
Private Processing of Outsourced Network Functions:
Feasibility and Constructions∗

Luca Melis
University College London, UK
luca.melis.14@ucl.ac.uk

Hassan Jameel Asghar
Data61, CSIRO, Australia

hassan.asghar@data61.csiro.au

Emiliano De Cristofaro
University College London, UK
e.decristofaro@ucl.ac.uk

Mohamed Ali Kaafar
Data61, CSIRO, Australia

dali.kaafar@data61.csiro.au

ABSTRACT
Aiming to reduce the cost and complexity of maintaining network-
ing infrastructures, organizations are increasingly outsourcing their
network functions (e.g., firewalls, traffic shapers and intrusion de-
tection systems) to the cloud, and a number of industrial players
have started to offer network function virtualization (NFV)-based
solutions. Alas, outsourcing network functions in its current set-
ting implies that sensitive network policies, such as firewall rules,
are revealed to the cloud provider. In this paper, we investigate the
use of cryptographic primitives for processing outsourced network
functions, so that the provider does not learn any sensitive infor-
mation. More specifically, we present a cryptographic treatment
of privacy-preserving outsourcing of network functions, introduc-
ing security definitions as well as an abstract model of generic net-
work functions, and then propose a few instantiations using partial
homomorphic encryption and public-key encryption with keyword
search. We include a proof-of-concept implementation of our con-
structions and show that network functions can be privately pro-
cessed by an untrusted cloud provider in a few milliseconds.

Keywords
NFV privacy; homomorphic encryption; searchable encryption

1. INTRODUCTION
Network functions, such as firewalls and load balancers, are in-

creasingly moving to “the cloud” by means of software processes
outsourced on commodity servers. Using virtualization, network
functions can be emulated in software in a cost-effective manner,
and outsourced to the cloud reaping the benefits of reduced man-
agement and infrastructure costs, pay-per-use, etc. [15]. Specifi-
cally, network function virtualization (NFV) is currently being pro-
posed by several major industrial operators like Cisco, Alcatel-
Lucent, and Arista, as a service to multiple clients [14]. In such a

∗The full version of this paper is available at IACR’s Cryptology
ePrint Archive: https://eprint.iacr.org/2015/949

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SDN-NFVSec’16, March 11, 2016, New Orleans, LA, USA.
c© 2016 ACM. ISBN 978-1-4503-4078-6/16/03. . . $15.00

DOI: http://dx.doi.org/10.1145/2876019.2876021

multi-tenant setting, network functions are run on virtual machines
(VMs) belonging to different clients hosted on the same hardware
(server). Naturally, this raises a number of security concerns for
clients, including confidentiality and integrity. While such issues
are common to IT infrastructure outsourcing in general [19], more
specific to NFV is the sensitivity of an organization’s proprietary
network policies, which instruct how network functions are to be
performed. These are potentially vulnerable to compromise from
competing organizations as well as the cloud service provider itself.
For instance, firewall rules do not only reveal IP addresses of hosts
and network topology but also defense strategies and sensitivity of
different services and resources, which in the traditional setting are
only known to a few network administrators [8, 17].

This motivates the need to protect the privacy of network poli-
cies against an untrusted cloud provider, as well as other tenants
and third parties. We call this the private NFV problem, which,
as we discuss in Section 2, has been largely overlooked by prior
work on NFV security. We construct an abstract model of net-
work functions, which seeks to generalize most network functions
used in practice, as well as relevant adversarial models (Sections 3
and 4). Based on this abstraction, we propose two different solu-
tions: one based on partial homomorphic encryption and the other
based on public-key encryption with keyword search (PEKS) (Sec-
tion 5), secure in two different adversarial models, which we de-
fine as strong and weak. Our solution against the weak adversary
is also the first to include stateful network functions, e.g., a state-
ful firewall that keeps track of open TCP/IP connections. Finally,
we present a proof-of-concept implementation of our schemes and
evaluate their performance overhead using an outsourced firewall
as a use-case (Section 6). Using a typical 5-tuple based firewall
rule, we show that a packet can be processed within 109 ms and
180 ms, respectively, using our solutions secure against the weak
and the strong adversary, and demonstrate that our schemes scale
quite well, as processing times reach 250 ms and 1,208 ms, respec-
tively, using 10 rules. Bearing in mind that our proof-of-concept
implementation is not optimised for efficiency (e.g., lack of multi-
threading), our results indicate that private NFV is feasible using
existing cryptographic primitives.

