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• Increase in number and variety of newly detected samples
• How to scale up the analysis? 
• Use knowledge about similar samples, malware families, code reuse

Problem statement

www.virustotal.com/r/statistics
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• Mostly windows PE (*.exe) files and DLL

Problem statement
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Malware detection and triage process

1. Malware collection - retrieve and store a large-scale sample set

Problem statement
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Malware detection and triage process

1. Malware collection - retrieve and store a large-scale sample set

2. Data collection - static and dynamic analysis tools

a. Static analysis - code features, PE header, easy to obfuscate

b. Dynamic analysis - trace malware execution (kernel API calls)

Problem statement
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https://holmesprocessing.github.io/
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Malware detection and triage process

1. Malware collection - retrieve and store a large-scale sample set

2. Data collection - static and dynamic analysis tools

a. Static analysis - code features, PE header, easy to obfuscate

b. Dynamic analysis - trace malware execution (kernel API calls)

3. Data analytics - analyze the gathered data

• Usually signature- or heuristics-based

• Very time consuming if done manually

• Machine Learning - one approach for effective automation

Problem statement
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● Investigate and improve automatic feature extraction approaches

– Key step in detection/classification

● Make the malware detection and decisions semantics-aware, explainable

– Discover semantics from behavioral traces

– Model interpretability

● Make our classifiers adaptive and robust

– Maintain the model during high influx of samples

– Robust to outliers (open world)

Research Goal
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● Topic Modeling + semi-supervised learning

Integrating Topic Modeling
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● Hierarchical Dirichlet Process

– Model syscall traces as documents, syscalls as words

– Topics change with dataset

Integrating Topic Modeling
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● 1 Topic model per class (malware or benign)

Integrating Topic Modeling



Bojan Kolosnjaji |  TU Munich | Malware Triage | Data61 2016 

● Topics and words example

Integrating Topic Modeling
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● Results

Integrating Topic Modeling :: Results
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● Many previous approaches: n-grams, SVM with string kernels, hidden markov 
models, topic modeling...

● However, application of neural networks underexplored

o Static:

 Saxe et al. - deep  feedforward networks (FFNN) for malware code 
(MALWARE 2015)

o Dynamic:

 Dahl et al. (ICASSP 2013)  - random projection + FFNN

 Pascanu et al. (ICASSP 2015) - RNN, malware language modeling

Neural Network approach
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● We investigate possibilities of leveraging deep learning principles and 

methods for the malware system call sequences classification

● Motivated by applications of convolutional networks for classifying short 

texts (Yoon Kim, 2014)

● We combine convolutional and recurrent approaches to feature extraction

● We investigate neural network feature extraction and try to interpret results

Our Goal
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System Overview
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● Malware sources: VirusShare, Maltrieve, private collections (diversity)

● Cuckoo Sandbox for malware execution traces

● Virustotal API for ground truth labels

o Create binary vectors from AV signatures

o Label clustering to retrieve malware families

o Extract 10 most populous families for ground truth, covers 95% of the dataset

● Remove long subsequences with repeating API calls - malware stuck

● One-hot encoding for API calls (dictionary of 60 calls)

● Prune the API call dictionary

Data Collection and Preprocessing
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● Nx60 filter matrix, best results for N=3,4,5

Neural network architecture
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Evaluation
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● Significant improvements using our architecture w.r.t. baseline methods

 HMM (over 30% on precision, over 10% on recall)

 SVM (around 2% on precision, 1% on recall)

● Approach also better than using only FFNN or CNN

● Final results: PR:85.6, RC: 89.4

● Performance varies in breakdown by families

Evaluation
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● Malware family separation

Evaluation
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● Prediction Heatmap, constructed using gradients w.r.t inputs*  

Evaluation

*Based on Li, Jiwei, et al. "Visualizing and understanding neural models in NLP
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Neural Network approach - objdump
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● 93% on precision, 92% on recall

● Immunity to small perturbations in code: instruction shuffling, adding nop instructions

● Better performance than simple FFNN network

● Combining PE header and objdump features works well

Neural Network approach – objdump results



Bojan Kolosnjaji |  TU Munich | Malware Triage | Data61 2016 

● Saliency map – which feature contributes to classification to a certain class

Neural Network approach - objdump
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● Combine neural and topic model approaches in a computationally-efficient 
framework

– Neural network – nonlinear feature extraction powerful

– Topic model – interpretability, convenient for analysts

● Investigate robustness of used methods in an adversarial environment by 
executing:

– Exploratory attacks

– Causative attacks

● Investigate other types of data: rich header, gadgets, control-flow graphs

Future work
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