

The Latent Behavior Space Sequential Behavior Information Encoded in a Vector Space

Jan Reubold, Stephan Escher, Thorsten Strufe TU Dresden

15th August 2017

DRESDEN concept Exzellenz aus Wissenschaft und Kultur

Motivation /

Social Bots in OSNs

 Social Bots = automation software created to control an OSN account and tries to pose as a human

Intentions **Distributing Information**

- prestige influencing (hype/denounce products, companies, people, ...)
- political influencing • (framing, hype denounce political topics, ...)
- traditional malicious content (spam, phishing, malware)

'legit' distribution

•••

Harvesting Information

- 'Crawler'
- Identity Theft

- Personalized information distribution (spear phishing, ...)
- •••

- Countermeasures: Prevention, Detection, Awarness, ...
 - Graph Based detect Sybils with social / interaction graph analysis

• Community Based - user based bot detection + experts

- Machine Learning Based
 - Behavior Based
 - Crowd Based Coordinated activity of multiple 'users'

Motivation / Social Bots in OSNs / Detection Mechanisms /

Behavior-Based Detection Approaches I

- Sybil detection using clickstreams
- Two approaches (supervised, unsuperivsed)
 - SVM using 12 features:
 Ø clicks per session
 Ø session length
 Ø time between clicks
 Ø # sessions per day
 Clickstreams → 8 Categories → BoW
 - Clustering:

Pure clickstreams + clickstreams enriched with timining (e.g. $[c_1, t_1, c_2, t_2, ...]$)

Clickstreams + Timings → Distance Function → Graph

Motivation / Social Bots in OSNs / Detection Mechanisms /

Behavior-Based Detection Approaches II

- Model for normal user behavior
- Behavior that does not fit \Rightarrow anomalous behavior (sybil + cyborg detection)
- Unsupervised Method:

Principal Component Analysis (Feature space **F**)

likes per day

likes in specific categories (e.g. sports, politics, education)

Evolution of spatial distribution of observed like categories

• PCA \Rightarrow latent subspace **S**

Time-Series Data Pipelines

- **Task:**Prediction, Classification, ...e.g. Social-Bot Detection
- Input: Time-Series
 - e.g. Click-Traces
 - Labels
 - Additional Information

Time-Series Features:

- Categorical-valued observations e.g. *login, send msg, share,* ...
- Temporal order
- O Timinigs

Time-Series Data Pipelines

- **Task:**Prediction, Classification, ...e.g. Social-Bot Detection
- Input: Time-Series
 - e.g. Click-Traces

Labels

Additional Information

Time-Series Features:

- Categorical-valued observations e.g. *login, send msg, share,* ...
- Temporal order
- O Timinigs

Time-Series Data Our Approach

Standardize scheme

• Efficient use of vector space methods for time-series data (SVM, kNN, PCA, ...)

Idea

• Abstract & split time-series (in parallel)

Latent Behavior Space

- Span vector space by found patterns
- Express users by shown behavior patterns

Input:

- Set of time-series e.g. user sessions on Facebook
- Time-series of categorical-valued observations

 e.g. 'send message', 'newsfeed', 'like'

Concept

- Abstraction of time-series data
- Represent by behavior patterns (called super states)

$$X = \left\{ \begin{bmatrix} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{bmatrix} \stackrel{\frown}{\mathbf{y}} \stackrel$$

Time-Series Data
$$X = \{x_1, x_2, ..., x_M\}$$
Data $x_i = [x_{i1}, ..., x_{il_i}]$ Time-Series $x_{ij} \in Y$, $z_{ij} \in C$ Activity, Super State

Our Approach Super State Graph

- Simple transition graph
- Transition probabilities governed by importance of super states
- Each node represents super state e.g. on click traces of an OSN: manifestation of an intention

