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a b s t r a c t

The performance of several Internet applications often relies on the measurability of path
similarity between different participants. In particular, the performance of content distri-
bution networks mainly relies on the awareness of content sources topology information.
It is commonly admitted nowadays that, in order to ensure either path redundancy or effi-
cient content replication, topological similarities between sources is evaluated by exchang-
ing raw traceroute data, and by a hop by hop comparison of the IP topology observed from
the sources to the several hundred or thousands of destinations.

In this paper, based on real data we collected, we advocate that path similarity compar-
isons between different Internet entities can be much simplified using lossy coding tech-
niques, such as Bloom filters, to exchange compressed topology information. The
technique we introduce to evaluate path similarity enforces both scalability and data con-
fidentiality while maintaining a high level of accuracy. In addition, we demonstrate that
our technique is scalable as it requires a small amount of active probing and is not targets
dependent.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Intuitively, the path similarity between two nodes is de-
fined as the IP paths overlap when those two nodes infer
their paths towards an arbitrary third one. Two nodes are
considered as being similar if they observe a large portion
of overlapping paths (or path segments) towards a set of
destinations.

Path similarity is very useful for many Internet applica-
tions, ranging from efficient distributed systems deploy-
ment to content location selection. In the context of
Content Distribution Networks, for instance, providers
could use path similarity to achieve both optimal perfor-
mance path selection and path redundancy insurance, the

path selection being obtained through similarity, while
redundancy by non-similarity.

Similarity and non-similarity might find also a suitable
usage in the deployment of large-scale measurement infra-
structure. In particular, in the context of the Internet topol-
ogy discovery [1] based on traceroute [2], it is important
that monitors are well diversified in the network. An infra-
structure such as the recently introduced Archipelago [3] or
the Internet monitoring project grenouille.com [4] would
benefit from similarity/non-similarity when deploying a
new monitor. Indeed, if two vantage points share a large
path similarity, it is obvious that they will collect redun-
dant data, making their contribution marginal. On the con-
trary, if two monitors are quite non-similar, data collected
should lead to a broader view of the network. In the same
way, monitoring distributed systems from a set of vantage
points can benefit from path similarity information in or-
der to diversify monitoring locations [5–8].

Finally, as previously mentioned by Hu and Steenkiste,
path similarity might be used in the context of available
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bandwidth estimation [9]. Indeed, if several monitors are
similar, it is very likely they will share the same bottleneck,
and as most of the end-hosts encounter bottleneck at the
first or the last four hops [10], it would be sufficient to col-
lect bandwidth information from a single of these monitors.

Path similarity between monitors is evaluated based on
actively collected data. A monitor probes a portion of the
Internet using traceroute and sends the discovered topol-
ogy to other monitors in the system for comparison. It
should however be noted that current ‘‘raw’’ paths com-
parison for route similarity only achieves desirable accu-
racy, reliability and sensitivity properties at the expense
of scalability and high overhead issues [6,9]. In other
words, several monitors that would like to compare mu-
tual similarities may need to exchange a huge amount of
‘‘raw’’ traceroute data, which can prove to be very onerous
in terms of overhead and may lead to severe under perfor-
mances of the network, especially when considering thou-
sands of monitors, probing millions of IP destinations.

Further, exchanging ‘‘raw’’ traceroute data reveals most,
if not all, of the network topology information of monitors,
that are often controlled by Content Distribution Networks
(CDN) [11,12]. Such an information is of primary economic
and security importance for CDNs. Encryption could of
course help with such confidentiality issue, but it does
not solve any of the scalability issues.

Such non-scalable and cumbersome properties are then
a compelling case for a lossy coding technique that would
be used to exchange compressed data while maintaining
both accuracy and confidentiality about path similarity.

In this paper, we propose to apply Bloom filters [13] for
allowing monitors to exchange path information. A Bloom
filter is a lossy summary technique based on a bit vector
and a set of hash functions. While, Bloom filters have found
numerous usages, particularly in networking due to their
bandwidth saving capabilities [14,15], our approach uses
them for encoding links discovered by a monitor during
its probing (i.e., tracerouting) phase. The compressed path
information is then exchanged between monitors and the
bit vectors are compared by each monitor for evaluating
its similarity with others. Scalability is achieved through
the exchange of much lower amount of data, while confi-
dentiality is maintained without encryption, as hop by
hop information that would reveal networks topology is
hashed by the Bloom filter. We provide methods for com-
paring two Bloom filters and infer, from this comparison,
the similarity level between monitors.

Nevertheless, if a Bloom filter has the advantage of com-
pressing the information, it comes with the drawback of
triggering false positives. It would be a matter of concern
if the bandwidth advantages of Bloom filters would be
overcome by those false positives. A tradeoff must thus
be found between compression, false positives, and simi-
larity accuracy.

In this paper, we tackle also issues related to such trade-
offs. Based on real traceroutes we collected from PlanetLab
monitors towards sets of thousands of destinations,1 we

examine the benefits of applying Bloom filters and compare
the efficiency of similarity results obtained by exchanging
compact traceroute data. We first demonstrate that our
Bloom filter-based approach allows one to reduce band-
width consumption by at least four times in terms of ex-
changed information compared to traditional proposals
quantifying path similarity. We also examine the effects of
the Bloom filter parameters on the similarity results, show-
ing that, as long as we consider a reasonable compression ra-
tio, we provide accurate similarity results.

