
www.csiro.au

Towards	Seamless	tracking-free	web	
browsing:	Improved	detection	of	tracking	
JavaScripts via	one-class	learning
Muhammad	Ikram,	Hassan	Asghar,	Mohamed	Ali	Kaafar,	Anirban
Mahanti,	Balachander Krishnamurthy

2 |

What	happens	when	a	browser	requests	an	HTML	source	
from	a	web	server	(e.g.,	nytimes.com)?

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

3 |

3rd-Party
services

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

4 |

3rd-Party
services

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

5 |

3rd-Party
services

Cookies	DB

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

6 |

3rd-Party
services

Cookies	DB

Ads	and	cookies	(and	social	widgets)	are	enabled	by	
JavaScript	programs	(JSes)	to	track	users

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

7 |

3rd-Party
services

Cookies	DB

Ads	and	cookies	(and	social	widgets)	are	enabled	by	
JavaScript	programs	(JSes)	to	track	users

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

“Google	keeps	a	record	
of	what	you	look	

for…[privacy]	could	
literally	cost	you	your	

life.”

“hackers	enter	my	
computer,	companies	
analyze everything	I	
do.”

Privacy	
Concerns

©Kovila P.L.	Coopamootoo

Privacy	Preserving	Tools	(PP-Tools)	

• Blacklist	of	URLs	(or	patterns	of	URLs)	to	block	3rd-party	tracking
JSes

8 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Privacy	Preserving	Tools	(PP-Tools)	

• Blacklist	of	URLs	(or	patterns	of	URLs)	to	block	3rd-party	tracking
JSes

9 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 99

(a) (b)

Fig. 8. Ghostery’s filters (a) video content by blocking
brightcove widget on www.9news.com.au. Once unblocked,
brightcove loads (b) video content on the web-page.

same, as shown in Listing 2, meaning that our seman-
tic feature models based classifiers will still detect the
obfuscated, tracking JavaScript codes.

Listing 3. An Example of JavaScript Program

var crtg_nid ="1822";
var crtg_cookiename =" co_au ";
var crtg_varname =" crtg_content ";
function crtg_getCookie (c_name){
var i,x,y, ARRCookies = document .

cookie .split (";");
for(i=0;i< ARRCookies . length ;i++)
{

x= ARRCookies [i]. substr (0, ARRCookies [i].
indexOf ("="));

y= ARRCookies [i]. substr (ARRCookies [i].
indexOf ("=")+1);

x=x. replace (/^\s+|\s+$/g ,"");
if(x== c_name){

return unescape (y);
}
}
return "";

}

Listing 1. Type (i) and (ii) obfuscation.

var a ="1822"; var b=" co_au "; var c=" crtg_
content "; function crtg_getCookie (e){ var i,x,y,
d= document . cookie .split (";"); while(i<d. length)
{x=d[i]. substr (0,d[i]. indexOf ("=")); y=d[i]. sub
str(d[i]. indexOf ("=")+1); x=x. replace (/^\s+|\s+
$/g ,""); if(x==e){ return unescape (y)}i++}
return ""}

Listing 2. Canoncial form of original and obfuscated code.

function crtg_getCookie =
function crtg_getCookie (e){

begin;$0 = document . cookie ;
d = $0.split (";");
$1 = d. length ; $2 = i < $1;
while ($2) { $3 = d[i];$4 = d[i];

$5 = $4. indexOf ("=");
x = $3. substr (0, $5);
$6 = d[i];$7 = d[i];
$8 = $7. indexOf ("=");

$9 = $8 + 1;
y = $6. substr ($9);
x = x. replace (RegExp ("^\s+|\s+$","g"), "");
$10 = x == e;
if ($10) { $11 = unescape (y);

return $11 ;}
$12 = i; i = i + 1;
$13 = d. length ;
$2 = i < $13 ;}

return "";
end;
};
$14 = % InitializeVarGlobal ("a", 0, "1822");
$15 = % InitializeVarGlobal ("b", 0, "co_au ");
$16 = % InitializeVarGlobal ("c", 0,

" crtg_content ");
end;

On the other hand, the attacker (i.e., tracker)
might evade detection by applying the (iii) and (iv)

types of JavaScript code obfuscation techniques (cf. Sec-
tion 7.2.2). We believe that this is the classical arms
race issue, to which all machine learning based detec-
tion methods are prone, in which the trackers pay higher
cost in trying to obfuscate their code to evade detection,
since (a) as discussed, simple obfuscation fails, and (b)
moreover, the obfuscation will need the additional guar-
antee of being detection proof as our machine learn-
ing techniques can re-learn newly introduced tracking
JavaScript code (if enough trackers decide to obfuscate
and the obfuscated JavaScript code still have structural
similarities). Thus, trackers would need to resort to even
more sophisticated forms of obfuscation. It is also im-
portant to mention that blacklist based approaches still
persist in spite of the fact that trackers can change
their URLs to evade popular patterns, or simply re-
name JavaScript programs to defeat regular expression
matching. Note that sophisticated form of obfuscation
remains a challenge for other detection systems as well,
e.g., malware detection. Despite the availability of ob-
fuscation tools, our classifiers achieve higher e�ciency
and detect trackers missed by contemporary PP-Tools.
We nevertheless regard this as a limitation and believe
it to be an interesting area of future research.

In the future, we aim to characterize and study
JavaScript code obfuscation techniques employed by
trackers. In essence, we aim to investigate JavaScript’s
dynamic code generation and run-time evaluation func-
tions, e.g., eval() and document.write(). We believe
that the investigation of the arguments supplied to these
functions can be leveraged in the re-training of our clas-
sifiers and in the detection of possible obfuscated track-
ing and malicious JavaScript programs.

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Privacy	Preserving	Tools	(PP-Tools)	

• Blacklist	of	URL	(or	patterns	of	URLs)	to	block	3rd-party	tracking JSes

10 |

PP-Tools	have	poor	uptake,	3	to	20%*

*	Metwalley et	al.,	The	Online	Tracking	Horde:	a	View	from	Passive	Measurements,	TMA’15

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Privacy	Preserving	Tools	(PP-Tools)	

• Blacklist	of	URL	(or	patterns	of	URLs)	to	block	3rd-party	tracking JSes

11 |

PP-Tools	have	poor	uptake,	3	to	20%*

PP-Tools	do	not	strike	the	balance	between	tracking	and	
functional	JavaScripts

*	Metwalley et	al.,	The	Online	Tracking	Horde:	a	View	from	Passive	Measurements,	TMA’15

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Tracking JSes are similar to each other and are distinct from
Functional JSes

12 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

JavaScript	Codes	Similarity:	Example

13 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false ;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f
JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f
JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

JavaScript	Codes	Similarity:	Example

14 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false ;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f
JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f
JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

JavaScript	Codes	Similarity:	Example

15 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false ;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f
JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f
JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Code	snippets	are	syntactically and	semantically similar	with	
difference	in	variable	names	and	values

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

JavaScript	Codes	Similarity:	two	sets	of 500	
Functional	and	500	Tracking	JSes

16 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 87

ing useful functionalities on webpages. There are sev-
eral possible reasons for this ine�ectiveness. For instance
current PP-Tools use rather elementary techniques such
as manually maintained blacklists (whose maintenance
is hard amidst the rapid growth of trackers), regular
expression matching only on URLs within the script
tag or even completely blocking the use of JavaScript
programs. In our work, we go further by inspecting
JavaScript code itself.

5 Classification and Validation
In a real setting, we may only expect to collect a small
subset of JavaScript programs known to be functional or
tracking due to the sheer prevalence of JavaScript pro-
grams on the web. We hypothesise that it is su�cient to
have partial knowledge of only the tracking JavaScript
class. Our intuition is that tracking JavaScript programs
potentially share similar characteristics and these char-
acteristics can be leveraged in a one-class classification
framework. In what follows, we first introduce the vari-
ous models to extract JavaScript code features and then
present our machine learning approaches.

5.1 Feature Models
The intuition. Consider the cookie setting code snip-
pets from Google Analytics [10] and Visual Revenue [20]
shown as Trackers 1 and 2, respectively. Notice that the
two are functionally and structurally similar, with dif-
ferences in variable names. More technically, the snip-
pets result in similar canonical representations which
we shall explain in Section 5.1.2. Similar examples indi-
cate that a similarity measure based on a feature space
composed of semantic or syntactic tokens from these
JavaScript programs should be e�ective in di�erenti-
ating between functional and tracking JavaScript pro-
grams.

Tracker 1. Google Analytics Cookie Setting

var _gaq = _gaq || [];
_gaq.push ([’ _setAccount ’, ’UA -1627489 -1 ’]);
_gaq.push ([’ _setDomainName ’, ’geo.tv ’]);
_gaq.push ([’ _trackPageview ’]);

Tracker 2. Visual Revenue Cookie Setting

var _vrq = _vrq || [],
_vrqIsOnHP = (document .body. className ||

’’). search (’pg -section ’) >=0 ? true : false ;
_vrq.push ([’id ’, 396]);
_vrq.push ([’ automate ’, _vrqIsOnHP]);
_vrq.push ([’track ’, function () {}]);

To exemplify the existence of such similarity, we cre-
ate three distinct sets of 500 JavaScript codes (tracking-

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

PDG−7−grams tf−idf Cosine Similarity of JavaScript Codes

E
C

D
F

 o
f

JS

Tracking JS − Tracking JS
Functional JS − Functional JS
Functional JS − Tracking JS

Fig. 3. Similarity between disjoint sets of functional and tracking
JavaScript codes (JS).

only, functional-only, and tracking and functional) from
our labelled dataset and calculate the term frequency

with inverse document frequency (tf-idf) based cosine

similarity values based on our “PDG-7-grams” feature
model, to be explained shortly in Section 5.1.2. Note
that, being a naïve approach, the cosine similarity met-
ric is shown here for illustrative purposes only. We shall
use our classifiers later (Section 5.2) to more e�ciently
classify tracking and functional JavaScript codes.

Figure 3 plots the cumulative distribution function
(CDF) of the similarity values obtained. The long tail
we observe for “tracking vs. tracking” and “functional
vs. tracking” as compared to “functional vs. functional”
suggests that tracking (resp. functional) components do
indeed have higher intra-similarity. We provide exam-
ples of code similarity for tracking JavaScript codes
in [34].

In the rest of this section, we give details of the
syntactic and semantic models in use. But first, we in-
troduce some notation.
Notation and Problem Formulation. Let J repre-
sent all JavaScript programs in the corpus, and let J Õ

be a small subset of them that are labelled. The labels
only belong to tracking JavaScript programs, which we
call positive labels. The totality of the negative labels,
i.e., functional JavaScript programs, are not known be-
forehand. The JavaScript programs from J ≠ J Õ can be
either functional or tracking. The goal of the classifier is
to obtain a correct labelling of the JavaScript programs
in J . Assume that we have a feature vector j correspond-
ing to some JavaScript code j obtained through one of
the feature extraction models, to be discussed shortly.
Let y represent the class j belongs to. If j is a tracking
JavaScript, then y = +1; otherwise y = ≠1. Let us also
introduce the label flag l. If j is labelled, i.e., is assigned
a class via y = +1 or ≠1, then l = 1; otherwise l = 0.

To quantitatively measure similarity between dif-
ferent JavaScript programs, we use the tf-idf measure.
Central to this measure is the term t. How the term t is
defined gives rise to the di�erent semantic and syntactic
models to be discussed shortly. For now let us assume

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Cosine	Similarity	of	JS

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Overview	of	Our	Contribution
• Analyze	PP-Tools’	performance	
• Regular	expressions	based	on	blacklists	are	ineffective

• Design	a	classification	framework	to	separate	tracking JSes from	
functional JSes
• Training	with	partial	single	class	of	functional	or	tracking	Jses
• Partial	view	of	tracking	JSes from	blacklists	

17 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Our	Methodology

18 |

95 Web domains

JavaScript
Extraction

PP-Tools
on

JavaScript
Extraction

Manual
Labelling

Feature
Extraction

Classification Effectiveness

Labelled
Data

Step 1: Data Collection
Step 2: Feature

 Extraction
Step 3:

Classification
Step 4:

Evaluation

Validation

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Data	Collection:	Rules	for	Labelling	JSes

19 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 6

Rule JS # Description

R1 7 216 All JS that create panels and set margins for ads
R2 7 115 All JS that access and display ads
R3 7 45 All social media widgets
R4 7 324 All in-page JS that include external JS from third-party analytics and advertisers
R5 7 353 All external JS from third-party analytics and advertisers
R6 7 180 All cookie enablers, readers or writers
R7 3 542 All external JS that provide useful functionality such as navigation menus, search and login
R8 3 509 All in-page JS that provide useful functionality
R9 3 132 All JS that fetch content from first-party content domains or third-party CDNs
R10 7 103 All JS in hidden iframe that belong to third-party analytics, advertisers and social media
R11 7 40 All JS in hidden iframe that enable, read or modify cookies
R12 3 53 All JS that track mouse or keyboard events

Table 1. Rules for labelling JavaScript programs - R stands for Rule; JS stands for JavaScript program; # denotes the number of
JavaScript programs satisfying the corresponding rule in the labelled dataset; 7 represents tracking JavaScript programs and 3 rep-
resents functional JavaScript programs.

