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Outline 

• Privacy preserving set intersection (PPSI) 

• Two categories of techniques 
• Cryptographic methods 

• Probabilistic methods 

• Probabilistic data structures 
• Bloom filters, counting Bloom filters, count-min sketches, and more 

• PPSI using Bloom filters 

• PPSI using counting Bloom filters 

• PPSI using count-min sketches 

• Experimental evaluation 

• Outlook to research directions 
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• Computing set intersection in multi-sets of an arbitrary large 
number of distinct elements privately and efficiently for privacy 
preserving data mining 

• Example applications: 
• Health surveillance system – monitoring drug consumption at pharmacies 

and hospitals located at different places to alert when drug usage exceeds a 
threshold 

• Crime detection or national security application – monitoring the number of 
times certain online services are accessed 

• Transport services – gathering statistics about movements and commuting 
paths to improve services and predict future trends 

• In all these applications large sets held by different parties need 
to be intersected to identify common elements in the sets along 
with their counts of occurrences; however privacy issues 
preclude sharing individual data for set intersection 
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Privacy Preserving Set Intersection (PPSI) 
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• Privacy preserving context 

• Parties should not be able to learn other parties’ data 

• The consumer of the PPSI protocol (for example, a researcher or 
organization) should not learn individual parties’ data as well as non-
frequent/non-common elements 

• Eavesdropper should not be able to learn any parties’ data 

• Honest-but-curious adversary model 

• Parties follow the protocol, but are curious to learn about other 
parties’ data  

• Collusion is possible 

• Two or more parties collude with the aim to learn other parties’ data 
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The Threat Model 
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• Cryptographic methods 
• Example: Secure scalar product, asymmetric cryptography 

• Highly accurate 

• Provably secure 

• But, computationally expensive 

• Probabilistic methods: 
• Example: Bloom filters and variations, sketches, and cuckoo filters 

are probabilistic data structures and noise addition, differential 
privacy, and k-anonymity are perturbation techniques 

• Highly efficient for processing, storing, and computation 
• Acceptable inaccurate – allows false positives 
• Controllable privacy – trade-off between privacy and accuracy 
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Two Categories of Techniques 
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• Motivation 

 

 

 

 

• Used for set membership 

• Predictable level of inaccuracy 

• Privacy preserving due to false positives 

• Data structures: 

• Bloom filters and variations (such as counting Bloom filters), Count-
min sketches, HyperLogLog, and Cuckoo filters 
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Probabilistic Data Structures 
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• Bloom filter is a bit vector b initially set to 0-bits 

• k independent hash functions h(.) are used to hash-map each 
element in a set S into a Bloom filter (BF) of length l bits by 
setting the corresponding bits to 1 

•   𝒃[𝒉𝒋 𝒔 ] = 𝟏
𝒌
𝒋=𝟏𝑺  

• E.g. hash-mapping a set S = [‘apple’, ‘orange, berry’, ‘pear’]) into 
a BF of l=9 bits using k=2 hash functions:  

 

 
 

Privacy Preserving Set Intersection  |  Dinusha Vatsalan 

Bloom Filters 
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• Assume two sets S1 = [‘apple’, ‘orange’, ‘berry’, ‘pear’] and S2 = 
[‘apple’, ‘orange’, ‘berry’] encoded into two BFs b1 and b2 

 

• Intersection list 𝒃𝟏 ∩ 𝒃𝟐 

 

 

 

 

 
• Test membership of element s: 

•  𝒉𝒋 𝒔 == 𝟏
𝒌
𝒋=𝟏  
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PPSI using Bloom Filters 
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• Assume p multiple (more than two) sets from p parties 

• The set intersection can be distributed among p parties 

• Lower computational cost at each party (O(n.l/p)) 

• Lower information gain  

• Same communication cost (O(l.n.p)) 
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PPSI using Bloom Filters (contd..) 
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• Bloom filters are simple and efficient 

• False positive probability for n elements: 

