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ABSTRACT
Smart wearable devices are widely available today and chang-
ing the way mobile applications are being developed. Appli-
cations can dynamically leverage the capabilities of wearable
devices worn by the user for optimal resource usage and in-
formation accuracy, depending on the user/device context and
application requirements. However, application developers
are not yet taking advantage of these cross-device capabilities.

We thus design AFV (Application Function Virtualization),
a framework enabling automated dynamic function virtual-
ization/scheduling across devices, simplifying context-aware
application development. AFV provides a simple set of APIs
hiding complex framework tasks and continuously monitors
context/application requirements, to enable the dynamic invo-
cation of functions across devices. We show the feasibility of
our design by implementing AFV on Android, and the bene-
fits for the user in terms of resource efficiency and quality of
experience with relevant use cases.
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INTRODUCTION
Numerous wearable devices such as smartphones, tablets,
smartwatches, and fitness bands form Personal Area Networks
(PANs) as illustrated in Figure 1. These devices contain a
rich set of sensors that may continuously monitor personal
attributes and upload them to Internet servers to provide value-
added services. Some devices may each contain sensors that
enable the same functionality. For instance, a fitness band,
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Figure 1. An overview of an personal wearable network.

a smartwatch and a smartphone are each likely to have an
accelerometer, a gyroscope, and a heart rate monitor. Simi-
larly, each device may have direct Internet connectivity, pro-
viding multiple Internet access points. Furthermore, some
wearable devices (Tier 1 devices in Figure 1), will have suffi-
cient computing resources to perform other functions such as
data encoding, compression and encryption.

The majority of popular wearable apps do not efficiently uti-
lize the functionalities available on the devices. For example,
the smartwatch pedometer will still use its own accelerom-
eter when the battery level is low, despite an accelerometer
being available on a fully-charged smartphone. Application
developers rely on the APIs provided by the target device.1

To harness the collective capabilities of PAN devices, devel-
opers have to implement each app individually, incorporating
device resources, the cost of running these functions in each
device and communication costs. This necessarily increases
the complexity of the mobile application development. We
analyzed several popular wearable health and fitness track-
ing applications to identify the main challenges in building
context-aware wearable applications, and to understand how
effectively they are solved by existing apps. Developers tend
to ignore the potential of using other available devices, com-
promising device and network lifetime, as well as the context-
dependent utility of information.

Personal mobile applications are evolving from being a single
program running on a smartphone, to being distributed across
1These APIs abstract a large spectrum of functions (e.g., sensing,
communication) that are actually implemented by the operating sys-
tems or the third party libraries and executed in the device where the
application is running.
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a set of personal smart devices [4]. Developers will need to
leverage PAN resources to provide the best utility for the user.
Therefore, a framework that takes user and device context into
account, a capability realizable with the recent advancements
in wearable computing, to utilize all PAN resources is needed.

In this paper, we present such a framework that extends the
concept of network function virtualization [13] to device func-
tions, then show its feasibility and advantages to users and
application developers. In particular, we make the following
main contributions:

• We design AFV: a framework for wearable application func-
tion virtualization and development of adaptive context
aware wearable applications. AFV provides a simple set of
APIs hiding complex framework tasks while enabling con-
tinuous context monitoring and adaptive function allocation
across devices without developer or user involvement.

• We propose a greedy heuristic function allocation algo-
rithm across devices, considering device/user/application
preferences and function implementation costs. We evaluate
the effectiveness and accuracy of the proposed algorithm
through simulations driven by real experimental cost values.

• We implement AFV on Android to show the feasibility of
our design, which can be accessed as an external library by
application developers.

• We demonstrate AFV’s ability to adapt to context changes
and the benefits for the user through emulated set of relevant
use cases in terms of energy consumption, network access
quality, and monetary cost of bandwidth usage.

The rest of this paper is organized as follows. We begin with
motivation via an exploration of current approaches of appli-
cation development for wearable devices. Then we present the
architecture and the context-aware adaptive function alloca-
tion algorithm and simulation evaluation. The implementation
details and experimental validation of the framework with re-
spect to adaptation and optimization are given next. Finally,
we overview related work and complementary systems, and
provide conclusions with future work.

MOTIVATION
We consider two dimensions of user utility: functional require-
ments (precision, accuracy), and performance requirements
(energy consumption, latency). User experiences show that
one or both of these characteristics are lacking in current ap-
plications [14, 21]. Our initial investigation of popular fitness
applications shows that a lack of adaptability limits utility
regarding the application’s intended purpose and could reduce
network lifetime significantly. Dissatisfied users will hinder
wide deployment.

To determine under what circumstances current wearable fit-
ness apps adapt their behaviour, we use a PAN that consists
of an LG Nexus 5 smartphone running Android 6.0, and an
LG Watch Urbane running Android 5.1.1. We chose the five
most popular health and fitness tracking apps available on both
smartphones and wearables (see Table 1) as they monitor user
activities, report statistics to the user, store data on a device
and upload them to a webserver.

We collected a trace of the execution logs (using Android De-
vice Monitor) for evaluation. The API call onSensorChanged
indicated sensing activity. To check the establishment of con-
nectivity between the smartphone and the wearables, we en-
abled Bluetooth HCI snoop log on the phone to capture
Bluetooth HCI packets and displayed the traces using Log-
cat. Connectivity establishment frequency was determined
by checking the switching from SNIFF to ACTIVE log
messages. We used Wireshark to analyze Internet transmis-
sion and identify the communication frequency between the
application and its corresponding server. Function allocation
and storage options were also reported for each application.

Function allocation
We first consider sensing, data storage and connectivity estab-
lishment functions. Table 1 shows that 3 out of 5 applications
examined required the user to configure sensor usage across
the available PAN devices manually via the smartphone (mas-
ter). The applications on the wearable devices acquire the
configuration from the smartphone automatically.