JavaScript programs
External In-page Average Total Tracking Functional

1,353 1,256 27.5 2,612 57% 43%

Table 2. Characteristics of JavaScript programs from 95 websites
in our labelled dataset.

list contains the name and ID of a cookie as well as
the domain the cookie is stored for. We then searched
the DOM tree by the cookie name and ID to find the
JavaScript that enables, reads or modifies this cookie.
Note that the JavaScript corresponding to the cookie
contains its name and ID in its source code. If the do-
main for which the cookie is stored is a known analytic
or advertiser then we mark the JavaScript as tracking;
otherwise the JavaScript is marked as functional (R6).
We are aware that, in principle, cookie names can be dy-
namically generated. However, during manual labelling
we did not encounter this except for session cookies
(which may or may not be set by JavaScript programs).

Similarly, we used Firebug’s ‘Network’ panel to
identify invisible iframes that belong to third-party
analytics, advertisers, or social media. We label the
JavaScript programs belonging to these iframes as
tracking JavaScript programs (R10). We also label the
JavaScript programs inside iframes that enable, read,
or modify cookies as tracking JavaScript programs (cf.
rules R10 and R11). Analytics and advertisers employ
hidden iframes by specifying the height and width of
the iframe to zero, one, or by positioning it so that it is
out of the visible area on a webpage. A hidden iframe
is positioned so that when a user interacts with a cer-
tain component of a webpage, his action and potentially
the information contained in corresponding cookie(s)
are redirected to the advertiser’s or analytic’s networks.

All JavaScript programs that facilitate access to
contents and services related to the target (visited)
webpage are labeled as functional. For instance, web-
pages contain JavaScript programs that enable search
boxes, accessibility options, authentication services,
shopping carts, prompts, navigation menu and bread-
crumbs (rules R7 and R8). Similarly, some JavaScript
programs are used to track mouse and keyboard events,
such as right click or caps lock on or o� (R12) while
others are used to retrieve content from either first-
party content domains or third-party CDNs like Akamai
(R9). We created a manual list of well-known third-
party CDNs to di�erentiate them from other content
providers.

While we have tried to remain as objective as
possible with our definition of functional JavaScript
programs, there might still be instances in which a
JavaScript program satisfies both tracking and function
rules. In such a case, we consider it as tracking. For
instance, we considered social widgets to be privacy-
intrusive as they allow social networks to track users
[?]; however, these could potentially be perceived as
providing functional features as they allow users to in-
teract with their social network. Notably, mouse or key-
board related JavaScript programs are only considered
functional if they do not send information to third-
party servers (unlike JavaScript programs that belong
to e.g., ‘Moat’[?] that track users and send collected
data to third-party servers). Likewise, JavaScript pro-
grams that track user’s comments and send them to an
external server (e.g., ‘Disqus’[?]) were labelled as track-
ing JavaScript programs.

We selected 95 web domains such that 50 of them
were the top 50 Alexa websites, and the remaining 45

𝙭:Tracking	JS,	✓:	Functional	JS

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Data	Collection:	Rules	for	Labelling	JSes

20 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 6

Rule JS # Description

R1 7 216 All JS that create panels and set margins for ads
R2 7 115 All JS that access and display ads
R3 7 45 All social media widgets
R4 7 324 All in-page JS that include external JS from third-party analytics and advertisers
R5 7 353 All external JS from third-party analytics and advertisers
R6 7 180 All cookie enablers, readers or writers
R7 3 542 All external JS that provide useful functionality such as navigation menus, search and login
R8 3 509 All in-page JS that provide useful functionality
R9 3 132 All JS that fetch content from first-party content domains or third-party CDNs
R10 7 103 All JS in hidden iframe that belong to third-party analytics, advertisers and social media
R11 7 40 All JS in hidden iframe that enable, read or modify cookies
R12 3 53 All JS that track mouse or keyboard events

Table 1. Rules for labelling JavaScript programs - R stands for Rule; JS stands for JavaScript program; # denotes the number of
JavaScript programs satisfying the corresponding rule in the labelled dataset; 7 represents tracking JavaScript programs and 3 rep-
resents functional JavaScript programs.

JavaScript programs
External In-page Average Total Tracking Functional

1,353 1,256 27.5 2,612 57% 43%

Table 2. Characteristics of JavaScript programs from 95 websites
in our labelled dataset.

list contains the name and ID of a cookie as well as
the domain the cookie is stored for. We then searched
the DOM tree by the cookie name and ID to find the
JavaScript that enables, reads or modifies this cookie.
Note that the JavaScript corresponding to the cookie
contains its name and ID in its source code. If the do-
main for which the cookie is stored is a known analytic
or advertiser then we mark the JavaScript as tracking;
otherwise the JavaScript is marked as functional (R6).
We are aware that, in principle, cookie names can be dy-
namically generated. However, during manual labelling
we did not encounter this except for session cookies
(which may or may not be set by JavaScript programs).

Similarly, we used Firebug’s ‘Network’ panel to
identify invisible iframes that belong to third-party
analytics, advertisers, or social media. We label the
JavaScript programs belonging to these iframes as
tracking JavaScript programs (R10). We also label the
JavaScript programs inside iframes that enable, read,
or modify cookies as tracking JavaScript programs (cf.
rules R10 and R11). Analytics and advertisers employ
hidden iframes by specifying the height and width of
the iframe to zero, one, or by positioning it so that it is
out of the visible area on a webpage. A hidden iframe
is positioned so that when a user interacts with a cer-
tain component of a webpage, his action and potentially
the information contained in corresponding cookie(s)
are redirected to the advertiser’s or analytic’s networks.

All JavaScript programs that facilitate access to
contents and services related to the target (visited)
webpage are labeled as functional. For instance, web-
pages contain JavaScript programs that enable search
boxes, accessibility options, authentication services,
shopping carts, prompts, navigation menu and bread-
crumbs (rules R7 and R8). Similarly, some JavaScript
programs are used to track mouse and keyboard events,
such as right click or caps lock on or o� (R12) while
others are used to retrieve content from either first-
party content domains or third-party CDNs like Akamai
(R9). We created a manual list of well-known third-
party CDNs to di�erentiate them from other content
providers.

While we have tried to remain as objective as
possible with our definition of functional JavaScript
programs, there might still be instances in which a
JavaScript program satisfies both tracking and function
rules. In such a case, we consider it as tracking. For
instance, we considered social widgets to be privacy-
intrusive as they allow social networks to track users
[?]; however, these could potentially be perceived as
providing functional features as they allow users to in-
teract with their social network. Notably, mouse or key-
board related JavaScript programs are only considered
functional if they do not send information to third-
party servers (unlike JavaScript programs that belong
to e.g., ‘Moat’[?] that track users and send collected
data to third-party servers). Likewise, JavaScript pro-
grams that track user’s comments and send them to an
external server (e.g., ‘Disqus’[?]) were labelled as track-
ing JavaScript programs.

We selected 95 web domains such that 50 of them
were the top 50 Alexa websites, and the remaining 45

𝙭:Tracking	JS,	✓:	Functional	JS

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Analyzing	PP-Tools

21 |

NoScript Ghostry Adblock Plus Disconnect Privacy	Badger

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Aggressivity of	PP-Tools

22 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a (h)

E
m

p
ir
ic

a
l C

D
F

Privacy Badger
Disconnect
Adblock Plus
Ghostery
NoScript

Fig. 2. Aggressiveness of PP-Tools.

(domains). Only 8% of the trackers were found in only
one webpage, meaning that the overwhelming majority
(92%) of the trackers were present in at least two or
more webpages. Thus, we expect all analysed PP-Tools,
and in particular Privacy Badger (note that part of the
heuristic used by Privacy Badger needs the tracker to be
present in at least three webpages), to block JavaScript
programs belonging to most trackers from this list. In-
creasing the number of heat-up webpages further may
positively a�ect the output of PP-Tools, especially Pri-
vacy Badger. However, we believe that 100 webpages is
su�cient since we expect it to be way above the number
of domains an average user would visit over a reasonably
short period of time. For instance, according to the mar-
keting research company, Nielsen, the average number
of domains visited by a US citizen over a month ranged
between 89 and 99 between the years 2010 to 2013, in-
clusive [26]. Figures 4 and 5 in the appendix show the
distribution of trackers in the heat-up webpages.

PP-Tools On
JS NS GT AP DC PB

External 570 813 1,141 1,206 1,230
In-page 1,118 1,173 1,197 1,218 1,208
Total 1,688 1,986 2,338 2,424 2,438
Average per webpage 17.6 20.1 24.4 25.3 25.4

Blocked (%) 35.38 24.0 10.5 7.2 6.7
Allowed (%) 64.6 76.0 89.5 92.8 93.3

Table 3. Characteristics of JavaScript programs (JS) from the
labelled dataset marked as functional (allowed) by PP-Tools.

Table 3 shows the view of JavaScript programs from
the 95 webpages in the labelled dataset when the di�er-
ent PP-Tools were on. The top-half of the table shows
the number of JavaScript programs (in-page and ex-
ternal) that are allowed when a particular PP-Tool is
used. The last two rows of the table show the number
of JavaScript programs that are blocked and allowed as
a percentage of the total number of JavaScript programs
in our dataset (2,612).

We further analyse the performance of the PP-Tools
by measuring their aggressiveness, i.e., a(h). Figure 2
shows the cumulative distribution function of a(h) for
the five PP-Tools when applied on the 95 websites. We
observe that NoScript’s aggressiveness is more than 0.2

PP-Tool Tracking Functional
Blocked Allowed Blocked Allowed

NoScript 0.78 0.22 0.21 0.79
Ghostery 0.65 0.35 0.08 0.92

Adblock Plus 0.44 0.56 0.06 0.94
Disconnect 0.40 0.60 0.06 0.94

Privacy Badger 0.37 0.63 0.06 0.94

Table 4. Comparison of the output of PP-Tools against our la-
belled set of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

for about 60% of the web domains whilst Ghostery’s ag-
gressiveness is more than 0.2 for about 40%. In contrast,
Adblock Plus, Disconnect, and Privacy Badger have an
aggressiveness of more than 0.2 for only about 10% of
domains, which indicates that they are comparatively
less aggressive in blocking JavaScript programs.

We are also interested to know whether there is an
inverse relation between aggressiveness and e�ectiveness
of PP-Tools, i.e., an aggressive PP-Tool breaks useful
functionality in a webpage (by incorrectly blocking func-
tional JavaScript programs), and a less aggressive PP-
Tool allows more tracking JavaScript programs go unde-
tected. E�ectiveness is defined as the balance between
correctly blocking tracking JavaScript programs (true
positives) and incorrectly blocking functional JavaScript
programs (false positives).

For this, we measure the true positive and false posi-
tive rates of each of the PP-Tools. Our results are shown
in Table 4. We find that PP-Tools’ true positive rates
vary from 37% to 78% and false positives range from
6% to 21%. Not surprisingly, NoScript has the highest
true positive rate of 78% at the expense of the poorest
false positive rate of 21%. Adblock Plus4, Disconnect,
and Privacy Badger fair better in terms of false positive
rate (6%) but pay the penalty with considerably lower
true positives rates of 44%, 40% and 37%, respectively.
Both Ghostery and NoScript achieve the lowest aver-
age error rate (AER) of 0.215, where AER is defined as
the average of false positive and negative rates. How-
ever, Ghostery is better in terms of allowing functional
JavaScript programs, achieving a false positive rate of
only 8% with a lower true positive rate (65%) than No-
Script.

To summarise, these results suggest that current
PP-Tools are ine�ective in terms of striking a good
balance between limiting tracking and adversely a�ect-

4 Adblock Plus can be configured using additional complimen-
tary lists such as EasyPrivacy [6]. This may improve its true
positive rate but it is likely to result in a higher false positive
rate. We leave it as future work to try di�erent combinations of
complimentary lists [12] on Adblock Plus.

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Aggressivity

Aggressivity of	a	PP-Tool	means	the	ratio	of	blocked	JSes to	the	total	number	of	JSes
in	a	DOM	tree

Aggressivity Increases

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Aggressivity of	PP-Tools

23 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

• Aggressivity – the	ratio	of	blocked	JSes by	a	PP-Tool	to	the	total	number	of	JSes in	
a	DOM	tree

Aggressivity of	PP-Tools

24 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a (h)

E
m

p
ir
ic

a
l C

D
F

Privacy Badger
Disconnect
Adblock Plus
Ghostery
NoScript

Fig. 2. Aggressiveness of PP-Tools.