• 𝒇 = (𝟏 − 𝒆
−
𝒌𝒏

𝒍 )𝒌 

• Controllable by tuning the Bloom filter parameters k and l 

• The larger the f the better the privacy gain 

• Weaknesses of Bloom filters: 
• Do not store counts of occurrence 

• Static – no deletion or modification is allowed 

• Variations of Bloom filters: 
• Counting Bloom filters 

• Spectral Bloom filters 

• Deletable Bloom filters 
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PPSI using Bloom Filters (contd..) 
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• A counting Bloom filter is an integer array of length l containing 
counts of values in each bit position β, 1 ≤β≤l over p sets of 
elements 

•   𝒉𝒋 𝒔 += 𝟏
𝒌
𝒋=𝟏𝑺  

• 𝒄 =   𝒃𝒊
𝒑
𝒊=𝟏  

 

• PPSI of multi-sets: 

• Given c of multi-sets 

• Set membership of an element s: 

– 𝒊𝒇𝒇( 𝒉𝒋 𝒔 > 𝟎
𝒌
𝒋=𝟏 ) 

• 𝒄𝒐𝒖𝒏𝒕 𝒔 = 𝒎𝒊𝒏𝒋=𝟏
𝒌 (𝒉𝒋 𝒔 ) 
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PPSI using counting Bloom Filters 
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• Need to choose counters large enough to avoid overflow 

• Poisson approximation suggests 4 bits/counter 

• Storage becomes expensive with larger frequency 

• Assume average frequency count is d 

• Every position in the counting Bloom filter requires 2d bits 

• The total memory consumption is 𝒍 × 𝒍𝒐𝒈𝟐(𝒅)  

• Secure summation 

• Privacy issues due to collusion 

– Two or more parties collude to infer the counts  

    of a non-colluding party 

• Collusion resistant protocols 
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PPSI using counting Bloom Filters (contd..) 
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• Basic secure summation protocol is susceptible to collusion risk  

• Extended secure summation protocols: 

• Homomorphic-based secure summation (HSS)  

• Salting-based secure summation (SSS) 

• Random sharing-based secure summation (RSS) 
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Collusion Resistant Secure Summation 
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• An array of D rows and W cells in each row, initialized to 0 

• D independent hash functions h(.) are used to hash-map each 
element in a set S into a Count-min sketch (CS) by incrementing 
the corresponding bit in each of the D rows by 1 

•   𝒄[𝒋, 𝒉𝒋 𝒔 ] = 𝟏
𝑫
𝒋=𝟏𝑺  

 

 

 

 

 

• 𝒄𝒐𝒖𝒏𝒕 𝒔 = 𝒎𝒊𝒏𝒋=𝟏
𝑫 (𝒉𝒋 𝒔 ) 
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Count-min Sketches 
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• Each element is hashed by randomly chosen pairwise 
independent hash functions 

• 𝒉𝒋 𝒔 = (𝒂𝒋𝒔 + 𝒃𝒋) 𝒎𝒐𝒅 𝑷  𝒎𝒐𝒅 𝑾, 

• Where j = 1, …, D, and P is a large prime number 

• For any 𝒔𝟏, 𝒔𝟐 ∈ 𝑺, the probability of collision of the result of the 
hash function hj is 

• 𝑷𝒓 𝒉𝟏 𝒔𝟏 == 𝒉𝟐 𝒔𝟐 ≤ 𝟏/𝒘 

• Let C(si) be the count estimate of si and C’(si) the real estimate 

• 𝑺 𝟏 is the L1 norm of  𝑪′(𝒔𝒊)
𝒏
𝒊=𝟏  

• In order to get an estimate that satisfies 𝑪 𝒔𝒊 ≤ 𝑪
′ 𝒔𝒊 +  𝝐 𝑺 𝟏 (𝝐 > 𝟏 is 

acceptable error) with probability 𝟏 − 𝜹 

– D should be 𝒍𝒏(𝟏/𝜹)  and W should be 𝒍𝒏(𝒆/𝝐)  
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Count-min Sketches (contd..) 
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PPSI using Count-min Sketches  
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• Creating local synopsis by each party using a count-min sketch 
• Count-min sketches utilize space – sublinear with the number of elements 

of a set represented by it 

 

