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Abstract. We propose that by integrating behavioural biometric gestures—
such as drawing figures on a touch screen—with challenge-response based
cognitive authentication schemes, we can benefit from the properties of
both. On the one hand, we can improve the usability of existing cogni-
tive schemes by significantly reducing the number of challenge-response
rounds by (partially) relying on the hardness of mimicking carefully de-
signed behavioural biometric gestures. On the other hand, the observa-
tion resistant property of cognitive schemes provides an extra layer of
protection for behavioural biometrics; an attacker is unsure if a failed
impersonation is due to a biometric failure or a wrong response to the
challenge. We design and develop a prototype of such a “hybrid” scheme,
named BehavioCog. To provide security close to a 4-digit PIN—one
in 10,000 chance to impersonate—we only need two challenge-response
rounds, which can be completed in less than 38 seconds on average (as
estimated in our user study), with the advantage that unlike PINs or
passwords, the scheme is secure under observation.

1 Introduction

In Eurocrypt 1991 [31], Matsumoto and Imai raised an intriguing question: Is it
possible to authenticate a user when someone is observing? Clearly, passwords,
PINs or graphical patterns are insecure under this threat model. Unfortunately, a
secure observation resistant authentication scheme is still an open problem. Most
proposed solutions are a form of shared-secret challenge-response authentication
protocols relying on human cognitive abilities, henceforth referred to as cogni-
tive schemes. To minimize cognitive load on humans, the size |R| of the response
space R needs to be small, typically ranging between 2 and 10 [20, 26, 40, 5].
Since anyone can randomly guess the response to a challenge with probability
|R|�1, the number of challenges (or rounds) per authentication session needs to
be increased, thereby increasing authentication time. For example, to achieve
a security equivalent to (guessing) a six digit PIN, i.e., 10�6, the cognitive au-
thentication scheme (CAS) [40] requires 11 rounds resulting in 120 seconds to
authenticate, while the Hopper and Blum (HB) scheme [20] requires 20 rounds



and 660 seconds [42] (See Section 3 and Section 7 for a brief description of these
schemes.) An authentication time between 10 to 30 seconds per round is per-
haps acceptable if we could reduce the number of rounds, since cognitive schemes
provide strong security under observation.

Our idea is to leverage gesture-based behavioural biometrics by mapping |R|
di↵erent gesture-based symbols (words or figures) to the |R| di↵erent responses.
Note that both the mapping and the symbols are public. The user renders sym-
bols on the touch screen of a device, e.g., a smartphone. A classifier decides
whether the rendering matches that of the target user. We could tune the clas-
sifier to achieve a true positive rate (TPR) close to 1, while giving it some leverage
in the false positive rate (FPR), say 0.10. The attacker has to correctly guess
the cognitive response and correctly mimic the target user’s gesture. We now
see how we can reduce the number of rounds of the cognitive scheme. Suppose
|R| = 4 in the cognitive scheme. If the average FPR of rendering four symbols,
(i.e., success rate of mimicking a target user’s rendering of the four symbols), is
0.10, then the probability of randomly guessing the response to a challenge can
be derived as FPR⇥ |R|�1 = 0.10⇥0.25 = 0.025. Thus, only 4 rounds instead of
11 will make the guess probability lower than the security of a 6-digit PIN. Re-
ducing the number of rounds enhances the usability of existing cognitive based
schemes by minimizing the authentication time and reducing cognitive load on
the user. The idea also prevents a possible attack on standalone behavioural bio-
metric based authentication. Standalone here mean schemes which only rely on
behavioural based biometrics. Minus the cognitive scheme, an imposter can use
the behavioural biometric system as an “oracle” by iteratively adapting its mim-
icking of the target user’s gestures until it succeeds. Integrated with a cognitive
scheme, the imposter is unsure whether a failed attempt is due to a biometric
error or a cognitive error, or both. The benefit appears mutual.

Combining the two authentication approaches into a “hybrid” scheme is
not easy, because: (a) to prevent observation attacks, the behavioural biometric
gestures should be hard to mimic. Simple gestures (swipes) are susceptible to
mimicry attacks [23], while more complex gestures [32, 34] (free-hand drawings)
only tackle shoulder-surfing attacks, and (b) the cognitive schemes proposed in
the literature are either not secure [40] against known attacks or not usable due
to high cognitive load (see Section 7). This leads to our other main contributions:

– We propose a new gesture based behavioural biometric scheme that employs
a set of words constructed from certain letters of English alphabets (e.g.,
b,f,g,x,m). Since such letters are harder to write [22], we postulate that they
might show more inter-user variation while being harder to mimic. Our re-
sults indicate plausibility of this claim; we achieve an average FPR of 0.05
under video based observation attacks.

– We propose a new cognitive authentication scheme inspired from the HB
protocol [20] and the Foxtail protocol [26, 1]. The scheme can be thought
of as a contrived version of learning with noisy samples, where the noise is
partially a function of the challenge. The generalized form of the resulting
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scheme is conjectured to resist around |R|⇥n challenge-response pairs against
computationally e�cient attacks; n being the size of the problem.

– We combine the above two into a hybrid authentication scheme called Be-
havioCog and implement it as an app on Android smartphones. The app
is configurable; parameter sizes of both the cognitive (challenge size, se-
cret size, etc.) and behavioural biometric (symbols, amount of training, etc.)
components can be tuned at set up.

– We extensively analyze the usability, security and repeatability of our scheme
with 41 users. The average authentication time for each round is as low as
19 seconds, and we achieve security comparable to a 4-digit and 6-digit PIN
in just 2 and 3 rounds, respectively, even under observation attacks. Our
user study assesses security against video-based observation by recording
successful authentication sessions and then asking users to impersonate the
target users. None of the video based observation attacks were successful
(with two rounds in one authentication session). We show that by carefully
designing the training module, the error rate in authentication can be as
low as 14% even after a gap of one week, which can be further reduced by
decreasing the secret size.

We do not claim that our idea completely solves the problem raised by Mat-
sumoto and Imai, but believe it to be a step forward towards that goal, which
could potentially revive interest in research on cognitive authentication schemes
and their application as a separate factor in multi-factor authentication schemes.

2 Overview of BehavioCog

We begin with defining authentication schemes and the adversarial model, fol-
lowed by the overview of our BehavioCog scheme.