2. RELATED WORK
Khakpour and Liu [8] introduce a data structure called Bloom

Filter Firewall Decision Diagram (BFFDD) in order to anonymize
firewall policies built from Firewall Decision Diagrams (FDD) [7].
However, as acknowledged by the authors, Bloom filters [2] nat-
urally introduce false positives. Thus, occasionally, packets that
do not match any policy are (mistakenly) dropped by the firewall.

https://eprint.iacr.org/2015/949
http://dx.doi.org/10.1145/2876019.2876021

Furthermore, security/privacy of their solution is argued against
a black-box assumption of Bloom filters, which does not analyze
the security properties of Bloom filters themselves (such as one-
wayness).

Shi, Zhang, and Zhong [17] use multilinear maps from Coron,
Lepoint and Tibouchi (CLT), which are based on graded encoding
systems [6], to encode each bit of a firewall rule as a pair of level-1
encodings and a level-(n+1) encoding for the whole rule, where n
is the length of a possible packet. Following the security properties
of the multilinear map, it is not possible to obtain level-i or lower
encodings given a level-(i+1) encoding for each i. Upon receiving
a packet, the encodings corresponding to the bits of the packet are
multiplied and the result is then matched with the level-(n + 1)
encoding for the whole policy through a procedure called isZero.
Unfortunately, the CLT construction has been recently shown to
be insecure, due to an attack on the isZero routine [5]; a key
ingredient to check if a packet matches a policy.

Although both these constructions focus specifically on outsourc-
ing firewalls, they exclude details of how state tables can be main-
tained in their framework by a stateful firewall. Furthermore, due
to being specific to firewalls, their solutions are only relevant to
policies that result in a binary decision (allow or deny), excluding
network functions that modify packet contents or perform more
complex actions. Compared to these two solutions, our solutions
for private NFV cover a much broader range of network functions,
including firewalls, and also consider state tables.

Private NFV also resembles real-time processing over encrypted
packets. The work in [16] discusses deep packet inspection over
encrypted data, however, it requires the sender (third party) to be
a participant in the protocol, which makes it impossible to use this
solution on existing infrastructures (a requirement that we describe
as compatibility in Section 3.2).

3. PRELIMINARIES

3.1 System Model
Examples of Network Functions. Examples of the type of net-
work functions and associated policies considered in this paper are
firewalls, load balancers, IDS and carrier-grade NAT. For an illus-
tration of a policy, see the example in Section 4.

Cloud and Client Middleboxes. We consider a scenario where
an organization, the client, outsources its network functions to the
cloud, as illustrated in Figure 1. The outsourced network functions
run within virtual machines (VMs) on the cloud servers. We call
this the NFV setting, as opposed to the traditional setting in which
dedicated network middleboxes perform network functions within
the client’s private network. The outsourced VMs are collectively
called the cloud middlebox (MB). Not all network functionalities
need to be outsourced to the cloud, and as such the client still re-
quires its own middlebox to carry out the remaining network func-
tions or to communicate with the cloud MB. We call this the client
MB. The network policies which describe how the network func-
tions are to be processed are installed in the cloud MB by the client.
The cloud MB receives inbound traffic destined for the client, pro-
cesses the network functions assigned to it, and forwards the re-
sult to the client MB. Outbound traffic is the one originating from
within the client’s private network.

Trust Assumptions. We assume the cloud MB to be honest-but-
curious, i.e., it performs network functions dutifully yet wishes to
infer the policies. For some proposed solutions, we will assume
the cloud MB to have a semi-trusted component, which we call the
entry MB. The entry MB receives the packet and performs some

Figure 1: Network Function Virtualization.

preliminary processing before handing the results over to the cloud
MB. Inclusion of an entry MB remarkably improves performance.
We stress that the entry MB does not share any private keys with
the client MB, and all the processing is done using public-key op-
erations.

