
An Empirical Analysis of a Large-scale
Mobile Cloud Storage Service

Zhenyu Li†, Xiaohui Wang†, Ningjing Huang†, Mohamed Ali Kaafar‡,
Zhenhua Li?, Jianer Zhou¶, Gaogang Xie†, Peter Steenkiste]

†ICT-CAS, ‡CSIRO Data61, ?Tsinghua Uni., ¶CNIC-CAS,]CMU

{zyli, wangxiaohui, huangningjing, xie}@ict.ac.cn, dali.kaafar@nicta.com.au, lizhenhua1983@tsinghua.edu.cn,
zhoujianer@cnic.cn, prs@cs.cmu.edu

ABSTRACT
Cloud storage services are serving a rapidly increasing num-
ber of mobile users. However, little is known about the dif-
ferences between mobile and traditional cloud storage ser-
vices at scale. In order to understand mobile user access
behavior, we analyzed a dataset of 350 million HTTP re-
quest logs from a large-scale mobile cloud storage service.
This paper presents our results and discusses the implica-
tions for system design and network performance. Our key
observation is that the examined mobile cloud storage ser-
vice is dominated by uploads, and the vast majority of users
rarely retrieve their uploads during the one-week observa-
tion period. In other words, mobile users lean towards the
usage of cloud storage for backup. This suggests that delta
encoding and chunk-level deduplication found in traditional
cloud storage services can be reasonably omitted in mobile
scenarios. We also observed that the long idle time between
chunk transmissions by Android clients should be shortened
since they cause significant performance degradation due to
the restart of TCP slow-start. Other observations related to
session characteristics, load distribution, user behavior and
engagement, and network performance.

CCS Concepts
•Networks → Network measurement; Cloud comput-
ing; •Human-centered computing→ Empirical studies in
ubiquitous and mobile computing;

Keywords
Mobile cloud storage, user behavior, TCP performance

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

IMC 2016, November 14-16, 2016, Santa Monica, CA, USA
c© 2016 ACM. ISBN 978-1-4503-4526-2/16/11. . . $15.00

DOI: http://dx.doi.org/10.1145/2987443.2987465

1. INTRODUCTION
With the abundant and pervasive personal content genera-

tion witnessed today, the use of cloud storage for storing and
sharing personal data remotely is increasing rapidly. The
personal cloud storage market is estimated to have a com-
pound annual growth rate of 33.1% between 2015 and 2020
[5]. Major players such as Google, Microsoft, Apple, Baidu,
and Dropbox are competing to offer users the best qual-
ity of service while keeping their costs low. Cloud storage
providers are working hard to meet their growing number of
mobile users. For instance, Dropbox redesigned its mobile
app, adding new functionality, and it tapped mobile ISPs for
improved user experience [4].

Both improving user experience and keeping costs low
can benefit from an in-depth understanding of the following
two system aspects:
• User behavior pattern, including workload variation,

session characteristics, and usage patterns (e.g., occa-
sional vs. heavy use). Insight gained can help opti-
mize performance and reduce cost in both the server and
client.

• Data transmission performance, where factors that in-
crease latency must be identified and addressed to im-
prove user QoE (Quality of Experience), a key factor in
user loyalty.

Unfortunately, little is known about these two system as-
pects in mobile cloud storage services. Recent seminal work
examined user behavior in Dropbox [12, 8] and Ubuntu One
[16]. Other research focuses on the traffic inefficiencies re-
sulting from the synchronization of frequent local changes
[21, 22]. However, all these studies are specific to traditional
PC clients, rather than mobile users. While some work noted
the unique challenges of synchronizing data of mobile users
in cloud storage services [10], both the user access behavior
and network performance properties in large-scale mobile
cloud storage services remain unexplored. Indeed, mobile
users might behave quite differently from PC-based users
when using cloud storage services. For instance, mobile
users may modify file content less often due to the inconve-
nience of editing files on mobile terminals. Also, the proper-

http://dx.doi.org/10.1145/2987443.2987465

ties of mobile devices might limit transmission performance
due to connectivity, power and even software constraints.

This paper fills this void by examining a unique dataset
collected from a large-scale mobile cloud storage service
for a one-week period. The dataset consists of 349 million
HTTP request logs generated by 1.1 million unique mobile
users. Our analysis first separates the series of requests of
each user into more fine-grained sessions with the session
interval empirically learned from the dataset. We then char-
acterize session attributes and usage patterns. Finally, we ex-
amine data transmission performance and diagnose the per-
formance bottlenecks using packet-level traces collected at
both server and client sides. Our main findings and their
implications are as follows:
• Sessions and burstiness. The inter-file operation time

of individual users follows a two-component Gaussian
mixture model, where one component captures the in-
session intervals (mean of 10s), and the other corre-
sponds to the inter-session intervals (mean of 1 day).
This model allows us to characterize user behavior at ses-
sion level. For example, users store and retrieve files in
a bursty way, as they tend to perform all file operations
within a short time period at the beginning of sessions,
and then wait for data transmission to finish.
• Storage-dominated access behavior. In a single ses-

sion, mobile users either only store files (68.2% of
sessions), or only retrieve files (29.9% of sessions), but
they rarely perform both. The mixture-exponential dis-
tribution model for average file size reveals that 91% of
the storage sessions store files that are around 1.5 MB.
Surprisingly, over half of the mobile users are predomi-
nantly interested in the cloud storage for backing up their
personal data, and they seldom retrieve data. In contrast,
PC-based users are far more likely to fully exploit both
storage and retrieval processes.
• Distinct engagement models. User engagement exhibits

a bimodal distribution, where users either return back
soon to the service or remain inactive for over one week.
Notably, about 80% of the users that use multiple mobile
terminals will not return to download their uploads in the
following week. On the other hand, users that use both
mobile and PC clients account for 14.3% of users, and
they are more likely to retrieve their uploads very soon.
• Device type effects on performance. The mobile device

type (either Android or iOS) has a significant impact on
chunk-level transmission performance. We show that the
root cause lies in the idle time between chunk transmis-
sions. A large TCP idle time might trigger the restart of
TCP slow-start. As a result, as many as 60% of idle in-
tervals on Android devices restart TCP slow-start for the
next chunk, compared with only 18% for iOS. Moreover,
the small TCP receive window size advertised by servers
limits upload performance, independent of device type.

Our results show that mobile users tend to use the cloud
storage service for backup of personal data. This suggests
opportunities for simplifying the design, and for optimizing

the performance of mobile cloud storage services. In par-
ticular, expensive delta encoding and chunk-level deduplica-
tion implemented in traditional cloud storage services [21,
22] have limited benefits in mobile scenarios. Instead, we
posit a smart auto backup function that defers uploads
in order to reduce the peak load and reduce cost. Some
cost-effective storage solutions for infrequently accessed ob-
jects, like f4 [25], can also easily reduce cost. In addition,
providers can leverage the distinct usage patterns of users for
effective in-app advertisement. Finally, to improve network,
the effect of long idle intervals between chunks should be
mitigated by using larger chunks or batching the transmis-
sion of multiple chunks.

Another contribution of this work is that we have
made our dataset publicly available for the community at
http://fi.ict.ac.cn/data/cloud.html. We hope the dataset will
be used by other researchers to further validate and investi-
gate usage patterns in mobile cloud storage services.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the background and dataset, while Section 3
presents an in-depth analysis of user behavior. Next, Section
4 investigates data transmission performance. We discuss
the related work in Section 6 and conclude in Section 7.

2. DATASET AND WORKLOAD
This section begins with an overview of the mobile cloud

storage service that we examine in this paper, followed by
the description of the dataset in use and its limitations. Fi-
nally, we present the temporal pattern of workload from mo-
bile devices, which will facilitate the understanding of sys-
tem artifacts.

2.1 Overview of the Examined Service
The service that we examined is one of the major personal

cloud storage services in China, serving millions of active
users per day. The service is very similar to other state-of-
the-art cloud storage services, like Google Drive and Mi-
crosoft OneDrive. Users are offered to store, retrieve, delete
and share 1 files through either a PC client or a mobile app.
This paper focuses on the first two operations (i.e., store and
retrieve), because the last two operations (i.e., delete and
share) do not go through the storage front-end servers, where
we collected our data.