(domains). Only 8% of the trackers were found in only
one webpage, meaning that the overwhelming majority
(92%) of the trackers were present in at least two or
more webpages. Thus, we expect all analysed PP-Tools,
and in particular Privacy Badger (note that part of the
heuristic used by Privacy Badger needs the tracker to be
present in at least three webpages), to block JavaScript
programs belonging to most trackers from this list. In-
creasing the number of heat-up webpages further may
positively a�ect the output of PP-Tools, especially Pri-
vacy Badger. However, we believe that 100 webpages is
su�cient since we expect it to be way above the number
of domains an average user would visit over a reasonably
short period of time. For instance, according to the mar-
keting research company, Nielsen, the average number
of domains visited by a US citizen over a month ranged
between 89 and 99 between the years 2010 to 2013, in-
clusive [26]. Figures 4 and 5 in the appendix show the
distribution of trackers in the heat-up webpages.

PP-Tools On
JS NS GT AP DC PB

External 570 813 1,141 1,206 1,230
In-page 1,118 1,173 1,197 1,218 1,208
Total 1,688 1,986 2,338 2,424 2,438
Average per webpage 17.6 20.1 24.4 25.3 25.4

Blocked (%) 35.38 24.0 10.5 7.2 6.7
Allowed (%) 64.6 76.0 89.5 92.8 93.3

Table 3. Characteristics of JavaScript programs (JS) from the
labelled dataset marked as functional (allowed) by PP-Tools.

Table 3 shows the view of JavaScript programs from
the 95 webpages in the labelled dataset when the di�er-
ent PP-Tools were on. The top-half of the table shows
the number of JavaScript programs (in-page and ex-
ternal) that are allowed when a particular PP-Tool is
used. The last two rows of the table show the number
of JavaScript programs that are blocked and allowed as
a percentage of the total number of JavaScript programs
in our dataset (2,612).

We further analyse the performance of the PP-Tools
by measuring their aggressiveness, i.e., a(h). Figure 2
shows the cumulative distribution function of a(h) for
the five PP-Tools when applied on the 95 websites. We
observe that NoScript’s aggressiveness is more than 0.2

PP-Tool Tracking Functional
Blocked Allowed Blocked Allowed

NoScript 0.78 0.22 0.21 0.79
Ghostery 0.65 0.35 0.08 0.92

Adblock Plus 0.44 0.56 0.06 0.94
Disconnect 0.40 0.60 0.06 0.94

Privacy Badger 0.37 0.63 0.06 0.94

Table 4. Comparison of the output of PP-Tools against our la-
belled set of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

for about 60% of the web domains whilst Ghostery’s ag-
gressiveness is more than 0.2 for about 40%. In contrast,
Adblock Plus, Disconnect, and Privacy Badger have an
aggressiveness of more than 0.2 for only about 10% of
domains, which indicates that they are comparatively
less aggressive in blocking JavaScript programs.

We are also interested to know whether there is an
inverse relation between aggressiveness and e�ectiveness
of PP-Tools, i.e., an aggressive PP-Tool breaks useful
functionality in a webpage (by incorrectly blocking func-
tional JavaScript programs), and a less aggressive PP-
Tool allows more tracking JavaScript programs go unde-
tected. E�ectiveness is defined as the balance between
correctly blocking tracking JavaScript programs (true
positives) and incorrectly blocking functional JavaScript
programs (false positives).

For this, we measure the true positive and false posi-
tive rates of each of the PP-Tools. Our results are shown
in Table 4. We find that PP-Tools’ true positive rates
vary from 37% to 78% and false positives range from
6% to 21%. Not surprisingly, NoScript has the highest
true positive rate of 78% at the expense of the poorest
false positive rate of 21%. Adblock Plus4, Disconnect,
and Privacy Badger fair better in terms of false positive
rate (6%) but pay the penalty with considerably lower
true positives rates of 44%, 40% and 37%, respectively.
Both Ghostery and NoScript achieve the lowest aver-
age error rate (AER) of 0.215, where AER is defined as
the average of false positive and negative rates. How-
ever, Ghostery is better in terms of allowing functional
JavaScript programs, achieving a false positive rate of
only 8% with a lower true positive rate (65%) than No-
Script.

To summarise, these results suggest that current
PP-Tools are ine�ective in terms of striking a good
balance between limiting tracking and adversely a�ect-

4 Adblock Plus can be configured using additional complimen-
tary lists such as EasyPrivacy [6]. This may improve its true
positive rate but it is likely to result in a higher false positive
rate. We leave it as future work to try di�erent combinations of
complimentary lists [12] on Adblock Plus.

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Aggressivity

Aggressivity Increases

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

• Aggressivity – the	ratio	of	blocked	JSes by	a	PP-Tool	to	the	total	number	of	JSes in	
a	DOM	tree

Effectiveness	of	PP-Tools

25 |

• Effectiveness	– the	balance	between	correctly	blocking	tracking JSes and	
incorrectly	blocking	functional JSes

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Effectiveness	of	PP-Tools

26 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a (h)

E
m

p
ir
ic

a
l C

D
F

Privacy Badger
Disconnect
Adblock Plus
Ghostery
NoScript

Fig. 2. Aggressiveness of PP-Tools.

(domains). Only 8% of the trackers were found in only
one webpage, meaning that the overwhelming majority
(92%) of the trackers were present in at least two or
more webpages. Thus, we expect all analysed PP-Tools,
and in particular Privacy Badger (note that part of the
heuristic used by Privacy Badger needs the tracker to be
present in at least three webpages), to block JavaScript
programs belonging to most trackers from this list. In-
creasing the number of heat-up webpages further may
positively a�ect the output of PP-Tools, especially Pri-
vacy Badger. However, we believe that 100 webpages is
su�cient since we expect it to be way above the number
of domains an average user would visit over a reasonably
short period of time. For instance, according to the mar-
keting research company, Nielsen, the average number
of domains visited by a US citizen over a month ranged
between 89 and 99 between the years 2010 to 2013, in-
clusive [26]. Figures 4 and 5 in the appendix show the
distribution of trackers in the heat-up webpages.

PP-Tools On
JS NS GT AP DC PB

External 570 813 1,141 1,206 1,230
In-page 1,118 1,173 1,197 1,218 1,208
Total 1,688 1,986 2,338 2,424 2,438
Average per webpage 17.6 20.1 24.4 25.3 25.4

Blocked (%) 35.38 24.0 10.5 7.2 6.7
Allowed (%) 64.6 76.0 89.5 92.8 93.3

Table 3. Characteristics of JavaScript programs (JS) from the
labelled dataset marked as functional (allowed) by PP-Tools.

Table 3 shows the view of JavaScript programs from
the 95 webpages in the labelled dataset when the di�er-
ent PP-Tools were on. The top-half of the table shows
the number of JavaScript programs (in-page and ex-
ternal) that are allowed when a particular PP-Tool is
used. The last two rows of the table show the number
of JavaScript programs that are blocked and allowed as
a percentage of the total number of JavaScript programs
in our dataset (2,612).

We further analyse the performance of the PP-Tools
by measuring their aggressiveness, i.e., a(h). Figure 2
shows the cumulative distribution function of a(h) for
the five PP-Tools when applied on the 95 websites. We
observe that NoScript’s aggressiveness is more than 0.2

PP-Tool Tracking Functional
Blocked Allowed Blocked Allowed

NoScript 0.78 0.22 0.21 0.79
Ghostery 0.65 0.35 0.08 0.92

Adblock Plus 0.44 0.56 0.06 0.94
Disconnect 0.40 0.60 0.06 0.94

Privacy Badger 0.37 0.63 0.06 0.94

Table 4. Comparison of the output of PP-Tools against our la-
belled set of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

for about 60% of the web domains whilst Ghostery’s ag-
gressiveness is more than 0.2 for about 40%. In contrast,
Adblock Plus, Disconnect, and Privacy Badger have an
aggressiveness of more than 0.2 for only about 10% of
domains, which indicates that they are comparatively
less aggressive in blocking JavaScript programs.

We are also interested to know whether there is an
inverse relation between aggressiveness and e�ectiveness
of PP-Tools, i.e., an aggressive PP-Tool breaks useful
functionality in a webpage (by incorrectly blocking func-
tional JavaScript programs), and a less aggressive PP-
Tool allows more tracking JavaScript programs go unde-
tected. E�ectiveness is defined as the balance between
correctly blocking tracking JavaScript programs (true
positives) and incorrectly blocking functional JavaScript
programs (false positives).

For this, we measure the true positive and false posi-
tive rates of each of the PP-Tools. Our results are shown
in Table 4. We find that PP-Tools’ true positive rates
vary from 37% to 78% and false positives range from
6% to 21%. Not surprisingly, NoScript has the highest
true positive rate of 78% at the expense of the poorest
false positive rate of 21%. Adblock Plus4, Disconnect,
and Privacy Badger fair better in terms of false positive
rate (6%) but pay the penalty with considerably lower
true positives rates of 44%, 40% and 37%, respectively.
Both Ghostery and NoScript achieve the lowest aver-
age error rate (AER) of 0.215, where AER is defined as
the average of false positive and negative rates. How-
ever, Ghostery is better in terms of allowing functional
JavaScript programs, achieving a false positive rate of
only 8% with a lower true positive rate (65%) than No-
Script.

To summarise, these results suggest that current
PP-Tools are ine�ective in terms of striking a good
balance between limiting tracking and adversely a�ect-

4 Adblock Plus can be configured using additional complimen-
tary lists such as EasyPrivacy [6]. This may improve its true
positive rate but it is likely to result in a higher false positive
rate. We leave it as future work to try di�erent combinations of
complimentary lists [12] on Adblock Plus.

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

• Effectiveness	– the	balance	between	correctly	blocking	tracking	JSes and	
incorrectly	blocking	functional	JSes

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Effectiveness	of	PP-Tools

• NoScript stops	one	out	of	five	functional	JSes while	Privacy	Badger	overlooks	tracking	
JSes

27 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 86

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

a (h)

E
m

p
ir
ic

a
l C

D
F

Privacy Badger
Disconnect
Adblock Plus
Ghostery
NoScript

Fig. 2. Aggressiveness of PP-Tools.

(domains). Only 8% of the trackers were found in only
one webpage, meaning that the overwhelming majority
(92%) of the trackers were present in at least two or
more webpages. Thus, we expect all analysed PP-Tools,
and in particular Privacy Badger (note that part of the
heuristic used by Privacy Badger needs the tracker to be
present in at least three webpages), to block JavaScript
programs belonging to most trackers from this list. In-
creasing the number of heat-up webpages further may
positively a�ect the output of PP-Tools, especially Pri-
vacy Badger. However, we believe that 100 webpages is
su�cient since we expect it to be way above the number
of domains an average user would visit over a reasonably
short period of time. For instance, according to the mar-
keting research company, Nielsen, the average number
of domains visited by a US citizen over a month ranged
between 89 and 99 between the years 2010 to 2013, in-
clusive [26]. Figures 4 and 5 in the appendix show the
distribution of trackers in the heat-up webpages.

PP-Tools On
JS NS GT AP DC PB

External 570 813 1,141 1,206 1,230
In-page 1,118 1,173 1,197 1,218 1,208
Total 1,688 1,986 2,338 2,424 2,438
Average per webpage 17.6 20.1 24.4 25.3 25.4

Blocked (%) 35.38 24.0 10.5 7.2 6.7
Allowed (%) 64.6 76.0 89.5 92.8 93.3

Table 3. Characteristics of JavaScript programs (JS) from the
labelled dataset marked as functional (allowed) by PP-Tools.

Table 3 shows the view of JavaScript programs from
the 95 webpages in the labelled dataset when the di�er-
ent PP-Tools were on. The top-half of the table shows
the number of JavaScript programs (in-page and ex-
ternal) that are allowed when a particular PP-Tool is
used. The last two rows of the table show the number
of JavaScript programs that are blocked and allowed as
a percentage of the total number of JavaScript programs
in our dataset (2,612).

We further analyse the performance of the PP-Tools
by measuring their aggressiveness, i.e., a(h). Figure 2
shows the cumulative distribution function of a(h) for
the five PP-Tools when applied on the 95 websites. We
observe that NoScript’s aggressiveness is more than 0.2

PP-Tool Tracking Functional
Blocked Allowed Blocked Allowed

NoScript 0.78 0.22 0.21 0.79
Ghostery 0.65 0.35 0.08 0.92

Adblock Plus 0.44 0.56 0.06 0.94
Disconnect 0.40 0.60 0.06 0.94

Privacy Badger 0.37 0.63 0.06 0.94

Table 4. Comparison of the output of PP-Tools against our la-
belled set of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

for about 60% of the web domains whilst Ghostery’s ag-
gressiveness is more than 0.2 for about 40%. In contrast,
Adblock Plus, Disconnect, and Privacy Badger have an
aggressiveness of more than 0.2 for only about 10% of
domains, which indicates that they are comparatively
less aggressive in blocking JavaScript programs.

We are also interested to know whether there is an
inverse relation between aggressiveness and e�ectiveness
of PP-Tools, i.e., an aggressive PP-Tool breaks useful
functionality in a webpage (by incorrectly blocking func-
tional JavaScript programs), and a less aggressive PP-
Tool allows more tracking JavaScript programs go unde-
tected. E�ectiveness is defined as the balance between
correctly blocking tracking JavaScript programs (true
positives) and incorrectly blocking functional JavaScript
programs (false positives).