3.2 Desired Properties
Privacy. The client expects its network policies to remain hid-
den not only from third parties, but also from other tenants and
the cloud.
Performance. The client expects the outsourced network functions
to maintain the quality of service of the traditional setting, i.e., real-
time processing and minimal client-side intervention.
Compatibility. Third parties should be able to send/receive traffic
to/from the client as if the network functions are implemented in the
traditional setting, without the need for additional setup (e.g., im-
plementation of customized network and cryptographic protocols)
to communicate with the client.

Our goal is to explore the balance between security and perfor-
mance, while satisfying the compatibility constraint.

3.3 Limitations and Scope
Before introducing our solutions, we discuss a few limitations of

our model and make some important remarks.
Traffic Analysis. An adversary may intercept and analyze traffic
between the cloud MB and a third party and try to infer network
policies based on the pattern of inbound and outbound packets.
However, note that this can also be done in the traditional setting.
Virtual Machine Isolation. One way to achieve private NFV is
through VM isolation, e.g., isolation of memory and disk stor-
age, together with the assumption that the hypervisor belongs to
a trusted base [9, 19]. A crucial aspect for secure isolation is to
ensure that the hypervisor, i.e., trusted computing base, is small in
terms of lines of codes (LoC) [18, 19]. Unfortunately, commod-
ity hypervisors are not optimized in terms of lines of codes [19].
This approach is also vulnerable to cross-VM side-channel attacks
where a malicious VM is co-located at the physical host of the tar-
get VM and exploits various side channels (e.g., cache) to obtain
information such as cryptographic keys [13, 20].
Coverage of Network Functions. Although our definition of net-
work functions is broad enough to cover many network functions,
we cannot claim that it covers all network functions in practice. Our
definition can be incrementally modified to cover all network func-
tions. A case in hand is traffic shaping, where delivery of certain
packets is delayed to satisfy performance guarantees, which we do
not currently consider (at the cloud MB).
Inbound vs Outbound Traffic. In this work, we focus on inbound
traffic, i.e., traffic coming from third parties toward the client. Al-
though our private NFV solutions are applicable to outbound traffic
as well, this would require redirecting traffic from the cloud MB
(after private processing of network functions) to the client MB,
which in turn forwards it to the third party receiver.

4. MATHEMATICAL FORMULATION
Let n be a positive integer and x and y be n-element vectors:

then 〈x,y〉 denotes their dot product. The Hadamard product or
the entry-wise product of the vectors x and y is x ◦ y, i.e., the n-
element vector whose i-th element is xiyi. The vector ei denotes
the n-element vector with all 0s except a 1 in the i-th position.
The encryption function E on a vector x is defined as the vector
E(x) =

(
E(x1) E(x2) · · · E(xn)

)
.

4.1 Network Functions
Let n ≥ 1 and q ≥ 2 be positive integers. We define a packet

x as a vector in Zn
q , where n represents the number of fields of the

packet (source IP address, protocol type, etc.) and q is an upper
bound on the length of packet fields. A network function ψ from
Zn

q onto Zn
q is the pair (m,a) defined as

ψ(x) = m(x)a(x) + (1−m(x))x, (1)

where m : Zn
q → {0, 1} is called the matching function, and

a : Zn
q → Zn

q is the action function. The intuitive meaning of
the above is that when a network function receives a packet x,
the matching function decides whether the current policy applies
to this packet. If yes, the relevant action is performed by the action
function. If the result of the match is zero, the packet is left un-
changed. Composition of network functions is defined as ψi(x) =
ψi(· · ·ψ2(ψ1(x)) · · ·) for i ≥ 1.

The definition of ψ as a match-action pair is motivated by the
OpenFlow communications protocol between the control and for-
warding planes in Software Defined Networks (SDN) [11]. Note
that different fields of a packet are not necessarily of the same
length, e.g., the version field of an IPv4 packet is 4 bits long while
the source IP field is 32 bits long. Therefore, we consider a value
q that is large enough to incorporate the largest header field. The
packet payload, which can be much larger, is divided into chunks
of length log2 q bits.

