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Privacy preserving set intersection (PPSI)

Two categories of techniques
e Cryptographic methods

e Probabilistic methods

Probabilistic data structures
e Bloom filters, counting Bloom filters, count-min sketches, and more

PPSI using Bloom filters

PPSI using counting Bloom filters
PPSI using count-min sketches
Experimental evaluation
Outlook to research directions
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Privacy Preserving Set Intersection (PPSI) | o D

* Computing set intersection in multi-sets of an arbitrary large
number of distinct elements privately and efficiently for privacy
preserving data mining

* Example applications:

e Health surveillance system — monitoring drug consumption at pharmacies
and hospitals located at different places to alert when drug usage exceeds a

threshold

e Crime detection or national security application — monitoring the number of
times certain online services are accessed

e Transport services — gathering statistics about movements and commuting
paths to improve services and predict future trends
* In all these applications large sets held by different parties need
to be intersected to identify common elements in the sets along
with their counts of occurrences; however privacy issues
preclude sharing individual data for set intersection
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The Threat Model @m | %
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* Privacy preserving context
e Parties should not be able to learn other parties’ data

e The consumer of the PPSI protocol (for example, a researcher or
organization) should not learn individual parties’ data as well as non-
frequent/non-common elements

e Eavesdropper should not be able to learn any parties’ data

* Honest-but-curious adversary model

e Parties follow the protocol, but are curious to learn about other
parties’ data

* Collusion is possible

e Two or more parties collude with the aim to learn other parties’ data

4 | Privacy Preserving Set Intersection | Dinusha Vatsalan



Two Categories of Techniques @m D
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* Cryptographic methods
e Example: Secure scalar product, asymmetric cryptography
e Highly accurate
e Provably secure
e But, computationally expensive

* Probabilistic methods:

e Example: Bloom filters and variations, sketches, and cuckoo filters
are probabilistic data structures and noise addition, differential
privacy, and k-anonymity are perturbation techniques

e Highly efficient for processing, storing, and computation
e Acceptable inaccurate — allows false positives
e Controllable privacy — trade-off between privacy and accuracy
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Probabilistic Data Structures TnT | &

 Motivation

> Speed
> Ease of use
< Storage

Tape HDD SDD Memory

T

How can we
do more here?
* Used for set membership Probabilistic data structures

e Predictable level of inaccuracy
e Privacy preserving due to false positives
* Data structures:

e Bloom filters and variations (such as counting Bloom filters), Count-
min sketches, HyperLoglLog, and Cuckoo filters
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Bloom Filters DATA | %

* Bloom filter is a bit vector b initially set to 0-bits

* k independent hash functions h(.) are used to hash-map each
element in a set S into a Bloom filter (BF) of length / bits by
setting the corresponding bits to 1
* VsVjoq blh;(s)] =1

* E.g. hash-mapping a set S = [‘apple’, ‘orange, berry’, ‘pear’]) into
a BF of /=9 bits using k=2 hash functions:

apple orange berry pear
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PPSI using Bloom Filters “DATA | %

* Assume two sets S, = [‘apple’, ‘orange’, ‘berry’, ‘pear’] and S, =
[‘apple’, ‘orange’, ‘berry’] encoded into two BFs b, and b,

apple orange berry pear

* Intersection list by N b, /M

S, -b, |1]|2]0|2]21|0]|0]1]1

S, »b, [1]1|0]|1]|0[0|0]1]1

b, |111/0]1|0(0]|0|1|1
* Test membership of element s: \M
. \/]’.f=1 hi(s) ==1 apple orange berry pear

J <
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PPSI using Bloom Filters (contd..) @m | &
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e Assume p multiple (more than two) sets from p parties
* The set intersection can be distributed among p parties
* Lower computational cost at each party (O(n.l/p))
e Lower information gain
e Same communication cost (O(l.n.p))
P, P, Ps
b, '1|11(0J1|1|0}J0|1]|1

b, [1]1]0]1|2]0|l0]0]|1
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PPSI using Bloom Filters (contd..) DATA | %

