TUTI

Adaptive and Semantics-aware Machine Learning-based Malware Detection

Bojan Kolosnjaji Chair of IT Security Technical University of Munich Germany

Seminar talk, Data61 Sydney, Australia, 13.12.2016.

Problem statement

- Increase in number and variety of newly detected samples
- How to scale up the analysis?
- Use knowledge about similar samples, malware families, code reuse

ТЛП

Problem statement

• Mostly windows PE (*.exe) files and DLL

Problem statement

Malware detection and triage process

1. Malware collection - retrieve and store a large-scale sample set

Problem statement

Malware detection and triage process

1. Malware collection - retrieve and store a large-scale sample set

- 2. Data collection static and dynamic analysis tools
 - a. Static analysis code features, PE header, easy to obfuscate
 - b. Dynamic analysis trace malware execution (kernel API calls)

https://holmesprocessing.github.io/

Problem statement

Malware detection and triage process

1. Malware collection - retrieve and store a large-scale sample set

- 2. Data collection static and dynamic analysis tools
 - **a. Static** analysis code features, PE header, easy to obfuscate
 - b. Dynamic analysis trace malware execution (kernel API calls)

3. Data analytics - analyze the gathered data

- Usually signature- or heuristics-based
- Very time consuming if done manually
- Machine Learning one approach for effective automation Bojan Kolosnjaji | TU Munich | Malware Triage | Data61 2016

Research Goal

- Investigate and improve automatic **feature extraction** approaches
 - Key step in detection/classification
- Make the malware detection and decisions **semantics-aware**, **explainable**
 - Discover semantics from behavioral traces
 - Model interpretability
- Make our classifiers **adaptive** and **robust**
 - Maintain the model during high influx of samples
 - Robust to outliers (open world)

• Topic Modeling + semi-supervised learning

- Hierarchical Dirichlet Process
 - Model syscall traces as documents, syscalls as words
 - Topics change with dataset

• 1 Topic model per class (malware or benign)

• Topics and words example

Registry manipulation	Memory management	File manipulation	Process Handling	
NtWriteFile	VirtualAllocEx	NtReadFile	OpenProcess	
RegOpenKeyExW	VirtualQueryEx	NtWriteFile	ReadProcessMemory	
RegCloseKey	VirtualQuery	NtDelayExecution	WriteProcessMemory	
RegEnumValueW	VirtualFreeEx	${\sf LdrGetProcedureAddress}$	CloseHandle	
RegQueryValueExW	VirtualFree	NtSetInformationFile	LocalAlloc	
${\sf LdrGetProcedureAddress}$	${\sf LdrGetProcedureAddress}$	NtCreateFile	LocalFree	
RegOpenKeyExA		NtQueryDirectoryFile		

Integrating Topic Modeling :: Results

Results

Family	LDA for a different number of topics							
	1(%)	5(%)	10(%)	20(%)	40(%)	80(%)		
Amonetize	0.0	0.0	10.0	100.0	100.0	100.0	100.0	
Somoto	0.0	0.0	0.1	30.3	20.4	30.0	99.8	
Kryptik	0.0	18.0	30.0	70.0	60.0	30.5	91.5	
Multiplug	0.0	57.4	80.0	30.0	40.0	69.4	80.0	
Bladabindi	0.0	1.7	5.7	4.0	7.0	10.3	93.0	
Eldorado	0.0	0.0	0.0	0.0	0.0	0.0	54.4	
Morstar	0.0	0.0	0.0	0.0	0.0	0.0	100.0	
Preloader	0.0	0.0	7.5	71.0	50.0	60.0	100.0	
SProtector	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
SoftPulse	0.0	4.2	4.1	6.7	5.0	6.9	86.2	

Family	Sup	ervise	d(%)	$\mathbf{Semi-supervised}(\%)$						
				1^{st}]	1^{st} Experiment			2^{nd} Experiment		
	ACC	\mathbf{PR}	\mathbf{RC}	ACC	\mathbf{PR}	\mathbf{RC}	ACC	\mathbf{PR}	\mathbf{RC}	
Amonetize	100.0	100.0	100.0	100.0	88.3	100.0	100.0	98.4	100.0	
Somoto	100.0	100.0	100.0	93.6	72.2	93.3	100.0	96.8	100.0	
Kryptik	100.0	100.0	100.0	100.0	86.4	100.0	100.0	100.0	100.0	
Multiplug	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
Bladabindi	99.4	98.1	96.0	83.5	95.4	82.9	96.6	95.8	96.6	
Eldorado	75.6	26.3	86.0	31.4	98.1	31.6	86.8	98.9	86.8	
Morstar	100.0	98.5	100.0	99.2	97.5	99.2	100.0	99.0	100.0	
Preloader	100.0	100.0	100.0	57.1	100.0	55.4	100.0	100.0	100.0	
SProtector	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	100.0	
SoftPulse	64.4	75.4	87.0	49.5	51.1	50.8	88.9	86.5	88.9	
Average	93.9	89.8	96.9	81.4	88.9	81.3	97.2	97.5	97.2	
Rieck et al. 27	88.0	-	-	-	-	-	-	-	-	
Dahl et al. 9	90.5	-	-	-	-	-	-	-	-	