Most applications require the user to select a single sensor or
a single device to perform a sensing operation. MyFitness-
Companion allows the step count and the heart rate to be
independently associated to a given sensor/device pair, while
in the other applications, the user must select a single device
for all measurements. Only UP allows multiple devices to take
measurements in parallel.

Data upload and local data storage functions are fixed and
pre-configured. All applications use the smartphone, the only
exception being WearRun, which does not communicate.

Observations: Most functions are automatically performed on
the smartphone, except sensing functions which can, in some
cases, be preconfigured by the user. The smartphone acts as a
master device and wearables are considered simple peripheral
sensors, although they already have and will increasingly have
even more capabilities to perform more advanced functions.

Context awareness
We investigated whether the allocated functions change their
behaviour according to the device and user context. We consid-
ered 4 contextual parameters: 1) execution mode (foreground,
background), 2) battery level (low < 20%, high > 20%), 3)
walking pattern (slow, fast), and 4) location (outdoor, indoor).

Sensing frequency depends on the sensor, mostly determined
by the Operating System (OS). Indeed, the developer can
specify a given sensing frequency, but this is only considered
to be a hint and it is usually ignored. The sensing frequency
of UP increases with the walking speed for both smartphone
and smartwatch. All applications using motion sensors adapt
their behaviour to changes in walking speed; this is a feature
defined by the OS. In contrast, Sleep on the smartphone only
varies the sensing frequency when the application execution
mode changes from foreground to background.

Data exchange frequency is application-dependent as shown
in Table 1. When data is sensed on multiple devices in parallel
(e.g. UP) for a particular function, only one value is selected
discounting all the resources consumed by the other devices.
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Application Activity Device Primary Function Data Sensing Upload Storage
Sensors Allocation Exchange [Hz] [Hz] [Hz]

UP Walking Phone Motion Manual 1/60 1.5 1/60 Daily
Watch 9-axis Automatic 1.5 N/A N/A

MyFitnessCompanion Walking Phone GPS Manual 1/3 1 1/60 On-demand
Watch Motion Automatic 1 N/A N/A

WearRun Walking Phone N/A N/A N/A N/A N/A N/A
Watch Step counter Automatic 1.4 N/A Automatic

Sleep Staying Phone Accelerometer Manual 1/20 1.1K 0.1/60 On-demand
Watch Accelerometer Automatic 2.2K N/A N/A

Cardiograph Sitting Phone Camera Automatic On-demand 28.6 1/60 On-demand
Watch HR sensor Automatic - N/A N/A

Table 1. Summary of function allocation and context-awareness of popular health and fitness applications.

Some applications modify the data exchange frequency when
the execution mode changes. For instance, UP only exchanges
data (0.016Hz) when the smartphone application is in the fore-
ground; Sleep reduces the frequency from 0.05Hz to 0.008Hz
when changing from foreground to background. This is due to
two main reasons: 1) data aggregation on the smartphone is
not required or can be performed at a low frequency when the
app is in the background, as data is not actually reported to
the user, and 2) existing tools force the user to define how an
application should behave for the different execution modes.

Finally, data upload to an Internet webserver and data stor-
age are agnostic to all context parameters. Data storage is
often performed on demand by all applications. Moreover, all
application functions are agnostic to battery level and loca-
tion parameters. Developers would have to provide ad-hoc
monitoring and adaptation engines.

Observations: Existing applications do not provide context
monitoring or dynamic adaptation to context changes. They
leverage limited context awareness tools provided by the OS.

Using context for the optimization of computation, sensing
and communication resources has been widely studied in the
research literature (e.g., [8, 11]). However, determining the
user context accurately and efficiently has been a difficult task,
which may require several lines of code (LoC) with a signifi-
cant impact on the development complexity. As a consequence,
most current applications do not implement adaptive function
placement. Instead, functions are statically pre-defined by the
developer or user-selected.

ARCHITECTURE
Therefore, if all available PAN resources and the user context
can be leveraged, it should be possible to improve the usability
and the quality of experience of the users significantly. We
believe that this can be done by providing an AFV interface,
which takes care of the context-aware function placement for
utilization of resources available on multiple PAN devices.
The AFV framework has the following features:

• Usability: minimizes the complexity for application devel-
opers and configuration for the user;

• Optimality: carries out the function placement to maxi-
mize the usability and user quality of experience;

• Adaptability: dynamically configures the system at run-
time according to changes in the context, applications and
user needs.

Current PAN devices can be divided into two broad categories,
which we refer to as Tier 1 and Tier 2, as depicted in Fig-
ure 1. Tier 1 devices, (e.g. smartglasses, smartwatches, smart-
phones), are relatively more resourceful than Tier 2 devices.
Tier 2 devices, (e.g. smartshoes and bio-patches) simply carry
out sensing functions. The distinguishing features of Tier 1
devices are the following: a) availability of heterogeneous
long-range network connectivity (WiFi, cellular), and b) abil-
ity to process sensed information. Thus, Tier 1 devices may be
"in-charge” of making decisions as well as be equipped with a
rich-set of sensors, multiple connectivity interfaces, storage
and computing power to perform wide set of functions (e.g.,
compression, encoding, rendering, intrusion detection, firewall
filtering, encryption), many of which are generic and can be
executed in multiple PAN devices.

Figure 2 provides an overview of the main modules of the
AFV framework. Every application registers requests for one
or more virtual functions via the function APIs. Application
function registration requests are managed by the Function
Manager module, while the Function Execution module man-
ages function invocation on the device identified by the De-
cision Engine. The Context Monitoring module periodically
monitors device/user context, providing inputs to the decision
engine. The Communication Manager maintains efficient com-
munication among the AFV-enabled devices (Tier 1 devices).
Tier 2 devices are managed via the OS of the paired devices.