For this, we measure the true positive and false posi-
tive rates of each of the PP-Tools. Our results are shown
in Table 4. We find that PP-Tools’ true positive rates
vary from 37% to 78% and false positives range from
6% to 21%. Not surprisingly, NoScript has the highest
true positive rate of 78% at the expense of the poorest
false positive rate of 21%. Adblock Plus4, Disconnect,
and Privacy Badger fair better in terms of false positive
rate (6%) but pay the penalty with considerably lower
true positives rates of 44%, 40% and 37%, respectively.
Both Ghostery and NoScript achieve the lowest aver-
age error rate (AER) of 0.215, where AER is defined as
the average of false positive and negative rates. How-
ever, Ghostery is better in terms of allowing functional
JavaScript programs, achieving a false positive rate of
only 8% with a lower true positive rate (65%) than No-
Script.

To summarise, these results suggest that current
PP-Tools are ine�ective in terms of striking a good
balance between limiting tracking and adversely a�ect-

4 Adblock Plus can be configured using additional complimen-
tary lists such as EasyPrivacy [6]. This may improve its true
positive rate but it is likely to result in a higher false positive
rate. We leave it as future work to try di�erent combinations of
complimentary lists [12] on Adblock Plus.

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

• Effectiveness	– the	balance	between	correctly	blocking	tracking	JSes and	
incorrectly	blocking	functional	JSes

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Feature	Extraction:	Constructing	Program	
Dependency	Graphs	(PDGs)

28 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 96

PP-Tool Filtering Method Setting
NS (v2.6.9.11) Block all JS Default blocking mode with

iframes blocking option on
GT (v5.4.1) Blacklist Enabled ‘Blocking all tracker

and cookies’ option
AP (v2.6.7) Blacklist EasyList and Fanboy’s list and

disabled ‘Allow non-intrusive
ads’ option

DC (v3.14.0) Blacklist Default
PB (v0.1.4) Heuristics and Default

cookies blacklist

Table 9. PP-Tools’ settings used with Firefox v32.0.

[50] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
Defending Against Third-party Tracking on the Web. NSDI,
2012.

[51] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the Support of a High-
Dimensional Distribution. NC, 2001.

[52] M. Tran, X. Dong, Z. Liang, and X. Jiang. Tracking the
Trackers: Fast and Scalable Dynamic Analysis of Web Con-
tent for Privacy Violations. ACNS, 2012.

[53] C. Wills and D. Uzunoglu. What Ad Blockers Are (and Are
Not) Doing. WPI-CS-TR-16-02, 2016.

[54] W. Xu, F. Zhang, and S. Zhu. The Power of Obfuscation
Techniques in Malicious JavaScript Code: A Measurement
Study. MALWARE, 2012.

[55] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fin-
gerprinting and Tracking on the Web: Privacy and Security
Implications. NDSS, 2012.

[56] C. Yue and H. Wang. Characterizing Insecure Javascript
Practices on the Web. WWW, 2009.

A Appendix

A.1 PP-Tools Settings And Trackers
Distribution in Heat-up Webpages

Table 9 presents the PP-Tools and their settings used in
our experiments to collect the datasets as discussed in
Section 3.2. Figure 4 and Figure 5 show the type and dis-
tribution of trackers, respectively, in heat-up webpages
as explained in Section 4.2.

A.2 Canonicalization of JavaScript
programs

The canonical form is an intermediate representation of
the JavaScript program where variable names and loop
specifics are abstracted away in an e�ort to apply natu-
ral language processing-like techniques on the resulting
code representation. To explain the canonical form and

PDG of a JavaScript program, consider the following
(toy) ‘equalTest’ Javascript function:

Listing 1. An Example of JavaScript Program

function equalTest (a, b){
if(a == b){

return true ;}
return false ;}

The canonical form of this routine is:

Listing 2. Canonical form of JavaScript code in Listing # 3

function equalTest (a, b){
1: begin ;
2: $0 = a === b;
3: if($0){
4: return true ;}
5: return false;
6: end ;}

One line of the canonical form consists of a binary
operation, its operands or an assignment. The PDG of
this routine is shown in Figure 6a. The 2 and 3-grams of
line 3 above is shown in Figure 6b. For a more detailed
example of these concepts, see [32].

A.3 Positive and Unlabelled (PU)
Learning

The PU learning technique, translated to our prob-
lem space, constructs a probabilistic classifier that de-
cides whether a JavaScript code is tracking or functional
from a probabilistic classifier that decides whether a
JavaScript program is labelled or unlabelled. More pre-
cisely, it constructs the classifier f(j) = Pr[y = +1 | j]
from the classifier g(j) = Pr[l = 1 | j]. The two classes
in g(j) are the labelled and unlabelled JavaScript pro-
grams, whereas the two classes in f(j) are positive
(tracking) and negative (functional) JavaScript pro-
grams. To understand the concept behind PU learning,
notice that the assumptions (a) only positive examples
(tracking JavaScript programs) are labelled, (b) the set
of labelled examples is chosen uniformly at random from
all positive examples, lead to the result Pr[l = 1 | j, y =

≠1] = 0 and Pr[l = 1 | j, y = +1] = Pr[l = 1 | y = +1].
The probability Pr[l = 1 | y = +1] is the constant prob-
ability that a positive example is labelled (as it is inde-
pendent of j). Now we can have Pr[l = 1 | j] as

Pr[l = 1 | j] = Pr[l = 1 | j, y = ≠1] Pr[y = ≠1 | j]

+ Pr[l = 1 | j, y = +1] Pr[y = +1 | j]

= Pr[l = 1 | y = +1] Pr[y = +1 | j].

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

JavaScript	Program Canonical	Form

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 96

PP-Tool Filtering Method Setting
NS (v2.6.9.11) Block all JS Default blocking mode with

iframes blocking option on
GT (v5.4.1) Blacklist Enabled ‘Blocking all tracker

and cookies’ option
AP (v2.6.7) Blacklist EasyList and Fanboy’s list and

disabled ‘Allow non-intrusive
ads’ option

DC (v3.14.0) Blacklist Default
PB (v0.1.4) Heuristics and Default

cookies blacklist

Table 9. PP-Tools’ settings used with Firefox v32.0.

[50] F. Roesner, T. Kohno, and D. Wetherall. Detecting and
Defending Against Third-party Tracking on the Web. NSDI,
2012.

[51] B. Schölkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola,
and R. C. Williamson. Estimating the Support of a High-
Dimensional Distribution. NC, 2001.

[52] M. Tran, X. Dong, Z. Liang, and X. Jiang. Tracking the
Trackers: Fast and Scalable Dynamic Analysis of Web Con-
tent for Privacy Violations. ACNS, 2012.

[53] C. Wills and D. Uzunoglu. What Ad Blockers Are (and Are
Not) Doing. WPI-CS-TR-16-02, 2016.

[54] W. Xu, F. Zhang, and S. Zhu. The Power of Obfuscation
Techniques in Malicious JavaScript Code: A Measurement
Study. MALWARE, 2012.

[55] T.-F. Yen, Y. Xie, F. Yu, R. P. Yu, and M. Abadi. Host Fin-
gerprinting and Tracking on the Web: Privacy and Security
Implications. NDSS, 2012.

[56] C. Yue and H. Wang. Characterizing Insecure Javascript
Practices on the Web. WWW, 2009.

A Appendix

A.1 PP-Tools Settings And Trackers
Distribution in Heat-up Webpages

Table 9 presents the PP-Tools and their settings used in
our experiments to collect the datasets as discussed in
Section 3.2. Figure 4 and Figure 5 show the type and dis-
tribution of trackers, respectively, in heat-up webpages
as explained in Section 4.2.

A.2 Canonicalization of JavaScript
programs

The canonical form is an intermediate representation of
the JavaScript program where variable names and loop
specifics are abstracted away in an e�ort to apply natu-
ral language processing-like techniques on the resulting
code representation. To explain the canonical form and

PDG of a JavaScript program, consider the following
(toy) ‘equalTest’ Javascript function:

Listing 1. An Example of JavaScript Program

function equalTest (a, b){
if(a == b){

return true ;}
return false ;}

The canonical form of this routine is:

Listing 2. Canonical form of JavaScript code in Listing # 3

function equalTest (a, b){
1: begin ;
2: $0 = a === b;
3: if($0){
4: return true ;}
5: return false;
6: end ;}

One line of the canonical form consists of a binary
operation, its operands or an assignment. The PDG of
this routine is shown in Figure 6a. The 2 and 3-grams of
line 3 above is shown in Figure 6b. For a more detailed
example of these concepts, see [32].

A.3 Positive and Unlabelled (PU)
Learning

The PU learning technique, translated to our prob-
lem space, constructs a probabilistic classifier that de-
cides whether a JavaScript code is tracking or functional
from a probabilistic classifier that decides whether a
JavaScript program is labelled or unlabelled. More pre-
cisely, it constructs the classifier f(j) = Pr[y = +1 | j]
from the classifier g(j) = Pr[l = 1 | j]. The two classes
in g(j) are the labelled and unlabelled JavaScript pro-
grams, whereas the two classes in f(j) are positive
(tracking) and negative (functional) JavaScript pro-
grams. To understand the concept behind PU learning,
notice that the assumptions (a) only positive examples
(tracking JavaScript programs) are labelled, (b) the set
of labelled examples is chosen uniformly at random from
all positive examples, lead to the result Pr[l = 1 | j, y =

≠1] = 0 and Pr[l = 1 | j, y = +1] = Pr[l = 1 | y = +1].
The probability Pr[l = 1 | y = +1] is the constant prob-
ability that a positive example is labelled (as it is inde-
pendent of j). Now we can have Pr[l = 1 | j] as

Pr[l = 1 | j] = Pr[l = 1 | j, y = ≠1] Pr[y = ≠1 | j]

+ Pr[l = 1 | j, y = +1] Pr[y = +1 | j]

= Pr[l = 1 | y = +1] Pr[y = +1 | j].

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 97

0

20

40

60

GoogleAds

GoogleAnalytics

Doubleclick
Tealium

Gemius

Cloudfront
Sizmek

AdTech
Omniture

AppNexus

BaiduAds
Rubicon

AdOcean
Criteo

FacebookLikes

SmartAdServer

KruxDigital
Twitter

ScorecardResearch

Chartbeat

AudienceScience
Outbrain

Taboola

FacebookSDK

GoolgePlusone

VisualRevenue

Ensighten
Pubmatic

Maximiser

Mediaplex

Optimizely

LavaNetwork
Parse.ly

TribalFusion

AdobeTag

of

 H
ea

t−
up

 W
eb

pa
ge

s

Frequency of Trackers in Heat−up Webpages

Fig. 4. Top 35 trackers (x-axis) in heat-up webpages as discribed in Section 4.2

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

of Heat−up Webpages

C
u
m

m
u
la

tiv
e
 T

ra
ck

e
rs

 C
o
u
n
t

Fig. 5. Distribution of trackers in heat-up webpages as discribed
in Section 4.2

begin

===

if

return

end

return

1

2

3

4

6

5

(a) (b)

Fig. 6. (a) Program dependency graph of the equalTest canoni-
cal form. (b) 2-gram (top) and 3-gram (bottom) of line 3 of the
program dependency graph.

As Pr[l = 1 | y = +1] is a constant, we get the clas-
sifier f(j) from g(j). We need only to estimate Pr[l =

1 | y = +1]. For this, a validation set consisting of only
labelled examples, say P , can be used. Note that, ac-
cording to the assumption above, the labelled examples
are all positive. Therefore, in the above equation, for
j œ P , the term Pr[y = +1 | j] is 1. This means that g(j)

is equal to the constant Pr[l = 1 | y = +1] for the valida-
tion set P . Thus, we can use the trained classifier g(j)

on the validation set P to estimate this constant prob-
ability by 1

|P |
q

jœP g(j). In this work, we choose SVM
as the trained classifier, i.e. g(j). The reader can refer
to [28, 40] for a more comprehensive treatment on PU
learning.

A.4 Analyzing Disagreement : Examples

Examples where there is disagreement between our clas-
sifier and PP-Tools are shown in Table 10 and Table 11.
In essence, we show examples of JavaScript codes that
are classified as tracking JavaScript codes (resp. func-
tional) while classified as functional (resp. tracking) by
the ensemble of PP-Tools. We discuss these details in
Section 6.3. For reference, the ratio of agreement and
disagreement between our classifier and PP-Tools on the
wild dataset is also illustrated in Figure 7.

A.5 Surrogate JavaScript Programs

While using PP-Tools, certain content might not be
working properly [19]. This is known as broken web-

pages. This happens when certain web-components are
blocked on a website which might be necessary for
smooth browsing. In order to tackle broken pages, ex-
ceptions and errors, PP-Tools often inject snippets of
non-tracking JavaScript programs, also called surrogate

scripts, when they block content from loading. Through
manual inspection, we observed that both Ghostery
and NoScript inject surrogate scripts. We investigated
Ghostery and NoScript source codes to derive a com-
prehensive list of surrogates.

Interestingly, however, we noticed that using its
‘block all trackers’ setting, certain Ghostery surrogate
scripts do not necessarily facilitate smooth browsing. In-
stead, they block useful content. For instance, Figure 8
shows an example where Ghostery injects a surrogate
script for the brightcove widget. The resulting surro-
gate script blocks the video content on the webpage,
which is arguably a useful functionality.