We finally demonstrate that our approach is scalable,
reducing so the risk of the probing phase from various
monitors to turn out into a distributed denial-of-service
(DDoS) attack. Indeed, we show that our technique is inde-
pendent from the number of traceroutes performed, as
well as from the overlapping of destinations (i.e., monitors
in the system do not necessarily require to traceroute ex-
actly the same destinations).

The remainder of this paper is organized as follows:
Section 2 provides the required background on Bloom fil-
ters and explains how they can be applied to study Internet
paths similarity; Section 3 formally describes the similarity
metrics we introduce in this paper; Section 4 evaluates our
lossy similarity technique; Section 5 positions this paper
regarding the state of the art; finally, Section 6 concludes
this paper by summarizing its main contributions and dis-
cussing future directions.

2. Bloom filter

In this section, we briefly remind the Bloom filters the-
ory (Section 2.1) and, then, explain how they can be used
for coding path similarity information (Section 2.2). Note
that we reuse the notations previously introduced by Brod-
er and Mitzenmacher [14].

2.1. Theory

A Bloom filter [13] is a vector v of m bits that codes the
membership of a subset A = {a1,a2, . . . , an} of n elements of
a universe U consisting of N elements. Typically, the size of
the universe is not specified [13,14]. However, Bloom fil-
ters are only useful if the size of U is much larger than
the size of A.

The idea is to initialize this vector v to ‘0’, and then take
a set H = {h1, h2, . . . , hk} of k independent hash functions h1,
h2, . . . , hk, each with range {1, . . . , m}. For each element
a 2 A, the bits at positions h1(a), h2(a), . . . , hk(a) in v are
set to ‘1’. Note that a particular bit can be set to 1 several
times. This is illustrated in Fig. 1.

To check if an element b of the universe U belongs to the
set A, all one has to do is check that the k bits at positions

Fig. 1. A Bloom filter with two hash functions.

1 Our dataset is freely available. See http://planete.inrialpes.fr/similar-
ity_data/Traceroute-Similarity.tar.gz.
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h1(b), h2(b), . . . , hk(b) are all set to 1. If at least one bit is set
to 0, we are sure that b does not belong to A. If all bits are
set to 1, b possibly belongs to A. There is always a non-zero
probability that b does not belong to A. In such a case, a
false positives is raised.

In order to calculate the false positive rate, one can as-
sume that all hash functions map each item in the universe
into a random number uniformly over the range {1, . . . , m}.
As a consequence, the probability that a specific bit is set to
1 after the application of one hash function to one element
of A is 1

m and the probability that this specific bit is left to ‘0’
is 1� 1

m. After all elements of A are coded in the Bloom fil-
ter, the probability that a specific bit is always equal to ‘0’
is

p0 ¼ 1� 1
m

� �kn

: ð1Þ

As m becomes large, 1
m is close to zero and p0 can be approx-

imated by e�
kn
m .

The probability that a specific bit is set to ‘1’ can thus be
expressed as

p1 ¼ 1� p0: ð2Þ

The false positive rate can then be estimated by the prob-
ability that each of the k array positions computed by the
hash functions is 1. fP is then given by

fP ¼ pk
1 ¼ 1� 1� 1

m

� �kn
 !k

� 1� e�
kn
m

� �k
: ð3Þ

The false positive rate fP is thus a function of three
parameters: n the size of subset A, m the size of the filter,
and k the number of hash functions. Fig. 2 illustrates the
variation of fP with respect to the three parameters individ-
ually (when the two others are held constant). Obviously,
and as can been seen in these graphs, fP is a decreasing
function of m and an increasing function of n. Now, when
k varies (with n and m constant), fP first decreases, reaches
a minimum and then increases. There are two countervail-
ing factors: using more hash functions gives us more
chances to find a 0 bit for an element that is not a member
of A, but using fewer hash functions increases the fraction
of 0 bits in the array.

In networking, Bloom filters find a suitable usage in
overlay and peer-to-peer networks, resource routing, pack-
et routing, and measurement infrastructures. Although
Bloom filters allow false positives, for many applications

the space savings outweigh this drawback when the prob-
ability of an error is sufficiently low (see Mitzenmacher
and Broder for details [14]).

The question arises now on how to use Bloom filters in
the context of path similarity, and hence profit from the
compression benefits while maintaining sufficiently accu-
rate similarity detection.

2.2. Application to similarity

Any entity (let us call it monitor) wanting to evaluate its
path similarity with others considers a set of probing tar-
gets (i.e., the destinations) and launches traceroutes to-
wards those targets. Once the traceroutes have been
collected, a monitor has a list of links, i.e., hop-by-hop
connections.

This set of links is then encoded in a Bloom filter, as de-
scribed in Section 2.1. That is, our universe U is supposed to
be the set of all possible pairs of IP addresses in the Inter-
net while the subset A is the links discovered by the mon-
itor during the exploration phase. All links are then
mapped to k positions in the bit vector using H, the set of
hash functions. The resulting bit vector is then exchanged
between the various monitors. How a monitor can com-
pare two bit vectors and retrieve path similarity informa-
tion is discussed in Section 3.

This scheme has the obvious advantage of completely
hiding topological information collected by a monitor. Of
course, it is still possible to determine which links are en-
coded in the filter but it requires to test the whole uni-
verse, i.e., 232 � 232 tests. And the risk of false positives
when querying the filter cannot guarantee to retrieve the
exact set of links. The compression advantage of a Bloom
filter is difficult to determine a priori and must be rather
evaluated on a case study basis. This will be done in Sec-
tion 3.

Coding hop-by-hop information in a Bloom filter and
retrieving path similarity information from it might work
if and only if two Bloom filters are comparable. This re-
quires the set of hash functions used must be the same
for all monitors. And, by extension, all the bit vectors must
have the same size.