Virtual Fields. Besides the standard fields, we assume the pres-
ence of additional virtual fields. These originate from the imple-
mentation of our private NFV instantiations and are inserted in the
payload of the packet. For instance, a tag field with the value drop
assigned by cloud MB in the case of firewalls.

Example. We assume a simple network address translation (NAT)
policy as a running example. For instance, upon receiving a packet
x with destination IP in the range 128.*.*.*, the NAT changes
the destination IP and port to 196.*.*.* and 22, respectively.
Without loss of generality, we assume that the destination IP and
destination port belong to the first two elements of x, i.e., x1 and
x2. Thus, the matching function is:

m(x) =
{

1 if x1 ∈ [128.0.0.0,128.255.255.255]
0 otherwise

,

and the action a(x) is adding 68.0.0.0 to x1, −x2 + 22 to x2,
and 0 to xi, for i ∈ {3, . . . , n}. Note that the IP addresses are
mapped in Zq .

4.2 Stateful Network Functions
Some network functions such as (stateful) firewalls maintain dy-

namically generated states. When a packet arrives, it is first checked
against the state table to see if any entry in the state table matches
the fields of the packet. If a matching entry is found, the prescribed
action is performed on the packet and it does not need to be fur-
ther processed by other (static) policies. An example is the state of
TCP connection maintained by a firewall, as depicted in Table 1.

We note that in our model, state tables can be abstracted as dy-
namic match-action pairs, where the state and time-out columns in
the state table can be thought of as virtual fields of the IP packet
and the action as the addition of the tag field with value “allow”.
However, one key difference is that once a match has been found
further processing is discontinued,1 otherwise there would be no
performance gain from maintaining states.

ID src IP src port dst IP dst port prot state timeout
1 192.168.1.1 120 192.168.1.2 121 6 new 59
2 192.168.1.129 45 192.168.1.140 8080 6 est 3600

Table 1: An example of a firewall state table.

4.3 Private NFV
Our goal is to provide privacy of an outsourced network func-

tion ψ given a set of packets x1,x2, . . . ,xt. From an adversarial
perspective, the network function ψ can be learned either directly
through the description of (m,a) or indirectly by deducing from
the outputs ψ(x1), ψ(x2), . . . , ψ(xt). In order to achieve privacy,
we therefore need a scheme that protects both the network func-
tion ψ and its output. We call this PNFV (Private NFV). Let x be
a packet as defined before and ψ be a network function such that
ψ(x) = x′.

DEFINITION 1 (PNFV). A public-key PNFV scheme is a tu-
ple (kg, enc, dec, tr, proc) of probabilistic polynomial time algo-
rithms defined as follows:

– Key generation: The algorithm s, p ← kg(1k) returns the
secret key s and public key p, where k is the security param-
eter.

– Packet encryption: The algorithm E(x) ← enc(p,x) takes
as input the public key p and the packet x and outputs the
encrypted version E(x). Note that this is element-wise en-
cryption, which results in n ciphertexts.

– Network function transformation: The algorithm φ← tr(ψ)
takes as input the network function ψ and outputs a trans-
formed network function φ.

– Packet processing: The algorithm E(x′) ← proc(φ,E(x))
takes as input the transformed network function φ and the
encrypted packet E(x) and outputs the encryption of x′.

– Packet decryption: The algorithm x′ ← dec(s, E(x′)) takes
as input the secret key s and the encryption of x′ and outputs
x′. We may write D(E(x)) to represent dec(s, E(x)).

Concisely, we can define the output of PNFV given x and ψ as
PNFV(x, ψ). Key generation, network function transformation,
and packet decryption algorithms are computed by the client MB,
while the remaining two algorithms are processed by the cloud MB.
We have the following definition for correctness.

DEFINITION 2 (CORRECTNESS). A public-key PNFV scheme
is correct if for all x ∈ Zn

q it holds that

Pr[PNFV(x, ψ) 6= ψ(x)] ≤ negl(k),

where s, p ← kg(1k), negl is a negligible function and k is the
security parameter.