Users are allowed to select multiple files to store or re-
trieve at one time. Uploading a file does not automatically
delete the local copies of the files. That said, a local copy of
the uploaded file might be kept on the device. HTTP is used
to move data between cloud servers and clients. The basic
object for a HTTP request is a chunk of data with a fixed size
of 512KB (except for the last chunk of HTTP content). Each
chunk is uniquely identified by an MD5 hash value derived
from the chunk data. Files larger than the maximum chunk
size are split into chunks for transmission and storage. A file

1Delta updates (also known as direct modifications on files)
are currently not supported. In other words, any change to
the local copy of a file that results in change of the file’s
MD5 value will eventually lead to a new file to be uploaded.

http://fi.ict.ac.cn/data/cloud.html

can be identified using either a URL or its MD5 hash value,
or both.

The mobile app is available for both iOS and Android de-
vices. To store or retrieve a file, a mobile device first contacts
a pre-defined metadata server. For storage, the mobile device
sends the file’s metadata (i.e., the file name and MD5 hash
value) to a metadata server. The metadata server first checks
whether or not the file has been already uploaded to a storage
server. If storage server has already kept a copy of the file,
the metadata server adds the file to the user’s space and tells
mobile device not to upload the file. This deduplication pro-
cess aims to avoid redundant uploads of the same content,
so as to reduce the workload of storage servers. Otherwise
(i.e., if the file version has not been identified on any stor-
age server), the metadata server sends the client the identity
of the closest storage front-end server to contact. The mo-
bile device then sends some file information (including the
file name, the file size, the file MD5, the number of chunks
and the corresponding MD5 values of individual chunks) to
the front-end server via a file storage operation request, and
then initiates the storage process of chunks with chunk stor-
age requests.

In the case of a retrieval query, the mobile device asks
a pre-defined metadata servers for the MD5 hash value of
the requested file (indicated by the unique URL), which is
then used to request the file relevant information from a stor-
age server via a file retrieval operation request, followed
by requests of individual chunks (i.e., chunk retrieval re-
quests). For ease of description, file storage/retrieval oper-
ation request is denoted as file operation, while chunk stor-
age/retrieval request is shortened as chunk request.

Users are allowed to store or retrieve multiple files at a
time, and several files might be transferred in parallel. For
example, the mobile app allows users to backup multiple
photos at a time. Users can also issue file storage or re-
trieval requests when other files are being transferred. For
a single file, HTTP requests can use one or more TCP con-
nections. TCP connections can also carry HTTP requests
from more than one file. Within a specific TCP connection,
chunks are sequentially requested, i.e., a new chunk request
will not be issued until the receiver explicitly acknowledges
(at the HTTP level) the previous chunk2.

2.2 Dataset Description
HTTP request logs. We collected HTTP-level request logs
from all storage front-end servers of the examined mobile
storage service. We focus on the logs from mobile devices
in this paper. Table 1 lists an example of the main fields
contained in a log entry.

The device ID uniquely identifies a device, while the user
ID is uniquely bound to a registered user account. Both de-
vice ID and user ID are anonymized in our datasets. The
data volume measures the volume of uploaded (resp. down-
loaded) data for a chunk storage (resp. retrieval) request.
The request processing time measures the duration between

2The batched store/retrieve operations [11] of multiple
chunks are not yet supported.

Table 1: Main fields of logs

Field Example
Timestamp 19:10:01 Aug. 4 2015
Device type Android or iOS
Device ID 33ab8c95437fd
User ID 1355653977
Request type file operation/chunk request
Data volume 512KB
Req. processing time 4.398s
Average RTT 89.238ms
Proxied or not yes

the first bytes received by front-end server and the last bytes
sent to mobile client. The average RTT is the average
of all RTTs measured for the TCP connection on which
the HTTP request is transferred. Finally, whether the re-
quest is proxied or not is obtained from the HTTP header
X-FORWARDED-FOR.

We collected all the log entries of HTTP requests origi-
nated from mobile devices for one week in August 2015. In
total, we obtained 349,092,451 logs from 1,148,640 active
mobile users (identified by user ID) using 1,396,494 mobile
devices (identified by device ID), where 78.4% of the ac-
cesses were from Android devices, and the rest from iOS
devices. Geographically, users are located in China as well
as in overseas countries. A user might use several mobile
devices to access the service.

Users can use both mobile devices and PC clients to ac-
cess the service. In our dataset, there are 164,764 such users,
accounting for 14.3%. We also collected the HTTP request
logs generated by these users when they accessed via PC
clients, corresponding to 59,647,797 logs. Note that since
we use complete HTTP request logs (as opposed to sam-
pling the logs), the information of all the used devices (ei-
ther mobile devices or PC devices) of a user is included in
our dataset. In addition, to examine the disparity between
mobile users and PC client users, we extract 1,206,592,592
request logs from over 2 million PC-based users during the
same period of time. These logs are used for usage pattern
analysis in §3.2.

Packet-level traces. We also captured packet-level traces
(128-byte packet) for storage and retrieval flows originated
from mobile devices at one of the storage front-end servers.
The packet-level traces are desired for the investigation of
TCP behavior and its impact on the cloud storage service.
In total, we obtained the packet-level traces of 40,386 flows,
including both storage and retrieval flows.

2.3 Dataset Limitations
Due to privacy constraints, none of our traces include in-

dividual file information or chunk hashes. This prevents
us from linking HTTP requests that are associated with the
same file. Instead, we group requests into sessions based on
the inter-file operation times (See §3.1 for details). A session
corresponds to the activities of a user in a period of time prior

to a relatively longer inactivity period of time (e.g., logging
out). A session can contain multiple file operations.

In addition, we analyze the cloud storage performance
by examining the TCP behavior of storage/retrieval flows.
As TCP is sender driven, packet traces at client side (i.e.,
TCP sender when storing data), which are not included in
the dataset, are required when analyzing the performance of
storage flows. We resort then to a number of active measure-
ments for this purpose (See §4).

2.4 Workload Overview

M Tu W Th F Sa Su
0

0.5

1

1.5

v
o

lu
m

e
 (

T
B

)

retrieve store

(a) data volume

M Tu W Th F Sa Su
0

1

2

#
 o

f
fi
le

s
 (

×
 1

0
5
)

retrieve store

(b) # of retrieved/stored files

Figure 1: Temporal variation of workload: (a) the data vol-
ume, (b) number of files that are retrieved/stored. The mark-
ers represent 12PM and 24PM of each day.

We first report the temporal pattern of the mobile cloud
storage workload in Figure 1. Request logs are grouped
into one-hour frame bins. For each bin, the total data vol-
ume of storage and retrieval, which reflects the load on stor-
age servers, is plotted in Figure 1a, while the number of
stored and retrieved files, which reflects the load on meta-
data servers, is shown in Figure 1b. We observe a clear di-
urnal pattern with a sharp surge around 11PM when users
are at home where they are likely to have access to WiFi. In
fact, the mobile app provides users the option to transfer files
only via a WiFi network. We can also observe that retrievals
contribute more data volume to the workload than storages.
In contrast, the number of stored files per hour is over two
times of that of retrieved files. This implies that retrieved file
objects are much larger than the stored ones, which is also
confirmed by our analysis in §3.1.

The above observations on workload variation have two-
fold implications. First, both storage servers and metadata
servers would be highly over-provisioned for most of the
time, since the server capacity is often designed to bear the
peak load. Elastic scale-in and scale-out of the service as
such are needed to address this over-provision problem. Sec-
ond, the huge data volume greatly challenges the storage
space and bandwidth. In this context, a thorough analysis

...

...

time

store/retrieve

chunk

session length

...

begin end

begin

τ>T

Figure 2: File operation interval and session identification
methodology for a user. The white boxes represent file op-
erations, while the hatched boxes show chunk requests.

of the system artifacts (§3) and performance (§4) can shed
light on avenues for system and revenue optimizations.

3. USER BEHAVIOR ANALYSIS
In this section, we study user behavior by analyzing the

session characteristics and usage patterns.

3.1 Session Characteristics
We first examine the inter-file operation time. The anal-

ysis leads to the session identification. We then analyze the
session size and build models to capture the intrinsic proper-
ties of file size.