Such a situation requires that all monitors in the system
reach an agreement on the Bloom filter tuning, given that a
trade-off must be found between a good compression ratio
of the links set and the false positive rate. If the monitors
use the same set of destinations (or, at least, probe the

Fig. 2. fP as a function of k, m and n.
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same number of destination), one can infer the average of
the number of links discovered. This average might then be
used to tune the bit vector size.

3. Similarity metrics

In the remainder of this paper, we refer by M to the set
of monitors and Mi denotes any monitor in M measuring
paths towards a set of destinations D.

Hu and Steenkiste [9] define path similarity as the per-
centage of links shared by routes from two monitors, Mi

and Mj, to the set of destinations D. This metric, called
RSIM is defined as follows:

RSIMðMi;Mj;DÞ ¼
P

d2D2� CommonðMi;Mj;dÞP
d2DTotalðMi;Mj;dÞ

: ð4Þ

Intuitively, closer to one RSIMðMi;Mj;DÞ, the more similar
paths issued from Mi and Mj.

This metric however assumes that both upstream and
downstream paths share a unique path from monitors to
destinations and vice versa. The RSIM(�, �, �) metric consid-
ers ‘‘raw’’ traceroute data sharing. As it does not require
any lossy compression technique, it will then be used as
reference point for comparison with Bloom filters.

If monitors have to rely on Bloom filters to compare
their similarity, new metrics comparing those filters
should be added. In the following, we introduce such met-
rics and compare their respective performance in Section 4.

Let ~mi be the bit vector for monitor Mi, constructed as
described in Section 2.2.

Since the filters that the monitors compare are a set of
bit vectors, a straight way to compare them is to use the
Hamming distance between them. Such a distance counts
the number of positions where vectors elements differ. In
other words, the Hamming distance measures the mini-
mum number of bits that need to be substituted to change
one Bloom filter into the other. To consider a ratio of the
differences that do exist between the filters, we normalize
by the bit vector size of the compared filters. We define
then the relative Hamming distance as follows:

rHðMi;MjÞ ¼
Hð~mi; ~mjÞ
j~mij

: ð5Þ

where Hð~mi; ~mjÞ provides the Hamming distance between
both bit vectors. Put simply, the relative Hamming distance
between two Bloom filters, of the same size and created
with the same hash functions, can be used as a measure
of the non-similarity of the underlying sets (IP links from
monitors to a set of destinations). A trend of rH(Mi,Mj) to-
wards 0 (respectively 1) implies that paths from these
two monitors are similar (respectively non-similar).

To observe the number of positions where both vectors
~mi and ~mj are identical, we compute the Relative Inverse
Hamming distance as:

rHðMi;MjÞ ¼
Hð~mi; ~mjÞ
j~mjj

: ð6Þ

where Hð~mi; ~mjÞ is the inverse of the Hamming distance.
The larger rHðMi;MjÞ, the more similar paths issued from
Mi and Mj.

It is important to note though that the Hamming dis-
tance, in case of binary sequences comparison (as it is
the case for our Bloom filters) is equal to a XOR operation.
In other words, the relative Hamming distance provides
the percentage of cases where links are coded with differ-
ent values in the same positions. The inverse relative Ham-
ming distance provides the percentage of cases where the
filters contain the same values at the same positions
(either the value is set to ‘1’ or ‘0’).

However, recall from Section 2, that the Bloom filters
are initialized to ‘0’, and that elements are set to ‘1’ and
added to positions that correspond to the hash of that par-
ticular element. In order to alleviate the impact of the ini-
tialization process on the comparison of the filters, one can
compare the positions identically set to ‘1’ in both filters, as
an indication of similarity. We introduce the so-called
Bloom Distance, defined as the following:

BðMi;MjÞ ¼
OneðAndð~mi; ~mjÞÞ

j~mij
: ð7Þ

where Andð~mi; ~mjÞ performs a logical AND between both
vectors and One(�) counts the number of ‘1’ in the bit vector
in argument.

In this case, the optimum similarity value is given by
the theoretical probability of filling the bit vector with
ones, which can be easily calculated using Eqn. 2. The clo-
ser B(Mi,Mj) to this probability, the more similar paths is-
sued from Mi and Mj are.

4. Analysis

In this section, we evaluate the performance of our
three metrics for retrieving path similarity information
from Bloom filters. We first discuss our methodology, in
particular how we actively collected data (Section 4.1).
We next describe the performance metrics we use
throughout this evaluation (Section 4.2). Section 4.3 dis-
cusses the results while Section 4.4 provides a summary
of the main achievements of this section.

4.1. Methodology

For the purpose of our studies in this paper, we col-
lected data using traceroute from 30 PlanetLab machines
towards sets of 1000 destinations. The measurement cam-
paign was done between March 31st, 2009 and April 5th,
2009. All these experiments were run concurrently so as
to experience the same network conditions. We used the
native PlanetLab traceroute. Our dataset is freely avail-
able.2 Regarding the geographical situation of PlanetLab
monitors used during the probing phase, Europe was the
most represented continent, as shown in Table 1, followed
by America and Asia (a single monitor in China).