AFV APIs
AFV provides two main types of APIs: function APIs that are
executed during regular operation and preference APIs that
are executed at application start-up.

Function APIs
For each supported function, AFV provides a specific API to
the developer. As such, the API augments the existing API
for functions on single devices by incorporating the necessary
components to realize framework tasks. As an example, Fig-
ure 3 contains the AFV sensing function API, along with the
API provided by the OS2 for the same function on a single
device. The onSensorChanged and unregisterListener
APIs do not require any change with respect to OS APIs. The
registerListener API requires simple modifications from
the original API. First, the maxReportLatencyUs input is not
only used as in the original API, but it also defines the data ex-
change frequency between applications and devices. Second,

2Android in the example

983

SESSION: POWER SAVING TECHNIQUES FOR MOBILE COMPUTING



�	�����
�
�

�
	�

��
���
�
��
�
	��

��
�	���
��
�����

�

AFV APIs 

app 1 app 2 app 3 

��
���
�
��	����
�

OS APIs 

A
FV

 F
ra

m
ew

or
k 

O
S

 
A

pp
s 

��
�
�
�


��
��

�

��

�

�

	�
�

Tier 1 - Device 3 

Tier 1 - Device 2 

Tier 1 - Device 1 

Apps 

OS 

AFV  
Framework 

Apps 

OS 

AFV  
Framework 

Tier 2 - Devices 

Figure 2. Overview of the AFV and logical connectivity among devices.

the precision input indicates the required measurement ac-
curacy with respect to absolute correctness, provided as an list
of contexts and ranges. The optional mapping parameter is a
list of (context, device) pairs allows the developer to override
the Decision Engine and select a particular device. We use a
list of (name, value) pairs to represent a context.

Preference APIs
Each application allows the developer to specify valid context
operating ranges for each virtual function and/or its imple-
mentations. In some cases, the user may wish to override the
application’s settings. Additionally, since the AFVframework
covers the entire PAN, each device may have configurations
set by the manufacturer or the user for every application run-
ning on the device. This is done using Preference APIs. The
AFVprovides three types Preference APIs, namely applica-
tion (setAppPrefs()), user (setUserPrefs()) and device
(setDevicePrefs()).

The API is not directly exposed to the user, however, but is
leveraged by the developer to take user preferences as inputs
to the framework. For instance, the UI of the application could
provide an interface with radio buttons or drop-down lists to
allow the user to select forced or prevented device/context
mappings. The user/device preferences are provided to each
instance of the framework in the PAN via the Communication
Manager. They are mostly used by the Decision Engine to
identify valid functions and implementations for the current
application context. These preferences are also used by the
Context Manager to recognize context changes.

The configurations (application, user and device) could be
conflicting. In order to enable a meaningful context for the
optimization and mapping components, certain possible con-
figurations may be mandated, or eliminated from contention.
For example, iOS devices are only suggested to operate be-
tween 0 and 35 degrees C,3 so any user specified contexts
beyond this must be ignored. For the current version of the
framework, we have selected the following order of priority:
Device, User, and finally Application.

Function manager
The function manager is the main interface between AFV and
the applications. For each virtual function v ∈V , the function
manager stores the set of devices Dv that provide an imple-
mentation of v. It also stores device function execution costs.
3https://support.apple.com/en-au/HT201678

Android
abstract void onSensorChanged(SensorEvent event)
boolean registerListener(SensorEventListener

listener, Sensor sensor,
int samplingPeriodUs, int
maxReportLatencyUs)

void unregisterListener(SensorEventListener listener,
Sensor sensor)

AFV
abstract void AFVonSensorChanged(AFVSensorEvent event)
boolean AFVregisterListener(AFVSensorEventListener

listener, AFVSensor sensor,
int samplingPeriodUs,
int maxReportLatencyUs,
List<Context, <int,int> >
precision, List<Context,
Device> mapping )

void AFVunregisterListener(AFVSensorEventListener
listener, AFVSensor sensor)

void setAppPrefs(AFVApplication applicationName,
AFVDevice deviceName, List<Context,
<int, int> >)

Figure 3. Examples of APIs provided by AFV and by Android.

The cost is composed of two main factors; the cost of executing
the function implementation f and the cost of exchanging
inputs/outputs between the application and the implementation
c. The cost usually represents relative energy consumption,
but other types of costs are also allowed. A device must have
a pre-defined list of supported functions and associated costs.

Each time a novel AFV-enabled active device joins the PAN,
AFV first discovers the virtual functions supported by the
device, and then it announces such functions and related costs
to the entire network. Devices already in the network reply to
the novel device with the list of virtual functions they support.
Each active device announces virtual functions provided by
passive devices connected to it, and sends periodic keep-alive
messages with an updated list of functions provided.

Another key role of the Function Manager is mapping manage-
ment and the data exchange between application registrations
for virtual function v, a ∈ Rv and the device selected to run
the implementation d ∈ Dv. The mapping Rv #→ Dv is updated
each time the decision engine runs. The Function Manager
aggregates the multiple requests for the same function by
different applications and only invokes one function request
for function execution. Data exchange (i.e., input/output) be-
tween applications and the framework is performed via a set of
per-application function buffers to avoid contention among ap-
plications accessing the same virtual function. Inputs/outputs
are then transferred to/from the device in charge of running the
actual function by the communication manager. Any change
in the list of registrations Rv, or available implementations or
devices in Dv triggers the Decision Engine.

