
5/3/2017

1

WedgeTail: An Intrusion Prevention System for the 

Data Plane of Software Defined Networks

Authors: Arash Shaghaghi, Mohamed Ali (Dali) Kaafar and Sanjay 

JhaVenue: ASIACCS’17.

Friday, 06 April - 16:20 (Web & Network Security track)

Contact: A.Shaghaghi@UNSW.EDU.AU

ASIACCS’17

Software-Defined Network (SDN)

1

MAC 
Learning

SDN Controller

Load 
Balancer

Flow
Table

Traditional Network

Software-Defined Network

• Network’s control logic is separated 
from the underlying routers and 
switches.

 Centralization of network control and ability to program the network. 

• Already adopted by major players such as Google.

• Securing SDN is now a REQUIREMENT.

ASIACCS’17

Problem Statement

2

Compromised forwarding devices could bring down an 
SDN completely and entirely [1,2] !!

FACT: Attackers have exploited software and hardware vulnerabilities of 
forwarding devices for years to target networks and/or their users (surveillance, 
authentication, QoS, etc.)

How can we protect SDN against them?

ASIACCS’17

Road Map

3

Why protecting SDN against 
compromised forwarding devices is 

challenging?

The set of required features for a 
working solution

What has already been 
done? (related work)

WedgeTail

SPHINX

WedgeTail



5/3/2017

2

ASIACCS’17

SDN Harder to Protect from Malicious Forwarding 
Devices

4

Incompatibility of 
existing solution.

Unverified and 
complete reliance of 

control plane on 
forwarding devices.

Architecture

Securing programmable 
soft-switches such as 

Open vSwitches is 
harder. 

SDN security 
domain is a 

moving target

New functionalities

and dynamic nature

ASIACCS’17

The `must-have’ Requirements

5

Detect attacks exploiting 
hardware or software 

vulnerabilities of forwarding 
devices

Systematically and 
autonomously prioritize 
forwarding devices for 

inspection

Distinguish malicious forwarding actions and localize maliciousness

Programmable for responding 
to threats

Cause minimal disruption to 
the network performance 

when detecting and 
responding to threats

ASIACCS’17

Road Map

6

Why protecting SDN against 
compromised forwarding devices is 

challenging?

The set of required features for a 
working solution

What has already been 
done? (related work)

WedgeTail

SPHINX

WedgeTail

ASIACCS’17

Related Work: SPHINX (NDSS’15)

7

3 Main Limitations:

1. Relies on the admin defined policies to detect attacks.

2. Does not prioritize the inspection of forwarding devices. 

3. Unable to distinguish between malicious actions (e.g. packet drop and 
fabrication), and cannot detect packet delaying attacks. 



5/3/2017

3

ASIACCS’17

WedgeTail: Overview

8

• Controller-agnostic Intrusion Prevention System (IPS) designed to ‘hunt’ 
for forwarding devices failing to process packets as expected.

• Addresses all the `must-have’ features.

How it works?

Target Identification

Attack Detection

Attack Mitigation

ASIACCS’17

WedgeTail: Overview

9

Target Identification

Attack Detection

Attack Mitigation

1. Trajectory Creation

2. Scanning Zones

ASIACCS’17

WedgeTail: Overview

10

Target Identification

Attack Detection

Attack Mitigation

1. Packets as `random-walkers’ 
2. Packet movements as trajectories in a geometric 
space  3. Store all the trajectories in a trajectory 
database. 

Cluster forwarding devices into scanning groups of varying 
priority depending on the cumulative frequency of 
occurrence in packet paths traversing the network.

ASIACCS’17

WedgeTail: Overview

11

Target Identification

Attack Detection

Attack Mitigation

Compute the expected and actual trajectories to 
identify malicious actions (Packet Drop, Misroute, 
Replay, Delay & Generation) 
+ Localize malicious forwarding devices.

1. Trajectory Creation

2. Scanning Zones



5/3/2017

4

ASIACCS’17

WedgeTail: Overview

12

Target Identification

Attack Detection

Attack Mitigation

Actual Vs. Expected (3-step process)

1. Trajectory Creation

2. Scanning Zones

Respond to threats as per policies defined by the 
administrator (e.g. instant isolation) 

ASIACCS’17

Trajectory Creation

13

Packet Trajectory (TR): The route a uniquely identifiable packet takes while 
traversing the network from one forwarding device to another. 

Actual Packet Trajectory:

1. NetSight (NSDI’14): Network troubleshooting solution that allows SDN 
applications to retrieve the complete packet history (preferred generic 
approach). 

2. Custom labelling: Deterministic hash function over the packet header and use 
this hash to track packet as it traverses the network (for smaller networks). 

ASIACCS’1714

NetSight - NSDI’14. 

"
" "

"

"
"

Control"Plane"

Flow"Table"State"Recorder"

Postcard"
Collector"

NetSight"API"

• Reachability"errors"

• IsolaQon"violaQon"

• Black"holes"

• Waypoint"rouQng"violaQon"

TroubleshooQng"Apps"

Postcards"

Packet"History"
Assembly"

TroubleshooQng"
ApplicaQon"

TroubleshooQng"
ApplicaQon"

TroubleshooQng"
ApplicaQon"

TroubleshooQng"
App"

Filtered"
Packet"Histories"

• More advanced, more 
systematic. 

• Disadvantage? Not available 
everywhere. 

Implemented an integration 
using their API for 
WedgeTailed.