The traceroute destinations were randomly selected
within the Archipelago set of 3,000,000 destinations [3].
Archipelago is skitter’ successor and has been deployed
since September 2007. Destinations in Archipelago are

2 See http://planete. inrialpes.fr/similarity_data/Traceroute-
Similarity.tar.gz
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selected from all routed/24’s. As we will be, in the follow-
ing, interested in the impact of overlapping destinations,
i.e., monitors in the system share entirely the same set of
destinations or a given proportion of destinations in their
set of targets, we defined nine different destinations sets.
The geographical repartition of destinations is provided
in Table 2. Note that the geolocation of traceroute targets
has been done using IP2Location [16]. We see on Table 2
that most of the destinations are located in America, fol-
lowed by Europe and Asia. The proportion of destinations
in Oceania and Africa is roughly negligible.

From our dataset, we removed one monitor, located in
Europe (Italy), as it was unable to perform correctly the
traceroutes: it stopped discovering interfaces after the sec-
ond hop. Note that, for the rest of the monitors, on average,
85% of the paths were incomplete, i.e., did not terminate at
the destination.

When tracerouting, some routers along the path might
reply with invalid address, typically because of mis-config-
uration, or might not respond to probes. For our study, we
chose to remove links containing at least one invalid ad-
dress and links containing at least one non-responding
node. The addresses that we consider as invalid are a sub-
set of the special-use IPv4 addresses described in RFC 3330
[17]. Specifically, we eliminate visits to the private IP ad-
dress blocks 10.0.0./8, 172.16.0.0/12, and 192.168.0.0/16.
We also remove the loopback address block 127.0.0.0/8.
On average, 15% of links discovered by a monitor were cat-
egorized as invalid.

Regarding Bloom filters, the hashing was emulated with
random numbers. We simulated randomness with the
Mersenne Twister MT19937 pseudo-random number gen-
erator [18].

4.2. Performance metrics

To characterize the performance of our similarity tests,
we use the classical false/true positives/negatives indica-
tors. Let us first define specifically what would be defined
as a monitor similar to another one. First, we use the
RSIM(�, �, �) metric as a reference of path similarity, as it
uses ‘raw data’ exchange to compare routes in a hop by
hop way (see Eqn. 4, Section 3). Since our Bloom filters-

based algorithms compact exchanged data, and as such,
the metrics we introduce alike should be evaluated consid-
ering raw data similarity as a reference. We then consider
that monitors routes are actually similar if the RSIM(�, �, �)
metric returns the maximum value. It can also happen that
we look for the n most similar monitors to another one. In
this case, we consider the set of RSIM(�, �, �) values corre-
sponding to the highest n values, and we refer to those
monitors by TOPn.

When looking for the monitor that is the most similar to
its observations, a monitor Mi looks for the monitor Mj

which corresponds to maxMj2MRSIMðMi;Mj;DÞ. When look-
ing for the set of TOPn similar monitors, the most similar
monitors involve those which returns the first top n
RSIM(�, �, �) values.

A negative is a non-similar monitor, according to the
RSIM(�, �, �) metric, which should therefore be rejected by
the similarity test. In others words, a negative is a monitor
for which the RSIM(�, �, �) value compared to another mon-
itor is not the maximum (or not within the set of n values if
addressing the TOPn similarity). On the other hand, a posi-
tive is a monitor that has been considered as similar to an-
other monitor by the RSIM(�, �, �) metric, i.e., that has the
maximum RSIM value compared to the set of other moni-
tors. The number of negatives (respectively positives) in
the population comprising all the monitors comparisons
is PN (respectively PP).

For each metric, we identify a false positive as the case
when a non-similar monitor has been wrongly identified
by the specific metric as similar to the monitor in consid-
eration. A false negative is a similar monitor that has been
wrongly rejected by the specific metric as a non-similar
monitor. True positives (respectively true negatives) are
positives (respectively negatives) that have been correctly
reported by the specific metric and therefore identified as
similar monitors to the monitors to which they are com-
pared. The number of false negatives (respectively false
positives, true negatives, and true positives) reported by
the metrics is T FN (respectively T FP; T TN , and T TP).

We use the notion of false negative rate (FNR) which is
the proportion of all the similar monitors that have been
wrongly reported as non-similar (negatives) by the metric.
The FNR is defined as:

FNR ¼ T FNPP
: ð8Þ

The false positive rate (FPR) is the proportion of all the
non-similar monitors that have been wrongly reported as
similar (positives) by the metric and is defined as

FPR ¼ T FPPN
: ð9Þ

Similarly, the true positive rate (TPR) is the proportion of
similar monitors that have been rightly reported as similar
by the metric.

TPR ¼ T TPPP
: ð10Þ

Finally, the true positive test fraction (TPTF) is the pro-
portion of positive tests that correctly identified similar
monitors:

Table 1
PlanetLab monitors geographical situation.

Continent # Monitors

Europe 25
America 4
Asia 1

Table 2
Traceroute destinations geographical situation.

Continent Destination proportion (%)

Africa 0.95
America 41.11
Asia 29.27
Europe 26.62
Oceania 2.03
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TPTF ¼ T TP
ðT TP þ T FPÞ

: ð11Þ

4.3. Results

In this section, we discuss the relevance of using Bloom
filters for compacting path similarity information as well
as the accuracy of our metrics for retrieving path similarity
information from Bloom filters. We first show the advan-
tage of Bloom filters in terms of compression (Section
4.3.1) and, next, evaluate factors that can influence the
accuracy of our metrics for detecting compact path similar-
ity. These factors are: the Bloom filter parameters (Section
4.3.2), the proportion of destinations overlap (Section
4.3.3), and the number of destinations probed by monitors
(Section 4.3.3). In order to avoid biased statistical study, as
these factors are interdependent, the factor being studied
changes and the remaining are fixed. For example, evalua-
tion of Bloom filter parameters may ignore changes in the
overlapping proportion.