* Bloom filters are simple and efficient
* False positive probability for n elements:

kn

e f=(1- e{_T})k

e Controllable by tuning the Bloom filter parameters k and /

e The larger the fthe better the privacy gain
* Weaknesses of Bloom filters:

e Do not store counts of occurrence

e Static — no deletion or modification is allowed
 Variations of Bloom filters:

e Counting Bloom filters

e Spectral Bloom filters

e Deletable Bloom filters

10 | Privacy Preserving Set Intersection | Dinusha Vatsalan



PPSI using counting Bloom Filters DATA | %

* A counting Bloom filter is an integer array of length / containing
counts of values in each bit position 3, 1 <B</ over p sets of

elements
* VsVic hj(s) += 1 b, [1]/1/0]1/1]0]/0[1]1
[ ] = p .
¢ = Xi-1bi b, 1111]/0]1/0/0]/0]1]1
* PPSI of multi-sets: b [1lolol1lololol1l
e Given c of multi-sets C [3]12/0]3[1]0]03]3
e Set membership of an element s: \M
- k
~iff(Vjz1 hj(s) > 0) apple orange berry pear

e count(s) = mm _1(hj(s)) count 3 3 2 1
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* Need to choose counters large enough to avoid overflow
* Poisson approximation suggests 4 bits/counter
 Storage becomes expensive with larger frequency
e Assume average frequency count is d
e Every position in the counting Bloom filter requires 29 bits
e The total memory consumptionisl X [log,(d)]
* Secure summation P, 20+6=55 p,

e Privacy issues due to collusion
50

— Two or more parties collude to infer the counts
of a non-colluding party 56+5=61

e Collusion resistant protocols -
61-50 =11
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Collusion Resistant Secure Summation | DATA | &
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e Basic secure summation protocol is susceptible to collusion risk
* Extended secure summation protocols:

e Homomorphic-based secure summation (HSS)
e Salting-based secure summation (SSS)

e Random sharing-based secure summation (RSS)
HSS S | SSS S I

*=61 101-30-10=61
61-50=11 61-50=11

0+10.5+5.5=16
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Count-min Sketches @m | &
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* An array of D rows and W cells in each row, initialized to 0

* D independent hash functions h(.) are used to hash-map each
element in a set S into a Count-min sketch (CS) by incrementing
the corresponding bit in each of the D rows by 1

e VsV clj hi(s)] =1

0 0 .10 1,0 10 1/0:2]0
S, <>1 0 0 0| s, 4»2 0 0 0 s <>3 0 0 0
10 0 o0 1 0"~1 0 2010
. 1 0 2 0
e count(s) = minj_(h;(s)) I
_ Sy >3 /0 0|0
Example: count(s1) = min(2,3,2) = 2
r2 0 1 0
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Count-min Sketches (contd..) @m | &
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* Each element is hashed by randomly chosen pairwise
independent hash functions
e hj(s) = [(a]-s + bj) mod P] mod W,
e Wherej=1, ..., D, and P is a large prime number

* For any s¢, S, € S, the probability of collision of the result of the
hash function h; is
e Pr(hy(s1) == hy(sz)) < 1/w

* Let C(s;) be the count estimate of s, and C’(s;) the real estimate
e ||S||1 is the L1 norm of }1* ; C'(s;)

e In order to get an estimate that satisfies C(s;) < C'(s;) + €[|S]|1 (¢ > 1is
acceptable error) with probability 1 — §

— D should be [In(1/8)] and W should be [In(e/¢€)]
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PPSI using Count-min Sketches “DATA | &

* Creating local synopsis by each party using a count-min sketch

e Count-min sketches utilize space — sublinear with the number of elements
of a set represented by it

 Calculate a global synopsis that contains intersection of multi-
sets

¢ Also the counts of occurrences

e Linearity of sketches: sketch produced by adding cell-wise two or multiple
sketches is the union of these sketches

* Proposed two PPSI protocols using count-min sketches:

e Homomorphic-based
¢ Perturbation-based
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Homomorphic-based DATA | &
P, P, P,
5 1 4 2 0 3 1 0
c,| o 2 C, 3 C, 2
3 0 0 2 2 0 1 1
1 0 0 0
C, 0 C, 1 C, 0
1| o 0 0
£ 3 £ 3 *k 3 * * *k * *
E 3 t 3 % t 3 * % % % %k
* * *3
¢y * * * C. * * * c * * *
0
Number of parties P = 3
Threshold 6 = 2 GS 0
0
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Homomorphic-based (contd..)

P, P, P, \ 7~
1 4 0 3 1 0
C 0 2 C, 3 C; 2
3 0 0 2 2 0 1 1
100 2%5 102 107 2?2 103 110 23 103
R | 243 312 108 244 317 112 245 319 113
150 303 450 151 305 452 151 306 453
@ R+C,+C, R+C,+C,+C,
103 210 103
C,+R| 243 314 111
151 303 450
10 1
2 5 €
1 6 3 GU=C1+C2+C3
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Homomorphic-based (contd..) @m | &
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GS GU
10 8 1 10
< |2 5 | =
1 6 3

e The number of homomorphic operations required at each party is
- 0(DxW)

e The main computational overhead is the encryption of sketches and secure
multiplication of sketches to generate GS

e High communication cost due to the size of encrypted sketches
— Proportional to the size of sketches multiplied by a constant factor
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Perturbation-based

R’

GS

P,
3 1 0
c, 2
0 1 1
T
3 4 2.5
3.5 4.5 6
Q’;

P, P,
5 1 4 2
0 2 C, 3
3 0 0 2
2 4 3 4 *5
1 1.5 3.5
2.5 3 4 4.5 3
v Q,
3 5 2
1.5 2.5 3
3.5 4 4.5
3 2 -3
2.5 0.5
1 1.5 2
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Perturbation-based (contd..)