2.1 Preliminaries

Authentication Schemes: A shared-secret challenge-response authentication scheme
consists of two protocols: registration and authentication, between the a user
(prover) U , and an authentication service (verifier) S, who share a secret x from
a secret space X during registration. The authentication phase is as follows: for �
rounds, S sends a challenge c 2 C to U , who sends the response r = f(x, c) back
to S. If all � responses are correct S accepts U . Here, C is the challenge space,
and r belongs to a response space R. We refer to the function f : X ⇥ C ! R

as the cognitive function. It has to be computed mentally by the user. Note
that server also computes the response (as the user and the server share the
same secret). Apart from the selected secret x 2 X, everything else is public. A
challenge and a response from the same round shall be referred to as a challenge-
response pair. An authentication session, consists of � challenge-response pairs.
In practice, we assume U and S interact via the U ’s device, e.g., a smartphone.
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Adversarial Model: We assume a passive adversary A who can observe one or
more authentication sessions between U and S. The goal of A is to impersonate U
by initiating a new session with S, either via its own device or via U ’s device, and
making it accept A as U . In practice, we assume that A can observe the screen
of the device used by U . This can be done either via shoulder-surfing (simply
by looking over U ’s shoulder) or via a video recording using a spy camera. The
attacker is a human who is given access to the user touch gestures via video
recordings and then tries to mimic the user. The attacker can view the video
any number of times including pausing, rewinding, forwarding, etc. Note that
the original threat model from Matsumoto and Imai also assumes that the device
as well as the communication channel between the device and S are insecure.
Our threat model is slightly restricted.

2.2 The BehavioCog Scheme

The main idea of BehavioCog hybrid authentication scheme is as follows. In-
stead of sending the response r to a challenge c from S, U renders a symbol
corresponding to r (on the touch screen of the device), and this rendered symbol
is then sent to S. More specifically, we assume a set of symbols denoted ⌦, e.g.,
a set of words in English, where the number of symbols equals the number of
responses |R|. Each response r 2 R is mapped to a symbol in ⌦. The symbol
corresponding to r shall be represented by sym(r). Upon receiving the rendering
of sym(r), S first checks if the rendered symbol “matches” a previously stored
rendering from U (called template) by using a classifier D and then checks if
the response r is correct by computing f . If the answer to both is yes in each
challenge-response round, S accepts U .

The scheme consists of setup, registration and authentication protocols. We
begin by detailing the cognitive scheme first. Assume a global pool of n objects
(object is a generic term and can be instantiated by emojis, images or alphanu-
merics ). We used pass-emojis in the paper. A secret x 2 X is a k-element subset
of the global pool of objects. Thus, |X| =

�
n

k

�
. Each object of x is called a pass-

object, and the remaining n�k objects are called decoys. The challenge space C
consists of pairs c = (a,w), where a is an l-element sequence of objects from the
global pool, and w is an l-element sequence of integers from Z

d

, where d � 2.
Members of w shall be called weights. The ith weight in w is denoted w

i

and cor-
responds to the ith element of a, i.e., a

i

. The notation c 2
U

C means sampling
a random l-element sequence of objects a and a random l-element sequence of
weights w. The cognitive function f is defined as

f(x, c) =

(⇣P
i|ai2x

w

i

⌘
mod d, if x \ a 6= ;

r 2
U

Z
d

, if x \ a = ;.
(1)

That is, sum all the weights of the pass-objects in c and return the answer
modulo d. If no pass-object is present then a random element from Z

d

. is re-
turned. The notation 2

U

means sampling uniformly at random. It follows that
the response space R = Z

d

and |R| = d. Now, let ⌦ be a set of d symbols,
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e.g., the words zero, one, two, and so on. The mapping sym : Z
d

! ⌦ is the
straightforward lexicographic mapping. Note that this mapping is public. We
assume a (d+1)-classifier D (see Section 4) which when given as input the tem-
plates of all symbols in ⌦, and a rendering purported to be of some symbol from
⌦, outputs the corresponding symbol in ⌦ if the rendering matches any of the
symbol templates. If no match is found, D outputs “none.” D needs a certain
number of renderings of each symbol to build its templates, which we denote by
t (e.g., t = 3, 5 or 10).

The setup phase consists of S publishing the parameters n, k, l and d (e.g.,
n = 180, k = 14, l = 30, d = 5), a pool of n objects (e.g., emojis), a set of d
symbols ⌦ (e.g., words), the map sym from Z

d

to ⌦, the (untrained) classifier
D, and t Figure 1 describes the registration and authentication protocols. Since
the registration protocol is straightforward, we only briefly describe the authen-
tication protocol here. S initializes an error flag to 0 (Step 1). Then, for each of
the � rounds, S sends c = (a,w) 2

U

C to U (Step 3). U computes f according
to Eq. 1, and obtains the response r (Step 4). U gets the symbol to be rendered
through sym(r), and sends a rendering of the symbol to S (Step 5). Now, S
runs the trained classifier D on the rendered symbol (Step 6). If the classifier
outputs “none,” S sets the error flag to 1 (Step 8). Otherwise, D outputs the
symbol corresponding to the rendering. Through the inverse map, S gets the
response r corresponding to the symbol (Step 10). Now, if x \ a = ;, i.e., none
of the pass-objects are in the challenge, then any response r 2 Z

d

is valid, and
therefore S moves to the next round. Otherwise, if x \ a 6= ;, S further checks
if r is indeed the correct response by computing f (Step 11). If it is incorrect, S
sets the error flag to 1 (Step 12). Otherwise, if the response is correct, S moves
to the next round. If after the end of � rounds, the error flag is 0, then S accepts
U , otherwise it rejects U (Step 13).

1: Registration.

1 U and S share a
secret x 2 X.

2 For each symbol in
⌦, U sends t
renderings to S.

3 For each symbol in
⌦, S trains D on
the t renderings to
obtain U ’s
template.

4 The secret consists
of x and the d

templates.

2: Authentication.

1 S sets err = 0.
2 for � rounds do

3 S samples c = (a,w) 2U C and sends it to U .
4 U computes r = f(x, c).
5 U renders the symbol sym(r), and sends it to S.
6 S runs D on the rendering.
7 if D outputs “none” then

8 S sets err = 1.
9 else

10 S obtains r corresponding to the symbol
output by D.

11 if x \ a 6= ; and r 6= f(x, c) then
12 S sets err = 1.