4.3.1. Bloom filters gain
Fig. 3 provides an insight into the gain of using Bloom

filters instead of exchanging a list of links between moni-
tors. The horizontal axis gives the 29 monitors, while the
vertical axis gives the amount of bits sent by a given mon-
itor. The curve labeled ‘‘list’’ is calculated based on the
average number of links discovered by a given monitor
over the nine destinations sets. This mean is then multi-
plied by 64, i.e., two 32-bits IP addresses. We determined
the 95% confidence interval for the mean based on the Stu-
dent t distribution. However, these confidence intervals,
although being plotted in Fig. 3, are too tight to clearly
appear.

As expected, the usage of Bloom filter provides an inter-
esting compression ratio. With a vector made of 45,000
bits (a value selected for providing a very low false positive
rate), we are already able to reduce the bandwidth con-
sumption by a factor of 4. Note that, obviously, using a
smaller bit vector will provide a stronger compression ra-
tio. It is also worth to notice that some additional savings

are possible by applying the compression techniques de-
scribed by Mitzenmacher [15].

However, it would be a matter of concern if an higher
compression ratio comes with an accuracy loss in the path
similarity information. This is exactly the point we investi-
gate in the following section.

4.3.2. Bloom filter parameters
In this section, we study the impact of varying the

Bloom filter parameters on the similarity accuracy.
As explained in Section 2, a Bloom filter is driven by

three key parameters: m, the bit vector size, k, the number
of hash functions, and n, the number of elements to record
in the Bloom filter. In our case, when considering a com-
plete overlap of destinations between monitors and each
monitor probing a set of 1000 destinations, on average,
4100 links have to be inserted in the filter (i.e., n = 4100).

Fig. 4 shows the evolution of the theoretical false posi-
tive rate (the colorbar in log-scale) when n is fixed (i.e.,
4100) while k (horizontal axis) and m (vertical axis, in
log-scale) vary. We see that for small vector size (i.e., less
than 50,000 bits), the false positive rate is very high, what-
ever the quantity of hash function used. On the contrary,
for a very large vector size (i.e., higher or equal to
500,000 bits), the false positive rate is very low. However,
in that case, it comes at the expense of a smaller compres-
sion rate. Note that using a large set of hash function also
increases the required computation time.

Fig. 4 provides thus a way to select parameters k and m
according to the specific needs of the application. If the
application does not care about computation time, a large
number of hash functions associated with a sufficiently
large bit vector would lead to a very low false positive rate.
On the contrary, if the application is sensitive to computa-
tion, a lower k value is required. The application sensitivity
on false positive will then lead the choice of the bit vector
size.

For the reminder of this paper, we will consider the fol-
lowing values for m: 4500, 45,000, and 450,000 while con-
sidering k as 1, 3, 5, and 10. Those values are motivated by
the fact that they provide a reasonable compression ratio
(at least for m = 4500, 45,000), a low computation time
(at least for k = 1,3,5), and the theoretical performance
(in term of false positive rate) is good according to Fig. 4.

Fig. 3. Compression with Bloom filters. Fig. 4. Bloom filter false positive rate when inserting 4100 elements.
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Finally, it is worth to notice that the false positive rate
depicted in Fig. 4 is theoretical. Indeed, it assumes (as stan-
dard Bloom filter does) that all elements in the Universe
share the same likelihood to be queried for a membership
test. However, in practice, some elements might more fre-
quent than others. And it might be a concern if such an ele-
ment triggers a false positive. However, this problematic of
evenness/unevenness of elements in Bloom filters is out of
the scope of this paper. Interested readers might have a
look at [19,20].

For each filter parameter, we plot the TPTF values for
the TOP1 and TOP5 most similar monitors. This is given
by Fig. 5. Each TPTF value is obtained as explained in Sec-
tion 4.2, i.e., the total number of true positives and false
negatives over all monitors for a given similarity metric.
It is worth to notice that Figs. 5a and 5b are classified into
four portions according to the used number of hash func-
tions (k 2 {1,3,5,10}). Each point located within a given
portion, for a given similarity metric, depicts m, the bit vec-
tor size. That means that for instance the first dotted point
(respectively second, and third), within a given portion in
Fig. 5a, corresponds to a m value of 4500 (respectively
45,000, and 450,000).

The main observation retrieved from Fig. 5 is that, an
acceptable compression ratio (e.g., m = 45,000) always pro-
vides high TPTF. We see that the proportion of positive
tests that are true positives is constantly high, regardless
of the number of hash functions chosen, for moderate to
quite significant compression ratios used by the filters.

Figs. 5a and Fig. 5b exhibit a slightly worse performance
for a vector size of 450,000 bits compared to a size of
45,000 bit. This might appear as being counterintuitive. In-
deed, theoretically, a vector size of 450,000 should provide
a better result (in term of false positive) compared to a
Bloom filter that has 45,000 bits, as depicted in Fig. 4. This
performance discrepancy might be explained by an artifact
of our measurements. Each monitor encodes path informa-
tion (i.e., pairs of IP addresses representing a link between
two adjacent routers), which is obtained by a traceroute,
into a Bloom filter. Nevertheless, when tracerouting, some
routers along the path might reply with invalid address
(such as a non-publicly routable IP address) or might not
respond to probes. In such a case, a set of links along the

path will be missed. Further, it should also be noted that,
in our studied data set, some traceroute measurements
do not terminate at the destination (i.e., the destination
does not reply to probes due to a firewall, for instance).
In so doing, the theoretical false positive rate computed
based on Eqn. 3 is different with respect to the one ob-
tained frow raw traceroutes. The ‘‘discrepancy’’ obtained
is probably due to the missing links along the path.