3.1.1 File Operation Interval and Session Iden-
tification

A user’s activity in our dataset is captured through a
stream of HTTP requests with their associated timestamps
as shown in Figure 2. A file operation request, which carries
the requested file information to storage front-end servers,
points to the beginning of file storage or retrieval (white box
in Figure 2). The file operation interval (T in Figure 2) mea-
sures the time duration between each file operation request
and the previous operation of the same user. We separate
sessions based on the distribution of file operation interval.
Here, a session is formally defined as a sequence of HTTP
requests (including both file operation and chunk requests)
made by a user during a period of time, in which the time
difference between any two sequential file operations is less
than τ , where τ is a parameter that should be empirically de-
rived. In other words, a file operation request begins a new
session of the user if it is more than τ away from the previous
file operation, i.e., T > τ .

Figure 3 plots the histogram distribution of the file opera-
tion intervals for all users extracted from our dataset, based
on the logarithmically scaled inter-file operation time. We
observe a valley around the 1-hour mark. Inspired by the ses-
sion identification methodology in [18], this is an indicator
that τ could be set to 1 hour. We further fit a two-component
Gaussian mixture model, where the expectation maximiza-
tion (EM) method [7] is used to find the maximum likelihood
estimate of the model parameters. As shown in Figure 3,
one component of the model corresponds to within-session
intervals with an average around 10s. The other captures the
inter-session intervals with an average around 1 day, corre-

Figure 3: Histogram of time between sequential file opera-
tions of individual users (bars), which is fit with a mixture of
Gaussians with two clusters: one for intra-session intervals
and one for inter-session intervals.

sponding to the behavior that some users return to the service
after a one-day period. This model further confirms that set-
ting τ to 1 hour is reasonable as the 1-hour mark is equally
likely to be within the two components.

Table 2: Statistics of three types of sessions.

store-only retrieve-only mixed
% of sessions 68.3% 29.9% 1.8%

By applying the session identification methodology, we
obtain 2,377,124 sessions, which are further classified into 3
classes as shown in Table 2: store-only (i.e., containing only
file storage requests), retrieve-only (i.e., containing only file
retrieval requests) and mixed (i.e., containing both storage
and retrieval requests). Surprisingly perhaps, we find that
more than 68% of the sessions are store-only. On the other
hand, only 1.8% of the sessions include both storage and re-
trieval processes, which strongly suggests that users tend to
perform a single type of task within one single session. The
dominance of store-only sessions implies that the mobile
cloud storage service is write-dominated, which is quite dif-
ferent from the traditional PC-based cloud storage services
that are read-dominated [12, 16].

3.1.2 Burstiness within sessions
To explore whether users perform all file operations at the

beginning of sessions, we measure for each session the user
operating time as the time between the first file operation re-
quest and the last one. Figure 4 depicts the distribution of
user operating time, normalized by the session length (de-
fined in Figure 2). In sessions containing only one file oper-
ation, file operations are always performed at the beginning
of sessions. We thus only consider those having more than
1 file operation, which are further divided into based on the
number of file operations. Regardless of the number of file
operations, for over 80% of the sessions, the normalized user
operating time is below 0.1, indicating that users tend to per-
form all the file operations at the beginning of the sessions,
then wait for the finish of the upload or download. Interest-

0 0.1 0.2 0.3 0.4
0.2

0.4

0.6

0.8

1

C
D

F

user operating (normalized) time

#files>1

#files>10

#files>20

Figure 4: Cumulative distribution of user operating time, i.e.
the time between the first file storage/retrieval operation and
the last one in a session. The time is normalized by the ses-
sion length.

ingly, the more files in a session, the higher likelihood that
all the file operation requests are sent at the early stage of the
session. For example, users issued all requests within 3% of
the session length in the sessions with more than 20 file op-
erations. One of the reasons for this is that the mobile app
allows users to simultaneously store or retrieve multiple files
(e.g., batch backup of photos in mobile devices). The device
then issues these file operation requests within a short time
period.

The above observation implies that users store and retrieve
files in a bursty way. The burst activities within sessions
challenge the load balance in the back-end servers [18]. In
addition, since metadata servers are only required to be con-
tacted at the beginning of sessions, it is very important to de-
couple the metadata management and the data storage man-
agement (as opposed to involving metadata management
during the whole session), in order to alleviate the load on
metadata servers.

3.1.3 Session size
We then examine the session size, which is measured as

the volume of data transferred in individual sessions during
our observation period. We first show in Figure 5a the cu-
mulative distribution (CDF) for the number of file operations
in individual sessions3. It can be seen that users tend to re-
trieve or store very few files within a session, which is evi-
denced by the fact that, independent of session types, 40%
of the sessions contain only one file operation. Neverthe-
less, around 10% of the sessions contain over 20 files, pos-
sibly corresponding to synchronization of multiple files in a
dictionary to/from the cloud.

To examine the data volume of individual sessions, we
group sessions into bins, where each bin contains sessions
that store or retrieve the same number of files. We then com-
pute the average, median, 25th percentile and 75th percentile
data volume over the sessions in each bin. Figure 5b and
Figure 5c report the results for store-only and retrieve-only
sessions respectively.
3We do not show the results for mixed sessions since they
are not significant.

1 10 20 100 200
0

0.2

0.4

0.6

0.8

1

of stored/retrieved files (log scale)

C
D

F

store−only

retrieve−only

(a) # of files in individual sessions

0 20 40 60 80 100
0

40

80

120

160

of stored files in a session

s
e
s
s
io

n
 s

iz
e
 (

M
B

)

average

median

25−75th prct

(b) data volume: store-only sessions

0 20 40 60 80 100
0

40

80

120

160

200

of retrieved files in a session

s
e
s
s
io

n
 s

iz
e
 (

M
B

)

average

median

25−75th prct

(c) data volume: retrieve-only sessions

Figure 5: Session size when varying the number of store/retrieve operations per session.

The linear relationship between data volume and number
of stored files is visible for stored-only sessions (Figure 5b).
The linear coefficient is about 1.5MB, which corresponds to
the average file size. We conjecture that the prevalence of
photos backup from mobile devices enabled by the mobile
app results in this average file size. This conjecture was con-
firmed by the cloud service provider that most of uploads are
personal photos taken by smart phones or tablets. We also
observe a limited variation of session data volume within in-
dividual bins when the corresponding number of stored files
is small (e.g., less than 10), implying similar user behav-
ior. These observations reveal the different usage scenarios
between the mobile cloud storage service and the traditional
ones, where majority of files are very small (< 100KB) [21].

The data volume of retrieve-only sessions, however, varies
significantly different (Figure 5c). The average is even
higher than the 75th percentile value for some bins, indi-
cating few sessions in these bins transfer a huge amount of
data. Besides, the average session volume is considerably
large when users retrieve only several files within a session.
For instance, the average volume is as large as about 70MB
in sessions retrieving only one file. This behavior should be
related to file sharing enabled in the cloud storage. Some
popular content objects (like videos or software packages)
might be shared widely through URLs of the files. Down-
loading these files from a cloud platform, which is known to
have good content delivery network coverage (like the one
that we examine), might prove often faster than download-
ing from traditional web sites [19].

The difference of session size characteristics between
storage and retrieval sessions implies that users use the mo-
bile storage service for different purposes. We will further
examine the usage scenarios later in this section. In addi-
tion, since majority of the sessions include very few file op-
erations, the possibility of bundling multiple files for upload
will be low. Indeed, even for the sessions that contain dozens
of file operations, the bundling will not significantly reduce
overhead traffic (arising from TCP/HTTP connection setup
and maintenance, metadata delivery, etc.), since the size of
one single file is large enough to achieve efficient traffic us-
age [21]. Rather, due to the large file size, multiple TCP
connections are required to accelerate upload and download.
However, cares should be taken when using multiple TCP

connections on mobile devices because of power, memory
and CPU constraints [9].

3.1.4 Modeling the average file size

100K 1M 10M 100M 1G
10

−8

10
−6

10
−4

10
−2

10
0

average file size per session (Bytes)

C
C

D
F

Empirical

Mixture−of−exp

(a) store-only sessions

100K 1M 10M 100M 1G 10G
10

−6

10
−4

10
−2

10
0

average file size per session (Bytes)

C
C

D
F

Empirical

Mixture−of−exp

(b) retrieve-only sessions

Figure 6: Mixture exponential fit for average file size of in-
dividual sessions. Both axes are in logarithmic scale

To further investigate the stored and retrieved file at-
tributes, we compute for each session the average file size as
the session data volume normalized by the number of files.
Figure 6 plots the CCDF (complimentary CDF) of average
file size for individual sessions. We observe a clearly heavy-
tailed distribution for both types of sessions.