Function execution
This module is responsible for the execution of virtual func-
tions in the devices selected by the Decision Engine. We
assume that a single implementation for each function is avail-
able in each device and it is provided by the framework itself.
However, AFV can be extended to enable per-device con-
text aware function selection leveraging previously proposed

4
984

UBICOMP '16, SEPTEMBER 12–16, 2016, HEIDELBERG, GERMANY



frameworks as CAreDroid [6], or allowing custom function
implementations. Function input/output between applications
and the device running the function is performed via the Com-
munication Manager and the Function Manager. For func-
tions producing continuous output via callbacks (e.g., sensing
functions), output is reported to applications at the frequency
specified by the developer. This achieved via aggregation and
buffering mechanisms in the virtual function class.

Communication manager
This module is in charge of managing all AFV communi-
cations in the PAN. It centralizes communications among
modules running on different devices, and can aggregate mes-
sages and batch data transfers to limit communication costs.
As previously stated, communication among devices in the
PAN is performed via Bluetooth or other similar low-powered
wireless technologies.

Context monitoring
We consider the context monitoring component as an addi-
tional virtual function, which runs on a device capable of
receiving information from sensors, either directly or indi-
rectly, and communicating with the other devices. The context
function operates as needed and only reports changes relevant
to the Decision Engine. It is possible for context monitoring to
be carried out on different devices, depending on the context
induced from the sensor values.

Context monitoring is an essential element of AFV. Several
implementations of context monitoring exist in the literature
[2, 8]. These can be adapted for AFV. Due to space limitations,
detailed design of context monitoring is not discussed further.
The context monitor evaluates the cost of obtaining the mea-
sures and selecting the appropriate mechanism/sensor with
which to obtain this information. It is also possible that the
context may be obtained from the device’s operating system,
if those features at that level are enabled [24].

Since the framework is intended to be used across multiple
devices and multiple applications, contexts are represented in
the common format previously described as pairs of name
and value. Context pairs can be defined per-application and
per-device in the specific configuration files. The state of a
particular context pair is expressed and stored as an enumer-
ated type or string. The value field could be a) a threshold, b)
ranges (e.g. moderate temperature could be 20-30 C), or c) a
binary value (e.g. the device is either charging or discharging).

Decision engine
The Decision Engine determines the mapping of application
function registration requests to actual function implemen-
tations across devices. First, the decision engine filters out
infeasible function implementations determined by the current
device context. For example, even if the GPS is available on a
device, the decision engine will not map it with any location
request if the current remaining battery capacity of the device
is very low. Then, each function registration request is mapped
to one of the feasible implementations such that the total cost
of all PAN devices is minimal. The costs can be defined based
on both app developer and user objectives. We categorize

them as 1) monetary costs, 2) quality costs and 3) energy costs,
which are further described in the next section.

The Decision Engine is triggered for a new assignment of func-
tions by either 1) the Context Monitoring module on context
change or context configuration update, and 2) Function Man-
ager on function registration requests/implementation change.
If it is triggered by the Context Monitoring module, the feasi-
bility of the function implementations is revisited as well.

CONTEXT-AWARE FUNCTION ALLOCATION
We denote as ra,v,d ∈ R the registration for a virtual function
v ∈V , at a device d ∈ D, for an application a ∈ A, where A is
the set of applications installed in the devices of the PAN. Rv ⊂
R and Dv ⊂ D represents the set of registrations and the list
of devices providing implementations respectively for a given
virtual function v. Thus, the objective of the context-aware
function allocation is to map each function registration request
to its implementations, i.e. Rv #→ Dv, such that it optimizes the
total cost of executing the all requested functions.

Function costs
The function costs are related to the usability objective of the
system, i.e. monetary, quality and/or energy, which can be
defined either by the app developer or the user. For each objec-
tive, there are two types of costs associated with each function
requests and its implementations; 1) communication costs and
2) implementation costs. If the objective is to optimize the
monetary costs of the user, internal communication (e.g. Blue-
tooth), can be considered as zero. On the other hand, if the
objective is to optimize the energy consumption of the devices,
communication is not negligible. Usually, if the request is
mapped to the device itself, the internal communication cost
is zero. For the same function, the implementation cost can be
different for multiple devices, e.g. the energy cost of activat-
ing the WiFi network interface compared to the total battery
capacity on the smartphone is lower than on the smartwatch.

The implementation function costs v in a device d is rep-
resented as fv,d ∈ Fv. Similarly, the communication costs
between a given function registration request ra,v,d and an
implementation on device d is denoted as cr,d ∈Cr.

Problem formulation
We first define a binary variable mr,d where mr,d = 1, if func-
tion registration request ra,v,d ∈ Rv can be mapped to imple-
mentation on device d ∈Dv, and mr,d = 0 otherwise depending
on the current context of the user and the device. For instance,
even if the GPS sensor is implemented on the device d1 ∈ Dv,
it may not be able to map d1 with any request if the current
remaining battery capacity on d1 is below the threshold. If
no function implementation is available for a particular func-
tion registrations request, we remove that function from the
problem formulation. That makes for all considered functions
∑∀d∈Dv mr,d = 1;∀r ∈ Rv. Given the set function registrations
Rv and function implementations Dv and the associated costs
fv,d as input, the optimal FUNCTION ALLOCATION PROBLEM
(FAP) can be formulated as follows:

Minimize

(

∑
d∈Dv

yd · fv,d + ∑
r∈Rv

∑
d∈Dv

xr,d · cr,d

)
(1)
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Subject to:

1. ∑
d∈Dv

xr,d = 1; ∀r ∈ Rv

2. mr,d ≥ xr,d ; ∀r ∈ Rv,∀d ∈ Dv

3. yd ≥ xr,d ; ∀r ∈ Rv,∀d ∈ Dv

4. yd ,xr,d ∈ {0,1}; ∀r ∈ Rv,∀d ∈ Dv

The sets of xr,d ∈ X and yd ∈ Y would be the solution of
the FAP. xr,d = 1 if the function registration request r ∈ Rv
is assigned to the device d ∈ Dv and yd = 1 if the device d
is required to be activated to satisfy certain requests. Only
mappable implementations will be assigned and each function
registration request will be mapped to an implementation.

