Muhammad Ikram, Hassan Asghar, Mohamed Ali Kaafar, Anirban Mahanti, Balachander Krishnamurthy

www.csiro.au

DATA

What happens when a browser requests an HTML source from a web server (e.g., nytimes.com)?

https://www.nytimes.com	G	Q Search	☆自♣	^	🦗 👻 😕
\equiv sections Q search	ENGLISH 中文 (CHINESE) ESPAÑOL	SUBSCRIBE NOW	LOG IN	\$	
October 23-25, 2017 <pre> <script "="" <="" <script="" async="" pre="" sr="" src="https: <script async="></script></pre>					

World U.S. Politics N.Y. Business Opinion Tech Science Health Sports Arts Style Food Travel Magazine T Magazine Real Estate ALL

Ads and cookies (and social widgets) are enabled by JavaScript programs (JSes) to track users

Cookies DB			3 rd -Party
krux_segs	q6yvrtzf6 q8xmzq99j	.nytimes.com	January
▶ idb	WET3iYNVWAAOi4xSWWGpSlKwryQ	.impdesk.com	services
▶ id	22ce55597d0b0045 t=1473213fd480d0e6d98520841f8	.doubleclick.net	
▶ et-a1	%7B%22agentId%22%3A%2220e%22%3A1499572551257%7D	.et.nytimes.com	

Cookies DB

krux_segs	
idb	
id	
et-al	

"Google keeps a record of what you look for...[privacy] could
literally cost you your life."

"hackers enter my computer, companies analyze everything I do."

#INSIDEOUT

©Kovila P.L. Coopamore

Privacy Preserving Tools (PP-Tools)

- Blacklist of URLs (or patterns of URLs) to block 3rd-party tracking JSes

Privacy Preserving Tools (PP-Tools)

 Blacklist of URLs (or patterns of URLs) to block 3rd-party tracking JSes

DATA

DISCONNEC

Privacy Preserving Tools (PP-Tools)

• Blacklist of URL (or patterns of URLs) to block 3rd-party tracking JSes

* Metwalley et al., The Online Tracking Horde: a View from Passive Measurements, TMA'15

• Blacklist of URL (or patterns of URLs) to block 3rd-party tracking JSes

* Metwalley et al., The Online Tracking Horde: a View from Passive Measurements, TMA'15

Tracking JSes are similar to each other and are distinct from Functional JSes

JavaScript Codes Similarity: Example

Tracker 1. Google Analytics Cookie Setting

```
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-1627489-1']);
_gaq.push(['_setDomainName', 'geo.tv']);
_gaq.push(['_trackPageview']);
```

Tracker 2. Visual Revenue Cookie Setting

```
var _vrq = _vrq || [],
_vrqIsOnHP = (document.body.className ||
    ').search('pg-section') >=0 ? true : false;
_vrq.push(['id', 396]);
_vrq.push(['id', 396]);
_vrq.push(['automate', _vrqIsOnHP]);
_vrq.push(['track', function() {}]);
```

JavaScript Codes Similarity: Example

Tracker 1. Google Analytics Cookie Setting

var _gaq =	= _gaq [];
_gaq.push	(['_setAccount', 'UA-1627489-1']);
_gaq.push	(['_setDomainName', 'geo.tv']);
_gaq.push	(['_trackPageview']);

Tracker 2. Visual Revenue Cookie Setting

```
var _vrq = _vrq || [],
_vrqIsOnHP = (document.body.className ||
    ').sear ch('pg-section') >=0 ? true : false;
_vrq.push(['id', 396]);
_vrq.push(['automate', _vrqIsOnHP]);
_vrq.push(['track', function() {}]);
```

JavaScript Codes Similarity: Example

Tracker 1. Google Analytics Cookie Setting

```
var _gaq = _gaq || [];
_gaq.push(['_setAccount', 'UA-1627489-1']);
_gaq.push(['_setDomainName', 'geo.tv']);
_gaq.push(['_trackPageview']);
```