Our previous analysis on session size has indicated that
users might upload or download files of several typical types,
like photos and videos. To capture these different file types
and account for the observed heavy-tailed distribution, we
use the mixture-exponential distribution model [20, 26].
The PDF (probability distribution function) of a mixture-

Table 3: Model parameters for average file size. µi is in MB.

Sess. type α1 µ1 α2 µ2 α3 µ3

store-only 0.91 1.5 0.07 13.1 0.02 77.4
retrieve-only 0.46 1.6 0.26 29.8 0.28 146.8

exponential distribution is

f(x) =

n∑
i=1

αi
1

µi
e
− 1
µi

x

where ui (in MB) is the mean of the i-th exponential distri-
bution, αi represents the weight of the i-th component and∑n

i=1 αi = 1. A prominent feature of this model is that
each µi indicates a typical file size and αi can be taken as
the fraction of files with the corresponding size µi.

For each of the two session types, we iteratively determine
the number of exponential distributions (i.e., the value of n)
to be used in the mixture. Specifically, for each given n, we
use the EM algorithm [7] to find the maximum likelihood es-
timates of the parameters µi and αi. We identify that n = 3
achieves a good match, as adding the fourth exponential dis-
tribution component leads to one of the αi parameters close
to 0 (i.e., < 0.001), indicating the negligible effect of this
component. Table 3 lists the model parameters. The corre-
sponding mixture-exponential distributions are also plotted
in Figure 6, which visually shows that the developed models
fit the empirical distributions quite well4.

We speculate that the first component of the mixture dis-
tributions, captured by α1 and µ1, is related to the photo
synchronization between mobile clients and the cloud stor-
age service, as the average size indicated by µ1 is about
1.5 ∼ 1.6MB, corresponding to a typical 8Mp JPEG photo.
The value of α1 indicates that 91% of storage sessions were
synchronizing this type of files, two times of that for re-
trieve sessions. The second and third components for storage
sessions, which account for less than 10% of cases in total,
seem to be related to users uploading short and long videos
recorded on their mobile devices. Retrieval sessions, on the
other hand, tend to download large files, which is evidenced
by the fact that µ2 and µ3 are two times of those for stor-
age sessions. In particular, the third component for retrieval
sessions (accounting for 28%) with average file size close
to 150MB might result from downloads of some video clips
[19], whose URLs can be learnt from third-party sites, like
social medias and online social networks.

Combining the observations on session size and the model
for average file size, we make several important implica-
tions. First, most of store-only sessions are backing up files
of size around 1.5MB, which is likely to be photos on mobile
devices (as confirmed by the service provider). This implies
that neither data compression nor delta encoding [11] can
greatly improve system efficiency for the service. This is
because, on the one hand, compression has a negligible ef-
fect on reducing photos size, and on the other hand, photos
4We have also designed Chi-square goodness-of-fit tests for
the fittings. Both fittings pass the test when considering the
significant level of P0 = 5%.

10
−10

10
−5

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

store / retrieve

C
D

F

mobile & PC

only mobile

only PC

(a) Mobile and PC

10
−10

10
−5

10
0

10
5

10
10

0

0.2

0.4

0.6

0.8

1

store/retrieve

C
D

F

1 device

>1 device

>2 device

(b) Mobile Only

Figure 7: The ratio of stored data volume to retrieved data
volume per user. (a) the impact of PC clients; (b) the impact
of using multiple mobile devices.

are immutable [23]. Second, a considerable portion of re-
trievals (28%) download large-size files of about 150MB.
As a result, downloading might take relatively long time.
This implies a need of resilience to possible failures during
transmission and the support of resuming download, in or-
der to avoid downloading from the beginning after failures
that could be frequent for mobile network. Third, it would
be necessary to monitor the file popularity of downloads to
verify whether there exist a locality of user interests, i.e. a
handful of popular files dominate the downloads. If so, web
cache proxies are effective to reduce server workload and
improve user perceived performance.

3.2 Usage Patterns
We next look into different aspects of the storage service

usage. Since the analysis is at user level, we incorporate
in our analysis the access logs from PC clients. Note that
a user might use multiple devices, either mobile devices or
PC clients. Out of the 1,148,640 mobile users in our dataset,
we identified 164,764 users that use both mobile devices and
PCs.

3.2.1 Usage scenarios
The cloud storage service might be used for different pur-

poses. For instance, some users might consider it as a backup
service, and thus mainly upload files, while others take it as a
content distribution platform (e.g., videos or software pack-
ages) and thus mainly download files on their devices. We
use the ratio of stored data volume to retrieved data volume

of each user to identify different usage scenarios. Figure 7a
plots the cumulative distribution of the ratio, where we con-
sider the differences between mobile users and PC users.

Three prominent usage patterns can be clearly identified:
dominating retrieval for those with a ratio below 10−5, dom-
inating storage for those with a ratio over 105, mixed usage
of both storage and retrieval for those left. We can observe
that mobile users are more dominated by storage than PC
users. In contrast, PC users have a higher likelihood to per-
form both storage and retrieval. Figure 7b further examines
the impact of using multiple mobile devices on usage pat-
tern, where users that use only mobile devices are examined.
Notably, the number of mobile devices in use heavily im-
pacts usage pattern, which is evidenced by the significant
reduction of the storage dominating users when using mul-
tiple mobile devices. This observation should be due to the
frequent synchronization of personal data between multiple
devices.

Inspired by [12], we classify users into four types: (i)
occasional users with total data volume less than 1MB;
(ii) upload-only users with the stored/retrieved volume ratio
lover 105; (iii) download-only users with the ratio less than
10−5; (iv) mixed users, those not belonging to any of the
other three types. Table 4 quantifies the four groups, where
we show the percentage of users in each group, as well as the
stored and retrieved data volume (relative to the total stored
and retrieved volume during our observation period).

Notably, over half of mobile users are classified as upload-
only users and generated over 80% of the total storage vol-
ume. These users are predominantly interested in the cloud
storage for backups of their personal data from their mobile
devices. In contrast, only 7.2% of users fully exploit both
storage and retrieval to synchronize files in both directions.
This is another evidence that mobile users consider the ser-
vice more as a backup service. Download-only users, on
the other hand, account for 15 ∼ 17%. A typical scenario
for this type of users is that users get URLs of file objects
that they are interested in, and retrieve the content using the
URLs directly from the cloud. In other words, they use the
cloud storage service as a content distribution platform. Fi-
nally, occasional users marginally generate any load. They
might use the cloud storage service for few times and sel-
dom come back. Another interesting observation from Table
4 is that the distribution of PC users among the four groups
is much more evenly than mobile users. In particular, com-
pared with mobile users, PC users are less likely to be clas-
sified into upload-only group, and a larger fraction of them
fully exploit both storage and retrieval.

The identification of user patterns also shed light on tar-
get advertisements (ads). For example, since upload-only
mobile users are likely to be more interested in taking pho-
tos or record video clips, the mobile terminals equipped with
good cameras, and mobile apps with good photo editor are
potential candidates for in-app ads. Mobile cloud storage
service providers can further improve the efficiency of ad-
vertisements by looking at the actual type of files.

3.2.2 User engagement

1 2 3 4 5 6 >6
0

0.2

0.4

0.6

of day relative to the upload time

fr
a
c
ti
o
n
 o

f
a
c
ti
v
e
 u

s
e
rs

1 mobile dev

>1 mobile dev

>2 mobile dev

mobile & PC

Figure 8: User engagement: fraction of users that are active
on the first observation day and return back on the x-th day
(relative to the first day)

User engagement measures the possibility of users return-
ing back within a given period of time after their first visit.
This metric reflects user dependence on the service and is
critical for system optimization. We focus on the users that
have at least one session in the first observation day, so that
we have one week to observe their possible returns. In total,
233,225 users were active in the first day.