A.6 JavaScript Code Obfuscation

In this section, we further illuminate on the resiliency
of our classifier against JavaScript code obfuscation

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

PDGs	n-grams

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 97

0

20

40

60

GoogleAds

GoogleAnalytics

Doubleclick
Tealium

Gemius

Cloudfront
Sizmek

AdTech
Omniture

AppNexus

BaiduAds
Rubicon

AdOcean
Criteo

FacebookLikes

SmartAdServer

KruxDigital
Twitter

ScorecardResearch

Chartbeat

AudienceScience
Outbrain

Taboola

FacebookSDK

GoolgePlusone

VisualRevenue

Ensighten
Pubmatic

Maximiser

Mediaplex

Optimizely

LavaNetwork
Parse.ly

TribalFusion

AdobeTag

of

 H
ea

t−
up

 W
eb

pa
ge

s

Frequency of Trackers in Heat−up Webpages

Fig. 4. Top 35 trackers (x-axis) in heat-up webpages as discribed in Section 4.2

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

of Heat−up Webpages

C
u
m

m
u
la

tiv
e
 T

ra
ck

e
rs

 C
o
u
n
t

Fig. 5. Distribution of trackers in heat-up webpages as discribed
in Section 4.2

(a)

===

if

2

3

begin

===

if

1

2

3

(b)

Fig. 6. (a) Program dependency graph of the equalTest canoni-
cal form. (b) 2-gram (top) and 3-gram (bottom) of line 3 of the
program dependency graph.

As Pr[l = 1 | y = +1] is a constant, we get the clas-
sifier f(j) from g(j). We need only to estimate Pr[l =

1 | y = +1]. For this, a validation set consisting of only
labelled examples, say P , can be used. Note that, ac-
cording to the assumption above, the labelled examples
are all positive. Therefore, in the above equation, for
j œ P , the term Pr[y = +1 | j] is 1. This means that g(j)

is equal to the constant Pr[l = 1 | y = +1] for the valida-
tion set P . Thus, we can use the trained classifier g(j)

on the validation set P to estimate this constant prob-
ability by 1

|P |
q

jœP g(j). In this work, we choose SVM
as the trained classifier, i.e. g(j). The reader can refer
to [28, 40] for a more comprehensive treatment on PU
learning.

A.4 Analyzing Disagreement : Examples

Examples where there is disagreement between our clas-
sifier and PP-Tools are shown in Table 10 and Table 11.
In essence, we show examples of JavaScript codes that
are classified as tracking JavaScript codes (resp. func-
tional) while classified as functional (resp. tracking) by
the ensemble of PP-Tools. We discuss these details in
Section 6.3. For reference, the ratio of agreement and
disagreement between our classifier and PP-Tools on the
wild dataset is also illustrated in Figure 7.

A.5 Surrogate JavaScript Programs

While using PP-Tools, certain content might not be
working properly [19]. This is known as broken web-

pages. This happens when certain web-components are
blocked on a website which might be necessary for
smooth browsing. In order to tackle broken pages, ex-
ceptions and errors, PP-Tools often inject snippets of
non-tracking JavaScript programs, also called surrogate

scripts, when they block content from loading. Through
manual inspection, we observed that both Ghostery
and NoScript inject surrogate scripts. We investigated
Ghostery and NoScript source codes to derive a com-
prehensive list of surrogates.

Interestingly, however, we noticed that using its
‘block all trackers’ setting, certain Ghostery surrogate
scripts do not necessarily facilitate smooth browsing. In-
stead, they block useful content. For instance, Figure 8
shows an example where Ghostery injects a surrogate
script for the brightcove widget. The resulting surro-
gate script blocks the video content on the webpage,
which is arguably a useful functionality.

A.6 JavaScript Code Obfuscation

In this section, we further illuminate on the resiliency
of our classifier against JavaScript code obfuscation

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Hsiao	et	al.,	Using	Web	Corpus	Statistics	for	Program	Analysis.	OOPSLA,	2014	

1-gram 2-gram

Term	Frequency-Inverse	Document	Frequency	(TF-IDF)	of	n-gram	(2	≤	n	≤	7)

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

One-Class	Learning

29 |

One-Class	SVM*		and	Positive	and	Unlabeled	(PU)	Learning**

Classifying	new	data	as	similar	or	different	to	the	training	set

Training	requires	only	single	class

*	Schölkopf		et	al.,	Estimating	the	Support	of	a	High-	Dimensional	Distribution.	NC,	2001	
**	Elkan	et	al.,	Learning	Classifiers	from	Only	Positive	and	Unlabeled	Data.	KDD,	2008.	

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Validation:	Our	Classifiers’	Performance

30 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 89

5.3 Validation

We use the traditional supervised two-class support vec-
tor machine (SSVM) [44, 49] as a benchmark for the per-
formance of our one-class classifiers. We run the three
classifiers (one-class SVM, PU-Learning and SSVM) fed
by syntactic and semantic features extracted from the
JavaScript programs in the labelled dataset. For the
PDG n-gram model, we construct the program depen-
dency graph from the canonical code by analysing the
abstract syntax trees produced by the V8 JavaScript en-
gine. We used the software shared by authors of [32] to
transform JavaScript programs into canonical forms and
to construct PDGs from the canonical forms. As men-
tioned before, feature vectors for the syntactic model
were constructed by considering the top 200 terms
ranked by their tf-idf score. On the other hand, no “cap”
was used for the sequential n-gram and PDG n-gram
models, as the feature vector size was already around
200.

For PU-learning and one-class SVM, we use 80%
of the tracking JavaScript programs from the labelled
dataset to constitute the training set (i.e., the train-
ing set only contains members of the positive class).
We mixed the remaining 20% of tracking JavaScript
programs with functional JavaScript programs in the
labelled dataset for the testing of these two classifiers.
For SSVM, we use 80% and 20% of JavaScript programs
(both functional and tracking) from the labelled dataset
for training and testing, respectively. We empirically
find the appropriate values for “, a parameter for radial

basis function kernel [51], and ‹, a parameter for SVMs
by performing a grid search on the ranges 2

≠15 Æ “ Æ 2

0

and 2

≠10 Æ ‹ Æ 2

0 with 5-fold cross-validation on
each training group. We use scikit-learn [48], an open
source machine learning library for Python that includes
a modified version of LIBSVM [25].

5.3.1 Performance of Classifiers
Table 5 shows the performance of our classifiers. Note
that for each feature model, we use the same training set
for PU-learning and one-class SVM. We observe that,
regardless of the feature model in use, PU-learning and
one-class SVM exhibit similar performance. They also
perform similar to supervised SVM in terms of false
and true negative rates (related to functional JavaScript
programs). In general, except for the syntactic feature
model where supervised SVM outperforms our one-class
classifiers in terms of false and true positives, the three
classifiers achieve very similar rates, with true positive

Feature Classifier Tracking Functional
Model Blocked Allowed Blocked Allowed

Syntactic SSVM 0.93 0.07 0.01 0.99
OCSVM 0.88 0.12 0.02 0.98

PU 0.86 0.14 0.02 0.98
PDG SSVM 0.96 0.04 0.03 0.97

4-gram OCSVM 0.95 0.05 0.03 0.97
PU 0.93 0.07 0.04 0.96

Sequential SSVM 0.98 0.02 0.01 0.99
4-gram OCSVM 0.98 0.02 0.02 0.98

PU 0.96 0.04 0.03 0.97
PDG SSVM 0.99 0.01 0.01 0.99

7-gram OCSVM 0.99 0.01 0.01 0.99
PU 0.98 0.02 0.02 0.98

Sequential SSVM 0.99 0.01 0.01 0.99
7-gram OCSVM 0.99 0.01 0.01 0.99

PU 0.98 0.02 0.02 0.98

Table 5. Performance of the classifiers against the labelled
dataset of tracking and functional JavaScript programs. true
positives and negatives, false positives and negatives.

and negative rates of up to 0.99 and false positive and
negative rates of only 0.01.

In comparison with the tested PP-Tools (cf. Ta-
ble 4), this shows an improvement in the true positive
rate by 21% to 62% and in the false positive rate by 5%
to 20%6. Not only do our classifiers outperform the PP-
Tools in e�ectively detecting tracking JavaScript pro-
grams, but they also do not su�er from high misclassi-
fication of functional JavaScript programs which would
result in poor user web experience.

5.3.2 E�ect of Feature Models
Table 5 suggests that the feature models have an ef-
fect on the classification accuracy. The syntactic model
has the worst performance for all three classifiers. The
PDG 7-gram and sequential 7-gram models in contrast
show the best results for all the classifiers. We improve
the false negative rate by 11-12% in the case of the
one-class classifiers by using the 7-gram models. Inter-
estingly, the performance of the classifiers for classify-
ing functional JavaScript programs is similar across all
feature models, which suggests that perhaps functional
JavaScript programs have more inter-similarity than the
inter-similarity between tracking JavaScript programs.

Our results show that one-class classifiers, as non-
expensive learning techniques, perform similarly. Now
we aim to apply our one-class SVM and PU-learning
classifiers in the wild and compare their output to PP-
Tools. For this purpose, we choose the best and the
worst performers of the lot: sequential 7-gram and the
syntactic model, respectively. Note that although, per-

6 We reiterate that our comparison is fair since we configured
these PP-Tools to be consistent with our rules in Table 1.

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Validation:	Our	Classifiers’	Performance

31 |

Our	best	classifier	has	99%	Accuracy and	less	than	1%	False	Positive	rates	

Improves	PP-Tools’	Accuracy by	21%	to	63%	and	reduces False	Positive	rates by	5%	to	20%

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Our	Classifiers	and	PP-Tools	in	the	Wild
(4084	Websites)

32 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Our	Classifiers	and	PP-Tools	in	the	Wild

33 |

Agreements	between	our	classifier’s	and	a	PP-Tool’s	output:

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 91

Feature Model Classifier PP-Tool Tc fl Tp Tc fl Fp Fc fl Tp Fc fl Fp Agreement Disagreement
Syntactic OCSVM NoScript 0.56 0.10 0.29 0.05 0.61 0.39

Ghostery 0.54 0.13 0.27 0.06 0.60 0.40
Adblock Plus 0.47 0.20 0.25 0.09 0.56 0.44

Privacy Badger 0.23 0.44 0.11 0.22 0.45 0.55
Disconnect 0.17 0.50 0.08 0.25 0.42 0.58

Sequential 7-gram OCSVM NoScript 0.71 0.06 0.14 0.09 0.80 0.20
Ghostery 0.67 0.10 0.15 0.08 0.75 0.25

Adblock Plus 0.62 0.15 0.11 0.13 0.75 0.25
Privacy Badger 0.27 0.5 0.07 0.16 0.43 0.57

Disconnect 0.19 0.58 0.06 0.17 0.36 0.64
Syntactic PU NoScript 0.50 0.07 0.36 0.07 0.57 0.43

Ghostery 0.47 0.10 0.35 0.08 0.55 0.45
Adblock Plus 0.43 0.14 0.30 0.13 0.56 0.44

Privacy Badger 0.18 0.38 0.15 0.28 0.46 0.54
Disconnect 0.13 0.44 0.12 0.31 0.44 0.56

Sequential 7-gram PU NoScript 0.70 0.05 0.16 0.09 0.79 0.21
Ghostery 0.65 0.10 0.16 0.09 0.74 0.26

Adblock Plus 0.61 0.14 0.12 0.13 0.74 0.26
Privacy Badger 0.18 0.57 0.07 0.18 0.36 0.64

Disconnect 0.26 0.49 0.07 0.18 0.44 0.56

Table 7. Agreement and disagreement in classification of tracking and functional JavaScript programs between our classifiers and PP-
Tools on the wild dataset; agreement, disagreement; Tp and Fp represent JavaScript programs classified as tracking and func-
tional, respectively, by the PP-Tool p, and Tc and Fc represent JavaScript programs classified as tracking and functional, respectively,
by the classifier c.

multiple websites through cookies, which is routinely
done by social widgets.

6.2.3 E�ect of Feature Models
Table 7 also shows that the sequential 7-gram model of
the two classifiers is more in agreement with NoScript,
Ghostery and Adblock Plus as compared to the syntac-
tic model, by around 20%. However, the di�erence is
nominal for Disconnect and Privacy Badger, with our
classifiers agreeing more with these two PP-Tools in the
syntactic model. In the following, we further analyse the
observed disagreement by using the sequential 7-gram
model of the one-class SVM as it showed superior results
during our validation experiments (Section 5.3).

6.3 Analysing Disagreements
We delve into the set of JavaScript programs on which
all PP-Tools and our one-class SVM with sequential 7-
grams classifier disagree. We are interested in the two
facets of disagreement: JavaScript programs that our
classifier considers tracking but all the PP-Tools con-
sider functional, i.e., the set Tc flp Fp, and JavaScript
programs that our classifier deems tracking while all
PP-Tools consider functional, i.e., Fc flp Tp. Note that
subscripts c and p stand for our classifier and a PP-Tool,
respectively.

