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Motivation /

Social Bots in OSNs

« Social Bots = automation software created to control
an OSN account and tries to pose as a human

Intentions
Distributing Information Harvesting Information
- prestige influencing « ‘Crawler’
(hype/denounce products, companies, people, ...) . Identity Theft

- political influencing

) . , « Personalized information distribution
(framing, hype denounce political topics, ...)

(spear phishing, ...)
 traditional malicious content
(spam, phishing, malware)

- ‘legit’distribution
m (news, weather, ...)
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Motivation /

Social Bots in OSNs

Detection Mechanisms

« Countermeasures: Prevention, Detection, Awarness, ...

« Graph Based - detect Sybils with social / interaction graph analysis

« Community Based - user based bot detection + experts

« Machine Learning Based
« Behavior Based

- Crowd Based - Coordinated activity of multiple ‘users’
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Motivation / Social Bots in OSNs / Detection Mechanisms /

Behavior-Based Detection
Approaches |

- Sybil detection using clickstreams

- Two approaches (supervised, unsuperivsed)

- SVM using 12 features:
& clicks per session
& session length
& time between clicks
& # sessions per day
Clickstreams — 8 Categories -~ BoW

« Clustering:

Pure clickstreams + clickstreams enriched with timining (e.g. [¢;, t;, G, Ty, ...])
Clickstreams + Timings — Distance Function - Graph
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Motivation / Social Bots in OSNs / Detection Mechanisms /

Behavior-Based Detection
Approaches I

Model for normal user behavior

Behavior that does not fit = anomalous behavior (sybil + cyborg detection)

Unsupervised Method:
Principal Component Analysis (Feature space F)
# likes per day
# likes in specific categories (e.g. sports, politics, education)
Evolution of spatial distribution of observed like categories

PCA = latent subspace S

— —
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Contribution /

Time-Series Data
Pipelines

Task: Prediction, Classification, ...

e.g. Social-Bot Detection

Input: Time-Series
e.g. Click-Traces

D Labels

D Additional Information

Time-Series Features:

] Categorical-valued observations
e.g. login, send msg, shatre, ...

Temporal order
o Timinigs
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Contribution /

Time-Series Data
Pipelines

Task: Prediction, Classification, ...

e.g. Social-Bot Detection

Input: Time-Series

e.g. Click-Traces

@ Labels
Additional Information

Time-Series
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[3,3,0,0,0,0,1,1]
[1,1,0,1,0,0,1,0]

ﬁ

Time-Series Features:

El Categorical-valued observations
e.g. login, send msg, shatre, ...

Temporal order

Timinigs

Specialized Methods
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Vector Space Methods
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Contribution /

Time-Series Data
Our Approach

Standardize scheme
. Efficient use of vector space methods

for time-series data (SVM, kNN, PCA, ...

Idea
- Abstract & split time-series (in parallel)

Latent Behavior Space
- Span vector space by found patterns

- Express users by shown behavior pat-
terns
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Contribution /

Our Approach

Setup and Concept

Input:

. Set of time-series
e.g. user sessions on Facebook

- Time-series of categorical-valued

observations
e.g.'send message, ‘'newsfeed; ‘like’

Concept
« Abstraction of time-series data

- Represent by behavior patterns
(called super states)

X={9IN\=2=Ee 2= g06],
HBABINELONB])

x.= [NNEEC2O® 6]
€ PNBPNNERBEQ 1 4}

c=lQra=gli A4

Time-Series Data 2
X = {x],x2,...,xM} Data
X, = [xl.],...,xi,i :| Time-Series
xl.j c¥, Zij eC Activity, Super State
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Contribution /

Our Approach
Super State Graph

) « Simple transition graph
Q\7/ P grap

\ —\’ l . Transition probabilities governed by
importance of super states
__/_,s P P
& — =
\ \ / - Each node represents super state
05— 1 e.g.on cIicI.< traces of an QSN:
&8 manifestation of an intention

~Super State Graph
State Importance: E
Bly~Dir(r)
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Contribution /

Our Approach

Super States
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Contribution /

Our Approach
The Latent Behavior Space

- Segmentation of user behavior
into known patterns

- Represent user by her behavior /
exhibited patterns

. Use vector space methods

~Latent Behavior Space
Transformation

v, =¢(X,)
« Count-based

50 (x, )2 st

« Time-based
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Contribution /

Our Approach
The Latent Behavior Space

- Segmentation of user behavior
into known patterns

- Represent user by her behavior /
exhibited patterns

- Use vector space methods

~Latent Behavior Space

Transformation
v, =¢(X,)

« Count-based
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« Time-based
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Contribution /

Our Approach
The Latent Behavior Space

- Segmentation of user behavior YR ¢ AL 8 4
into known patterns AEIEIRLA>IE
- Represent user by her behavior / l
exhibited patterns SN P (GO Nz o7l o
- Use vector space methods ')](')')](')')] 4[')')](')
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Contribution /

Our Approach
The Latent Behavior Space
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Contribution /

Our Approach
The Latent Behavior Space

- Segmentation of user behavior
into known patterns

- Represent user by her behavior /
exhibited patterns

- Use vector space methods
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Evaluations /

Controlled Setting

Evidence

Evidence on controlled settings

- Impact of sequential information for
process recovery

« 3 scenarios (sets of super states)
« Scenario | - lll: Increasing state space overlap
- Recovery of processes (FNR)

0.45
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Evaluations /

Controlled Setting

Evidence

Evidence on controlled settings

- Impact of sequential information for
process recovery

« 3 scenarios (sets of super states)
- Scenario | = lll: Increasing state space overlap
- Recovery of processes (FNR)

Scenario | Scenario Il Scenario lll

Ours

0.45

MMC [3]

LDA
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Evaluations /

Social Bot Detection

Work in Progress

- Develop attacker models based on characteristics

- Profile Characteristic (Sybils, Cyborgs, Zombies, ...)
- Social Bot-Networks (Union of social bots)
- Massattacks vs Targeted Attacks

« OSN Structure
- Complexity (send every hour, user based behavior)

« Enrich real-world data set with behavior traces of theoretical attackers
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Contribution /

Our Approach

Summary

Feature Design
by leveraging behavior patterns

Goal: Vector space + time-series
Problem: Loss of information

Approaches:

Direct:
Integrate sequential information into time-series

Abstraction:
Learn patterns from time-series
— represent time-series by patterns
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Contribution /

Our Approach

Summary

Feature Design

by leveraging behavior patterns NNEEBP 2O

Time-Series
> O

Goal: Vector space + time-series
P Speaahzed Methods

- O \ =

Problem: Loss of information

[1,0,1,2,1,1,1,0]

.

Vector Space Methods
— O \ ' @

Direct:
Integrate sequential information into time-series

Abstraction:
Learn patterns from time-series
— represent time-series by patterns

[
[
Approaches: [ LBS }
§
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Solve Task }
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Discussion /

Future Work

Current Work

- Evaluate on real-world data (replace individual transformations with LBS)
- Evaluate impact of loss of information (segmentation — LBS)
- Build theoretical attacker models

General

- Further work on social bot detection (behavior graph)

- Investigate influence streams (e.g. by means of frames) and echo cham-
bers
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Discussion /

Future Work

Current Work

- Evaluate on real-world data (replace individual transformations with LBS)
- Evaluate impact of loss of information (segmentation — LBS)
- Build theoretical attacker models

General

- Further work on social bot detection (behavior graph)

- Investigate influence streams (e.g. by means of frames) and echo cham-
bers

Thank you! Questions?
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