13 If err = 1, S rejects U ; otherwise it accepts U .

Fig. 1: The registration and authentication protocols of BehavioCog.
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3 The Cognitive Scheme

Our proposed cognitive scheme can be thought of as an amalgamation of the
HB scheme based on the learning parity with noise (LPN) problem [20], and the
Foxtail scheme (with window) [26, 1]. Briefly, a round of the HB protocol consists
of an n-element (random) challenge from Zn

2

. The user computes the dot product
modulo 2 of the challenge with a binary secret vector from Zn

2

. With a predefined
probability ⌘, say 0.25, the user flips the response, thus adding noise. When the
series of challenge-response pairs are written as a system of linear congruences,
solving it is known as the LPN problem. The HB protocol can be generalized to
a higher modulus d [20]. The Foxtail scheme consists of dot products modulo 4 of
the secret vector with challenge vectors from Zn

4

. If the result of the dot product
is in {0, 1} the user sends 0 as the response, and 1 otherwise. The “window-
based” version of Foxtail, consists of challenges that are of length l < n. More
specifically, we use the idea of using an l-element challenge from the Foxtail with
window scheme. However instead of using the Foxtail function, which maps the
sum of integers modulo d = 4, to 0 if the sum is in {0, 1}, and 1 otherwise, we
output the sum itself as the answer. The reason for that is to reduce the number
of rounds, i.e., �, for a required security level (the success probability of random
guess is 1

2

in one round of the Foxtail scheme). Now if we allow the user to only
output 0 in case none of its pass-objects are present in a challenge, the output of
f is skewed towards 0, which makes the scheme susceptible to a statistical attack
proposed by Yan et al. [42] outlined in Section 3.1. To prevent such attacks, we
ask the user to output a random response from Z

d

(not only zero) in such a case.
Due to the random response, we can say that the resulting scheme adds noise to
the samples (challenge-response pairs) collected by A, somewhat similar in spirit
to HB. The di↵erence is that in our case, the noise is (partially) a function of
the challenge, whereas in HB the noise is independently generated with a fixed
probability and added to the sum. We remark that if we were to use the HB
protocol with a restricted window (i.e., parameter l) and restricted Hamming
weight (i.e., parameter k), the resulting scheme is not based on the standard
LPN problem. Having laid out the main idea behind the cognitive scheme, we
now discuss its security.

3.1 Security Analysis

Due to space limitation we only discuss the general results here and leave their
derivation and detailed explanation to Appendix A. This analysis is based on
well-known attacks on cognitive authentication schemes. We do not claim this
analysis to be comprehensive, as new e�cient attacks may be found in the future.
Nevertheless, the analysis shown here sheds light on why the scheme was designed
the way it is.

Random Guess Attack: The success probability p

RG

of a random guess is condi-
tioned on the event a\x being empty or not. Since this event shall be frequently
referred to in the text, we give it a special name: the empty case. The probability
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of the empty case is P [|a \ x| = 0]
.

= p

0

=
�
n�k

l

�
/

�
n

l

�
. We shall use the notation

.

= when defining a variable. Thus, p
RG

= p

0

+ (1� p

0

) 1
d

.

Brute Force Attack (BF) and Information Theoretic Bound. This attack outputs
a unique candidate for the secret afterm

.

= m

it

= �log
2

�
n

k

�
/log

2

(p
0

+ (1� p

0

) 1
d

)
challenge-response pairs have been observed. We call m

it

, the information theo-
retic bound on m. The complexity of the brute force attack is

�
n

k

�
.

Meet-in-the-Middle Attack (MitM). This attack [20] works by dividing the search
space in half by computing k

2

-sized subsets of X, storing “intermediate” re-
sponses in a hash table, and then finding collisions. The time and space com-
plexity of this attack is

�
n

k/2

�
. Note that there could be variants of the meet-in-

the-middle attack that could trade less space with time. For this analysis, we
focus on the version that is most commonly quoted.

Frequency Analysis. Frequency analysis, proposed by Yan et al. [42],3 could be
done either independently or dependent on the response. In response-independent
frequency analysis (RIFA), a frequency table of �-tuples of objects is created,
where 1  �  k. If a �-tuple is present in a challenge, its frequency is incre-
mented by 1. After gathering enough challenge-response pairs, the tuples with
the highest or lowest frequencies may contain the k secret objects if the challenges
are constructed with a skewed distribution. In the response-dependent frequency
analysis (RDFA), the frequency table contains frequencies for each possible re-
sponse in Z

d

, and the frequency of a �-tuple is incremented by 1 in the column
corresponding to the response (if present in the challenge). In Appendix A we
show that our scheme is immune to both forms of frequency analysis.

Coskun and Herley Attack. Since only l objects are present in each challenge,
the number of pass-objects present is also less than k with high probability. Let
u denote the average number of bits of x used in responding to a challenge. The
Coskun and Herley (CH) attack [14] states that if u is small, then candidates
y 2 X, y 6= x, that are close to x in terms of some distance metric, will output
similar responses to x. If we sample a large enough subset fromX, then with high
probability there is a candidate for x that is a distance ⇠ from x. We can remove
all those candidates whose responses are far away from the observed responses,
and then iteratively move closer to x. The running time of the CH attack is at
least |X|/

�
log2 |X|

⇠

�
[14] where |X| =

�
n

k

�
, with the trade o↵ that m ⇡ 1

✏

2 samples

are needed for the attack to output x with high probability [2, 7]. The parameter
✏ is the di↵erence in probabilities that distance ⇠ + 1 and ⇠ � 1 candidates have
the same response as x.

Linearization. Linearization works by translating the observed challenge-response
pairs into a system of linear equations (or congruences). If this can be done,

3 We borrow the term frequency analysis from [4].
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then Gaussian elimination can be used to uniquely obtain the secret. In Ap-
pendix A, we show two di↵erent ways our proposed cognitive schemes can be
translated into a system of linear equations with dn unknowns. This means that
the adversary needs to observe dn challenge-response pairs to obtain a unique
solution through Gaussian elimination. Note that if U were to respond with 0
in the empty case, then we could obtain a linear system of equations after n

challenge-response pairs. The introduction of noise expands the number of re-
quired challenge-response pairs by a factor of d. Gaussian elimination is by far
the most e�cient attack on our scheme, and therefore this constitutes a signif-
icant gain. We believe the problem of finding a polynomial time algorithm in
(k, l, n) which uses m < dn number of samples (say (d� 1)n samples) from the
function described in Eq. 1 is an interesting open question.