Figure 8 shows the statistics of user engagement, where
we first stratify users based on whether PC clients are used,
and then further divide those using only mobile devices into
3 groups based on the number of used devices. We observe a
bimodal distribution for user engagement, where users either
return back in the following day, or remain inactive over one
week during our observation period [6]. The impact of mul-
tiple devices is also notable. In particular, as many as half of
the users that use only one mobile device remained inactive
in the following week. This percentage drops greatly to less
than 20% if multiple mobile devices are used. This is ex-
plained by the fact that users synchronize their data among
multiple devices through the cloud storage service.

Since half of users are predominantly interested in upload-
ing data, we then analyze the possibility of users returning
back to retrieve the stored files that are uploaded in the first
day. Since the file related information is not available in
our dataset, we alternately examine the upper bound for this
possibility by considering that any retrieval session after the
storage session in the first day will retrieve the stored files.
Figure 9 depicts the upper bounds of the return possibility
for four types of users. Surprisingly perhaps, independent of
the number of mobile devices that were used by a user, over
80% of users that use only mobile devices will not retrieve
any data in the following week since uploading. On the other
hand, when both mobile devices and PC clients are used, the
possibility of retrieving the uploads in the following several
days improves, especially on the same day of uploading (day
0 in the figure). This observation implies that users are more
likely to sync data uploaded by mobile devices from PCs
than from another mobile device.

The low probability of downloading uploads within at
least one week for vast majority of users indicates that most
uploads could be deferred. The uploading deferment could
cut down the cost greatly. For instance, the uploads during

Table 4: Characteristics of four types of users: number of users, stored and retrieved data volume

User Type mobile only mobile & PC PC only
users store v. retri. v. # users store v. retri. v. # users store v. retri. v.

upload-only 51.5% 86.6% - 53.7% 81.3% - 31.6% 74.8% -
download-only 17.3% - 84.5% 15.1% - 66.5% 17.2% - 75.5%

occasional 23.9% - - 13.2% - - 34.1% - -
mixed 7.2% 13.4% 15.5% 18.0% 18.7% 33.5% 19.1% 15.2% 14.5%

0 1 2 3 4 5 6 >6
0

0.2

0.4

0.6

0.8

1

of days since the first day

P
ro

b
.
o
f
re

tr
ie

v
a
l
x
 d

a
y
s
 l
a
te

r

1 mobile dev

>1 mobile dev

>2 mobile dev

mobile & pc

Figure 9: Fraction of users that uploaded files on the first day
and have at least one retrieval session on the x-th day. Day
0 in the x-axis aligns to the first day.

peak workload periods (e.g., 9pm to 11pm, see Figure 1)
could be deferred to the following early mornings when the
load is low. We thus posit a “smart” auto backup func-
tionality for the implementation of uploading deferment,
where users’ files (like photos) are automatically backed up
to the cloud (on users’ permission) during the low-load and
good-connectivity periods (e.g. early morning with WiFi
connectivity at home). Such a functionality will implicitly
restrain manually uploads by users during peak hours. It
also improves mobile app’s usability as users are relieved
from manual file operations. Indeed, the deferment should
be done carefully with the right disclosure for users, because
there is a potential for hurting the users’ QoE (Quality-of-
Experience) if they are interested in reading some of the files
soon after the uploading. Also, the effect of using multiple
mobile devices and PC clients should be taken into account,
as users might synchronize the data from another device very
soon after uploading.

3.2.3 User activity modeling
Finally, we analyze the heterogeneity of user activity,

which is measured as the number of stored and retrieved
files. We first examine whether user activity follows the
power law distribution, which would be observed as a
straight line in the rank distribution of user activity when
plotted in a log-log scale. The power law distribution has
been recognized in several online services [24]. However,
we find from Figure 10 that the rank distribution of user ac-
tivity deviates from a straight line in log-log plots (right y
axis), indicating a non-power law distribution. In contrast,
the user activity can be well modeled by stretched exponen-
tial (SE) model. The CCDF of a SE distribution is given as

10
0

10
1

10
2

10
3

10
4

10
5

10
6

1

80

792

3802

12523

32768

Rank (log scale)

#
 s

to
re

d
 f
ile

s
 (

y
c
 s

c
a
le

)

c = 0.2, a= 0.448, b = 7.239

R
2
 = 0.999201

10
0

10
2

10
4

10
6
10

0

10
1

10
2

10
3

10
4

10
5

#
 s

to
re

d
 f
ile

s
 (

lo
g
 s

c
a
le

)

data in log−y
c
 scale

SE model fit

data in log−log scale

(a) storage

10
0

10
1

10
2

10
3

10
4

10
5

1

102

1516

10321

45688

154055

Rank (log scale)

#
 r

e
tr

ie
v
e

d
 f

ile
s
 (

yc
 s

c
a

le
)

c = 0.15, a= 0.322, b = 4.971

R
2
 = 0.998964

10
0

10
1

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

10
4

10
5

#
 r

e
tr

ie
v
e

d
 f

ile
s
 (

lo
g

 s
c
a

le
)

data in log−y
c
 scale

SE model fit

data in log−log scale

(b) retrieval

Figure 10: Rank distribution for the number of stored (a)
and retrieved (b) per user. The x-axis and right y-axis are
in logarithmic scale, the left y-axis is in yc scale (c is the
stretch factor of SE model).

follows

P (X ≥ x) = e−(
x
x0

)c

where c is the stretched factor and x0 is a constant pa-
rameter. Suppose we rank N users in a descending order
of the number of stored (or retrieved) files, and the i-th
ranked user stored (or retrieved) xi files. Then, we have
P (X ≥ xi) = i/N , meaning log(i/N) = −(x

x0
)c in the SE

model. By substituting xi for yi, we have yic = −a log i+b,
where a = x0

c and b = y1
c. In other words, the log-yc

plot of ranked data that follows a SE distribution is a straight
line. We obtain the parameters by maximum likelihood esti-
mation following the method in [17].

Figure 10 also plots the SE distributions with the esti-
mated parameters, where the left y-axis is in yc scale. It can
be observed that the SE models match the data quite well,
as the log-yc plots of ranked data (the blue lines) are close
to straight lines. The coefficient of determination (i.e., R2),

Table 5: Summary of major findings and implications in user behavior

Major findings Implications
Sessions: A two-component Gaussian mixture model
captures the intra- and inter-session intervals. And over
68% of sessions are used only for storing files.

Sessions, which can be identified using the interval
threshold derived from the model, are write-dominated.

Activity burstiness: Mobile users store and retrieve files
in a bursty way.

It is necessary to decouple the metadata management and
the data storage management in mobile cloud storage.

Session size: Majority of the sessions include very few
file operations.

The possibility of bundling multiple files for transmission
is very low.

File attribute: Over 90% of storage sessions are used to
store file objects of 1.5MB, which are likely to be photos
on mobile devices.

Data compression and delta encoding are not necessary in
mobile cloud storage services.

Usage pattern: Over half of the mobile users are
predominantly interested in uploading objects and seldom
retrieve data. In contrast, PC-based users are far more
likely to fully exploit both storage and retrieval processes.

Mobile users are likely to use the service for backing up
personal data. In other words, mobile users use the cloud
storage service quite differently than PC-based users.

User engagement: Independent of the number of mobile
devices in use, about 80% of the mobile users will not
return in the following week to retrieve their uploads.

Uploads can be deferred to avoid the peak load period,
and the cold/warm storage solution (e.g. f4 [25]) can cut
the cost down significantly.

User activity model: The heterogeneity of user activity is
captured by a stretched exponential distribution, rather
than a power law distribution.

System optimizations (like distributed caching, data
prefetching [16]) that aim to cover “core” users should
consider more users than that computed by a power law
model.

which measures the proportion of total variation of data ex-
plained by the model, further confirms the good fit. Compar-
ing the SE model parameters between storage and retrieval,
we observe a smaller stretched factor c for retrieval, meaning
a more skewed distribution for retrieval activity. A possible
reason is that the most active users might synchronize per-
sonal data from cloud to multiple devices, and thus retrieve
far more files than the low-ranked users.

The SE model implies that while the user activity is bi-
ased, the top ranked users are not as active as the power
law predicts. This implies the influence of a small number
of “core” users cannot dominate the system. As such, sys-
tem optimizations (like distributed caching, data prefetch-
ing [16]) that aim to cover “core” users need to account for
more users. Besides, mobile cloud storage system designers
as well as researchers can leverage the SE models developed
here for workload generation.

