UBICOMP/ISWC '16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

AFit: Adaptive Fitness Tracking by
Application Function Virtualization

Harini Kolamunna,’

Yining Hu,

Diego Perino,>*®

Kanchana Thilakarathna,’
Dwight Makaroff, 3-°-¢

Xinlong Guan,

Aruna Seneviratne,’
Data61/CSIRO-Australia,
University of New South Wales,
2Telefonica Research,
SUniversity of Saskatchewan,
Email:(firstname.lastname)@data61.csiro.au,
*diego.perino@telefonica.com,
Smakaroff@cs.usask.ca

This work was done while the
author was at Data61.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.

Copyright is held by the owner/author(s).

Ubicomp/ISWC’16 Adjunct , September 12-16, 2016, Heidelberg, Germany

ACM 978-1-4503-4462-3/16/09.

http://dx.doi.org/10.1145/2968219.2971364

309

Abstract

The popularity of wearables is exponentially growing and it
is expected that individuals will utilize more than one wear-
able device at a time in the near future. Efficient resource
usage between the devices worn by the same person has
not yet been effectively addressed by the current wearable
applications. In this paper, we demonstrate the feasibility
of application function virtualization by utilizing common
capabilities of multiple wearables on the body through a
cross-platform Android application - AFit. AFit is developed
in a way that it can opportunistically leverage the resources
of smartphone, smartwatch and smartglass depending on
the context of the user, which is user activity. In this demon-
stration, AFit shows that it is possible to adaptively select
the device to track the user movement for fithess tracking,
rather than using randomly selected device or all devices,
utilizing the common sensor of accelerometer on all de-
vices.

Author Keywords
adaptation; smart wearable devices; context monitoring;
fitness tracking

ACM Classification Keywords
C.5.3 [Microcomputers]: portable devices; C.2.4 [Distributed
Systems]: Distributed applications



Accelerometer ..

‘

Smartwatch

Figure 1: Example scenario.

2| [z Loz ] (o] =
8| % T T
v v v
AFV APIs 9
{ { :
2
Function Decision 2
Manager Engine =
S
Nt z
o
Function Context v%
Execution Monitoring g
x x x
o v v v
dl 0S APIs |

Figure 2: An overview of AFV

framework.

Introduction

In the near future, we expect that individuals will have nu-
merous smart wearable devices that form a local network
within the human body capable of hosting distributed ap-
plications (a wearable personal area network, or PAN).
Some of these devices are equipped with a rich-set of sen-
sors and there could be many computation capabilities and
sensing activities that can be performed by more than one
device in this type of PAN. As an example, multiple devices
(e.g. smartwatch, smartphone, smart-shoe) contain the
same type of sensor (e.g. accelerometer) as shown in Fig-
ure 1. In addition, many devices are capable of performing
the processing functions of compression and encoding as
well as security functions of intrusion detection and encryp-
tion.

Moreover, the user and device context changes can be
used in common functionalities utilization. As an example,
let's consider the context change in the smartwatch that the
battery status changes to low-battery. A fitness tracking ap-
plication in this low-battery smartwatch can then utilize the
fully-charged smartphone’s accelerometer function, despite
using the smartwatch’s accelerometer. There are several
implementations of context monitoring exist in the literature
[1, 2], which can be adapted in context aware designs.

The question in such an environment is whether these com-
mon functionalities are efficiently used by today’s applica-
tions. An analysis of several popular fitness and tracking
applications that has both smartphone and smartwatch ver-
sions (e.g. UP, MyFitnessCompanion, Wear Run) suggests
that the efficient collaboration between the smartphone and
smartwatch are not adopted [3]. Motivated by this, we have
proposed AFV [3], a framework which takes user and de-
vice context into account and effectively utilize common

310

UBICOMP/ISWC '16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

functionalities available in the PAN through application func-
tion virtualization.

In this demo, we show the feasibility of AFV through an im-
plementation of a cross-platform Android fitness and track-
ing application - AFit - that leverages common resources
available in the devices in a PAN. AFit takes user and de-
vice context information to give the optimal information by
adapting to the context of the user.

AFV Framework

Our proposed AFV framework automatically leverages the
available common functionalities in a PAN and user/device
context information, in order to simplify application devel-
opment and improve the quality of experience of the users.
Specifically, the AFV framework has the following key fea-
tures:

« Optimization: carries out function placement to max-
imize the efficient functionality usage via a heuristic
greedy approach;

« Adaptation: dynamically configures the system at
runtime according to changes in the context, applica-
tions and user needs;

» Usability: reduces the complexity of providing adapt-
able features for application developers and enables
straightforward selection of these features via user
configuration.

Figure 2 provides an overview of the main tasks and mod-
ules of the AFV framework [3]. The Function Manager mod-
ule manages the functions registration requests coming
from the applications via AFV APIs. The Context Monitoring
module periodically monitors device/user context, provid-
ing inputs to the Decision Engine. The Function Execution



SESSION: DEMOS

module manages function invocation on the device identi-
fied by the Decision Engine. The Communication Manager
maintains efficient communication among the AFV-enabled
devices.