3.2 Example Parameter Sizes

Table 1 (left) shows example list of parameter sizes for the cognitive scheme.
These are obtained by fixing d = 5 and changing k, l and n such that p

RG

is ap-
proximately 0.25. We suggest d = 5 as a balance between reducing the number of
rounds required, i.e., �, and ease of computing f . The column labelled m

it

is the
information theoretic bound to uniquely obtain the secret. Thus, the first two
suggestions are only secure with  m

it

observed samples. The complexity shown
for both the meet-in-the-middle attack (MitM) and Coskun and Herley (CH)
attack represents time as well as space complexity. The last column is Gaus-
sian elimination (GE), for which the required number of samples is calculated
as dn. For other attacks, we show the minimum number of required samples m,
such that m � m

it

and the complexity is as reported. We can think of the last
two suggested sizes as secure against an adversary with time/memory resources
⇡ 270/240 (medium strength) and ⇡ 280/250 (high strength), respectively. The
medium and high strength adversaries are defined in terms of the computational
resources they possess. In general, there can be many levels of strength (by
assigning limits of time/space resources an adversary can have). The strength
levels are chosen to illustrate how parameter sizes can be chosen against adver-
sarial resources. The parameter sizes are chosen such that the attack complexity
vs the number of samples required are as given in Table 1.

Based on parameter sizes for the cognitive scheme and results from the
user study, we recommend the parameters for BehavioCog shown in Table 1
(right). The columns labelled “Sessions” indicate whether the target is a medium-
strength or high-strength adversary A. Based on our experiments, CW (complex
words) gave the best average FPR of 0.05 (see next section). The “Security” col-
umn shows A’s probability in impersonating the user by random guess and mim-
icking the corresponding behavioural biometric symbol. By setting p

RG

= 0.25
and multiplying it with FPR, we estimate the total impersonation probability
of A. For reference, the same probability for a 4-digit PIN is 1 ⇥ 10�4, and for
a 6-digit PIN is 1⇥ 10�6 (but with no security under observation).
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(d, k, l, n) m

it

p

RG

BF MitM CH GE

(5, 5, 24, 60) 11 0.255 222 212 211 poly(n)
Samples required - 0 11 11 23 300
(5, 10, 30, 130) 24 0.252 248 228 233 poly(n)

Samples required - 0 24 24 24 650
(5, 14, 30, 180) 34 0.256 268 240 240 poly(n)

Samples required - 0 34 34 94 900
(5, 18, 30, 225) 44 0.254 287 251 251 poly(n)

Samples required - 0 44 44 168 1125

(d, k, l, n) �

Sessions Sessions
⌦ Security

(med. A) (high A)

(5, 5, 24, 60) 1 10 10 CW 1.3⇥ 10�2

(5, 5, 24, 60) 2 5 5 CW 1.5⇥ 10�4

(5, 5, 24, 60) 3 3 3 CW 2⇥ 10�6

(5, 10, 30, 130) 1 24 24 CW 1.3⇥ 10�2

(5, 10, 30, 130) 2 12 12 CW 1.5⇥ 10�4

(5, 10, 30, 130) 3 8 8 CW 2⇥ 10�6

(5, 14, 30, 180) 1 94 34 CW 1.3⇥ 10�2

(5, 14, 30, 180) 2 47 17 CW 1.5⇥ 10�4

(5, 14, 30, 180) 3 31 11 CW 2⇥ 10�6

(5, 18, 30, 225) 1 511 168 CW 1.3⇥ 10�2

(5, 18, 30, 225) 2 255 84 CW 1.5⇥ 10�4

(5, 18, 30, 225) 3 170 56 CW 2⇥ 10�6

Table 1: Example parameter sizes for cognitive scheme (left) and BehavioCog
(right), where m

it

: information theoretic bound, p
RG

: random guess probabil-
ity, BF: Brute Force, MitM: Meet in the Middle, CH: Coksun and Harley, GE:
Gaussian Elimination.

4 The Behavioural Biometric Scheme

Our behavioural biometric authentication scheme is based on touch gestures.
We first describe the set of symbols followed by the classifier D and finally the
identified features. For each symbol in ⌦, TPR of D is the rate when it correctly
matches U ’s renderings of the symbol to U ’s template. FPR of D is the rate
when it wrongly decides A’s rendering of the symbol matches U ’s template.

4.1 Choice of Symbols

We require that symbols be: (a) rich enough to simulate multiple swipes, (b)
hard for A to mimic even after observation, (c) easily repeatable by U between
successive authentications, and (d) easily distinguishable from each other by D.
Accordingly, we chose four di↵erent sets of symbols (see Table 2). We tried test-
ing all the four sets of symbols in our first phase of the user study to see which
one satisfies all the four aforementioned criteria. We found complex words to be
the best symbol set and was used in the implementation of our scheme. Note
that words or figures are used for behavioural biometrics part while emojis are
used for cognitive scheme.

easy words: These English words for the numbers, and serve as the base case.
complex words: Since the letters b, f, g, h, k, m, n, q, t, u, w, x, y, z are more
di�cult to write cursively than others as they contain more turns [22], we hy-
pothesize that words constructed from them might also show more inter-user
variation and be di�cult to mimic. Our user study shows positive evidence,
as complex words were the most resilient against observation attacks. We con-
structed five words of length 4 from these 14 letters since users find it hard to
render higher length words on touchscreen. As it is di�cult to construct mean-
ingful words without vowels, we allowed one vowel in each word.
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easy figures: This set contains numbers written in blackboard bold shape. A user
can render them by starting at the top left most point and traversing in a down
and right manner without lifting the finger. This removes the high variability
within user’s drawings present in the next set of symbols.
complex figures: These figures were constructed by following some principles (to
make them harder to mimic): no dots or taps [24, 13], contain sharp turns and
angles [34], the users finger must move in all directions while drawing the symbol.

response 0 1 2 3 4

easy words zero one two three four

complex words xman bmwz quak hurt fogy

easy figures

complex figures

Table 2: Mapping of responses (d = 5) to symbols.