Solution to function allocation
When mr,d is given ∀r ∈ Rv,∀d ∈ Dv, it is trivial to show that
FAP is equivalent to UNCAPACITATED FACILITY LOCATION
(UFL) problem where every function implementation Dv is
a facility with fv,d facility opening cost and every function
registration request Rv corresponds to a customer associated
with cr,d service cost. This immediately follow that FAP is also
an NP-Hard problem. However, there are number of approxi-
mation algorithms for the well-studied UFL problem. We build
on the approximation algorithm proposed by Williamson and
Shmoys [25] to take into account the use of valid mappings
(mr,d) after context aware constraints. The iterative greedy
solution to FAP is described in Algorithm 1.

Algorithm 1 FAP(Rv,Dv,m, f ,c)
1. S ← Rv
2. X ← /0
3. while S ! /0 do
4. Select v ∈ Dv and P ⊆ S s.t. ∀p ∈ P : mr,d = 1

that minimize fv,d+∑p∈P cr,d
|P|

5. S ← S−P; fv,d = 0
6. (Rv #→ Dv) ← (Rv #→ Dv) + (P #→ v)
7. return assignment σ : Rv #→ Dv

The algorithm iteratively selects a function implementation
and the registrations associated to it for which there are valid
mappings. Assigned registrations are then removed from the
problem and the implementation cost set to 0. At each itera-
tion, an implementation is selected as to minimize the total
cost of function registrations that will be associated to the
implementation. The algorithm can be efficiently realized by
maintaining for each implementation the list of registrations
not yet satisfied in increasing cost order; the set P minimizing
the cost will be some prefix of this ordering [25].

EVALUATION WITH SIMULATION
Evaluation methodology
We develop a custom simulator to analyze the effectiveness
of FAP algorithm of our Decision Engine. We compare
AFV function allocation against simple random device se-
lection (RANDOM) and selecting all available devices (ALL),
which are the two most common categories of today’s wear-
able applications. The former represents applications that ask
the user to select a device to execute a given function, e.g.
MyFitnessCompanion app (Table 1). The latter represents
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Figure 4. Efficiency, accuracy and robustness of FAP algorithm.

applications that run the function on all devices in parallel, e.g.
UP app. We also compare the approximation accuracy of FAP
comparing the optimal (OPTIMAL) results obtained with the
optimization problem solver Gurobi.4

We assume that function costs among the devices for the same
function are normally distributed with standard deviation σ =
0.1×µ where µ is the average value. We change µ to obtain
multiple cost values to evaluate the performance of FAP in
various conditions.

Efficiency and robustness of FAP algorithm
We first report in Figure 4(a) the cost reduction obtained by
our FAP algorithm with respect to RANDOM, ALL and OPTI-
MAL strategies as a function of the ratio of function implemen-
tation cost (Fv) to communication cost (Cr). Communication
costs are incurred for any transmission of an individual sensor
stream to the device executing the application.

We consider 5 active wearable devices in a PAN. Intuitively,
if the communication cost is too high, it is more efficient
to execute the function on each device, resulting in parallel
apps with no coordination. This is reflected in the region
where Fv/Cr < 1, i.e. ALL performs as good as OPTIMAL and
FAP. However, FAP significantly reduces the cost compared to
RANDOM selection. As Fv/Cr increases the significance of the
communication cost decreases. Thus, executing a function in
all devices becomes inefficient as there is potentially a device
with a very low relative function implementation cost. Since
there is a 1/5 chance of selecting the right device, RANDOM
performs comparatively well with high standard deviation.
FAP performs equally well (error is less than 1%) compared to
OPTIMAL irrespective of the Fv/Cr value.

We now evaluate the impact of number of functions registra-
tion requests and devices in the PAN when the Fv/Cr = 1. Fig-
ure 4(b) shows that FAP increases its cost savings compared
to both RANDOM and ALL along with the number of functions.
On the other hand, FAP accuracy does not vary significantly

4https://www.gurobi.com
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compared to OPTIMAL (error is about 2-3%). Overall, Fig-
ure 4 shows that the proposed FAP algorithm is often able to
map the function registration requests to the optimal function
implementation providing significant cost savings.

Prolong system uptime
In this subsection we analyze AFV effectiveness by consid-
ering network lifetime as example of quality metric. Indeed,
prolonging system uptime is one of the biggest challenges with
the current wearable devices. As lifetime of a device depends
on its current SoC and current energy usage, we considered
these 2 parameters for our simulations. We measured energy
consumption of several application functions for sensing, com-
munication,5 and processing. We use a smartphone running
Android 6.0 and LG Watch Urbane running Android 5.1.1
with 2300 mAh and 410 mAh battery capacities respectively,
while the functions are reported in Table 2.

Function Energy cost
Smartphone Smartwatch

Sensing (NORMAL - UI - GAME - FASTEST ) [mJ/s]
Accelerometer 5.01 - 13.28 - 34.46 - 77.71 9.52 - 24.74 - 57.61 - 168.40
Gyroscope 11.71 - 20.33 - 36.44 - 80.15 16.23 - 33.34 - 60.44 - 181.90
Magnetometer 8.12 - 15.45 - 28.46 - 28.28 17.04 - 30.21 - 57.82 - 79.73
Connectivity (Per Byte [mJ/B] - High Power Idle [mJ] - Low Power Idle [mJ])
Bluetooth 0.0095 - 305 - 300 0.0024 - 126.07 - 64.23
WiFi 0.00054 - 66 - N/A 0.00039 - 50 - N/A
Processing (Per Byte [mJ/B])
Compression 0.01 0.0004
Encoding 0.00026 0.00025