Code snippetskarevsyntactically and semantically similar with

difference in variable names and values

```
'').search('pg-section') >=0 ? true : false;
_vrq.push(['id', 396]);
_vrq.push(['automate', _vrqIsOnHP]);
_vrq.push(['track', function() {}]);
```

JavaScript Codes Similarity: two sets of 500

Overview of Our Contribution

- Analyze PP-Tools' performance
 - Regular expressions based on blacklists are ineffective
- Design a classification framework to separate tracking JSes from functional JSes
 - Training with partial single class of functional or tracking Jses
 - Partial view of tracking JSes from blacklists

Data Collection: Rules for Labelling JSes

Rule	JS	#	Description
R1	X	216	All JS that create panels and set margins for ads
R2	×	115	All JS that access and display ads
R3	X	45	All social media widgets
R4	X	324	All in-page JS that include external JS from third-party analytics and advertisers
R5	X	353	All external JS from third-party analytics and advertisers
R6	X	180	All cookie enablers, readers or writers
R7	\checkmark	542	All external JS that provide useful functionality such as navigation menus, search and login
R8	\checkmark	509	All in-page JS that provide useful functionality
R9	\checkmark	132	All JS that fetch content from first-party content domains or third-party CDNs
R10	X	103	All JS in hidden iframe that belong to third-party analytics, advertisers and social media
R11	X	40	All JS in hidden iframe that enable, read or modify cookies
R12	\checkmark	53	All JS that track mouse or keyboard events

x:Tracking JS, **√**: Functional JS

Data Collection: Rules for Labelling JSes

Rule	JS	#	Description
R1	X	216	All JS that create panels and set margins for ads
R2	X	115	All JS that access and display ads
R3	X	45	All social media widgets
R4	X	324	All in-page JS that include external JS from third-party analytics and advertisers
R5	X	353	All external JS from third-party analytics and advertisers
R6	X	180	All cookie enablers, readers or writers
R7	\checkmark	542	All external JS that provide useful functionality such as navigation menus, search and login
R8	\checkmark	509	All in-page JS that provide useful functionality
R9	\checkmark	132	All JS that fetch content from first-party content domains or third-party CDNs
R10	X	103	All JS in hidden iframe that belong to third-party analytics, advertisers and social media
R11	X	40	All JS in hidden iframe that enable, read or modify cookies
R12	\checkmark	53	All JS that track mouse or keyboard events

x:Tracking JS, **√**: Functional JS

Analyzing PP-Tools

Aggressivity of PP-Tools

Aggressivity of a PP-Tool means the ratio of blocked JSes to the total number of JSes in a DOM tree

Aggressivity of PP-Tools

 Aggressivity – the ratio of blocked JSes by a PP-Tool to the total number of JSes in a DOM tree

Aggressivity of PP-Tools

 Aggressivity – the ratio of blocked JSes by a PP-Tool to the total number of JSes in a DOM tree

Effectiveness of PP-Tools

 Effectiveness – the balance between correctly blocking *tracking* JSes and incorrectly blocking *functional* JSes

Effectiveness of PP-Tools

adger

ct Ylus

 Effectiveness – the balance between correctly blocking tracking JSes and incorrectly blocking functional JSes

DD Tool	Trac	king	Functional		
F F - 1001	Blocked Allowed		Blocked	Allowed	
NoScript	0.78	0.22	0.21	0.79	
Ghostery	0.65	0.35	0.08	0.92	
Adblock Plus	0.44	0.56	0.06	0.94	
Disconnect	0.40	0.60	0.06	0.94	
Privacy Badger	0.37	0.63	0.06	0.94	

Effectiveness of PP-Tools

adge ct Plus

 Effectiveness – the balance between correctly blocking tracking JSes and incorrectly blocking functional JSes