4.2 Choice of Classifier

We picked dynamic time warping (DTW) [33] because: (a) all chosen symbols
exhibit features that are a function of time, (b) it shows high accuracy with a
small number of training samples (5-10) [17, 32] (to minimize registration time).
Given two time series, DTW finds the optimal warped path between the two
time series to measure the similarity between them [33]. Assume there is a set Q
of features, each of which is a time series. Let Q̂ represent the set of templates
of the features in Q, which are also time series. Given a test sample of these
features (for authentication), also represented Q, the multi-dimensional DTW

distance between Q̂ and Q is defined as [35]: DTW(Q̂,Q) =
P|Q|

i=1

DTW(q̂
i

, q

i

),

where q̂

i

2 Q̂ and q

i

2 Q, are time series corresponding to feature i.

4.3 Template Creation

For each user-symbol pair (each user drawing a particular symbol) we obtain t

sample renderings, resulting in t time series for each feature. Fix each feature, we
take one of the t time series at a time, compute its DTW distance with the t� 1
remaining time series, and sum the distances. The time series with the minimum
sum is chosen as the optimal feature template. The process is repeated for all
features to create the template Q̂. We created two sets of optimal templates: (1)
Q̂

sym

to check if U produced a valid rendering of a symbol from ⌦ (only using

x, y coordinates) and (2) Q̂
user

to check if the rendering comes from the target
user U or an attacker. Basically, the first template set is used to check if the user
rendered a symbol from the set of allowed symbols ⌦ or some random symbol not
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in ⌦. After this has been ascertained, it is checked whether the symbol is close to
the user’s template from the other template set (check behavioural biometrics).

4.4 Classification Decision

Given a set of feature values Q from a sample, the decision is made based on
whether DTW(Q̂,Q) lies below the threshold calculated as ~ .

= µ+ z�. Here µ

is the mean DTW distance between the user’s optimal template Q̂ and all of the
user’s t samples in the registration phase [27]. � is the standard deviation, and
z � 0 is a global parameter that is set according to data collected from all users
and remains the same for all users. The thresholds ~

sym

and ~
user

correspond to

Q̂

sym

and Q̂

user

, respectively. The classification works as follows:

Step 1: If for a given challenge c = (a,w), x \ a 6= ; (i.e., the non-empty case),
S first gets the target symbol by computing f . Target symbol is the symbol
corresponding to the correct response. Then, S rejects U if the DTW distance
between Q̂

sym

and the sample is > ~
sym

. Otherwise, S moves to Step 2. In

the empty case, S computes the DTW distance between the sample and Q̂

sym

for each symbol and picks the symbol which gives the least distance. Next, the
distance is compared with ~

sym

for that symbol, and S accordingly rejects or
goes to Step 2.
Step 2: S computes the DTW distance between the sample and Q̂

user

of the
symbol. If the distance is > ~

user

, the user is rejected, otherwise it is accepted.

4.5 Feature Identification and Selection

We identify 19 types of features from the literature [41, 13, 11, 36] and obtain 40
features (Table 3), most of which are self explanatory. Explanation of curvature,
slope angle and path angle is described in [36]. Device-interaction features were
obtained using the inertial motion sensors: accelerometer and gyroscope of the
smartphone. Note that our scheme can be used for any device equipped with a
touch screen and inertial motion sensors. We perform a standard z-score normal-
ization on each feature. As an example, Appendix B illustrates the discriminatory
power of a single feature (x). To select the most distinguishing features from the
40 features for each symbol, we created our own variation of sequential forward
feature selection (SFS) [15]. See Algorithm 1 in Appendix C. The algorithm
takes as an input a list of features Q

tot

and a symbol, and outputs a selected
list of features Q for that symbol. The algorithm starts with an empty list and
iteratively adds one feature at a time by keeping TPR = 1.0 and minimizing the
FPR values (calculated based on user-adversary pairs, see Section 5) until all
features in Q

tot

are exhausted. At the end, we are left with multiple candidate
subsets for Q from which we pick the one with TPR = 1.0 and the least FPR
as the final set of features. The algorithm calls the Get z-List algorithm (Algo-
rithm 2 in Appendix C) as a subroutine (based on a similar procedure from [27]).
This algorithm computes the z values that give TPR of 1 and the least FPR for
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each possible feature subset. The z values give the amount of deviation from the
standard deviation.

Table 3: List of features.
Touch feature Symbol Stylometric feature Symbol Device-interaction feature Symbol

Coordinates and change in
coordinates

x, y , �x, �y Top, bottom, left, right most
point

TMP, BMP, LMP,
RMP

Rotational position of device
in space

R
x

, R
y

, R
z

Velocity along coordinates ẋ, ẏ Width: RMP � LMP, Height:
TMP� BMP

width, height Rate of rotation of device in
space

G
x

, G
y

, G
z

Acceleration along coordi-
nates

ẍ, ÿ Rectangular area: width ⇥
height

area 3D acceleration force due to
device’s motion and gravity

A
x

, A
y

, A
z

Pressure and change in pres-
sure

p, �p Width to height ratio WHR 3D acceleration force solely
due to gravity

g
x

, g
y

, g
z

Size and change in size s, �s Slope angle ✓

slope

3D acceleration force solely
due to device’s motion

a
x

, a
y

, a
z

Force: p⇥ s F Path angle ✓

path

Action type: finger lifted up,
down or on touchscreen

AT Curvature curve

4.6 Implementation

We implemented BehavioCog for Android smartphones using a set of twemo-
jis [38]. We used the parameters (k, l, n) = (14, 30, 180) (corresponding to the
medium strength adversary, see Section 3.2). Figure 2 shows an example chal-
lenge and response. FastDTW was used to implement DTW [33] with radius 20.
The dotted trace in the example response (complex word fogy) was a compro-
mise between usability and the di�culty for an attacker to observe fine details.

(a) challenge (b) response

Fig. 2: An example challenge and response in our implementation of BehavioCog.
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5 User Study

We did a three phase controlled experimental evaluation of our proposed scheme
with 41 participants on a Nexus 5x smartphone after getting the ethics approval.

Phase 1: We collected touch biometric samples from 22 participants: 8 females
and 14 males for di↵erent symbol sets in two sessions (a week apart) to select
the best symbol set (in terms of repeatability and mimicking hardness). As some
users contributed samples for multiple symbol sets, we had 40 logical users which
were equally divided into four groups, one for each symbol set. Each user did
13 and 3 renderings of each symbol in the first and second session, respectively.
The first session was video recorded. Each user acted as an attacker (to mimic
a target user’s symbol based on video recordings with unrestricted access) for a
particular target user and vice versa from the same group.