P, P, P, \ 7~
1 4 0 3 1 0
C 0 2 C, 3 C; 2
3 0 0 2 2 0 1 1
100 2%5 102 107 2?2 103 110 23 103
R | 243 312 108 244 317 112 245 319 113
150 303 450 151 305 452 151 306 453
@ R+C,+C, R+C,+C,+C,
103 210 103
C,+R| 243 314 111
151 303 450
10 1
2 5 €
1 6 3 GU=C1+C2+C3
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Perturbation-based (contd..) @m | @
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GS
3 2 -3 ] ] .
\/C[l] =1liffclil=p
2 2.5 0.5 _ elsecli]=0
1 1.5 2 '
GS’ GU
10 8 1 10
1 6 3

e Symmetric noise is added (a random value drawn from a Laplace
distribution, location and scale parameters are set to 0 and 1, respectively)
to sanitize the number of parties with infrequent (< 0) values
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Evaluation Tt | %

* Application domain:

e Monitoring and the identification of common Web resources appearing at
five local parties

* Datasets:

* Synthetic dataset — 10° occurrences of 10° distinct elements following zipf
distribution (skew parameters z =1 and z=2)

e Real dataset — anonymized list of top 1000-ranked Web sites from a Greek IT
company

* Measures:

e Efficiency — execution time and space required
e Accuracy — precision, recall, and completeness measure

Ci(s)-C
2vses|TOCON \phare ¢f.) and C7(.) are the actual
2ysesC(s)

and estimated counts, respectively

e Baseline:
e PPSI in Sepia library - ISepia
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Evaluation using Synthetic Dataset (contd..) @m | &

1.0
]

0.8
|

0.6
1

com ‘Plete ness
0.

0.0 0.2
L 1

skew parameter z

B [-SEPIA @ HP/NBP

(a) By wusing skewed
data, HP/NBP exhibit

high completeness rates

(6 = 0.01).
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precision
00 02 04 06 08 10

0.1 0.01 0.001
parameter ¢ (2=2)

B [-SEPIA E HP/NBP

(d) The precision rates of
HP/NBP are almost 1.0,
by using highly skewed
data.




Evaluation using Synthetic Dataset (contd..) @m | %

.~
5x10°
£ g
s 2
£ E
- c
8 210
& E
5
0 - 0
0.1 0.01 0.001 0.01 0.001
parameter ¢ parameter ¢
m |-SEPIA @ HP B NBP B |-SEPIA @ HP m NBP

(e) Space requirements in () Time performance in
words. minutes.
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Evaluation using Real Dataset “DATA | D

06

precision

com plgteness
0
on
04

0.2

0.0

09- . . 01 0.01 0.005
01 0.01 0.005 parameter ¢

parameter ¢

B |-SEPIA B HP/NBP
—&— [-SEPIA-4& HP/NBP

(¢) The precision rates

(b) The completeness for both our protocols

rates of our protocols are and I-SEPIA are almost

constantly above 0.95. the same, very close to
1.0.
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Other Probabilistic Data Structures @m | &
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* Cuckoo filters

. - 00

e Highly space-efficient 01
— Efficient than Bloom filters when FPP < 3% 02 | 101

e Two candidate blocks for an item s 03
S, 04 | 100

— h{(s) = hash(s) 05

— If h1(s) empty:insert f = fingerprint(s) s, gg T
— else:insert f into h,(s) = h{(s) @ hash(f) 08
09

* HyperLoglLog
e Count-distinct problem
— How many unique elements in a multi-set?
— Approximate way for efficient calculation of huge lists

— Use the highest number of consecutive zeroes in the binary
representation of the hash for each element to predict the cardinality of
the entire set
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Conclusion and Research Directions DATA | &

* Presented protocols for PPSI using probabilistic data structures
and perturbation-based privacy techniques

e Experimental study shows the accuracy and efficiency of these protocols

* Research directions:
e Privacy preserving aggregated mobility data
— Using probabilistic data structures for practical applications
— Transport planning and management
— Privacy preserving recommendation systems
— Business applications — targeted marketing

e A framework of probabilistic data structures for privacy preserving
techniques

— Study space/time/accuracy/privacy trade-off in different techniques and
their applicability for different applications
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