The number of JavaScript programs for which our
classifier and all PP-Tools are in disagreement is 9,071,

representing 6% of the total number of JavaScript pro-
grams in the wild dataset. These JavaScript programs
are split as 4,610 for Tc flp Fp and 4,461 for Fc flp Tp. In-
specting these sets of disagreement would shed light on
the main reasons for disagreement. Unfortunately, man-
ually inspecting thousands of JavaScript programs (us-
ing the process used for producing our labelled dataset)
is a tedious and time consuming process. We instead
took a pragmatic approach, where we randomly sampled
100 JavaScript programs each from the two sets of dis-
agreement. We then manually inspected each JavaScript
from the two samples and classified them as tracking
or functional following the rules and methodology de-
scribed in Section 3.3. The results of this manual process
are shown in Table 8.

Our classifier is correct in its labelling of 75 out of
the 100 JavaScript programs it considered tracking. All
these JavaScript programs are marked as functional by
all the PP-Tools, implying that the PP-Tools are correct
in labelling only 25 of these JavaScript programs. More-
over, our classifier correctly deemed 81 out of the 100
JavaScript programs as functional, implying that the
PP-Tools correctly labelled only 19 of the JavaScript
programs in the random sample. Note that these num-
bers should not be taken as reflecting the overall classifi-
cation performance of our classifier, which was validated
in Section 5.3. These samples merely represent the cor-

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 91

Feature Model Classifier PP-Tool Tc fl Tp Tc fl Fp Fc fl Tp Fc fl Fp Agreement Disagreement
Syntactic OCSVM NoScript 0.56 0.10 0.29 0.05 0.61 0.39

Ghostery 0.54 0.13 0.27 0.06 0.60 0.40
Adblock Plus 0.47 0.20 0.25 0.09 0.56 0.44

Privacy Badger 0.23 0.44 0.11 0.22 0.45 0.55
Disconnect 0.17 0.50 0.08 0.25 0.42 0.58

Sequential 7-gram OCSVM NoScript 0.71 0.06 0.14 0.09 0.80 0.20
Ghostery 0.67 0.10 0.15 0.08 0.75 0.25

Adblock Plus 0.62 0.15 0.11 0.13 0.75 0.25
Privacy Badger 0.27 0.5 0.07 0.16 0.43 0.57

Disconnect 0.19 0.58 0.06 0.17 0.36 0.64
Syntactic PU NoScript 0.50 0.07 0.36 0.07 0.57 0.43

Ghostery 0.47 0.10 0.35 0.08 0.55 0.45
Adblock Plus 0.43 0.14 0.30 0.13 0.56 0.44

Privacy Badger 0.18 0.38 0.15 0.28 0.46 0.54
Disconnect 0.13 0.44 0.12 0.31 0.44 0.56

Sequential 7-gram PU NoScript 0.70 0.05 0.16 0.09 0.79 0.21
Ghostery 0.65 0.10 0.16 0.09 0.74 0.26

Adblock Plus 0.61 0.14 0.12 0.13 0.74 0.26
Privacy Badger 0.18 0.57 0.07 0.18 0.36 0.64

Disconnect 0.26 0.49 0.07 0.18 0.44 0.56

Table 7. Agreement and disagreement in classification of tracking and functional JavaScript programs between our classifiers and PP-
Tools on the wild dataset; agreement, disagreement; Tp and Fp represent JavaScript programs classified as tracking and func-
tional, respectively, by the PP-Tool p, and Tc and Fc represent JavaScript programs classified as tracking and functional, respectively,
by the classifier c.

multiple websites through cookies, which is routinely
done by social widgets.

6.2.3 E�ect of Feature Models
Table 7 also shows that the sequential 7-gram model of
the two classifiers is more in agreement with NoScript,
Ghostery and Adblock Plus as compared to the syntac-
tic model, by around 20%. However, the di�erence is
nominal for Disconnect and Privacy Badger, with our
classifiers agreeing more with these two PP-Tools in the
syntactic model. In the following, we further analyse the
observed disagreement by using the sequential 7-gram
model of the one-class SVM as it showed superior results
during our validation experiments (Section 5.3).

6.3 Analysing Disagreements
We delve into the set of JavaScript programs on which
all PP-Tools and our one-class SVM with sequential 7-
grams classifier disagree. We are interested in the two
facets of disagreement: JavaScript programs that our
classifier considers tracking but all the PP-Tools con-
sider functional, i.e., the set Tc flp Fp, and JavaScript
programs that our classifier deems tracking while all
PP-Tools consider functional, i.e., Fc flp Tp. Note that
subscripts c and p stand for our classifier and a PP-Tool,
respectively.

The number of JavaScript programs for which our
classifier and all PP-Tools are in disagreement is 9,071,

representing 6% of the total number of JavaScript pro-
grams in the wild dataset. These JavaScript programs
are split as 4,610 for Tc flp Fp and 4,461 for Fc flp Tp. In-
specting these sets of disagreement would shed light on
the main reasons for disagreement. Unfortunately, man-
ually inspecting thousands of JavaScript programs (us-
ing the process used for producing our labelled dataset)
is a tedious and time consuming process. We instead
took a pragmatic approach, where we randomly sampled
100 JavaScript programs each from the two sets of dis-
agreement. We then manually inspected each JavaScript
from the two samples and classified them as tracking
or functional following the rules and methodology de-
scribed in Section 3.3. The results of this manual process
are shown in Table 8.

Our classifier is correct in its labelling of 75 out of
the 100 JavaScript programs it considered tracking. All
these JavaScript programs are marked as functional by
all the PP-Tools, implying that the PP-Tools are correct
in labelling only 25 of these JavaScript programs. More-
over, our classifier correctly deemed 81 out of the 100
JavaScript programs as functional, implying that the
PP-Tools correctly labelled only 19 of the JavaScript
programs in the random sample. Note that these num-
bers should not be taken as reflecting the overall classifi-
cation performance of our classifier, which was validated
in Section 5.3. These samples merely represent the cor-

Disagreements	between	our	classifier’s	and	a	PP-Tool’s	output:

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 91

Feature Model Classifier PP-Tool Tc fl Tp Tc fl Fp Fc fl Tp Fc fl Fp Agreement Disagreement
Syntactic OCSVM NoScript 0.56 0.10 0.29 0.05 0.61 0.39

Ghostery 0.54 0.13 0.27 0.06 0.60 0.40
Adblock Plus 0.47 0.20 0.25 0.09 0.56 0.44

Privacy Badger 0.23 0.44 0.11 0.22 0.45 0.55
Disconnect 0.17 0.50 0.08 0.25 0.42 0.58

Sequential 7-gram OCSVM NoScript 0.71 0.06 0.14 0.09 0.80 0.20
Ghostery 0.67 0.10 0.15 0.08 0.75 0.25

Adblock Plus 0.62 0.15 0.11 0.13 0.75 0.25
Privacy Badger 0.27 0.5 0.07 0.16 0.43 0.57

Disconnect 0.19 0.58 0.06 0.17 0.36 0.64
Syntactic PU NoScript 0.50 0.07 0.36 0.07 0.57 0.43

Ghostery 0.47 0.10 0.35 0.08 0.55 0.45
Adblock Plus 0.43 0.14 0.30 0.13 0.56 0.44

Privacy Badger 0.18 0.38 0.15 0.28 0.46 0.54
Disconnect 0.13 0.44 0.12 0.31 0.44 0.56

Sequential 7-gram PU NoScript 0.70 0.05 0.16 0.09 0.79 0.21
Ghostery 0.65 0.10 0.16 0.09 0.74 0.26

Adblock Plus 0.61 0.14 0.12 0.13 0.74 0.26
Privacy Badger 0.18 0.57 0.07 0.18 0.36 0.64

Disconnect 0.26 0.49 0.07 0.18 0.44 0.56

Table 7. Agreement and disagreement in classification of tracking and functional JavaScript programs between our classifiers and PP-
Tools on the wild dataset; agreement, disagreement; Tp and Fp represent JavaScript programs classified as tracking and func-
tional, respectively, by the PP-Tool p, and Tc and Fc represent JavaScript programs classified as tracking and functional, respectively,
by the classifier c.

multiple websites through cookies, which is routinely
done by social widgets.

6.2.3 E�ect of Feature Models
Table 7 also shows that the sequential 7-gram model of
the two classifiers is more in agreement with NoScript,
Ghostery and Adblock Plus as compared to the syntac-
tic model, by around 20%. However, the di�erence is
nominal for Disconnect and Privacy Badger, with our
classifiers agreeing more with these two PP-Tools in the
syntactic model. In the following, we further analyse the
observed disagreement by using the sequential 7-gram
model of the one-class SVM as it showed superior results
during our validation experiments (Section 5.3).

6.3 Analysing Disagreements
We delve into the set of JavaScript programs on which
all PP-Tools and our one-class SVM with sequential 7-
grams classifier disagree. We are interested in the two
facets of disagreement: JavaScript programs that our
classifier considers tracking but all the PP-Tools con-
sider functional, i.e., the set Tc flp Fp, and JavaScript
programs that our classifier deems tracking while all
PP-Tools consider functional, i.e., Fc flp Tp. Note that
subscripts c and p stand for our classifier and a PP-Tool,
respectively.

The number of JavaScript programs for which our
classifier and all PP-Tools are in disagreement is 9,071,

representing 6% of the total number of JavaScript pro-
grams in the wild dataset. These JavaScript programs
are split as 4,610 for Tc flp Fp and 4,461 for Fc flp Tp. In-
specting these sets of disagreement would shed light on
the main reasons for disagreement. Unfortunately, man-
ually inspecting thousands of JavaScript programs (us-
ing the process used for producing our labelled dataset)
is a tedious and time consuming process. We instead
took a pragmatic approach, where we randomly sampled
100 JavaScript programs each from the two sets of dis-
agreement. We then manually inspected each JavaScript
from the two samples and classified them as tracking
or functional following the rules and methodology de-
scribed in Section 3.3. The results of this manual process
are shown in Table 8.

Our classifier is correct in its labelling of 75 out of
the 100 JavaScript programs it considered tracking. All
these JavaScript programs are marked as functional by
all the PP-Tools, implying that the PP-Tools are correct
in labelling only 25 of these JavaScript programs. More-
over, our classifier correctly deemed 81 out of the 100
JavaScript programs as functional, implying that the
PP-Tools correctly labelled only 19 of the JavaScript
programs in the random sample. Note that these num-
bers should not be taken as reflecting the overall classifi-
cation performance of our classifier, which was validated
in Section 5.3. These samples merely represent the cor-

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 91

Feature Model Classifier PP-Tool Tc fl Tp Tc fl Fp Fc fl Tp Fc fl Fp Agreement Disagreement
Syntactic OCSVM NoScript 0.56 0.10 0.29 0.05 0.61 0.39

Ghostery 0.54 0.13 0.27 0.06 0.60 0.40
Adblock Plus 0.47 0.20 0.25 0.09 0.56 0.44

Privacy Badger 0.23 0.44 0.11 0.22 0.45 0.55
Disconnect 0.17 0.50 0.08 0.25 0.42 0.58

Sequential 7-gram OCSVM NoScript 0.71 0.06 0.14 0.09 0.80 0.20
Ghostery 0.67 0.10 0.15 0.08 0.75 0.25

Adblock Plus 0.62 0.15 0.11 0.13 0.75 0.25
Privacy Badger 0.27 0.5 0.07 0.16 0.43 0.57

Disconnect 0.19 0.58 0.06 0.17 0.36 0.64
Syntactic PU NoScript 0.50 0.07 0.36 0.07 0.57 0.43

Ghostery 0.47 0.10 0.35 0.08 0.55 0.45
Adblock Plus 0.43 0.14 0.30 0.13 0.56 0.44

Privacy Badger 0.18 0.38 0.15 0.28 0.46 0.54
Disconnect 0.13 0.44 0.12 0.31 0.44 0.56

Sequential 7-gram PU NoScript 0.70 0.05 0.16 0.09 0.79 0.21
Ghostery 0.65 0.10 0.16 0.09 0.74 0.26

Adblock Plus 0.61 0.14 0.12 0.13 0.74 0.26
Privacy Badger 0.18 0.57 0.07 0.18 0.36 0.64

Disconnect 0.26 0.49 0.07 0.18 0.44 0.56

Table 7. Agreement and disagreement in classification of tracking and functional JavaScript programs between our classifiers and PP-
Tools on the wild dataset; agreement, disagreement; Tp and Fp represent JavaScript programs classified as tracking and func-
tional, respectively, by the PP-Tool p, and Tc and Fc represent JavaScript programs classified as tracking and functional, respectively,
by the classifier c.

multiple websites through cookies, which is routinely
done by social widgets.

6.2.3 E�ect of Feature Models
Table 7 also shows that the sequential 7-gram model of
the two classifiers is more in agreement with NoScript,
Ghostery and Adblock Plus as compared to the syntac-
tic model, by around 20%. However, the di�erence is
nominal for Disconnect and Privacy Badger, with our
classifiers agreeing more with these two PP-Tools in the
syntactic model. In the following, we further analyse the
observed disagreement by using the sequential 7-gram
model of the one-class SVM as it showed superior results
during our validation experiments (Section 5.3).