Phase 2: This phase had a total of 30 participants (11 from Phase 1) and con-
sisted of two sessions (a week apart) to assess the usability and security of
BehavioCog. The first session involved cognitive and biometric registration and
authentication (video recorded). Second session involved authentication, per-
forming attacks against a target user, and filling a questionnaire. The 30 users
were equally divided into three groups: Group 1, 2 and 3 according to the time
they spent on registration. All the users chose 14 pass-emojis. 3, 8 and 10 bio-
metric samples for each of the 5 complex words were collected from users in
Group 1, Group 2 and Group 3, respectively. The registration for Group 2 and
Group 3 users included an extended training game to help them recognize their
pass-emojis for better authentication accuracy. The training game was divided
into multiple steps in increasing order of di�culty (see Appendix D).Users from
Group 3 had to perform double the steps of Group 2 users. Additionally, during
Session 2, we asked each user to (a) pick their 14 pass-emojis from the whole
pool of emojis, and (b) pick 14 pass-emojis, which they believed belonged to
their target (attacked) user.

Phase 3: To find the cause of high number of cognitive errors in Session 2 of
Phase 2, we carried out Phase 3 across two sessions (a week apart) with users
from Group 3, since they were most familiar with the authentication scheme.
First session involved an extended cognitive training: each user was shown 14
pass-emojis one by one for 10 seconds followed by a 3 second cool o↵ period
(inspired by cognitive psychology literature [37, 30]), followed by authentication
attempts. Session 2 only involved authentication attempts. There are three pos-
sible reasons for high cognitive errors: (1) user confuses some of the decoys as
pass-emojis since only a subset of pass-emojis are present in a challenge (l = 30),
(2) user makes errors in computing f , and/or (3) number of pass-emojis is too
high (14). To find the exact reason, we asked the user to do the following in
order: (a) authenticate six times simply by selecting pass-emojis present in the
challenge with no weights (to address reason 1); (b) authenticate a further six
times, but this time the emojis had weights and the user had to compute f (to
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address reason 2), (c) select the 14 pass-emojis from the total pool of 180 (to
address reason 3). Phase 3 did not involve any biometrics.

6 Results

Results from Phase 1. We find the best symbol set in terms of repeatability
and security by selecting features (through Algorithm 1) for two scenarios: best
case scenario (secure against random attacks) and worst case scenario (secure
against video based observation attacks, and repeatability). In both scenarios,
first 10 biometric samples from a user (Session 1) are used for training. For the
best case, three samples from the same user (Session 1) and three samples from
an assigned attacker (Session 1) are used for testing. For the worst case, three
samples from the same user (Session 2) and three attacker samples (video based
observation attack) are used for testing. Table 4 shows the FPR and top features
for each symbol set (TPR is one in all cases). Complex words yield the least
FPR which was: 0.0, 0.06, 0.0, 0.2, and 0.0 for xman, bmwz, quak, hurt and fogy,
respectively, in the worst case scenario. All symbol categories have an almost 0%
FPR against random attacks. The majority of features providing repeatability
and mimicking hardness across all symbol sets are touch and stylometric based.
To find out why some symbol sets have poorer average FPR than others in the
worst case scenario, we did some further analysis shown in Appendix E.1.

Table 4: Results for best and worst case scenarios for di↵erent symbol sets.

Symbol set
Average FPR Top features

best case worst case best case worst case

easy words 0.01 0.24 x, y, �x, �y, TMP, ✓
slope

, ✓

path

, R
x

TMP, height, WHR, ✓
slope

, ✓

path

complex words 0.00 0.05 y, �y, p, height, area, ✓
slope

, R
y

�x, height, ✓
path

easy figures 0.01 0.38 y, �x, �y, p, F, height, area, ✓
slope

, ✓

path

y, �y, p, height

complex figures 0.01 0.39 �x x, TMP, BMP

Results from Phase 2. The goal of Phase 2 was to test the full BehavioCog
scheme. We only present selected results related to training and authentication
time, errors, attacks and questionnaire here. Detailed results are in Appendix E.

Registration Time: The average time to select 14 pass-emojis was around 2
minutes for all groups. The maximum training time was 12 minutes for Group
3, since it had the most amount of training, and the minimum was 4 minutes
for Group 1. High training time is not a major hurdle, because it is a one time
process and most of the users reported enjoying the process as it had a “game-
like” feel to it (see Appendix E.8). Detailed results are shown in Appendix E.2.

Authentication Time: Table 5 shows the average authentication time (per round)
taken by di↵erent user groups in the two sessions. Generally, the user spends 15-
20 seconds in computing f and 6-8 seconds in entering the biometric response,
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which does not change drastically between the two sessions. Group 3 has the
least login time (more training results in quicker recognition).

Table 5: Authentication statistics for di↵erent user groups.
Group & session

Av. cognitive Av. biometric Av. processing Av. total Success Cognitive Biometric
time (sec) time (sec) time (sec) time (sec) rate (%) errors (%) errors (%)

Group 1 - Session 1 (Phase 2) 18.3 7.9 0.7 27.0 38.3 31.6 31.0
Group 2 - Session 1 (Phase 2) 19.8 6.4 0.7 27.0 50.0 18.3 36.0
Group 3 - Session 1 (Phase 2) 12.2 5.6 0.8 18.7 85.0 15.0 0.0
Group 1 - Session 2 (Phase 2) 18.5 7.5 0.7 26.8 26.6 55.0 18.3
Group 2 - Session 2 (Phase 2) 18.4 6.4 0.7 25.6 23.3 55.0 26.6
Group 3 - Session 2 (Phase 2) 15.8 5.4 0.9 22.0 50.0 41.6 8.3
Group 3 - Session 1 (Phase 3) - - - - 94.0 6.0 -
Group 3 - Session 2 (Phase 3) - - - - 86.0 14.0 -

Authentication Errors: Table 5 shows the percentage of successful authentication
attempts along with the cognitive and biometric errors. There were a total of v =
60 authentication attempts (six per user) for each user group in each session. If
users were randomly submitting a cognitive response, the probability that i out of
v cognitive attempts would succeed is: p

.