Implementation of AFit

AFit is implemented as an Android application and installed
in the smartphone. A lightweight, specific version of the
AFV framework for AFit is implemented as a standalone
application and installed in smartwatch and smartglass
also. In this version of the AFV implementation, only the ac-
celerometer functionality is considered with the application-
specified context of user activity changes. This context is
monitored by AFV, and the rules-based decision engine
performs the adaptation in the system. Both the smartwatch
and smartglass have the standalone applications that exe-
cute the AFV framework activities installed. The version of
the AFit application installed in the smartphone contains the
AFV framework implementation as well.

There is a predefined set of rules for the decision-making
engine, configured by the developer. It is possible for an
application to provide features for the user to add to the
set of rules by checkboxes or other user interface mecha-
nism, but this has not been implemented in the prototype.
Once the application is started in the smartphone, it broad-
casts the message "START" via WiFi broadcast where all
the devices are connected to the same WiFi network. The
Android class WifiManager is used to get broadcast ad-
dress and Datagram packets are used for packet delivery.
Smartglass registers its accelerometer to the OS immedi-
ately after receiving the "START" message.

At the same time, the smartphone starts operating its ac-
celerometer for activity recognition. Activity recognition is
done using the onSensorChanged (SensorEvent event)

311

method from the Android system, and the sensor is regis-
tered with TYPE_ACCELEROMETER. The smartphone con-
tinuously monitors the accelerometer in order to detect any
considerable movement (i.e., distance more than 3).

Once the smartwatch receives the message "START", it
starts operating its accelerometer for activity recognition

as the same way the smartphone does. If smartphone

or smartwatch detects any activity from these devices,

the device that detects activity broadcasts the message
"watch_detect_activity" or "phone_detect_activity". Once
any of these messages is received by the smartglass, it un-
registers its accelerometer. If both the smartwatch and the
smartphone detect activity, the smartphone is given priority
for registering its accelerometer with AFit, based on the de-
fault rule set hard-coded into the decision-making engine.

If the smartglass receives both "watch_no_activity" and
"phone_no_activity", when there are no activities detected
by both smartphone and smartwatch, smartglass registers
its accelerometer again.

Demonstration

Our demonstration depicted in Figure 3 involves three smart
wearable devices that are highly likely for an individual to
use simultaneously in the near future (i.e., smartphone,
smartwatch and smartglass). We consider a fitness tracking
application installed in the smartphone that requires ac-
celerometer data and that an accelerometer is available in
all three devices. For the efficient provision of functionality,
AFV uses the movements of body parts and the applica-
tion’s preference of device selection as context information.
We then let the user wear three devices and show them the
context-aware placement of accelerometer sensing function
depending on the user’s activity.

For instance, assume a scenario where the user will first



UBICOMP/ISWC '16 ADJUNCT, SEPTEMBER 12-16, 2016, HEIDELBERG, GERMANY

the accelerometer function moves from the smartwatch to
the smartphone and indicates the function movement via
a smartphone vibration. If both the smartphone and the
smartwatch stop moving, the accelerometer will start func-
tioning in the smartglass again.

Conclusion

Leveraging the common functionalities in different smart
devices are not yet being adopted by the application devel-
opers due to the added complexity of and requirement of

W\ . additional knowledge on the total system. Motivated by this,
‘ 'T;. ; we developed a framework that enables developers to use
> TTHT LI these common functionalities optimally without additional
N. N .i TS Z knowledge. Here we demonstrate a developed smartphone
g L application which adapts to user’s physical activities by us-
. e \ ing a lighter implementation of the proposed framework.
REFERENCES

1. A. Beach, M. Gartrell, X. Xing, R. Han, Q. Lv, S.
Mishra, and K. Seada. 2010. Fusing Mobile, Sensor,
and Social Data to Fully Enable Context-aware

Figure 3: Demonstration. Computing. In Proc. HotMobile. ACM, New York, NY,
60-65.
2. S.Kang, J. Lee, H. Jang, H. Lee, Y. Lee, S. Park, T.

wear the smartglass and start to move. The user will see Park, and J. Song. 2008. SeeMon: Scalable and
the accelerometer trace in the smartglass’s screen. Sub- Energy-efficient Context Monitoring Framework for
sequently, the user may wear the smartwatch and move Sensor-rich Mobile Environments. In Proc. MobiSys.
their hand. The accelerometer will then stop functioning in ACM, New York, NY, 267-280.
the smartglass (trace goes to zero) and at the same time 3. H. Kolamunna, Y. Hu, D. Perino, K. Thilakarathna, D.
accelerometer trace is shown with fluctuations in the smart- Makaroff, X. Guan, and A. Seneviratne. 2016. AFV:
watch’s screen. Moreover, the user will feel a vibration from Enabling Application Function Virtualization and
the smartwatch when the accelerometer function is moved Scheduling in Wearable Networks. In Proc. UbiComp.
to the smartwatch. As the final step, the user may hold the ACM, New York, NY, to appear.

smartphone and move their hands. As in the previous case,

312