3.3 Summary and Implications
We summarize and extend the findings and implications

that have discussed throughout this section in Table 5, in or-
der to shed further light on the service optimizations. The
findings consistently suggest that the mobile cloud storage
service is upload-dominated. It seems that mobile users are
more likely to take the mobile cloud storage as a backup
service than PC-based users. Mobile cloud storage service
providers and system designers can take the implications for
efficiency optimization, cost reduction and revenue improve-
ment.

4. DATA TRANSMISSION PERFOR-
MANCE ANALYSIS

a

c

k

H

T

T

P

2

0

0

O

K

client
server

a

c

k

l

a

s

t

p

k

t

o

f

c

h

u

n

k

i

H

T

T

P

r

e

q

u

e

s

t

f
o

r

u

p

l

o

a

d

i
n

g

c

h

u

n

k

i

T

clt

T

srv

.

.

.

T

chunk

p

k

t

o

f

c

h

u

n

k

i

T

net

H

T

T

P

r

e

q

u

e

s

t

f
o

r

u

p

l
o

a

d

i
n

g

c

h

u

n

k

i

+

1

A

C

K

o

f

t

h

e

l

a

s

t

p

k

t

idle

time

(a) storage

l
a

s

t

p

k

t

o

f

c

h

u

n

k

i

-

1

A

C

K

o

f

t
h

e

l

a

s

t

p

k

t

H

T

T

P

r

e

q

u

e

s

t

f
o

r

d

o

w

n

l

o

a

d

i
n

g

c

h

u

n

k

i

a

c

k

H

T

T

P

2

0

0

O

K

p

k

t

o

f

c

h

u

n

k

i

T

net

T

clt

T

srv

client
server

l
a

s

t

p

k

t

o

f

c

h

u

n

k

i

.

.

.

T

chunk

a

c

k

idle

time

(b) retrieval

Figure 11: Timeline of storage and retrieval within a TCP
flow

In this section, we examine the data transmission perfor-
mance of the mobile cloud storage service, with an emphasis
on the factors that limit the performance. Both HTTP access
logs and the packet-level traces collected from the storage
front-end servers are used. To eliminate the effect of HTTP
proxies on the analysis bias, we filtered out those requests
that were proxied by at least one proxy.

To put the analysis into perspective, Figure 11 depicts
the timeline of uploading and downloading chunks, with
important metrics being marked. Each access log in our
dataset contains the total request processing time by front-
end server (Tchunk) as well as the upstream processing time
(Tsrv). In particular, Tchunk measures the duration between

the first bytes received by front-end server and the last bytes
sent to mobile client, while Tsrv refers to the time spent in
storing/preparing the requested content by upstream storage
servers, i.e., the servers that physically host the data. The
other two metrics Tnet and Tclt can only be extracted from
the packet-level traces, where Tnet measures RTT (Round
Trip Time), while Tclt is the time required by client to pre-
pare the next chunk in the case of uploading, or to process
the data of the latest downloaded chunk in the case of down-
loading.

4.1 Chunk-level Performance

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

storage time per chunk (s)

C
D

F

Android

iOS

(a) uploading

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

retrieval time for a chunk (s)

C
D

F

Android

iOS

(b) downloading

Figure 12: CDF for the time required to upload/download a
chunk. Note the difference of x-axis limit in two subfigures.

We first examine the uploading and downloading time
of a chunk perceived by users, which is approximated as
ttran = Tchunk − Tsrv (see Figure 11). Figure 12 plots
the distribution of transmitting time for individual chunks
recorded in the HTTP request logs. We surprisingly observe
a significant longer time required by Android devices, es-
pecially for uploading. For instance, the median time for
uploading is 1.6s for iOS devices, but as long as 4.1s for
Android devices.

Since servers do not distinguish between device types, we
conjecture that the throughput gap between Android devices
and iOS devices come from the client side behavior. To this
end, we conducted a series of active measurements. In par-
ticular, a Samsung Pad (Android 4.1.2) and an iPad Air2
(iOS 8.4.1) with the mobile app being installed, were con-
nected to the Internet through a laptop, which acted as an
AP (Access Point) sitting very close to our experimental de-
vices. The laptop itself was connected to the Internet through
WiFi. Files of similar size were uploaded or downloaded
at the same time from two devices. We experimented with
three typical file sizes: 2MB, 10MB and 80MB. Note that
we did not control bandwidth in the experiments. Packet
level traces in pcap format were dumped from the laptop
for analysis. We find that both types of devices connected to
the same front-end server.

We observe for both storage flows and retrieval flows,
Android clients take a longer time between two consecu-
tive chunks than iOS clients. The long idle time between
chunks will significantly degrade the chunk transmission
performance. To illustrate this, we compare in Figure 13 the
sequence number over time and the inflight size (the num-

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

3.5

4
x 10

6

time (s)

s
e
q
u
e
n
c
e
 n

u
m

b
e
r

iPad

Android Pad

(a) Sequence number

0 1 2 3 4 5 6 7 8 9 10
10

3

10
4

10
5

time (s)

in
fl
ig

h
t

s
iz

e
 (

b
y
te

s
)

iPad Android Pad

(b) In-flight size

Figure 13: Sequence number (a) and in-flight size (b) of a
storage TCP flow observed at client side

ber of bytes in flight) of an Android storage flow and an iOS
storage flow5. The inflight size is an accurate estimation of
the sending window at TCP sender (which is client in up-
loading) [29], which determines the TCP throughput. On
each ACK from server, we compute the inflight size as the
gap between the sequence number in the last packet sent by
client and the ACKed sequence number by server.

We make two notable observations from Figure 13a. First,
the iPad experienced higher throughput than the Android
Pad. Second, the idle time between chunks in the Android
flow can be over 1 second, much larger than that in the iPad
flow. The large idle time of Android Pad indeed significantly
degrades the performance as shown in Figure 13b, which
shows the variation of inflight size over time, where the y-
axis is in logarithmical scale. The long idle time between
chunks in the Android flow is notable. Note that at the end of
each chunk, the inflight size drops because the client has no
data to send before the application-level acknowledgement
(i.e., HTTP 200 OK) from server for the current chunk.

Except the first chunk, the iPad begins the upload of each
chunk with sending window size close to 64KB, the same
as that at the end of the previous chunk. However, in the
Android flow, each chunk begins transmission with a small
sending window and takes some time to reach that in the pre-
vious chunk. This difference results from TCP behavior in
the case of long idle time. TCP is recommended to reset the
congestion window to its initial value and begin with slow
start if the TCP is idle (i.e., no data has been sent) for an
interval more than the RTO (Retransmission Timeout) [1].
5To better interpret the results, we show only the first 10
seconds of the flows.

10
1

10
2

10
3

10
4

0

0.2

0.4

0.6

0.8

1

C
D

F

RTT (ms)

Figure 14: CDF of the RTT measured in the transmission of
chunk. Note the x-axis is in logarithmical scale.

1k 10k 64k
0

0.01

0.02

0.03

avg. sending window size (bytes)

p
ro

b
a

b
ili

ty

Figure 15: Probability distribution of the estimated average
sending window size at client for storage flows

As we will see later, 60% of the idle intervals between two
chunks in Android storage flows exceed RTO, while this per-
centage is only 18% for iOS flows. Given that the median
RTT is around 100ms (see Figure 14), these Android flows
will require to using as much as 0.5s (i.e., 5 RTTs) extra time
to reach the window size of 64KB.

Another interesting observation from Figure 13b is that
the inflight size is limited at about 64KB. After examining
the traces, we figured out this limitation is caused by the
receive window size advertised by TCP receiver (which is
server in uploading). Indeed, in TCP without window scal-
ing option, the receive window size is 65,536 bytes at most
[3]. In the cloud storage service that we examine, servers
do not allow the window scaling option. To further verify
this performance bottleneck, we estimate the average send-
ing window size (swnd) of upload flows using our dataset of
HTTP access logs. The average performance of a TCP flow
can be approximated as swnd/RTT , where RTT is the av-
erage RTT of the flow. As such, we have swnd/RTT =
reqsize/ttran, where reqsize is the volume of transmitted
data of the request, and ttran = Tchunk − Tsrv. That said,
swnd = reqsize ∗RTT/ttran.