PNFV Security. As mentioned before, we consider an honest-but-
curious adversary, i.e., a passive adversary that correctly computes
PNFV but would like to infer ψ. More precisely, we conduct the
1There are network functions for which this is not true, e.g., traffic
monitoring in which aggregate statistics of packets, such as number
of packets received, are maintained.

following experiment involving an adversary A to model PNFV
security. First, A is given the public key p, the description of algo-
rithms (kg, enc, dec, tr, proc) and the transformed network func-
tion φ. While A is in the test state, it can sample any packet x and
obtain its output E(x′) such that ψ(x) = x′ through the packet
processing algorithm. Finally, in the guess stateA outputs its guess
of the network function ψ as ψ′. If ψ′ = ψ, A wins.

The above experiment abstracts what we call the strong adver-
sary, denoted Astrong, to distinguish it from a weaker adversary, de-
noted Aweak. The weak adversary differs from the strong one in
that it is only given oracle (black box) access to part of the packet
processing algorithm proc, and is not shown the incoming packet
x. Instead a packet is chosen randomly from a publicly known
distribution D, whenever Aweak requests for outputs of the above
functions on a fresh input x. In practice, this model is realized by
introducing an entry MB, which is assumed to be running within a
black box. The entry MB receives the packet and performs part of
the packet processing algorithm proc, which is hidden from Aweak.

DEFINITION 3. A public-key PNFV scheme is (τ, ε)-private if
for any adversary A that runs in time τ = poly(k), it holds that

Pr[APNFV = ψ] ≤ ε = ε(k),

where x′ = ψ(x), A can be either Astrong or Aweak and k is the
security parameter.

5. PNFV INSTANTIATIONS
We describe solutions for a generic network function ψ, which

given a packet x implements the policy:

if xi == y then xj ← z, (P1)

where i, j ∈ [n]. We call this the equality matching policy, a spe-
cial case of the more general range matching policy defined as:

if xi ∈ [a, b] then xj ← z. (P2)

We begin by giving a brief revision of the different cryptographic
primitives used in our schemes.

5.1 Cryptographic Primitives
The BGN Cryptosystem. The Boneh, Goh and Nissim (BGN)
cryptosystem is a partial homomorphic encryption scheme which
on top of being additively homomorphic, also allows for one mul-
tiplication of ciphertexts. We denote the encryption algorithm of
BGN by E.

PEKS. Public-key Encryption with Keyword Search (PEKS) [3],
produces the searchable encryption E of a keyword w using pub-
lic key p as E(w) and the trapdoor T (w) of w using private key
s. It includes the public key algorithm test(E(w), T (w′)) which
outputs 1 if w′ = w and 0 otherwise.

Pseudorandom Permutation. We also assume the existence of a
secure pseudorandom permutation σ, mapping from [n] to itself. In
practice, this can be implemented using a block cipher, [10] such
as AES.

5.2 Privacy against the Strong Adversary
It is not hard to see that using fully homomorphic encryption

(FHE), private NFV is realisable. However, even though much
progress in improving the efficiency of FHE has been made [12],
we do not have a truly efficient FHE instantiation providing accept-
able performance in the context of NFV. However, efficient partial
homomorphic encryption schemes, like BGN [4], could be used,

as discussed next. We start with the function ψ described by pol-
icy P1, and describe the matching function as:

m(x) = 1− 〈x, ei〉+ y.

If we denote m(x) = c, then c = 1 if y = xi, and c 6= 1 if xi 6=
y. In other words, the matching function will output 1 only if the
packet matches the policy and give a value other than 1 otherwise.
The action function is:

a(x) = x− x ◦ ej + zej ,

which replaces xj with z, as required. Now, we need an encryption
algorithm E that can homomorphically compute both m and a.
More specifically, E should give the encryption of m as:

E(m(x)) = E(1)− 〈E(x), E(ei)〉+ E(y) (2)

and the encryption of a as:

E(a(x)) = E(x)− E(x) ◦ E(ej) + E(zej). (3)

The BGN cryptosystem allows to homomorphically compute one
multiplication and any number of additions. Therefore, we can use
it to construct a PNFV scheme secure against the strong adversary.
The scheme is presented in Figure 2. We omit the description of
the key generation algorithm (which should be obvious from the
underlying cryptosystem), and further include the packet encryp-
tion routine within the packet processing algorithm.