However, the proportion of correct positive tests de-
creases each time we consider a too high compression ra-
tio. It should be noted that if a small bit vector size is
used (m = 4500), the proportion of true positives is not
acceptable. Even if in the first portion, using k = 1, we ob-
serve a high TPTF, we still consider the test performance
as non-acceptable since the false positive rates of the filter
in this case are too high.

In the light of this, we can conclude that as long as the
compression ratio is not too high, whatever the number of
hash functions is (i.e., even k = 1), the three metrics we pro-
pose produce a large number of positive tests, catching
most of the similarities among monitors. For the remainder
of this paper, we arbitrarily tune a Bloom filter with
m = 45,000 and k = 5.

4.3.3. Destination sensitivity
In this section, we evaluate how sensitive are the B(�, �),

rH(�, �), and rHð�; �Þmetrics to destinations. We evaluate this
sensitivity on two planes: the destinations choice between
monitors and the number of destinations probed. The des-
tinations choice is expressed by the overlapping of destina-
tions sets between monitors. To this end, we picked nine
different destinations sets, each of them corresponding to
a certain proportion of destinations overlap. We consid-
ered an overlap of 0% (i.e., all the monitors probe different
destinations), 5%, 10%, 25%, 50%, 75%, 90%, 95%, and 100%
(i.e., all the monitors probe the same destinations set).

Fig. 6 illustrates how our metrics are sensitive to the
choice of destinations with respect to different overlapping
proportion, each monitor probing a set of 1000 destina-
tions. Each curve plots the TPTF values for the nine destina-
tions overlaps.

As expected, a large overlapping proportion results in
more accurate metrics, classifying correctly a larger portion

Fig. 5. Effects of Bloom filter parameters for a full overlap of destinations.
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of monitors as similar. This is exemplified in Fig. 6a with the
increase trend of the B(�, �) curve. Despite the fact that the
true positive test fraction curves clearly exhibit positive
slopes, one should note that these rates increase much
slower than the increase in overlapping proportions. That
is to say that as long as we consider a non-completely
independent set of destinations, that is probed by monitors,
it is very likely that the three metrics achieve constant
similarity detection, that are roughly equal to 70%.

To further evaluate the impact of overlapping propor-
tion on the Bloom filter-based similarity metrics, and to
evaluate the efficiency of the similarity classification test,
we plot in Fig. 7 the receiver operating characteristic (ROC)
curves for different overlapping proportions.

These plots show, for each metric, the point correspond-
ing to the false positive rate (FPR) along the X-axis and to
the true positive rate (TPR) along the Y-axis, with one por-
tion for each destinations overlapping (90%, 95%, and
100%). The TPR and the FPR values are obtained by compar-
ing the similarity computed over all monitors by
rHð�; �Þ; rHð�; �Þ, and B(�, �) metrics with respect to
RSIM(�, � , �). Obviously, the closer to the upper left corner
of the graph a point, the better, since such points corre-
spond to high true positive rates (i.e., a high proportion

of positives being reported as such by the test) for low false
positive rates (i.e., a small proportion of negatives incor-
rectly reported as positives).

We observe in Fig. 7 that, from this perspective, as al-
ready suggested in Fig. 6, our metrics for evaluating the
path similarity through Bloom filters perform very well. In-
deed, The FPR is very low (i.e., less than 2%) while the TPR
is high (i.e., above 65%). In particular, rH(�, �) and rHð�; �Þ
reach 80% of TPR when looking for the TOP5 most similar
monitors for a full overlap of destinations.

The ROC curves shown in Fig. 7 are computed over all
monitors by our three metrics with respect to RSIM(�, � , �)
which considers raw traceroute data sharing. It should
then be noted that the obtained results are also observable
from raw traces. We do not claim then that our findings are
related to the Bloom filter encoding, but we do show
through these results that the property exhibited by RSIM,
consisting of being barely insensitive to destinations over-
lap, is preserved after the Bloom filter encoding.

Comparing the three metrics, in both Fig. 6 and 7, we
see that B(�, �) performs worst compared to rH(�, �) and
rHð�; �Þ. Although, in Fig. 7a, the false positive rates exhib-
ited by the test in all the metrics are roughly similar – such
values are too small to notice any significant difference-,

Fig. 6. Impact of destination sets on similarity.

Fig. 7. Destinations measurability.
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better performances of the rH(�, �) and rHð�; �Þ metrics are
particularly obvious for TOP1 (Fig. 6a). We see that B(�,�)
is quiet sensitive to the destinations choice, detecting on
average 15% less true positives than the two other metrics.
On the contrary, rH(�, �) and rHð�; �Þ, provide mostly a con-
stant true positive test fraction of 70% with little sensitivity
to destinations choice.

The reason that either rH(�, �) and rHð�; �Þ outperform
B(�, �) is due to the fact that the B(�, �) metric takes into ac-
count partial information in the filters (only bits set to 10)
whereas rH(�,�) and rHð�; �Þ metrics consider the whole bit
vector, a bit set to ‘0’ being a valuable information as it
indicates that no information has been recorded in that po-
sition in the filter.

So far, the path similarity study consisted in each mon-
itor probing a set of one thousand destinations. It would
also be important to determine if the number of destina-
tions to be probed has some influences on the path similar-
ity between monitors. This might potentially lead to a
scalability issue. Indeed, it might be a concern if, for pro-
viding quite accurate results, a large set of destinations
must be probed, traceroute being known to be intrusive.
On the contrary, if probing a small set of destinations is en-
ough to obtain accurate results, this would be an incentive
for the deployment of any system requiring the estimate of
similarity.