ASIACCS’17

Scanning Zones

15

• Keep track of trajectories for all packets on all ports over time t.

 Using `Unsupervised Trajectory Sampling’ [5] reduce the large set of
trajectories into a representative sample that encapsulates the most
commonly visited forwarding devices.



5/3/2017

5

ASIACCS’17

Scanning Zones

16

1. Model ALL trajectories of the TD in approximate way as vectors 
(preserves/lossless the mobility pattern of each trajectory, speeds up the 
computation)

2. SyTra: Represent each trajectory by a continuous function that implicitly 
describes the representativeness of each constituent part of it in respect to 
the whole TD. (relaxes time-based representation of the centroid trajectories, 
allows the modelling of the mobility pattern of each trajectory at a higher level 
of abstraction)

3. T-Sampling: takes into account not only the most (dense, frequent) but also 
the least representative.

ASIACCS’17

Attack Detection (Step 1 of 3)

17

I. Intercept the relevant OpenFlow messages. 
II. Maintain a virtual replica of the network. 

1. Compute Expected Trajectories

ASIACCS’17

Attack Detection (Step 1 of 3)

18

1. Compute the Expected Trajectories

Scan FD(b) on Port(i)
Select FD(b) as source, 

All the others as 
destination.

Retrieve packets with matching 
trajectories 

ASIACCS’1719



5/3/2017

6

ASIACCS’17

Attack Detection

20

2. Attack Identification & Localization: ACTUAL

EXPECTED

FD(c) is misrouting packet i over port j.

(refer to our paper for mathematical notations describing each
case)

ASIACCS’17

Attack Mitigation

21

FD(b) as subject and 
instruct it to use an 
alternative route to 
forward traffic. 

Controller to block all 
incoming OpenFlow 
messages.

ASIACCS’17

Implementation

22

Implemented WedgeTail in approximately 1500 lines of Java Code:
• includes the integration of Unsupervised Trajectory Sampling, NetSight and HSA.

And, also response engine apps developed over Floodlight, ODL, POX and Maestro 
controllers (through their REST API).

ASIACCS’17

Evaluation: Network Setups

23

Evaluation over three different network setups as following:

AARNet

Zib54

Sprint



5/3/2017

7

ASIACCS’17

Evaluation: Attack Scenarios and 
Implantation

24

1. Evaluated WedgeTail accuracy and performance through various specific 
attack scenarios including Network DoS, Network-to-Host DoS, TCAM Exhaustion, 
Forwarding device Blackhole, ARP poisoning, Controller DoS. 

2. We also evaluated WedgeTail by introducing 500 random synthetic malicious 
threats that included malicious actions (drop, delay, replay, generate and misroute) 
for 

All packets on all ports,
Packets pertaining to a specific port,
A Subset of packets on a specific port,
Packets destined to the control plane

3. Compound Attacks: 108 attacks involving more than one malicious forwarding 
device. For example, a surveillance attack may involve more than one malicious 
forwarding device. 

 

ASIACCS’17

Evaluation: Accuracy and Detection Time

25

A) Successful detection rate against attacks implanted in our simulated 
networks -> ALL were detected.

B) Successful detection rate under network congestion leading to packet 
loss -> Table below shows impact on Packet Drop detection as an example.

C) Successful application of pre-defined policies against malicious forwarding 
devices. -> ALL were successfully applied.

ASIACCS’17

Some more Performance Metrics

26

• Target Identification:

AARNET with 400 trajectories: 18 seconds
Sprint with 640000 trajectories: 12 minutes

• Network Replica:

After 500 instances of updates: upper bound of 15 seconds

No user perceived latencies, reasonable resource usage (CPU and memory) and 
Policy Matching.

ASIACCS’17

Future Work

27

• Deploying WedgeTail over a real world network focusing on 
scalability.

• Evaluating WedgeTail’s performance over other attack scenarios
and use-cases such as Virtualization, VM migration and etc.

• WedgeTail currently analyzes snapshots and stability of these is 
challenging. 

• WedgeTail compatibility with distributed controllers such as ONOS 
requires investigation.

Any Questions??



5/3/2017

8

ASIACCS’17

References
1. R. Klo ̈ti, V. Kotronis, and P. Smith. Openflow: A security analysis. In 21st IEEE 
International Conference on Network Protocols (ICNP), pages 1–6. IEEE, 2013. 

2. D. Kreutz, F. Ramos, and P. Verissimo. Towards secure and dependable software-
defined networks. In Proceedings of the second ACM SIGCOMM workshop on Hot topics 
in software defined networking, pages 55–60. ACM, 2013. 

3. M. Dhawan, R. Poddar, K. Mahajan, and V. Mann. Sphinx: Detecting security attacks in 
software-defined networks. In NDSS, 2015. 

4. N. Handigol, B. Heller, V. Jeyakumar, D. Mazi`eres, and N. McKeown. I know what your 
packet did last hop: Using packet histories to troubleshoot networks. In 11th USENIX 
Symposium on Networked Systems Design and Implementation (NSDI 14), pages 71–85, 
2014. 

5. N. Pelekis, I. Kopanakis, C. Panagiotakis, and Y. Theodoridis. Unsupervised trajectory 
sampling. In Machine learning and knowledge discovery in databases, pages 17–33. 
Springer, 2010. 

6. P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: Static checking 
for networks. In Presented as part of the 9th USENIX Symposium on Networked Systems 
Design and Implementation (NSDI 12), pages 113–126, 2012. 

28