Range matching. In the full version of the paper, we show that
we can also use the BGN cryptosystem for range matching, i.e., the
network function ψ defined by policy P2.

Correctness. This follows from the fact that BGN can successfully
decrypt homomorphic encryptions of unlimited additions and one
multiplication (per ciphertext).

Privacy. Intuitively, the scheme is private as the adversary only
sees randomized encryptions of matching and action functions and,
therefore, cannot infer whether the matching function resulted in a
1 or some other value. More formally, we prove, in the full version
of the paper that if BGN is semantically secure, our PNFV scheme
is private against Astrong.

Discussion. Ideally, the client MB would receive the encryption of
the whole network function, i.e., E(ψ(x)) and simply decrypt it
to get the final packet. In our protocol, it actually has to perform
two decryption operations instead of one (one to check the output
of the matching function and another to decrypt the result), and, for
each packet, three encryptions need to be sent. This is due to the
fact that the output of the matching function is a variable (i.e., not
a constant value) when there is no match. This also means that we
cannot perform iterations of N network functions.

5.3 Privacy against the Weak Adversary
We now present a more efficient solution that is secure against

the weak adversary, based on public-key encryption with keyword
search (PEKS) [3], a probabilistic encryption scheme (E,D) and
a pseudorandom permutation σ. Figure 3 presents our solution, in
the context of policy P1. Observe that I denotes the n-element in-
dex vector whose i-th element is i itself, and x||I the n-element
vector whose i-th element is xi||i. In this model, the weak adver-
saryAweak does not have access to the entry MB packet processing.
Thus, we have a somewhat weaker notion of security in this scheme
compared to the BGN-based scheme which is secure against the
strong adversary. The advantage over the BGN-based scheme is
that we only send one encrypted packet, and the client MB only
needs to decrypt the packet. Note that steps 1, 2 and 3 in Figure 3

Network function transformation. The client MB computes the tuple (E(1), E(ei), E(y), E(ej), E(zej)) and sends it to the cloud MB.

Packet processing. Upon receiving a packet x the cloud MB:
1. Encrypts the packet as E(x).
2. Computes E(a(x)) according to Eq. 3 as E(a(x)) = E(x)− E(x) ◦ E(ej) + E(zej)

and E(m(x)) = E(c) according to Eq. 2 as E(c) = E(1)− 〈E(x), E(ei)〉+ E(y)
3. Sends E(x), E(a(x)) and E(c) to the client MB.

Packet decryption. Upon receiving E(x), E(a(x)) and E(c) the client MB:
1. Decrypts E(c) to obtain c.
2. If c = 1, decrypts E(a(x)) to obtain the transformed packet.
3. Else if c 6= 1, decrypts E(x) to obtain the unchanged packet.

Figure 2: PNFV scheme based on the BGN cryptosystem.

Network function transformation. Using PEKS, the client MB computes the trapdoors T (y||i) and T (j). UsingE, the client MB creates the encryption
E(z||j). The client MB sends T (y||i), T (j) and E(z||j) to the cloud MB.

Packet processing. This is divided into entry MB and cloud MB.

Entry MB: Upon receiving a packet x:
1. Encrypts x||I using E and shuffles the result as σ(E(x||I)).
2. Encrypts x||I using PEKS and shuffles the result as σ(E(x||I)).
3. Encrypts I using PEKS and shuffles it as σ(E(I)).
4. Deletes the original packet x.

Cloud MB: Upon receiving σ(E(x||I)), σ(E(x||I)) and σ(E(I)):
1. Checks if there exists an l ∈ [n] such that test(E(xl||l), T (y||i)) = 1.

1.1. If yes, finds an l′ ∈ [n] such that test(E(l′), T (j)) = 1 (which should exist).
1.2. Replaces E(xl′ ||l′) with E(z||j) in σ(E(x||I)) and sends it to the client MB.

2. Else, sends σ(E(x||I)) to the client MB.

Packet decryption. The client MB upon receiving σ(E(x||I)), decrypts to obtain σ(x||I) and then reconstructs x according to I .