=
�
v

i

�
p

i

RG

(1�p

RG

)v�i. We consider i �
20 out of 60 attempts (< 66% error rate) as statistically significant (p < 0.05).
Since all groups had cognitive error rate less than 66%, it implies that users were
not passing a cognitive challenge by mere chance. Cognitive training aids the
user’s short term memory, since Group 3 users authenticated successfully 85% of
the time, whereas Group 1 users (without cognitive training) were only successful
36% of the time. Group 2 users (with some cognitive training), accrue 18%
cognitive errors, similar to Group 3. For Group 2 users most failures originate
from biometric errors (they had lesser number of biometric training samples than
Group 3). By collecting more biometric data, performance of Group 2 can be
made similar to Group 3 with less cognitive training. We see a drastic decrease in
the successful authentication attempts in Session 2 from Session 1 especially for
Group 3 (from 85% to 50%) and Group 2 (from 50% to 24%). Cognitive errors
are predominantly responsible for the drastic decrease as they caused more than
half of the authentication attempts to fail for Group 2 and 3, and 40% for Group
1. To find out the actual cause for such a high number of cognitive errors, we
did Phase 3 of the study, whose results will be described shortly.

Attack Statistics: We picked those 12 users (9 from Group 3, 2 from Group 2,
1 from Group 1) to be attacked who successfully authenticated 5 out of 6 times
in Session 1. Each of the 30 users in the three groups attacked only one of the
12 target users by performing three random and three video based observation
attacks totalling 90 attempts. The probability of a random attack can be ap-
proximated as p

tot

= p

RG

⇥ FPR ⇡ 0.256 ⇥ 0.05 ⇡ 0.013. Thus i out of v = 90
correct guesses would be binomially distributed as p

.

=
�
v

i

�
p

i

tot

(1� p

tot

)v�i. We
consider i � 4 as statistically significant (p < 0.05). Only 3 attempts (3.33%)
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for both attacks were successful, and none of them were consecutive. In all six
cases, the target user wrote the words using block letters (easier to mimic [8]).

Questionnaire Results: All 30 users were asked to fill a questionnaire. The results
indicate that users find writing the words to be easy on smartphone, users liked
playing the training game, and users think that the number of pass-emojis (14)
is high. For more details, please see Appendix E.8.

Results from Phase 3. This phase was carried out to find the main cause of
cognitive errors and to improve our training to alleviate the issue. The users did
12 authentication attempts each in Sessions 1 and 2. The first 6 involved merely
selecting the pass-emojis present whereas the second involved computing f as
well. The results are shown in the last two rows of Table 5. The results show that
our improved training module (more exposure to each individual pass-emojis fol-
lowed by blank screens) drastically decreases the error rate. Even after a week’s
gap the success rate is 86%. We rule out the possibility that the errors in Phase
2 were due to the size of the secret, as the average number of pass-emojis rec-
ognized by the users in Sessions 1 and 2 were 13.6 and 13.5, respectively. We
also counted the total number of errors made by the users in the first 6 authen-
tication attempts, which turned up 13, and the last 6 authentication attempts,
which turned up 11, adding results from both sessions. This shows no evidence
that computing f was causing errors. We, therefore, believe that the main cause
of errors is due to the user confusing decoy emojis as its pass-emojis since only
a subset of the k emojis are present in the challenge (due to l).

7 Related Work

We proposed a new cognitive scheme in our work because existing schemes did
not possess all the attributes we desired. CAS [40] relies on user ability to remem-
ber images from their portfolio. During actual login, the user has to compute
a path on a panel of images from top-left corner to the bottom-edge corner or
right side of the panel based on whether the image on the panel at any point
belongs to the user portfolio. The row or column at the bottom or right side
of the panel has labels. When the user finishes the path, they have to input
the label in response. The CAS scheme [40] is susceptible to SAT solver based
attacks [19]. CAS also requires all n = 80 images to be shown at once similar
to the APW scheme [5], which is impractical on small screens. The cognitive
load of the scheme from Li and Teng [28] is very high as it requires the user
to remember three di↵erent secrets and perform lexical-first matching on the
challenge to obtain hidden sub-sequences. HB protocol [20] can be modified to
use window based challenges, but it requires the user to add random responses
with a skewed probability ⌘ <

1

2

, which can be hard for users. Foxtail proto-
col [26] reduces the response space to {0, 1} at the expense of a high number
of rounds for secure authentication. PAS [6] only resist a very small number of
authentication sessions (< 10) [25]. The CHC scheme asks the user to locate at
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least three pass-images in the challenge and click randomly within the imagi-
nary convex hull of the pass-images. With the default parameter sizes k = 5 and
l = 82 (on average), CHC is vulnerable to statistical attacks [42, 3] and usability
is impacted with larger parameter sizes.Blum and Vempala [10] propose several
simple cognitive schemes which are easy to compute for humans and require
little training. Although their schemes are information theoretically secure, the
guarantee is only for a small number of observed sessions (6 to 10). The scheme
from Blocki et al [9] is provably secure against statistical adversaries, and can
resist a sizeable number of observed sessions. The scheme’s main drawback is the
extensive training which requires a human user to memorize random mappings
from 30-100 images to digits, which, even with memory aids such as mnemon-
ics, could take considerable time. An interesting open question is to see if their
proof strategy can be extended to show if BehavioCog is secure against statistical
adversaries.

Various touch-based behavioural biometric schemes have been proposed for
user authentication [41, 18, 24], which rely on simple gestures such as swipes.
Simple gestures require a large number of samples to be collected to get good
accuracy and are prone to observation attacks [23]. Sherman et al. [34] designed
more complex (free-form) gestures, but which are only shown to resist human
shoulder-surfing attacks. The closest work similar to ours is by Toan et. al. [32].
Their scheme authenticates users on the basis of how they write their PINs on
the smartphone touch screen using x, y coordinates. In comparison, we do a
more detailed feature selection process to identify features, which are repeatable
and resilient against observation attacks. Furthermore, they report an equal
error rate (EER) of 6.7% and 9.9% against random and shoulder-surfing attacks,
respectively. Since these are EER values, the TPR is much lower than 1.0. To
obtain a TPR close to 1.0, the FPR will need to be considerably increased.
Thus, after observing one session, the observer has a non-negligible chance of
getting in (since the PIN is no longer a secret). To achieve a low probability of
random guess, the number of rounds in their scheme would need to be higher.
Furthermore, after obtaining the PIN, the attacker may adaptively learn target
user’s writing by querying the authentication service. The use of a cognitive
scheme, as mentioned before, removes this drawback. KinWrite [36], which asks
the user to write their passwords in 3D space, and then authenticates them
based on their writing patterns su↵ers from the same drawbacks. Pure graphical
password schemes such as DéJà Vu [16], where the user has to click directly
on pass-images or reproduce the same drawing on the screen, have the same
vulnerability.