6.3 Analysing Disagreements
We delve into the set of JavaScript programs on which
all PP-Tools and our one-class SVM with sequential 7-
grams classifier disagree. We are interested in the two
facets of disagreement: JavaScript programs that our
classifier considers tracking but all the PP-Tools con-
sider functional, i.e., the set Tc flp Fp, and JavaScript
programs that our classifier deems tracking while all
PP-Tools consider functional, i.e., Fc flp Tp. Note that
subscripts c and p stand for our classifier and a PP-Tool,
respectively.

The number of JavaScript programs for which our
classifier and all PP-Tools are in disagreement is 9,071,

representing 6% of the total number of JavaScript pro-
grams in the wild dataset. These JavaScript programs
are split as 4,610 for Tc flp Fp and 4,461 for Fc flp Tp. In-
specting these sets of disagreement would shed light on
the main reasons for disagreement. Unfortunately, man-
ually inspecting thousands of JavaScript programs (us-
ing the process used for producing our labelled dataset)
is a tedious and time consuming process. We instead
took a pragmatic approach, where we randomly sampled
100 JavaScript programs each from the two sets of dis-
agreement. We then manually inspected each JavaScript
from the two samples and classified them as tracking
or functional following the rules and methodology de-
scribed in Section 3.3. The results of this manual process
are shown in Table 8.

Our classifier is correct in its labelling of 75 out of
the 100 JavaScript programs it considered tracking. All
these JavaScript programs are marked as functional by
all the PP-Tools, implying that the PP-Tools are correct
in labelling only 25 of these JavaScript programs. More-
over, our classifier correctly deemed 81 out of the 100
JavaScript programs as functional, implying that the
PP-Tools correctly labelled only 19 of the JavaScript
programs in the random sample. Note that these num-
bers should not be taken as reflecting the overall classifi-
cation performance of our classifier, which was validated
in Section 5.3. These samples merely represent the cor-

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Our	Classifiers	and	PP-Tools	in	the	Wild

34 |

NS:	NoScript,	GT:Ghostery,	AP:	Adblock Plus,	DC:	Disconnect,	PB:	Privacy	Badger

80%

64%

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

35 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 92

Disagreement Total Sample Manual Labelling
Tracking Functional

Tc flp Fp 4,610 100 75 25
Fc flp Tp 4,461 100 19 81

Table 8. Comparison of random samples of disagreement between
our classifier and All PP-Tools. manual labelling agrees with
classifier and disagrees with PP-Tools, manual labelling dis-
agrees with classifier and agrees with PP-Tools.

ner cases of complete disagreement with all other PP-
tools. In other words, these numbers do not directly give
us the true and false positive rates of our classification
methodology.

We first look at the 75 JavaScript programs cor-
rectly labelled as tracking by our classifier, and in-
correctly considered as functional by the PP-Tools.
Table 10 in Appendix A.4 shows 10 representative
JavaScript programs from this sample. We identify
two typical reasons the PP-Tools miss blocking these
JavaScript programs:

1. PP-Tools do not perform regular expression match-
ing on the body of JavaScript programs to identify
known trackers. Examples from these “misses” are
JavaScript programs #2 and #3 in Table 10, which
are allowed by all PP-Tools even though the referred
domain doubleclick.net is included in their black-
lists; this is because these JavaScript programs refer
to this domain in their body, and the PP-Tools per-
form a regular expression match only on the URL
of the JavaScript within the script tag.

2. As expected PP-Tools are unable to block track-
ers that are not in the blacklist. An example is
JavaScript #9 in the table which we manually check
to be a social widget allowing users to ‘like’ com-
ments on the webpage while tracking the user ac-
tivity which is then transmitted to the first party
domain. All PP-Tools miss this JavaScript because
it does not belong to a popular social media do-
main. Similarly, JavaScript #4 in the table belongs
to a Russian tracking and advertising service do-
main i-vengo.com, but it is not in the blacklists of
PP-Tools.

Our classifier correctly marked these JavaScript pro-
grams as tracking as these scripts were syntactically and
structurally similar to the tracking JavaScript programs
used for training our classifiers. We stress that our clas-
sifiers do not need to know about all tracking scripts a
priori; in fact, our classifiers are able to find new track-
ing scripts leveraging the syntactic and semantic sim-
ilarity between known tracking scripts and previously
unknown tracking JavaScript programs.

Next, we look at the 81 JavaScript programs cor-
rectly labelled as functional by our classifier, and incor-
rectly considered as tracking by the PP-Tools. Table 11
in Appendix A.4 shows 10 JavaScript programs from
this sample. The predominant reason for the PP-Tools
mistakenly blocking these JavaScript programs is be-
cause they belong to a tracking domain, even though the
JavaScript itself performs a useful functionality. A typi-
cal example is JavaScript #10 in the table, which fetches
content from the first party domain buzzfeed.com with-
out sending or collecting user information.

Lastly, we believe that the main reason our classifier
misclassified 25 functional JavaScript programs and 19
tracking JavaScript programs is due to their structural
similarity with representatives of the opposite class. For
instance, the JavaScript jquery.cookie.js in the web-
site pnc.com modifies cookies for this non-tracking do-
main. The PP-Tools rightly allow this JavaScript be-
cause pnc.com is not a tracking domain. But, due to the
structural similarity of this JavaScript with JavaScript
programs that modify cookies for tracking domains, our
classifier deemed it as tracking. Similarly, our classifier
misclassified the JavaScript count.js that gathers com-
ment statistics on the website listverse.com and sends
this information to the domain disqus.com, which is
listed as a tracker by the PP-Tools. Our classifier mis-
read this due to its similarity with JavaScript programs
that maintain comments on a webpage but do not send
this information through to third party trackers. For
brevity, we do not enlist samples of these two categories
of JavaScript programs misclassified by our classifier.

7 Discussion
In the following, we discuss possible uses and limitations
of our approach.

7.1 Possible Uses
We envision at least two di�erent uses of our technique:
7.1.1 Browser Extension
A natural application of our technique is a client-
based browser extension to evade trackers. We are cur-
rently developing a Firefox browser extension which ex-
tracts the JavaScript programs while a webpage is being
loaded (prior to rendering) and calculates the similar-
ities of the observed JavaScript programs against the
training model which is kept locally. As discussed later
in this section, we aim to periodically update the train-
ing model using a semi-supervised learning technique
[23]. We believe that such an extension is practical, as
our current system classifies in the order of millisec-
onds per website. Development of the browser extension

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

JSes that	our	classifier	labels	as	tracking	while	all	PP-Tools	consider	functional
JSes that	our	classifier	labels	as	functional	while	all	PP-Tools	consider	tracking

c:	classifier,	p:	PP-Tool

Our	Classifiers	and	PP-Tools	in	the	Wild

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

36 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 92

Disagreement Total Sample Manual Labelling
Tracking Functional

Tc flp Fp 4,610 100 75 25
Fc flp Tp 4,461 100 19 81

Table 8. Comparison of random samples of disagreement between
our classifier and All PP-Tools. manual labelling agrees with
classifier and disagrees with PP-Tools, manual labelling dis-
agrees with classifier and agrees with PP-Tools.

ner cases of complete disagreement with all other PP-
tools. In other words, these numbers do not directly give
us the true and false positive rates of our classification
methodology.

We first look at the 75 JavaScript programs cor-
rectly labelled as tracking by our classifier, and in-
correctly considered as functional by the PP-Tools.
Table 10 in Appendix A.4 shows 10 representative
JavaScript programs from this sample. We identify
two typical reasons the PP-Tools miss blocking these
JavaScript programs:

1. PP-Tools do not perform regular expression match-
ing on the body of JavaScript programs to identify
known trackers. Examples from these “misses” are
JavaScript programs #2 and #3 in Table 10, which
are allowed by all PP-Tools even though the referred
domain doubleclick.net is included in their black-
lists; this is because these JavaScript programs refer
to this domain in their body, and the PP-Tools per-
form a regular expression match only on the URL
of the JavaScript within the script tag.

2. As expected PP-Tools are unable to block track-
ers that are not in the blacklist. An example is
JavaScript #9 in the table which we manually check
to be a social widget allowing users to ‘like’ com-
ments on the webpage while tracking the user ac-
tivity which is then transmitted to the first party
domain. All PP-Tools miss this JavaScript because
it does not belong to a popular social media do-
main. Similarly, JavaScript #4 in the table belongs
to a Russian tracking and advertising service do-
main i-vengo.com, but it is not in the blacklists of
PP-Tools.

Our classifier correctly marked these JavaScript pro-
grams as tracking as these scripts were syntactically and
structurally similar to the tracking JavaScript programs
used for training our classifiers. We stress that our clas-
sifiers do not need to know about all tracking scripts a
priori; in fact, our classifiers are able to find new track-
ing scripts leveraging the syntactic and semantic sim-
ilarity between known tracking scripts and previously
unknown tracking JavaScript programs.

Next, we look at the 81 JavaScript programs cor-
rectly labelled as functional by our classifier, and incor-
rectly considered as tracking by the PP-Tools. Table 11
in Appendix A.4 shows 10 JavaScript programs from
this sample. The predominant reason for the PP-Tools
mistakenly blocking these JavaScript programs is be-
cause they belong to a tracking domain, even though the
JavaScript itself performs a useful functionality. A typi-
cal example is JavaScript #10 in the table, which fetches
content from the first party domain buzzfeed.com with-
out sending or collecting user information.

Lastly, we believe that the main reason our classifier
misclassified 25 functional JavaScript programs and 19
tracking JavaScript programs is due to their structural
similarity with representatives of the opposite class. For
instance, the JavaScript jquery.cookie.js in the web-
site pnc.com modifies cookies for this non-tracking do-
main. The PP-Tools rightly allow this JavaScript be-
cause pnc.com is not a tracking domain. But, due to the
structural similarity of this JavaScript with JavaScript
programs that modify cookies for tracking domains, our
classifier deemed it as tracking. Similarly, our classifier
misclassified the JavaScript count.js that gathers com-
ment statistics on the website listverse.com and sends
this information to the domain disqus.com, which is
listed as a tracker by the PP-Tools. Our classifier mis-
read this due to its similarity with JavaScript programs
that maintain comments on a webpage but do not send
this information through to third party trackers. For
brevity, we do not enlist samples of these two categories
of JavaScript programs misclassified by our classifier.

7 Discussion
In the following, we discuss possible uses and limitations
of our approach.

7.1 Possible Uses
We envision at least two di�erent uses of our technique:
7.1.1 Browser Extension
A natural application of our technique is a client-
based browser extension to evade trackers. We are cur-
rently developing a Firefox browser extension which ex-
tracts the JavaScript programs while a webpage is being
loaded (prior to rendering) and calculates the similar-
ities of the observed JavaScript programs against the
training model which is kept locally. As discussed later
in this section, we aim to periodically update the train-
ing model using a semi-supervised learning technique
[23]. We believe that such an extension is practical, as
our current system classifies in the order of millisec-
onds per website. Development of the browser extension

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

c:	classifier,	p:	PP-Tool

Our	Classifiers	and	PP-Tools	in	the	Wild

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

37 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 92

Disagreement Total Sample Manual Labelling
Tracking Functional

Tc flp Fp 4,610 100 75 25
Fc flp Tp 4,461 100 19 81

Table 8. Comparison of random samples of disagreement between
our classifier and All PP-Tools. manual labelling agrees with
classifier and disagrees with PP-Tools, manual labelling dis-
agrees with classifier and agrees with PP-Tools.

ner cases of complete disagreement with all other PP-
tools. In other words, these numbers do not directly give
us the true and false positive rates of our classification
methodology.

We first look at the 75 JavaScript programs cor-
rectly labelled as tracking by our classifier, and in-
correctly considered as functional by the PP-Tools.
Table 10 in Appendix A.4 shows 10 representative
JavaScript programs from this sample. We identify
two typical reasons the PP-Tools miss blocking these
JavaScript programs:

1. PP-Tools do not perform regular expression match-
ing on the body of JavaScript programs to identify
known trackers. Examples from these “misses” are
JavaScript programs #2 and #3 in Table 10, which
are allowed by all PP-Tools even though the referred
domain doubleclick.net is included in their black-
lists; this is because these JavaScript programs refer
to this domain in their body, and the PP-Tools per-
form a regular expression match only on the URL
of the JavaScript within the script tag.

2. As expected PP-Tools are unable to block track-
ers that are not in the blacklist. An example is
JavaScript #9 in the table which we manually check
to be a social widget allowing users to ‘like’ com-
ments on the webpage while tracking the user ac-
tivity which is then transmitted to the first party
domain. All PP-Tools miss this JavaScript because
it does not belong to a popular social media do-
main. Similarly, JavaScript #4 in the table belongs
to a Russian tracking and advertising service do-
main i-vengo.com, but it is not in the blacklists of
PP-Tools.