Table 2. Energy cost associated to each function

The energy profile for each function is obtained with a Mon-
soon power monitor6 directly connected to each device via
USB. Energy usage is obtained by integrating the instanta-
neous power values which are calculated using current and
voltage measurements from the USB interface sampled at a
0.2ms time interval. The energy usage of the experiment can
be extracted by deducting the fixed energy offset of the back-
ground processes. Sensing energy is measured for multiple
sampling frequencies that are offered by Android by default.7

To simulate typical user behaviour, we assume the smartphone
battery would completely drain in two days linearly and the
smartwatch would last only one day. We consider the “sensing
accelerometer" function and 60 second data synchronization
frequency: the AFV Decision engine then minimizes the appli-
cation energy consumption while respecting user preferences.
Energy usage for any particular scenario that involves the
above functions in Table 2 can be obtained by aggregating the
energy values for each function. As an example for sense only
on smartphone (Accelerometer NORMAL speed) and data
synchronization frequency of one minute (13.5KB of data),
we can get the energy consumption per minute from Table 2
as f + c=(5.01*60)+((0.0095*13500)+305+300)=1033mJ.

Figure 5 illustrates the battery drain profile for RANDOM selec-
tion, i.e. sense only on the smartphone or on the smartwatch,
5Only WiFi receive measured, transmit is between 20 and 30% higher
[26]
6https://www.msoon.com/LabEquipment/PowerMonitor/
7http://developer.android.com/reference/android/hardware/
SensorManager.html
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Figure 5. The impact of AFV on system uptime.

and when AFV is running on the system. Due to a lower rela-
tive impact on the smartphone, AFV selects the smartphone
as the sensing device if the smartphone has sufficient SoC.
However, if the smartphone’s SoC drops below 20% (context
change), the Context Monitor triggers the Decision Engine
and sensing switches to the smartwatch if the smartwatch has
sufficient SoC (Figure 5). To show this context change, we
consider the following initial conditions: smartphone - 45%
charge, smartwatch 100%. The smartwatch uptime increases
by approximately 2 hours compared to only sensing on the
smartwatch. The gain for the smartphone is about 1/2 hour
compared to only sensing on the smartphone.

System uptime is defined as the time until at least one device
drains out its battery. Since uptime gain is dependent on the
initial SoC of devices, in Figure 5(b) we change the initial
smartphone SoC. If the smartphone remaining SoC is greater
than 60% at the beginning, AFV increases the system uptime
about 35-40% compared to sensing on the smartwatch and on
both devices. Due to sufficient battery capacity on the smart-
phone, AFV selects the smartphone most of the time. As a
result, AFV does not increase the uptime compared to sensing
only on the smartphone. AFV may marginally reduce the
system uptime when the SoC of one or more devices drops be-
low the threshold. Indeed, to minimize the application energy
consumption while respecting user preferences, the Decision
Engine selects the only available device (or the most energy
efficient when both are under the threshold) although this so-
lution may reduce system uptime. This can be observed when
initial Phone SoC is around 35% and 55% in our scenario.

IMPLEMENTATION
There are two options for the implementation strategy for
AFV: 1) a kernel module or 2) an SDK. The best performance
would be achieved via integration of AFV into the kernel of
the OS. In this manner, every application on any device could
seamlessly take advantage of these facilities by flipping a bit
and providing the correct configuration entries. The second
option is a library in the form of an SDK and standalone
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user-level application. This library would be compiled into
the application and make IPC calls to the application when
services are required. This strategy can be deployed without
special access to the internals of the smartphone or the OS and
allows developers to experiment with the features.

Our initial prototype follows the second option. For sim-
plicity, all Tier 1 devices in the PAN run the same OS (e.g.
Android); eventually, we envision a cross-platform implemen-
tation. We develop a library - AFVlib - that provides access to
the AFV APIs to the developer once imported to application.
To support AFV services multiple applications in parallel at
the user-level, we opt to develop other components of AFV as
a standalone application - AFVapp. At the time of installation
of a AFV enabled application, it checks whether the AFVapp
is already installed in the system; if not, it initiates the instal-
lation of the AFVapp. The prototype AFVlib and AFVapps
consist of approximately 5000 lines of Java code.

A straightforward IPC mechanism (BroadcastReceiver)
is used to communicate between AFV-enabled applica-
tions and our framework. The communication between
AFV-enabled devices are implemented using MessageAPI
as an Android Service. Context monitoring is also im-
plemented as an Android Service which runs in the
background and reports to the Decision Engine period-
ically or in change of context. Once the application
registers a function (e.g. AFVregisterListener(this,
Sensor.TYPE_ACCELEROMETER)), AFVlib sends a broadcast
with an Intent about the function registration to AFVapp.
The BroadcastReceiver in the AFVapp transfers the re-
quest to the Function Manager. The Function Manager then
checks with the Decision Engine for the optimal placement
of the function. The Decision Engine implements the FAP
algorithm by leveraging efficient ordered data structures (i.e.,
TreeMultimaps and ArrayLists). Function Execution reg-
isters the function using Android APIs and returns data in
JSON format to the Function Manager. The Function Man-
ager aggregates data to one JSON Array per device and sends
it via the Communication Manager. Each app that has a regis-
tered listener for the function will receive the data stream.
In the remainder of the paper, we use AFVlib and AFVapp
to evaluate the practical feasibility of AFV and user benefits
with emulated use cases.

USE CASES WITH EXPERIMENTS

Experimental validation of AFV framework
The AFVframework should have the ability not only to detect
the context changes and select the optimal function allocation
according to the context, but also to achieve that within the

least possible time. Therefore, we first evaluate the FAP execu-
tion time on a LG Nexus smartphone and on a wearable (LG
Watch Urbane). Our results show that the execution time is
in the scale of tens of milliseconds. Especially for a realistic
number of functions, e.g. 5 functions, it takes less than 1 ms
to determine the optimal function allocation in both devices.