Figure 3: Scheme based on PEKS, private against the weak adversary.

performed by the entry MB use the same permutation which is set
once per new packet arrival.
Correctness. The client MB decrypts E(x′||I), permuted by σ,
to obtain x′||I and reconstructs x′ according to I . If the original
packet matches policy P1, then x′

j = z. Likewise, if the packet
does not match the policy, the decrypted packet x′ is the original
packet x. Therefore, our PNFV scheme is correct.
Privacy. Intuitively, sinceAweak does not know which packet index
yields a match and which index the action applies to (due to random
shuffle by σ), and since the matching value y and the action value
z are encrypted, it cannot infer the policy. In the full version of the
paper we prove this formally.
Discussion. The obvious limitation of this scheme is that it is only
private against a weaker adversary. In particular, the cloud MB does
not retain the packet x to match its randomly permuted encryptions,
neither does it attempt to find j in T (j) by checking all possible
encryptions under E of all possible elements in [n]. If the cloud
MB tries to do either of these (unwarranted) actions, it will at best
learn the index j (and not index i, y or z). To find (i, y), the cloud
MB needs to do a brute force search whose complexity is O(2qn).
On the other hand, we only need to send a number of encryptions
per packet independent of the number of network functions N . A
further drawback of the scheme is that it is not applicable to the
range policy, i.e., policy P2.

5.4 Handling State Tables
The private state table solution is built from the PEKS based

PNFV scheme discussed above. Note that homomorphic encryp-
tion based solutions are not applicable to state tables, as the cloud
MB should discontinue processing once a match is found in the

state table. If processing needs to be continued for the packet, and
the current state table only maintains statistics (such as counters),
then this can be implemented in the same way as a normal network
function. In case no entry in the state table is found, the cloud MB
continues processing the static network policies via the underlying
PNFV scheme. Due to space constraints, we do not detail the solu-
tion here. The reader can refer to the full version of the paper for
details. The privacy argument of the proposed state table solution
is similar to the one for the PEKS based PNFV scheme.

6. POC IMPLEMENTATION
In the following, we provide a proof-of-concept (PoC) of the

feasibility of our PNFV schemes. Due to space constraints, we
only show aggregate performance comparison of the two proposed
PNFV schemes. More detailed analysis appears in the full version
of the paper. We implemented PEKS- and BGN-based schemes in
C using the RELIC cryptographic library [1], and used policy P1
to represent a generic network function. Figures 4(a) and 4(b) plot
the aggregate execution times for the two schemes (adding up times
for packet encryption, processing and decryption) against, respec-
tively, increasing number of fields (with 10 policies) and increasing
number of policies (with 5 fields used for private processing). The
PEKS based scheme clearly outperforms the BGN-based scheme.
For instance, for a network function with 10 policies, private pro-
cessing of 5 packet fields takes 250 ms in the PEKS based scheme
and 1,208 ms in the BGN-based scheme.

Translated into packets per second (pps), the above two numbers
translate to a modest 4 pps and 0.82 pps, respectively. However,
we remark that our implementation merely stands as a proof-of-
concept. In particular, we did not go for further efficiency, e.g.,

(a) With 10 policies (b) With 5 packet fields

Figure 4: Aggregate execution times (packet encryption, processing and
decryption) for the two schemes.

using more powerful machines or multi-threading. For instance,
the time taken by the entry MB, the cloud MB and the client MB for
a packet with a single encrypted field and a network function with
a single policy was 13.32 ms, 5.41 ms and 2.69 ms, respectively,
yielding a total of 21.42 ms. Using multi-threading we can process
a larger number of packet fields (in the case of the entry and client
MB) and the policies (in the case of the cloud MB) in parallel,
thus significantly increasing the number of packets processed per
second. With a slightly more powerful machine that can process
say 50 threads concurrently, we can achieve a rate of more than
2,300 pps (using 21.42 ms as the baseline).

Nevertheless, even without optimizations, our performance is
comparable to that of the schemes proposed in [17]. The three
different modes in [17] yield 60 ms, 1,000 ms and 3,000 ms for
private processing of a 5-tuple with 10 firewall rules. The Bloom
filter based scheme from [8] does much better, achieving 0.1 ms for
a 10 rule firewall.2 However, as described in Section 2, both these
works are narrower in scope and their security, at best, is question-
able.