Neural Network approach

- Many previous approaches: n-grams, SVM with string kernels, hidden markov models, topic modeling...
- However, application of neural networks underexplored
 - O Static:
 - Saxe et al. deep feedforward networks (FFNN) for malware code (MALWARE 2015)
 - O Dynamic:
 - Dahl et al. (ICASSP 2013) random projection + FFNN
 - Pascanu et al. (ICASSP 2015) RNN, malware language modeling

Our Goal

- We investigate possibilities of leveraging **deep learning** principles and methods for the malware system call sequences classification
- Motivated by applications of convolutional networks for classifying short texts (Yoon Kim, 2014)
- We combine **convolutional** and **recurrent** approaches to feature extraction
- We investigate neural network **feature extraction** and try to interpret results

System Overview

Data Collection and Preprocessing

- **Malware** sources: VirusShare, Maltrieve, private collections (diversity)
- Cuckoo Sandbox for malware execution traces
- Virustotal API for ground truth labels
 - Create binary vectors from AV signatures
 - Label clustering to retrieve malware families
 - Extract 10 most populous families for ground truth, covers 95% of the dataset
- Remove long subsequences with repeating API calls malware stuck
- **One-hot encoding** for API calls (dictionary of 60 calls)
- Prune the API call dictionary

Neural network architecture

Nx60 filter matrix, best results for N=3,4,5

Evaluation

Family	Deep	\mathbf{Neural}	Network	\mathbf{Hidden}	Markov	\mathbf{Model}	Support	Vector	Machine
	ACC	\mathbf{PR}	RC	ACC	\mathbf{PR}	\mathbf{RC}	ACC	\mathbf{PR}	RC
Multiplug	98.9	99.8	99.0	91.5	74.5	91.5	99.3	99.9	99.3
Kazy	100.0	99.9	100.0	73.1	95.1	73.1	96.6	93.1	96.6
Morstar	100.0	99.9	100.0	80.0	63.7	80.0	82.3	91.0	82.3
Zusy	100.0	57.5	100.0	65.4	45.1	65.4	100.0	58.4	100.0
SoftPulse	100.0	99.1	100.0	51.1	100.0	51.1	99.9	99.6	99.9
Somoto	100.0	100.0	100.0	50.0	37.6	50.0	99.8	100.0	99.8
Mikey	0.0	0.0	0.0	5.7	20.0	5.7	0.0	0.0	0.0
Amonetize	99.1	100.0	99.6	29.4	100.0	29.4	99.3	100.0	99.3
Eldorado	99.4	100.0	99.5	20.0	80.4	20.0	100.0	100.0	100.0
Kryptik	96.6	100.0	96.2	10.0	100.0	10.0	97.1	100.0	97.1
Average	89.4	85.6	89.4	47.5	71.6	47.6	87.4	84.2	87.4

Evaluation

- Significant **improvements** using our architecture w.r.t. baseline methods
 - HMM (over 30% on precision, over 10% on recall)
 - SVM (around 2% on precision, 1% on recall)
- Approach also better than using only FFNN or CNN

• Final results: PR:85.6, RC: 89.4

• Performance varies in breakdown by families

Evaluation

• Malware family separation

ТШ

Evaluation

Prediction Heatmap, constructed using gradients w.r.t inputs*

 $w(e) = \frac{\partial(S_c)}{\partial e} \mid_e$

0.175

0.150

0.125

0.100

0.075

0.050

0.025

$$S(e) = |w(e)|$$

*Based on Li, Jiwei, et al. "Visualizing and understanding neural models in NLP

Neural Network approach - objdump

Neural Network approach – objdump results

- 93% on precision, 92% on recall
- Immunity to small perturbations in code: instruction shuffling, adding nop instructions
- Better performance than simple FFNN network
- Combining PE header and objdump features works well

Neural Network approach - objdump

• Saliency map – which feature contributes to classification to a certain class

Future work

- Combine neural and topic model approaches in a computationally-efficient framework
 - Neural network nonlinear feature extraction powerful
 - Topic model interpretability, convenient for analysts
- Investigate robustness of used methods in an adversarial environment by executing:
 - Exploratory attacks
 - Causative attacks
- Investigate other types of data: rich header, gadgets, control-flow graphs