		Tracking			Functional		
ər	PP-1001	Blocked		Allowed	Blocked		Allowed
	NoScript	0.78		0.22	0.21		0.79
	Ghostery	0.65		0.35	0.08		0.92
	Adblock Plus	0.44		0.56	0.06		0.94
I	Disconnect	0.40		0.60	0.06		0.94
	Privacy Badger	0.37		0.63	0.06		0.94

- NoScript stops one out of five functional JSes while Privacy Badger overlooks tracking JSes
- 27 | Ikram et al., Towards Seamless tracking-free web browsing: Improved detection of tracking JavaScripts via one-class learning

Term Frequency-Inverse Document Frequency (TF-IDF) of n-gram ($2 \le n \le 7$)

Hsiao et al., Using Web Corpus Statistics for Program Analysis. OOPSLA, 2014

One-Class Learning

One-Class SVM* and Positive and Unlabeled (PU) Learning**

Training requires only single class

Classifying new data as similar or different to the training set

* Schölkopf et al., Estimating the Support of a High- Dimensional Distribution. *NC*, 2001 ** Elkan et al., Learning Classifiers from Only Positive and Unlabeled Data. KDD, 2008.

Validation: Our Classifiers' Performance

Feature		Trac	king	Functional		
Model	Classifier	Blocked	Allowed	Blocked	Allowed	
Syntactic	SSVM	0.93	0.07	0.01	0.99	
	OCSVM	0.88	0.12	0.02	0.98	
	PU	0.86	0.14	0.02	0.98	
PDG	SSVM	0.96	0.04	0.03	0.97	
4-gram	OCSVM	0.95	0.05	0.03	0.97	
	PU	0.93	0.07	0.04	0.96	
Sequential	SSVM	0.98	0.02	0.01	0.99	
4-gram	OCSVM	0.98	0.02	0.02	0.98	
	PU	0.96	0.04	0.03	0.97	
PDG	SSVM	0.99	0.01	0.01	0.99	
7-gram	OCSVM	0.99	0.01	0.01	0.99	
	PU	0.98	0.02	0.02	0.98	
Sequential	SSVM	0.99	0.01	0.01	0.99	
7-gram	OCSVM	0.99	0.01	0.01	0.99	
	PU	0.98	0.02	0.02	0.98	

Validation: Our Classifiers' Performance

	Feature	ature Classifier		king	Functi	ional			
	Model	Classifier	Blocked	Allowed	Blocked	Allowed			
	Syntactic	SSVM	0.93	0.07	0.01	0.99			
		OCSVM	0.88	0.12	0.02	0.98			
		PU	0.86	0.14	0.02	0.98			
Our best classifi	ier has 99	% Accura	acy and l	ess than	1% Fals	e Pos iti	ve rates		
	4-gram	OCSVM	0.95	0.05	0.03	0.97			
		PU	0.93	0.07	0.04	0.96			
	Sequential	SSVM	0.98	0.02	0.01	0.99			
	4-gram	OCSVM	0.98	0.02	0.02	0.98			004
Improves PP-loois' /	Accuracy	by 21% t	o 63% ai	nd reduc	es Halse	Posițiv	e rates by	5% to 2	.0%
	PDG	SSVM	0.99	0.01	0.01	0.99			
	7-gram	OCSVM	0.99	0.01	0.01	0.99			
		PU	0.98	0.02	0.02	0.98			
	Sequential	SSVM	0.99	0.01	0.01	0.99			
	7-gram	OCSVM	0.99	0.01	0.01	0.99			
		PU	0.98	0.02	0.02	0.98			

Our Classifiers and PP-Tools in the Wild (4084 Websites)