System adaptation to context changes. We experimentally
evaluate AFV’s dynamic adaptation to new configurations of
functions allocation which is decided by FAP algorithm. For
this evaluation, we created a PAN with three devices (one
smartphone and two smartwatches). We consider the sensing
accelerometer as the requested function and all three devices
are subscribed to receive the sensed data. We emulate the
change of context by plugging and unplugging the devices to
AC power where the system objective is to optimize the energy
consumption. Therefore, we measure the energy consumption
of each device during the experiment using a Monsoon power
monitor directly connected to each device via USB.

Figure 6(a) illustrates the power profile for three devices dur-
ing the experiment. Initially, the smartphone is sensing at
normal speed and sending data to the other two devices once
a minute. Then, we emulated a context change (unplugging
the smartphone from AC power) at t = 15 seconds. The smart-
phone broadcasts the context change to all devices in the PAN,
which then triggers the Decision Engine on the smartphone
to select watch-1 for sensing. The smartphone notifies the
new function allocation to other devices and transfers the sens-
ing function to watch-1. The smartphone stops sensing after
watch-1 acknowledges it has taken over the sensing function.

The high power peaks of all devices after t = 15 seconds
is due to the messages received and transmitted by each de-
vice, which is followed by high power idle states. The high
power idle state is longer for the smartphone (until t = 26
seconds) compared to the watch (until t = 20 seconds). Figure
6(a) shows that the overhead of system adaptation to context
changes is less than one second as the watch-1 starts sensing
even before t = 16 seconds. Moreover, this experimentally
validates the AFV framework functionality with real devices.

We further consider user activity (i.e., walking or standing)
as another example of context. We leverage the step detec-
tor in the smartphone to detect changes in the user activity.
Figure 6(b) shows that when context changes from standing
to walking, the change in the user activity is detected by the
Context Monitoring and the accelerometer sensing function
switches to the smartphone. A detailed description of this ex-
periment and its results are reported in the following section.
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Figure 7. Benefits to the user under different system objectives.

User Benefits
We now present experimental results to show quantitative
user benefits due to the use of AFV. We developed a fitness
tracking application requiring accelerometer functionality and
data upload to Internet servers that is similar to the applications
listed in Table 1. The application is installed in the LG Nexus 5
smartphone and has the counterpart installed in the LG Urbane
smartwatch.

We use four scenarios to show the benefit to the user by adopt-
ing AFV. In these scenarios, we set four different objectives
considering (1) Information quality; (2) Device’s lifetime; (3)
Network throughput; and (4) Monetary cost. The considered
context information are depending on the relevant objective.
The first 2 scenarios use the fitness application and the last 2
scenarios consider a file transfer application.

(1) Information quality. We consider how user activity af-
fects the obtained quality of information. The user is wearing
the smartwatch and has the smartphone nearby. At first, the
user is standing while doing fitness exercises. The smartwatch
is performing accelerometer sensing as there is no activity
detected by the smartphone (using step detector) which is
on the table. After a while, the user starts walking, carrying
the smartphone in their pocket. The smartphone detects ac-
tivity and the sensing function moves from the smartwatch
to the smartphone as the smartphone is chosen in the user
preferences for the "walking” context. In order to avoid un-
necessary functionality movements between devices for this
context, AFV triggers a function placement change only if
the new activity continues for at least 20 seconds. Figure 6(b)
shows the accelerometer data of the two devices during the
experiment.

(2) Device lifetime. Our attempt is to maintain the state of
charge (SoC), i.e. the remaining battery capacity, of the de-
vices as long as possible. If SoC drops below a certain thresh-
old (20% for this experiment), a context change will be trig-
gered. We consider a scenario that the smartwatch is preferred
for walking activity in the user preferences and performing
the accelerometer sensing at the fastest speed and transmitting
data once a minute to the smartphone. When SoC of smart-
watch goes below threshold, AFV instructs the devices to
switch the sensing function to the smartphone with a higher
SoC. Figure 7(a) shows results for the increased longevity of
the smartwatch battery while using AFV. The uptime of the
smartwatch is increased by 5 hours due to the offloading of
sensing function to the smartphone below threshold, which
is a significant amount of time that may allow the device to
reach the next charging cycle.

(3) Network throughput. For this use case, the objective of
the AFV framework is to automatically accesses the highest
quality network in a wireless environment. The quality is
determined by the network throughput and the function of
interest is uploading a file of sensor data to an external server
for processing. We created two WiFi networks with different
throughputs to emulate the heterogenous network. At first,
the smartphone is connected to the lower throughput network
and the smartwatch has no connectivity. After a while, the
smartwatch recognizes a higher throughput network. The
availability of a higher throughput network triggers a con-
text change which invokes the Decision Engine to select the
higher throughput network to upload the file. The achieved
throughput is measured at the access points by using a network
analyzer (Wireshark8). Figure 7(b) depicts the throughput of
the device for a periodic upload of 6MB of data before and
after context changes. The system detects the availability of
the higher quality network and automatically switches to that
network in less than 1 minute without any user interaction.

(4) Monetary cost of data usage. Our objective is to manage
the capped data plans of the devices belonging to the same
PAN. The cost of each network has to be preconfigured with
the framework. For this example scenario, we defined that high
cost plan costs $0.10/MB and low cost plan costs $0.05/MB.
As in the previous case, the availability of a lower cost network
connection triggers a context change and AFV notifies the
device connected to that network to take over the connectivity
function. Figure 7(c) shows the monetary cost for two 6MB
data uploads with and without AFV.