Our Approach Super States

-Super States-

- Initial-State Distribution $\theta_c^I \mid \lambda \sim Dir(\lambda)$
- *Transition Distribution (+End-State)*
- $G_{c} | \psi_{c} \sim Dir(\psi_{c}) | \left[\theta_{cs}^{T} | \lambda, G_{c} \sim Dir(\lambda G_{c}) \right]$

State-Duration Model

$$\mu_{cs} \sim t_{\tilde{v}} \left(\mu_{cs} \mid \tilde{\mu}_{cs}, \tilde{\sigma}_{cs}^2 \mid \tilde{\kappa}_{cs} \right)$$
$$\sigma_{cs}^2 \sim \chi^{-2} \left(\sigma_{cs}^2 \mid \tilde{v}, \tilde{\sigma}_{cs}^2 \right)$$

- Segmentation of user behavior into known patterns
- Represent user by her behavior / exhibited patterns
- Use vector space methods

- Segmentation of user behavior into known patterns
- Represent user by her behavior / exhibited patterns
- Use vector space methods

- Segmentation of user behavior into known patterns
- Represent user by her behavior / exhibited patterns
- Use vector space methods

- Segmentation of user behavior into known patterns
- Represent user by her behavior / exhibited patterns
- Use vector space methods

Latent Behavior Space Transformation $v_u = \phi(X_u)$ • Count-based $\phi_{\tilde{z}}^O(X_u) \triangleq \frac{\sum_{(i,j)\in \tilde{z}_u} \mathbf{1}_{z_{ij}}}{|\tilde{z}_u|}$ • Time-based $\phi_{z}^D(X_u) \triangleq \frac{\sum_{1 \le i \le |X_u|} \sum_{1 \le j \le l_i} \mathbf{1}_{z_{ij}} t_{ij}}{\sum_{1 \le i \le |X_u|} \sum_{1 \le j \le l_i} t_{ij}}$

- Segmentation of user behavior into known patterns
- Represent user by her behavior / exhibited patterns
- Use vector space methods

Evaluations /

Controlled Setting Evidence

Evidence on controlled settings

- Impact of sequential information for process recovery
 - 3 scenarios (sets of super states)
 - Scenario I \rightarrow III: Increasing state space overlap
 - Recovery of processes (FNR)

Evaluations /

Controlled Setting Evidence

Evidence on controlled settings

- Impact of sequential information for process recovery
 - 3 scenarios (sets of super states)
 - Scenario I \rightarrow III: Increasing state space overlap
 - Recovery of processes (FNR)

Evaluations /

Social Bot Detection Work in Progress

- Develop attacker models based on characteristics
 - Profile Characteristic (Sybils, Cyborgs, Zombies, ...)
 - Social Bot-Networks (Union of social bots)
 - Massattacks vs Targeted Attacks
 - OSN Structure
 - Complexity (send every hour, user based behavior)
- Enrich real-world data set with behavior traces of theoretical attackers

Feature Design by leveraging behavior patterns

Goal: Vector space + time-series

Problem: Loss of information

Approaches:

Direct: Integrate sequential information into time-series

Abstraction: Learn patterns from time-series → represent time-series by patterns

Feature Design by leveraging behavior patterns

Goal: Vector space + time-series

Problem: Loss of information

Approaches:

Direct:

Integrate sequential information into time-series

Abstraction:

Learn patterns from time-series → represent time-series by patterns

Discussion /

Future Work

Current Work

- Evaluate on real-world data (replace individual transformations with LBS)
- Evaluate impact of loss of information (segmentation \rightarrow LBS)
- Build theoretical attacker models

General

- Further work on social bot detection (behavior graph)
- Investigate influence streams (e.g. by means of frames) and echo chambers

Discussion /

Future Work

Current Work

- Evaluate on real-world data (replace individual transformations with LBS)
- Evaluate impact of loss of information (segmentation \rightarrow LBS)
- Build theoretical attacker models

General

- Further work on social bot detection (behavior graph)
- Investigate influence streams (e.g. by means of frames) and echo chambers

Thank you! Questions?