Figure 15 plots the probability distribution of swnd that
is estimated using individual access logs. The concentra-
tion around 64KB is notable. This observation confirms that
the sending window size is limited by the advertised receive
window size of servers, which disable the window scaling
option. We have also examined the receive window size ef-
fect for the retrieval flows and found mobile clients, which
are TCP receivers when retrieving, enable the window scal-
ing option. In fact, the advertised receive window by the
Samsung Pad is as large as 4MB, while it is 2MB for the
iPad. Such a huge receive window, however, might not be

fully utilized and would result in waste of resources [9].

4.2 Dissecting Idle Time between Chunks
Next, we use the packet-level traces collected at front-end

servers to make an in-depth analysis of the idle time between
transmissions of two consecutive chunks. Here, the idle time
refers to the TCP idle time, which is the time interval in
which the TCP sender has not sent any data. As shown in
Figure 11, the idle time at TCP sender for both storage and
retrieval is the sum of server processing time Tsrv and client
processing time Tclt. While Drago et al. [12] have shown
that the sequential acknowledgment impairs overall TCP
flow throughput due to the waiting of application-layer ac-
knowledgments, we further reveal that the idle time between
chunk transmissions can even heavily hurt the throughput of
individual chunks.

We first show the distribution of Tsrv and Tclt for stor-
age flows in Figure 16a and retrieval flows in Figure 16b.
Regardless of device type (Android or iOS) and flow type
(storage or retrieval), the processing time at server side is
around 100ms, reconfirming that servers do not distinguish
between device types. However, the processing time at client
side of Android devices differs significantly from that of iOS
devices. In particular, Android devices spend on average
90ms more time than iOS devices in preparing data for the
next uploading chunk. While the median processing time at
client side for retrieval flows of two types of devices is sim-
ilar, notably, the 90th percentile time for Android devices is
as high as 1s, one order of magnitude larger than that for
iOS devices. We can conclude that client side processing
time (Tclt) is the major contributing factor to the long idle
time in Android flows.

The long idle time between chunks of Android flows
would trigger the restart of TCP slow-start [1]. To eval-
uate this, we examine the ratio of idle time (Tsrv + Tclt)
to the estimated RTO (R̂TO). In TCP implementation [2],
RTO is computed as SRTT + max(200ms, 4 RTTVAR),
where SRTT is close to RTT, and RTTVAR is approximately
RTT/2, i.e.,

R̂TO ≈ RTT +max(200ms, 2RTT)

Figure 16c depicts the distribution for the ratio of idle time
to RTO. It is notable that Android flows experience a much
higher probability to trigger the restart of TCP slow-start. In
particular, about 60% of Android uploading chunks that are
preceded by other chunks will start transmission with TCP
slow-start, while this percentage is only 18% for iOS flows.
We observe the similar gap for retrieval flows. Such a huge
gap results in the performance difference between Android
and iOS flows shown in Figure 12.

4.3 Summary and Implications
We have observed that the small receive window size is a

factor that limits the performance of storage flows for both
iOS and Android devices. This will greatly hurt QoE of the
mobile cloud storage service. A straightforward solution is
to enable the window scaling option at server side. How-

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

time (ms)

C
D

F

android:T
clt

android:T
srv

iOS:T
clt

iOS:T
srv

(a) storage

10
0

10
1

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1

time (ms)

C
D

F

android:T
clt

android:T
srv

iOS:T
clt

iOS:T
srv

(b) retrieval

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

idle time / rto

C
D

F

android storage

ios storage

android retrieval

ios retrieval

(c) idle time / RTO

Figure 16: Dissecting the idle time between two consecutive chunks: (a) storage flows, (b) retrieval flows, (c) the ratio of idle
time to RTO.

ever, service providers should be aware the cost of this op-
tion when serving million of concurrent flows. First, higher
bandwidth is required to support the improved throughput
of individual flows. Second, if the operating system ker-
nel at server side preallocates the memory for socket, the
large receive window size will lead to increased memory re-
quirement and possible waste of resources in the case that
throughput is limited by network or client side factors, rather
than the advertised receive window by servers.

The effect of long idle time between chunks on TCP be-
havior of restarting slow-start may be mitigated by simply
disabling the implementation of slow start after idle (SSAI).
However, without SSAI, the connection is likely allowed to
send out a large burst after the idle period. In this case,
packet loss may happen, especially for the packets at the tail
of the burst. Once packets at the tail of the burst are lost,
expensive timeout retransmission may be used for loss re-
covery [13], which yields low performance. Rather, the op-
timizations that aim at improving TCP start-up performance
might be useful [27][28]. For example, some packets can
be paced out at a certain rate until the ACK clock can be
restarted [27]. Moreover, since client side processing time
dominates the idle time (see Figure 16), system operators
should investigate the causes of long processing time of An-
droid clients and then shorten it.

On the other hand, the effect can also be mitigated by
reducing the number of intervals between chunk transmis-
sions. To this end, a larger chunk size can be used. Our
analysis has revealed that users tend to synchronize files of
size over 1.5MB, increasing the chunk size from 512KB to
1.5∼2MB is indeed reasonable. In addition, batch com-
mands that allow several chunks to be transmitted in a single
request will also reduce the amount of intervals in individual
flows [12].

In summary, our analysis at such a large-scale shows how
the TCP receive window and slow start after idea, if not
well designed, might undermine TCP performance of mov-
ing data in practice. This sheds light on the design of effi-
cient chunk transmission in cloud storage services. More-
over, the observation on the huge performance gap between
Android and iOS devices in moving chunks opens up the

need to further investigate the mobile type effect.

5. DISCUSSION
Threats to validity. Although our dataset consists of 349
million logs from over 1 million users, it is from only one
service provider. While our findings clearly reveal the dis-
parity between mobile users and PC-based users in using
the cloud storage services, cares should be given when gen-
eralizing our findings to other mobile cloud storage ser-
vices. Another limitation might have introduced biases is
that the observation period is only one week. For example,
it may mistake infrequent downloads for lack of downloads
when identifying individual users’ behavior. To reduce these
threats, we have made our dataset publicly available for the
community to further valid our findings.
Usage of mobile cloud storage. Our analysis raises an in-
teresting question: Is the mobile cloud storage a backup ser-
vice, rather than a file hosting service? The findings in this
paper consistently show that the examined service is upload-
dominated, and users access their uploads far from often.
However, since the dataset does not contain any file or chunk
identifications, this work has not fully answered this ques-
tion. We will pursue in this direction.

6. RELATED WORK
The usage pattern of Dropbox was first examined in [12],

where the performance degradation caused by the sequen-
tial acknowledgment is also examined. The authors further
extended their analysis to 5 cloud storage services in [11].
Mathematical models for Dropbox sessions were developed
in [14]. Bocchi et al. [8] compared three services (i.e., Drop-
box, Google Drive and OneDrive) by passively observing
traffic, showing that users of each service exhibit distinct be-
haviors. Authors in [15], on the other hand, actively mea-
sured three cloud storage platforms (i.e., DropBox, Box and
SugarSync) with a focus on the file mean transfer speed. Liu
et al. [23] examined the access patterns in a campus-wide
cloud storage system, and found most of files are rarely ac-
cessed. These works largely focus on traditional PC-based
cloud storage platforms, so the observations might not be
applicable to mobile ones as we have shown throughout this

paper. Our work also extends these studies by examining
all users in a large-scale service, rather than users in small
regions (e.g. within a university campus) as they analyzed.

A recent study on Ubuntu One (U1) [16] considered
all users of the service by examining logs from metadata
servers, with a focus on the back-end activities and perfor-
mance. In contrast, our work examines requests logs from
data storage front-end servers, and thus has a unique view of
data transmission behavior and performance. Besides, due
the mobile usage, the service that this paper examines shows
distinct usage patterns. For instance, the examined service is
write-dominated, while U1 was found be read-dominated.