Our classifier correctly marked these JavaScript pro-
grams as tracking as these scripts were syntactically and
structurally similar to the tracking JavaScript programs
used for training our classifiers. We stress that our clas-
sifiers do not need to know about all tracking scripts a
priori; in fact, our classifiers are able to find new track-
ing scripts leveraging the syntactic and semantic sim-
ilarity between known tracking scripts and previously
unknown tracking JavaScript programs.

Next, we look at the 81 JavaScript programs cor-
rectly labelled as functional by our classifier, and incor-
rectly considered as tracking by the PP-Tools. Table 11
in Appendix A.4 shows 10 JavaScript programs from
this sample. The predominant reason for the PP-Tools
mistakenly blocking these JavaScript programs is be-
cause they belong to a tracking domain, even though the
JavaScript itself performs a useful functionality. A typi-
cal example is JavaScript #10 in the table, which fetches
content from the first party domain buzzfeed.com with-
out sending or collecting user information.

Lastly, we believe that the main reason our classifier
misclassified 25 functional JavaScript programs and 19
tracking JavaScript programs is due to their structural
similarity with representatives of the opposite class. For
instance, the JavaScript jquery.cookie.js in the web-
site pnc.com modifies cookies for this non-tracking do-
main. The PP-Tools rightly allow this JavaScript be-
cause pnc.com is not a tracking domain. But, due to the
structural similarity of this JavaScript with JavaScript
programs that modify cookies for tracking domains, our
classifier deemed it as tracking. Similarly, our classifier
misclassified the JavaScript count.js that gathers com-
ment statistics on the website listverse.com and sends
this information to the domain disqus.com, which is
listed as a tracker by the PP-Tools. Our classifier mis-
read this due to its similarity with JavaScript programs
that maintain comments on a webpage but do not send
this information through to third party trackers. For
brevity, we do not enlist samples of these two categories
of JavaScript programs misclassified by our classifier.

7 Discussion
In the following, we discuss possible uses and limitations
of our approach.

7.1 Possible Uses
We envision at least two di�erent uses of our technique:
7.1.1 Browser Extension
A natural application of our technique is a client-
based browser extension to evade trackers. We are cur-
rently developing a Firefox browser extension which ex-
tracts the JavaScript programs while a webpage is being
loaded (prior to rendering) and calculates the similar-
ities of the observed JavaScript programs against the
training model which is kept locally. As discussed later
in this section, we aim to periodically update the train-
ing model using a semi-supervised learning technique
[23]. We believe that such an extension is practical, as
our current system classifies in the order of millisec-
onds per website. Development of the browser extension

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

c:	classifier,	p:	PP-Tool

Our	Classifiers	and	PP-Tools	in	the	Wild

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

• PP-Tools	perform	RE	matching	on	the	URL	in	<script>	and	fail	to	
block	tracking	JSes that	are	not	in	the	blacklists

38 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 92

Disagreement Total Sample Manual Labelling
Tracking Functional

Tc flp Fp 4,610 100 75 25
Fc flp Tp 4,461 100 19 81

Table 8. Comparison of random samples of disagreement between
our classifier and All PP-Tools. manual labelling agrees with
classifier and disagrees with PP-Tools, manual labelling dis-
agrees with classifier and agrees with PP-Tools.

ner cases of complete disagreement with all other PP-
tools. In other words, these numbers do not directly give
us the true and false positive rates of our classification
methodology.

We first look at the 75 JavaScript programs cor-
rectly labelled as tracking by our classifier, and in-
correctly considered as functional by the PP-Tools.
Table 10 in Appendix A.4 shows 10 representative
JavaScript programs from this sample. We identify
two typical reasons the PP-Tools miss blocking these
JavaScript programs:

1. PP-Tools do not perform regular expression match-
ing on the body of JavaScript programs to identify
known trackers. Examples from these “misses” are
JavaScript programs #2 and #3 in Table 10, which
are allowed by all PP-Tools even though the referred
domain doubleclick.net is included in their black-
lists; this is because these JavaScript programs refer
to this domain in their body, and the PP-Tools per-
form a regular expression match only on the URL
of the JavaScript within the script tag.

2. As expected PP-Tools are unable to block track-
ers that are not in the blacklist. An example is
JavaScript #9 in the table which we manually check
to be a social widget allowing users to ‘like’ com-
ments on the webpage while tracking the user ac-
tivity which is then transmitted to the first party
domain. All PP-Tools miss this JavaScript because
it does not belong to a popular social media do-
main. Similarly, JavaScript #4 in the table belongs
to a Russian tracking and advertising service do-
main i-vengo.com, but it is not in the blacklists of
PP-Tools.

Our classifier correctly marked these JavaScript pro-
grams as tracking as these scripts were syntactically and
structurally similar to the tracking JavaScript programs
used for training our classifiers. We stress that our clas-
sifiers do not need to know about all tracking scripts a
priori; in fact, our classifiers are able to find new track-
ing scripts leveraging the syntactic and semantic sim-
ilarity between known tracking scripts and previously
unknown tracking JavaScript programs.

Next, we look at the 81 JavaScript programs cor-
rectly labelled as functional by our classifier, and incor-
rectly considered as tracking by the PP-Tools. Table 11
in Appendix A.4 shows 10 JavaScript programs from
this sample. The predominant reason for the PP-Tools
mistakenly blocking these JavaScript programs is be-
cause they belong to a tracking domain, even though the
JavaScript itself performs a useful functionality. A typi-
cal example is JavaScript #10 in the table, which fetches
content from the first party domain buzzfeed.com with-
out sending or collecting user information.

Lastly, we believe that the main reason our classifier
misclassified 25 functional JavaScript programs and 19
tracking JavaScript programs is due to their structural
similarity with representatives of the opposite class. For
instance, the JavaScript jquery.cookie.js in the web-
site pnc.com modifies cookies for this non-tracking do-
main. The PP-Tools rightly allow this JavaScript be-
cause pnc.com is not a tracking domain. But, due to the
structural similarity of this JavaScript with JavaScript
programs that modify cookies for tracking domains, our
classifier deemed it as tracking. Similarly, our classifier
misclassified the JavaScript count.js that gathers com-
ment statistics on the website listverse.com and sends
this information to the domain disqus.com, which is
listed as a tracker by the PP-Tools. Our classifier mis-
read this due to its similarity with JavaScript programs
that maintain comments on a webpage but do not send
this information through to third party trackers. For
brevity, we do not enlist samples of these two categories
of JavaScript programs misclassified by our classifier.

7 Discussion
In the following, we discuss possible uses and limitations
of our approach.

7.1 Possible Uses
We envision at least two di�erent uses of our technique:
7.1.1 Browser Extension
A natural application of our technique is a client-
based browser extension to evade trackers. We are cur-
rently developing a Firefox browser extension which ex-
tracts the JavaScript programs while a webpage is being
loaded (prior to rendering) and calculates the similar-
ities of the observed JavaScript programs against the
training model which is kept locally. As discussed later
in this section, we aim to periodically update the train-
ing model using a semi-supervised learning technique
[23]. We believe that such an extension is practical, as
our current system classifies in the order of millisec-
onds per website. Development of the browser extension

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

c:	classifier,	p:	PP-Tool

Our	Classifiers	and	PP-Tools	in	the	Wild

• 75%	of	the	case,	our	classifier	is	right	

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Our	Classifiers	and	PP-Tools	in	the	Wild

• PP-Tools	block	JSes from	a	tracking	domain	even	though	JSes
perform	useful	functionality	

39 |

Towards Seamless Tracking-Free Web: Improved Detection of Trackers via One-class Learning 92

Disagreement Total Sample Manual Labelling
Tracking Functional

Tc flp Fp 4,610 100 75 25
Fc flp Tp 4,461 100 19 81

Table 8. Comparison of random samples of disagreement between
our classifier and All PP-Tools. manual labelling agrees with
classifier and disagrees with PP-Tools, manual labelling dis-
agrees with classifier and agrees with PP-Tools.

ner cases of complete disagreement with all other PP-
tools. In other words, these numbers do not directly give
us the true and false positive rates of our classification
methodology.

We first look at the 75 JavaScript programs cor-
rectly labelled as tracking by our classifier, and in-
correctly considered as functional by the PP-Tools.
Table 10 in Appendix A.4 shows 10 representative
JavaScript programs from this sample. We identify
two typical reasons the PP-Tools miss blocking these
JavaScript programs:

1. PP-Tools do not perform regular expression match-
ing on the body of JavaScript programs to identify
known trackers. Examples from these “misses” are
JavaScript programs #2 and #3 in Table 10, which
are allowed by all PP-Tools even though the referred
domain doubleclick.net is included in their black-
lists; this is because these JavaScript programs refer
to this domain in their body, and the PP-Tools per-
form a regular expression match only on the URL
of the JavaScript within the script tag.

2. As expected PP-Tools are unable to block track-
ers that are not in the blacklist. An example is
JavaScript #9 in the table which we manually check
to be a social widget allowing users to ‘like’ com-
ments on the webpage while tracking the user ac-
tivity which is then transmitted to the first party
domain. All PP-Tools miss this JavaScript because
it does not belong to a popular social media do-
main. Similarly, JavaScript #4 in the table belongs
to a Russian tracking and advertising service do-
main i-vengo.com, but it is not in the blacklists of
PP-Tools.

Our classifier correctly marked these JavaScript pro-
grams as tracking as these scripts were syntactically and
structurally similar to the tracking JavaScript programs
used for training our classifiers. We stress that our clas-
sifiers do not need to know about all tracking scripts a
priori; in fact, our classifiers are able to find new track-
ing scripts leveraging the syntactic and semantic sim-
ilarity between known tracking scripts and previously
unknown tracking JavaScript programs.

Next, we look at the 81 JavaScript programs cor-
rectly labelled as functional by our classifier, and incor-
rectly considered as tracking by the PP-Tools. Table 11
in Appendix A.4 shows 10 JavaScript programs from
this sample. The predominant reason for the PP-Tools
mistakenly blocking these JavaScript programs is be-
cause they belong to a tracking domain, even though the
JavaScript itself performs a useful functionality. A typi-
cal example is JavaScript #10 in the table, which fetches
content from the first party domain buzzfeed.com with-
out sending or collecting user information.

Lastly, we believe that the main reason our classifier
misclassified 25 functional JavaScript programs and 19
tracking JavaScript programs is due to their structural
similarity with representatives of the opposite class. For
instance, the JavaScript jquery.cookie.js in the web-
site pnc.com modifies cookies for this non-tracking do-
main. The PP-Tools rightly allow this JavaScript be-
cause pnc.com is not a tracking domain. But, due to the
structural similarity of this JavaScript with JavaScript
programs that modify cookies for tracking domains, our
classifier deemed it as tracking. Similarly, our classifier
misclassified the JavaScript count.js that gathers com-
ment statistics on the website listverse.com and sends
this information to the domain disqus.com, which is
listed as a tracker by the PP-Tools. Our classifier mis-
read this due to its similarity with JavaScript programs
that maintain comments on a webpage but do not send
this information through to third party trackers. For
brevity, we do not enlist samples of these two categories
of JavaScript programs misclassified by our classifier.

7 Discussion
In the following, we discuss possible uses and limitations
of our approach.

7.1 Possible Uses
We envision at least two di�erent uses of our technique:
7.1.1 Browser Extension
A natural application of our technique is a client-
based browser extension to evade trackers. We are cur-
rently developing a Firefox browser extension which ex-
tracts the JavaScript programs while a webpage is being
loaded (prior to rendering) and calculates the similar-
ities of the observed JavaScript programs against the
training model which is kept locally. As discussed later
in this section, we aim to periodically update the train-
ing model using a semi-supervised learning technique
[23]. We believe that such an extension is practical, as
our current system classifies in the order of millisec-
onds per website. Development of the browser extension

Brought to you by | CSIRO Library Service
Authenticated

Download Date | 7/7/17 5:03 AM

c:	classifier,	p:	PP-Tool

• 81%	of	the	case,	our	classifier	is	right

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

New	Trackers	Found

40 |

Discover	more	than	4K+	previously	unknown	tracking	
services

• PP-Tools	perform	RE	matching	on	the	URL	in	<script>	and	fail	to	
block	tracking	JSes that	are	not	in	the	blacklist

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

More	Results,	Analyses	and	Discussions

41 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Summary	of	Contributions

• Analyze	PP-Tools’	performance	
• Regular	expressions	based	on	blacklists	are	ineffective
• Accuracy ranges	from	37%	to	78%	while	false	positive	rates range	from	6%	to	
21%.

• Design	a	classification	framework	to	separate	tracking JSes from	
functional JSes:
• Training	with	small	single	class	of	tracking	(or	functional)	JSes
• Our	validated	classifiers	achieve	99%	accuracy	
• Discover	more	than	4K+	previously	unknown	tracking	services

42 | Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

Questions?

43 |

Muhammad.Ikram@data61.csiro.au

https://research.csiro.au/ng/about-us/students/muhammad-ikram/

Big	Thanks	to	PETS	Reviewers

Ikram et	al.,	Towards	Seamless	tracking-free	web	browsing:	Improved	detection	of	tracking	JavaScripts via	one-class	learning