RELATED WORK
Adaptive wearable applications have been in existence for
nearly 20 years [19]. Early work provided prototype imple-
mentations [10], programming language support for existing
applications [12], and architectures for system design [5, 23].
Despite this work, applications on commercially available de-
vices have only recently been deployed, due to the challenges
of battery and device form, among other issues [3, 15, 21].

Our work follows the philosophies initiated in the early design
work on wearables. In particular, Speakeasy [5] motivates
the need for domain independent interfaces, mobile code, and
user interpretation of semantics. Our representation of con-
text is similar to that provided by Speakeasy and we retain
user discernment as well. We are less ambitious in the overall
goals as we leverage existing APIs and focus on the adaptive
nature of wearable network applications. We do not imple-
ment code migration; we provide a system-level extension
8https://www.wireshark.org/
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to code already available on wearable devices. Smailagic
and Sieworek [23] provide key design principles/challenges
for future wearable applications: user interface models, in-
put/output modalities, matched capability with requirements,
and quick interface evaluation methodology. We focus on the
third of these challenges to meet the user’s needs with the
lowest resource utilization.

CAreDroid [6] is a framework in which to design Android
context-aware applications to select the most appropriate func-
tions to run for a given application on a single device. It takes
care of context-monitoring and adaptation decisions and al-
lows the developer to focus on application logic only. Their
work provided the inspiration for our focus on distributed sys-
tem applications for wearable computer network applications.
AFV differs in that it provides seamless function placement
across devices of a PAN and function sharing across applica-
tions. Our optimization engine runs as a lightweight separate
process on Tier 1 devices and the adaptation selects which
functions from which devices are active at any point in time
and what communication strategy will be deployed.

Senergy reduces the energy usage of the sensing activity with-
out requiring programmer intervention via the Latency, Ac-
curacy Battery (LAB) abstraction [9]. These 3 components
are the main considerations in our framework as well, as they
provide a meaningful set of tradeoffs for the user and the de-
veloper. The authors develop classifiers to infer context in
sensing applications, while we use a simpler sensing strategy,
but provide adaptation to achieve application goals. Code
In The Air [7, 20] provides a framework designed to enable
developers to create tasks for multiple devices and/or multiple
devices as well as enable users to specify logical conditions
related to the context of the devices participating in the ap-
plication. If appropriate, code is partitioned and executed on
different devices, dependent on the organization of the tasks
and with which devices they are associated.

There has been substantial work on context awareness and
sensing for mobile apps. Always-on sensing can quickly drain
battery resources [22], yet continuous context monitoring is
essential for proper response to context changes [8]. This
suggests a distinction between always-on and continuous that
does not degrade application adaptivity nor battery life. These
tradeoffs are explored in several research projects.

The most comprehensive sensing framework is SeeMon [8].
Their approach leverages the relationship between sensor val-
ues and higher level “context” states to minimize the number
of sensors and their associated energy costs while continuously
recognizing context changes. Another approach to sensing is
to use a low-powered sensor processor to save energy. Mo-
bileHub [22] provides a framework that determined optimized
alerts and submission of sensor data that reduce energy with-
out affecting application semantics. Our context has a limited
number of sensors and a small number of devices capable
of performing context recognition, so we have simplified the
evaluation of sensor readings with a call-back mechanism for
each activated sensor to inform the smart device regarding
changes to the value of interest.

Implementations of mechanisms for energy-efficiency through
dynamic assignment of functionality inside the Operating Sys-
tem are achieved in ErdOS [24] and OSone [17]. ErdOS
leverages resources in nearby devices based on user modeling
and stated user preferences. It uses a lightweight IPC and
network stack to securely broadcast important context infor-
mation and application data in a user-level communication
manager. This could be extended to communications with low-
powered sensor devices. OSone distributes the functionality of
the operating system in a similar fashion to how Barrelfish [1]
separates functionality onto different cores. The architecture
consists of a kernel node in charge of various host nodes that
can be kept simpler. We implement AFV in a similar fashion
with the potential to have multiple controlling nodes over time,
depending on remaining resources and application needs.

Wireless Body Area Networks have explored various scenar-
ios for applications, from medical and health monitoring to
entertainment and fitness applications, on both wearable and
implant devices [16]. There are also implementations of wear-
able smart textiles [18]. The focus in this community has
been on the lower levels of network communication both intra-
WBAN (on a person) and inter-WBAN (between individuals).
Our work is at a higher level and can leverage optimizations
made in the network and physical layer transmissions.

DISCUSSION AND CONCLUSION
In this paper, we proposed AFV, a framework providing
context-aware application function virtualization on a per-
sonal area network comprised of multiple wearable devices.
We designed a set of APIs that can be easily leveraged by de-
velopers to design context-aware wearable applications, hiding
the optimal function allocation algorithm from the developers.

AFV provides significant benefits to application developers
and end users which can optimally leverage the functionali-
ties available in the PAN without having any prior knowledge
about the PAN and without development and configuration
effort. For instance, our simulation results show that AFV in-
creases the system uptime up to 35-40% compared with typ-
ical configurations of current PAN applications. We experi-
mentally validated the framework by implementing AFV on
Android devices and experiments on a set of significant use
cases. The overhead of function allocation algorithm is a few
milliseconds for realistic scenarios and adaptation to context
changes can be performed in less than one second with real
devices.

Current AFV function placement may lead to inefficiency for
some metrics in some scenarios. As the function allocation
algorithm is designed to minimize a given set of costs while
respecting user preferences and contexts, other non-optimized
metrics may be affected with respect to a vanilla scenario
without AFV. We plan to address such inefficiencies as future
work by designing a more complex function allocation algo-
rithm taking into account multiple metrics and improving the
Decision Engine to take personalized optimal decisions involv-
ing machine learning algorithms. We will also develop the
AFV implementation with awareness to more context changes
which would lead to much better proactive decision making
capabilities.
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