verify: i) Is
it possible to train the model on one device and test on
another device?, and ii) what parameters need to be ad-
justed to make cross device transferability viable? Robust
cross-device models may prove to be widely deployable in
emerging IoT-rich smart environments. To this end we are
considering to use transfer learning methods [15] to create
cross device adaptive models.

8. CONCLUSION
We have proposed a new authentication mechanism, called

BreathPrint, for mobile and wearable devices. BreathPrint
requires the user to perform three distinct, but common-
place, breathing gestures: sniff, normal, and deep, and uses
audio captured by a microphone sensor to authenticate in-
dividuals. BreathPrint offers several advantages, such as ac-
cessibility, usability, deployability, and security. We show
that BreathPrint has TPR rates of over 94% across all three
gestures and also incurs very low FPR (< 2%), even under
directed replay and impersonation attacks. The authentica-
tion pipeline also proves to be quite robust to a selected set of
artifacts, such as user activity and background noise. While
larger, longer-lasting user studies are necessary, BreathPrint
shows promise as a pervasive and novel method for identi-
fying users in a variety of settings – e.g., in disambiguating
between two sleeping individuals. We believe that Breath-
Print, in tandem with other sensor modalities, can also prove
to be an easy to use and robust mechanism for continuous
authentication in future wearable and IoT platforms.
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