Actually, the number of destinations parameter needs
to be studied from two sides: a first side is related to the
coding of paths towards the set of destinations, and hence
the impact of the number of destinations on the exchanged
Bloom filters among monitors. The first question to answer
is then how the number of destinations can impact the
accuracy of the metrics we propose to detect similarity be-
tween monitors. The second aspect of the problem is much
more related to path similarity itself, and what we need to
answer is ‘‘what is the number of destinations monitors
need to probe in order to achieve desirable similarity re-
sults, in terms of high true positive detection of similarity
and low false positives’’.

To study the first aspect, we consider a full overlap of
destinations and vary the number of destinations probed.
We take into account the following destinations set cardi-

nality: 1, 10, 25, 50, 75, 100, 250, 500, 750, and 1000. Fig. 8
shows the TPTF (vertical axis) when the number of destina-
tions probed varies (horizontal axis). In this first experi-
ment, similarity metrics we propose are again considered
having as a reference the similarity as returned by the
RSIM(�, �, �) metric. Note that the TPTF values in Fig. 8 show
how accurate rHð�; �Þ; rHð�; �Þ, and B(�, �) are if monitors
probe different set of destinations, while assuming
that such a choice is not impacting the RSIM(�, �, �) metric
itself.

The first interesting observation is that the accuracy of
similarity detection in terms of true positives test fraction
and false positive rates (not shown), is slightly constant if
we consider a minimum number of 500 destinations. This
gives to the three metrics a high utility if we consider that
the overhead gained by not exchanging traceroute data is
quadrupled when using Bloom filters. As expected, when
monitors probe a small set of destinations, the accuracy
is low. However, acceptable similarity detection can be
considered when monitors probe sets of overall a hundred
of destinations. This observation is generalized when look-
ing for the TOP5 most similar monitors. In essence, when
considering a very small number of destinations, the simi-
larity as computed by the metrics rHð�; �Þ; rHð�; �Þ, and
B(�, �) are skewed by outliers inside the set of destinations.
However, a set of destinations that are close to 100, is clo-
sely representative enough of the overall population of tra-
ceroute that a monitor can perform, being not shadowed
by outliers while preserving a high degree of generality.

The choice of the optimal number of destinations to be
probed would then require a compromise between the
number of destinations where the Bloom filter-based met-
rics are not impacted, and the number of destinations
where similarity using ‘‘raw’’ data would actually provide
accurate results.

Tables 3 and 4 provides the proportion of monitors find-
ing the same TOP1 (Table 3) most similar monitor and the
same TOP5 (Table 4) most similar monitors when probing
different sets of destinations. Each column (respectively
row) in both tables represents the number of destinations
probed by a monitor. Each cell Tij gives the proportion of
monitors that return the same most similar monitors when

Fig. 8. Effects of the number of destinations probed.
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probing a set of i destinations or a set of j destinations.
Table 3 and 4 indicates results for the rHð�; �Þ metric.

A first global look at Table 3 and 4 suggests that, for
obtaining accurate results, a certain amount of probing
must be done, on the order of hundred of destinations.
Probing so would allow one to obtain, in 80% of the cases,
the same TOP1 most similar monitor as larger probing
campaign. On the contrary, retrieving the TOP5 most sim-
ilar monitors implies more probing, at least 250 destina-
tions, for reaching the same accuracy level than TOP1.

A conclusion from Table 3 and 4 is that once a certain
threshold of destinations probed has been reached (100
for TOP1 and 250 for TOP5), it is not necessary to burden
more the network as it will not increase so much the
similarity accuracy. This fact is illustrated, in Table 3 and
4, by bold values.

Note that we found similar results for the two other
metrics, i.e., rH(�, �) and B(�, �).

4.4. Summary

In Section 4.3, we evaluated the behavior of our metrics
for comparing several large sets of information encoded as
Bloom filters. Those sets were made of topological data
(i.e., links between routers) collected through traceroute.

During our analysis, we mostly focused on two planes:
Bloom filters and destination sensitivity. For both planes,
we showed that the metrics rH(�, �) and rHð�; �Þ provide
globally better performance results than B(�, �).

Table 5 aims at highlighting the main lessons learned
from Section 4.3. Regarding the Bloom filter plane, the

number of hash functions does not impact the accuracy.
On the contrary, the bit vector size, m, has some influence.
A too high compression ratio would lead to bad perfor-
mance. For the destination plane, it is sufficient to probe
between 100 and 250 destinations, while the overlap of
destinations sets between monitors does not influence
the performance accuracy.

Despite, on average, 85% of the paths were incomplete
in our data set, all above observations indicate that the
data set used in this paper can plausibly represent a rich
cross-section of the whole situation on today’s Internet,
and thus allow us to quantify path similarity with high
accuracy.

5. Related work

Since the late 1990s, Internet topology discovery has
been an extensive research field [1]. This research activity
focused mostly on developing efficient traceroute-like tool
or on modeling the Internet topology. Although there are
many potential applications, the problem of path similarity

Table 3
TOP1: incidence of the number of destinations ðrHð�; �ÞÞ.

Table 4
TOP5: incidence of the number of destinations ðrHð�; �ÞÞ

Table 5
Summary

Plane Accuracy

Bloom filter k ;
m >4500

Destination Overlap ;
Quantity [100–250]
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does not appear to have been the subject of much study.
Only a few work has been done on path similarity or
diversity.