A particular concern in cloud storage services is the un-
necessary traffic generated by synchronization cased by file
editing, where any change at either client side or server side
will be automatically synched to the other side. Li et al.
[22] studied the traffic overuse problem in Dropbox, i.e., ses-
sion maintenance traffic far exceeds the useful update traffic.
The authors extended their analysis to 6 popular services to
identify the general factors that may affect the data synchro-
nization traffic [21]. Following the same vein, QuickSync,
which consists of network-aware chunker, redundancy elim-
inator and batched syncer, was proposed in [10] to enable
efficient synchronization for mobile cloud storage. As we
have found, mobile users tend to consider cloud storage ser-
vices as backup services and most of files seem to be im-
mutable, the traffic overuse problem caused by frequent file
editing might be negligible.

7. CONCLUSION
This paper examines data of HTTP requests from mobile

devices in a large-scale cloud storage service, to study the
system’s artifacts and data transmission performance. Our
results indicate the backup-dominated usage pattern of mo-
bile users. This is evidenced by a number of observations,
including write-dominated behavior at both session and user
level, and rare retrieval of uploads. As for data transmis-
sion performance, the small receive window size advertised
by servers is a potential factor that limits the backup per-
formance. Perhaps more importantly, the long idle time
between chunk transmissions, which is much more signif-
icantly in Android flows, would trigger the restart of TCP
slow-start, and thus greatly hurt performance. We have dis-
cussed the implications of these findings on system design,
application development and transmission optimization. The
implications shed light for mobile cloud providers to cut
down the cost, increase indirect revenue and improve per-
formance.

Acknowledgement
The authors would like to thank our shepherd Krishna Gum-
madi and anonymous reviewers for their feedback. This
work was supported in part by National Basic Research
Program of China with Grant 2012CB315801, by National
Natural Science Foundation of China (NSFC) with Grants
61572475 and 61272473.

8. REFERENCES
[1] Rfc5681: Tcp congestion control.

https://www.ietf.org/rfc/rfc5681.txt, 2009.
[2] Rfc6298: Computing tcp’s retransmission timer.

https://www.ietf.org/rfc/rfc6298.txt, 2011.
[3] Rfc6298: Tcp extensions for high performance.

https://tools.ietf.org/html/rfc7323, 2014.
[4] Dropbox highlights. https://www.dropbox.com/news,

2016.
[5] World personal cloud market, 2014 -2020.

https://www.alliedmarketresearch.com/personal-
cloud-market, 2016.

[6] A. Balasubramanian, N. Balasubramanian, S. J.
Huston, D. Metzler, and D. J. Wetherall. Findall: A
local search engine for mobile phones. In Proceedings
of the ACM CoNEXT, 2012.

[7] T. Benaglia, D. Chauveau, D. R. Hunter, and D. S.
Young. mixtools: An r package for analyzing mixture
models. Journal of Statistical Software, 32(6), 2009.

[8] E. Bocchi, I. Drago, and M. Mellia. Personal cloud
storage: Usage, performance and impact of terminals.
In Proceedings of the IEEE CloudNet, 2015.

[9] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei.
Network performance of smart mobile handhelds in a
university campus wifi network. In Proceedings of the
ACM IMC, 2012.

[10] Y. Cui, Z. Lai, X. Wang, N. Dai, and C. Miao.
Quicksync: Improving synchronization efficiency for
mobile cloud storage services. In Proceedings of the
ACM MobiCom, 2015.

[11] I. Drago, E. Bocchi, M. Mellia, H. Slatman, and
A. Pras. Benchmarking personal cloud storage. In
Proceedings of the ACM IMC, 2013.

[12] I. Drago, M. Mellia, M. M. Munafo, A. Sperotto,
R. Sadre, and A. Pras. Inside dropbox: Understanding
personal cloud storage services. In Proceedings of the
ACM IMC, 2012.

[13] T. Flach, N. Dukkipati, A. Terzis, B. Raghavan,
N. Cardwell, Y. Cheng, A. Jain, S. Hao,
E. Katz-Bassett, and R. Govindan. Reducing web
latency: The virtue of gentle aggression. In
Proceedings of the ACM SIGCOMM, 2013.

[14] G. Goncalves, I. Drago, A. Couto da Silva,
A. Borges Vieira, and J. Almeida. Modeling the
dropbox client behavior. In Proceedings of IEEE ICC,
2014.

[15] R. Gracia-Tinedo, M. Sanchez Artigas,
A. Moreno-Martinez, C. Cotes, and P. Garcia Lopez.
Actively measuring personal cloud storage. In
Proceedings of IEEE CLOUD, 2013.

[16] R. Gracia-Tinedo, Y. Tian, J. Sampé, H. Harkous,
J. Lenton, P. García-López, M. Sánchez-Artigas, and
M. Vukolic. Dissecting ubuntuone: Autopsy of a
global-scale personal cloud back-end. In Proceedings
of the ACM IMC, 2015.

[17] L. Guo, E. Tan, S. Chen, X. Zhang, and Y. E. Zhao.

https://www.ietf.org/rfc/rfc5681.txt
https://www.ietf.org/rfc/rfc6298.txt
https://tools.ietf.org/html/rfc7323
https://www.dropbox.com/news
https://www.alliedmarketresearch.com/personal-cloud-market
https://www.alliedmarketresearch.com/personal-cloud-market

Analyzing patterns of user content generation in
online social networks. In Proceedings of the ACM
KDD, 2009.

[18] A. Halfaker, O. Keyes, D. Kluver, J. Thebault-Spieker,
T. Nguyen, K. Shores, A. Uduwage, and
M. Warncke-Wang. User session identification based
on strong regularities in inter-activity time. In
Proceedings of the International Conference on
WWW, 2015.

[19] Y. Huang, Z. Li, G. Liu, and Y. Dai. Cloud download:
Using cloud utilities to achieve high-quality content
distribution for unpopular videos. In Proceedings of
the ACM MM, 2011.

[20] N. P. Jewell. Mixtures of exponential distributions.
Ann. Statist., 10(2), 06 1982.

[21] Z. Li, C. Jin, T. Xu, C. Wilson, Y. Liu, L. Cheng,
Y. Liu, Y. Dai, and Z.-L. Zhang. Towards
network-level efficiency for cloud storage services. In
Proceedings of the ACM IMC, 2014.

[22] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Zhao, C. Jin,
Z.-L. Zhang, and Y. Dai. Efficient batched
synchronization in dropbox-like cloud storage
services. In Proceedings of Middleware, 2013.

[23] S. Liu, X. Huang, H. Fu, and G. Yang. Understanding
data characteristics and access patterns in a cloud
storage system. In Proceedings of the IEEE/ACM
CCGrid, 2013.

[24] L. Muchnik, S. Pei, L. C. Parra, S. D. S. Reis,
J. Andrade Jr, S. Havlin, and H. A. Makse. Origins of
power-law degree distribution in the heterogeneity of
human activity in social networks. Scientific Reports,
3, 2013.

[25] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin,
W. Liu, S. Pan, S. Shankar, V. Sivakumar, L. Tang, and
S. Kumar. f4: Facebook’s warm blob storage system.
In Proceedings of the OSDI, 2014.

[26] T. Qiu, Z. Ge, S. Lee, J. Wang, J. Xu, and Q. Zhao.
Modeling user activities in a large iptv system. In
Proceedings of the ACM IMC, 2009.

[27] V. Visweswaraiah and J. Heidemann. Improving
restart of idle TCP connections. Technical report,
University of Southern California, Computer Science
Department, 1997.

[28] Y. Zhang, L. Qiu, and S. Keshav. Optimizing tcp
start-up performance. Technical report, Cornell
University, Computer Science, 1999.

[29] J. Zhou, Q. Wu, Z. Li, S. Uhlig, P. Steenkiste, J. Chen,
and G. Xie. Demystifying and mitigating tcp stalls at
the server side. In Proceedings of the ACM CoNext,
2015.

	Introduction
	Dataset and Workload
	Overview of the Examined Service
	Dataset Description
	Dataset Limitations
	Workload Overview

	User Behavior Analysis
	Session Characteristics
	File Operation Interval and Session Identification
	Burstiness within sessions
	Session size
	Modeling the average file size

	Usage Patterns
	Usage scenarios
	User engagement
	User activity modeling

	Summary and Implications

	Data Transmission Performance Analysis
	Chunk-level Performance
	Dissecting Idle Time between Chunks
	Summary and Implications

	Discussion
	Related work
	Conclusion
	References