• Calculate a global synopsis that contains intersection of multi-
sets 
• Also the counts of occurrences 

• Linearity of sketches: sketch produced by adding cell-wise two or multiple 
sketches is the union of these sketches  

 

• Proposed two PPSI protocols using count-min sketches: 
• Homomorphic-based 

• Perturbation-based 
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Homomorphic-based 
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Homomorphic-based (contd..) 
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Homomorphic-based (contd..) 
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• The number of homomorphic operations required at each party is  

– 𝑶 𝑫 ×𝑾  

• The main computational overhead is the encryption of sketches and secure 
multiplication of sketches to generate GS 

• High communication cost due to the size of encrypted sketches 

– Proportional to the size of sketches multiplied by a constant factor 
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Perturbation-based 
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Perturbation-based (contd..) 
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Perturbation-based (contd..) 
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• Symmetric noise is added (a random value drawn from a Laplace 
distribution, location and scale parameters are set to 0 and 1, respectively) 
to sanitize the number of parties with infrequent (<  𝜽) values 
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Evaluation 
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• Application domain: 
• Monitoring and the identification of common Web resources appearing at 

five local parties 

• Datasets: 
• Synthetic dataset – 109 occurrences of 106 distinct elements following zipf 

distribution  (skew parameters z =1 and z=2)  

• Real dataset – anonymized list of top 1000-ranked Web sites from a Greek IT 
company  

• Measures: 
• Efficiency – execution time and space required 

• Accuracy – precision, recall, and completeness measure 

– Completeness = 𝟏 −
 |𝑪′ 𝒔 −𝑪(𝒔)| 𝒔 ∈𝑺

 𝑪(𝒔) 𝒔 ∈ 𝑺
, where C(.) and C’(.) are the actual 

and estimated counts, respectively 

• Baseline: 
• PPSI in Sepia library - ISepia 
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Evaluation using Synthetic Dataset (contd..) 
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Evaluation using Synthetic Dataset (contd..) 
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Evaluation using Real Dataset 
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Other Probabilistic Data Structures 
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• Cuckoo filters 
• Highly space-efficient  

– Efficient than Bloom filters when FPP < 3% 

• Two candidate blocks for an item s 

– 𝒉𝟏 𝒔 = 𝒉𝒂𝒔𝒉 𝒔  

– If 𝒉𝟏 𝒔  𝒆𝒎𝒑𝒕𝒚: 𝒊𝒏𝒔𝒆𝒓𝒕 𝒇 = 𝒇𝒊𝒏𝒈𝒆𝒓𝒑𝒓𝒊𝒏𝒕(𝒔)   

– 𝒆𝒍𝒔𝒆: 𝒊𝒏𝒔𝒆𝒓𝒕 𝒇 𝒊𝒏𝒕𝒐 𝒉𝟐 𝒔 = 𝒉𝟏 𝒔 ⊕ 𝒉𝒂𝒔𝒉(𝒇) 

 

• HyperLogLog 
• Count-distinct problem 

– How many unique elements in a multi-set? 

– Approximate way for efficient calculation of huge lists 

– Use the highest number of consecutive zeroes in the binary 
representation of the hash for each element to predict the cardinality of 
the entire set 
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Conclusion and Research Directions 
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• Presented protocols for PPSI using probabilistic data structures 
and perturbation-based privacy techniques 
• Experimental study shows the accuracy and efficiency of these protocols 

• Research directions: 
• Privacy preserving aggregated mobility data 

– Using probabilistic data structures for practical applications 

– Transport planning and management 

– Privacy preserving recommendation systems 

– Business applications – targeted marketing 

• A framework of probabilistic data structures for privacy preserving 
techniques 

– Study space/time/accuracy/privacy trade-off in different techniques and 
their applicability for different applications 
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