For instance, Teixeira et al. evaluate the IP-level path
diversity between Points of Presence (PoPs), i.e., a collection
of routers owned by an AS in a specific location (city or
suburb). Based on real ISP dataset, Teixeira et al. found that
all pairs of PoPs have, at least, two disjoint paths between
them. However, Teixeira et al. do not discuss if this diver-
sity might be observed at the Internet scale, neither how a
given application might use this diversity.

Hu and Steenkiste propose a metric, RSIM, for evaluat-
ing end-to-end path similarity. This metric is based on
the number of common links between two monitors. A
specificity of RSIM is that it is a bi-directional metric, i.e.,
it provides the similarity between monitor A and B, but
also between B and A. An application of RSIM is for scalable
bandwidth estimation [21]. However, it is not explained
how this similarity information might be exchanged be-
tween monitors. Pathak et al. use path similarity at the
AS and router level for evaluating the asymmetry of delay
in the Internet [22]. Roughly, they propose a metric some-
what equivalent to RSIM but without taking into account
the bi-directionality of links.

Works has also been done on identifying relays for
alternative paths in large scale networks to increase route
diversity [7,8]. Indeed, multipath routing has been pro-
posed to better reduce maximum load on nodes and con-
gestion. The use of alternative paths improves the quality
of service of communication across the Internet. For in-
stance, Agapi et al. seek to find good relay nodes by using
path similarity-based synthetic coordinates [8]. The key
idea is based on the assumption that if a relay is suitable
for a given path, it is also likely to be good for other similar
paths. They define path similarity between paths P1 and P2

as the probability that a relay that is good for P1 is also
good for P2. Note that a set of relay could be exchanged be-
tween nodes using Bloom filters. This has not been investi-
gated by Agapi et al.

Bloom filters have been extensively studied, particu-
larly in networking due to their capacities in bandwidth
savings when membership information must be ex-
changed between monitors [14]. Recent works used Bloom
filters for exchanging topology information between trace-
route-like monitors [19,23]. However, authors do not
investigate how these Bloom filters might be used to eval-
uate path similarity.

6. Conclusions and future work

In this paper, we presented a Bloom filter-based ap-
proach to measure and exchange Internet path similarity
between monitors. Our solution aims at considerably
decreasing the amount of data sent through the network
and ensuring the secrecy of topology information, while
maintaining a high level of confidence in the measurability
of path similarity.

It is based on compacting traceroute data through the
use of Bloom filters, exchange those Bloom filters, and then
compute similarities or dissimilarities based on a set of

metrics to compare each pair of monitors’ Bloom filters.
Our approach does not rely on destination overlapping,
and as such is unaffected by the choice of the set of desti-
nations that the monitors can probe. In fact, we have
shown that for different percentages of destinations over-
laps, and for even an acceptable low number of probed
destinations, our metrics still provide very good perfor-
mance, distinguishing clearly between similar monitors
paths.

To the best of our knowledge, this is the first such gen-
eral method capable of providing accurate results while
maintaining a very low overhead in exchanging tracero-
ute information. Optionally, our method allows one to
hide the network topology from monitors to the set of
destinations they are monitoring. Since hops are hashed
through the Bloom filters, topological information is then
hidden and immune from any malicious data sniffing
activity. Encryption of raw data provides also efficient
confidentiality for data, but does not resolve the problem
of overhead.

In practice, we introduced a simple way to study path
similarity between monitors through compacted tracero-
ute information. We choose to illustrate this study through
traceroute information, which is at the very core of any
Internet topology. This leads us to believe that our pro-
posed similarity detection approach can effectively iden-
tify similar monitors in very many CDNs monitors
deployment without any major software change. However,
the way to code ‘‘raw’’ information and the metrics intro-
duced to compare Bloom filters are generic enough to al-
low for their application on very many other topology
characteristics information needed to be exchanged. We
could, for instance, include information describing avail-
able bandwidth estimation for paths, as complementary
to traceroute paths, and encode such an information into
Bloom filters. Again, the gain in terms of reduced overhead
would allow an easier and more practical information ex-
change among monitors. Note that, despite we performed
measurement in an IPv4 environment, our technique is
independent of the used IP version. This means that in a
world where IPv6 would be largely deployed, our tech-
nique would present stronger interest in term of
compression.

The measurements collected in this paper were deliber-
ately tested on monitors and destinations chosen at ran-
dom in the real Internet, with a realistic high percentage
of non-complete traceroute, although their similarities or
dissimilarities increase with traceroute paths fullness. De-
spite the possible non-optimal similarity measurements
resulting from such a choice, the results obtained show
the effectiveness of our method in characterizing path sim-
ilarity with very low overhead. Nevertheless, given the
gain afforded by our approach, one can envisage that CDNs
may readily want to deploy monitors within their network
to offer enhanced services to their customers, and to select
well suited set of controlled destinations inside the core
network. Such business driven strategic deployment can
only improve the measurability of our similarity metrics
and thus improve the path similarity accuracy, with much
higher similarity detection rates than the lower bound
reported in this paper. We have also shown that the false
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positive rates are very low, promising not considering
monitors to be similar while it is not actually the case. This
feature can be exploited when deploying redundant
backup content servers. In this case, we insure (with very
high confidence) that the backup server, if solicited, will
continue to serve customers under the same conditions
than the previous server.

The schemes presented in this paper are generic and
might be applied in any context in which large sets of
information must be exchanged and compared. Future
work should reveal the efficiency of our techniques under
those contexts. We further aim at evaluating them in a
geolocalisation context.
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