Agreements between our classifier's and a PP-Tool's output:

$$T_c \cap T_p$$

Disagreements between our classifier's and a PP-Tool's output:

$$T_c \cap F_p$$

$$F_c \cap T_p$$

NS: NoScript, GT:Ghostery, AP: Adblock Plus, DC: Disconnect, PB: Privacy Badger

DATA 61

Disagreement

 $T_c \cap_p F_p$ JSes that our classifier labels as tracking while all PP-Tools consider functional $F_c \cap_p T_p$ JSes that our classifier labels as functional while all PP-Tools consider tracking

c: classifier, p: PP-Tool

Disagreement	Total	Sample		
$\overline{T_c \cap_p F_p}$	4,610	100		
$F_c \cap_p T_p$	4,461	100		

c: classifier, p: PP-Tool

Dicagroomont	Total	Sampla	Manual Labelling			
Disagreement	TOLA	Jampie	Tracking	Functional		
$\overline{T_c \cap_p F_p}$	4,610	100	75	25		
$F_c \cap_p T_p$	4,461	100	19	81		

c: classifier, p: PP-Tool

• 75% of the case, our classifier is right

Disagreement	Total	Sample	Manual Labelling	
			Tracking	Functional
$T_c \cap_p F_p$	4,610	100	75	25
$F_c \cap_p T_p$	4,461	100	19	81

 PP-Tools perform RE matching on the URL in <script> and fail to block tracking JSes that are not in the blacklists

c: classifier, p: PP-Tool

• 81% of the case, our classifier is right

Disagreement	Total	Sample	Manual Labelling	
			Tracking	Functional
$\overline{T_c \cap_p F_p}$	4,610	100	75	25
$F_c \cap_p T_p$	4,461	100	19	81

 PP-Tools block JSes from a tracking domain even though JSes perform useful functionality
 c: classifier, p: PP-Tool

New Trackers Found

Discover more than 4K+ previously unknown tracking

		services	Manual Labelling	
#	Website	JavaScript Program	Referred Domain	Function Performed
1	examiner.com	cdn2-b.examiner.com//ex_omniture/s_code.js static.bbci.co.uk/bbcdotcom//advorts.is	omniture.com pubada g.doubloclick.not	Analytics
3	telegraph.co.uk	telegraph.co.uk/template/ver1-0/js/gpt.js	pubads.g.doubleclick.net	Analytics $+$ Ads
4 5 6	vesti.ru climatempo.com.br amc.com	s.i-vengo.com/js/ivengo.min.js http://s1.trrsf.com/metrics/inc/br/201411250000d.js amc.com/wp-content/plugins/amcn-common- analytics/js/common-analytics.js	www.i-vengo.com scorecardresearch.com omniture.com	Analytics + Ads Analytics Track user activities
7	lancer.com	static.lancers.jp/js/ga_social_tracking.js	google.com	Tracker user activities
8	iqiyi.com	static.iqiyi.com/js/pingback/qa.js	pps.tv, baidu.com, 71.com	Tracker user activities
9 10	babyblog.ru autoscout.de	act.babyblog.ru/static844/likes.js s.autoscout24.net/unifiedtracking/gtm.js	babyblog.ru autoscout.de	Social widgets Tracks user activities

More Results, Analyses and Discussions

DE GRUYTER OPEN

Proceedings on Privacy Enhancing Technologies 2017; 2017 (1):1-21

Muhammad Ikram*, Hassan Jameel Asghar, Mohamed Ali Kaafar, Anirban Mahanti, and Balachander Krishnamurthy

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning

Abstract: Numerous tools have been developed to aggressively block the execution of popular JavaScript programs in Web browsers. Such blocking also affects func-

sites with 135,656 JavaScript programs. The output of our best classifier on this data is between 20 to 64% different from the tools under study. We manually anal-

Summary of Contributions

- Analyze PP-Tools' performance
 - Regular expressions based on blacklists are ineffective
 - Accuracy ranges from 37% to 78% while false positive rates range from 6% to 21%.
- Design a classification framework to separate tracking JSes from functional JSes:
 - Training with small single class of tracking (or functional) JSes
 - Our validated classifiers achieve 99% accuracy
 - Discover more than 4K+ previously unknown tracking services

Questions?

Big Thanks to PETS Reviewers

Muhammad.lkram@data61.csiro.au

https://research.csiro.au/ng/about-us/students/muhammad-ikram/