7. CONCLUSION
This paper addressed the problem of private processing of out-

sourced network functions, where network function policies need
to be kept private from the cloud, other tenants and third parties. We
presented a cryptographic treatment of the problem, introducing se-
curity definitions as well as an abstract model of generic network
functions, and proposed a few instantiations using homomorphic
encryption and public-key encryption with keyword search. The
performance of our proposed solutions is reasonable considering
that we rely on public key operations and provide provable security
in the presence of an honest-but-curious cloud, while guaranteeing
that third party users, who are sending/receiving traffic, are oblivi-
ous to network function outsourcing.
Acknowledgements. Luca Melis and Emiliano De Cristofaro are
supported by a Xerox’s University Affairs Committee award on
“Secure Collaborative Analytics.” and “H2020-MSCA-ITN-2015”
Project Privacy&Us (ref. 675730).

8. REFERENCES
[1] D. F. Aranha and C. P. L. Gouvêa. RELIC is an Efficient

LIbrary for Cryptography.
https://github.com/relic-toolkit/relic.

[2] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7), 1970.

2These approximate numbers are deduced from ACL index 16 from
Figure 8 in [8].

[3] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano.
Public key encryption with keyword search. In Eurocrypt
’04, 2004.

[4] D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-DNF
Formulas on Ciphertexts. In TCC ’05, 2005.

[5] J. H. Cheon, K. Han, C. Lee, H. Ryu, and D. Stehle.
Cryptanalysis of the Multilinear Map over the Integers. In
Eurocrypt ’15, 2015.

[6] J.-S. Coron, T. Lepoint, and M. Tibouchi. Practical
Multilinear Maps over the Integers. In CRYPTO ’13, 2013.

[7] M. G. Gouda and A. X. Liu. Structured Firewall Design.
Comput. Netw., 2007.

[8] A. R. Khakpour and A. X. Liu. First Step Toward
Cloud-Based Firewalling. In SRDS ’12, 2012.

[9] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, R. Kolanski,
M. Norrish, T. Sewell, H. Tuch, and S. Winwood. seL4:
Formal Verification of an OS Kernel. In SOSP ’09, 2009.

[10] M. Luby and C. Rackoff. How to Construct Pseudorandom
Permutations from Pseudorandom Functions. SIAM J.
Comput., 1988.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Comput. Commun. Rev., 2008.

[12] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can
homomorphic encryption be practical? In CCSW ’11, 2011.

[13] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey,
You, Get off of My Cloud: Exploring Information Leakage
in Third-party Compute Clouds. In CCS ’09, 2009.

[14] K. Searl. Top 26 Companies in the Global NFV Market.
http://www.technavio.com/blog/
top-26-companies-in-the-global-nfv-market, 2014.

[15] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes Someone
Else’s Problem: Network Processing as a Cloud Service. In
SIGCOMM ’12, 2012.

[16] J. Sherry, C. Lan, R. A. Popa, and S. Ratnasamy. BlindBox:
Deep Packet Inspection over Encrypted Traffic. In
SIGCOMM ’15, 2015.

[17] J. Shi, Y. Zhang, and S. Zhong. Privacy-preserving Network
Functionality Outsourcing. http://arxiv.org/abs/1502.00389,
2015.

[18] Z. Wang and X. Jiang. HyperSafe: A Lightweight Approach
to Provide Lifetime Hypervisor Control-Flow Integrity. In
IEEE S&P ’10, 2010.

[19] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
Retrofitting Protection of Virtual Machines in Multi-tenant
Cloud with Nested Virtualization. In SOSP ’11, 2011.

[20] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart.
Cross-VM Side Channels and Their Use to Extract Private
Keys. In CCS, 2012.

https://github.com/relic-toolkit/relic
http://www.technavio.com/blog/top-26-companies-in-the-global-nfv-market
http://www.technavio.com/blog/top-26-companies-in-the-global-nfv-market
http://arxiv.org/abs/1502.00389