8 Discussion and Limitations

To begin, we show that a carefully designed training inspired by cognitive psy-
chology helped users recognize their pass-emojis better. The potential of this
needs to be further explored to see how large a set of images could be success-
fully recognized by users after longer gaps. A smaller number of pass-emojis is
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also possible in our scheme at the expense of withstanding less observations; it
may still be impractical for an attacker to follow a mobile user to record enough
observations over a sustained period. Our results also show that users make
themes to pick their pass-emojis. The top 15 pass-emojis chosen by all the users
is shown in Table 10 (see E.5). The top 10 pass-emojis include 8 animals making
animal the highest chosen category among the users. The other popular cate-
gories are food, fruits, transport and sports. Picking similar theme based images
is a known challenge for graphical passwords and we left further exploration of
issues arising due to the aforementioned challenge as a future research.

Behavioural biometrics tend to evolve over time and hence we see a slight
increase in biometric errors after a week. A remedy is to frequently update the
biometric template by replacing older samples [13]. On the flip side, we prefer
behaviour biometrics over physiological biometrics due to this exact reason, since
if stolen the consequences are less dire (user behaviour might evolve, words
could be replaced, etc.). Additionally, the exact di�culty in mimicking cursively
written words derived from certain English letters needs to be further explored
(either experimentally or in theory). Also, the security of our scheme needs
to be tested against a professional handwriting forger or a robot that can be
programmed to mimic user gestures given video recordings, although we consider
the latter to be a less likely attack in practice.

Our cognitive scheme might be susceptible to timing attacks [39] (c.f. Ta-
ble 5). One way to circumvent this is to not allow the user to proceed unless
a fixed amount of time has elapsed based on the highest average-time taken
Finally, to protect the user’s secret (pass-emojis and biometric templates), the
authentication service could keep it encrypted and decrypt it only during authen-
tication. A better solution requires the use of techniques such as fuzzy vaults [21]
and functional encryption [12], and is left as future work.

9 Conclusion

The promise o↵ered by cognitive authentication schemes that they are resis-
tant to observation has failed to crystallize in the form of a workable protocol.
Indeed, many researchers speculate that such schemes may never be practical.
We do not refute this, but instead argue that combining cognitive schemes with
other behavioural biometric based authentication schemes may make the hybrid
scheme practical and still resistant to observation. Our scheme is not the only
possibility. In fact, we need not confine ourselves to touch based biometrics, and
may explore other behavioural biometric modalities. This way, several di↵erent
constructions are conceivable.
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[16] Dhamija, R., Perrig, A.: DéJà Vu: A User Study Using Images for Authentication.

In: Usenix Security. pp. 45–58 (2000)
[17] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.: Querying and

Mining of Time Series Data: Experimental Comparison of Representations and
Distance Measures. Proc. VLDB Endow. 1(2), 1542–1552 (2008)

[18] Frank, M., Biedert, R., Ma, E., Martinovic, I., Song, D.: Touchalytics: On the
Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Au-
thentication. IEEE TIFS 8(1), 136–148 (2013)

[19] Golle, P., Wagner, D.: Cryptanalysis of a cognitive authentication scheme (ex-
tended abstract). In: SP. pp. 66–70 (2007)

[20] Hopper, N.J., Blum, M.: Secure Human Identification Protocols. In: Asiacrypt.
pp. 52–66 (2001)

[21] Juels, A., Sudan, M.: A Fuzzy Vault Scheme. Des. Codes Cryptography 38(2),
237–257 (2006)

[22] Kao, H.S., Shek, D.T., Lee, E.S.: Control modes and task complexity in tracing
and handwriting performance. Acta psychologica 54(1), 69–77 (1983)

19



[23] Khan, H., Hengartner, U., Vogel, D.: Targeted Mimicry Attacks on Touch Input
Based Implicit Authentication Schemes. In: MobiSys ’16. pp. 387–398 (2016)

[24] Li, L., Zhao, X., Xue, G.: Unobservable Re-authentication for Smartphones. In:
NDSS (2013)

[25] Li, S., Asghar, H.J., Pieprzyk, J., Sadeghi, A.R., Schmitz, R., Wang, H.: On the
Security of PAS (Predicate-Based Authentication Service). In: ACSAC. pp. 209–
218 (2009)

[26] Li, S., Shum, H.Y.: Secure Human-Computer Identification (Interface) Systems
against Peeping Attacks: SecHCI. Cryptology ePrint Archive, Report 2005/268

[27] Li, S., Ashok, A., Zhang, Y., Xu, C., Lindqvist, J., Gruteser, M.: Whose move is
it anyway? Authenticating smart wearable devices using unique head movement
patterns. In: PerCom. pp. 1–9 (2016)

[28] Li, X.Y., Teng, S.H.: Practical human-machine identification over insecure chan-
nels. Journal of Combinatorial Optimization 3(4), 347–361 (1999)

[29] Linial, N., Weitz, D.: Random vectors of bounded weight and their linear depen-
dencies. http://dimacs.rutgers.edu/~dror/pubs/rand_mat.pdf (2000)

[30] Mandler, J.M., Johnson, N.S.: Some of the thousand words a picture is worth.
Jrnl. of Exp. Psychology: Human Learning and Memory 2(5), 529–540 (1976)

[31] Matsumoto, T., Imai, H.: Human identification through insecure channel. In: EU-
ROCRYPT. pp. 409–421 (1991)

[32] Nguyen, T.V., Sae-Bae, N., Memon, N.: Finger-Drawn PIN Authentication on
Touch Devices. In: ICIP. pp. 5002–5006 (2014)

[33] Sakoe, H., Chiba, S.: A dynamic programming approach to continuous speech
recognition. In: Seventh international congress on acoustics. vol. 3, pp. 65–69
(1971)

[34] Sherman, M., Clark, G., Yang, Y., Sugrim, S., Modig, A., Lindqvist, J., Oulasvirta,
A., Roos, T.: User-generated Free-form Gestures for Authentication: Security and
Memorability. In: MobiSys. pp. 176–189 (2014)

[35] Shokoohi-Yekta, M., Hu, B., Jin, H., Wang, J., Keogh, E.: Generalizing DTW
to the multi-dimensional case requires an adaptive approach. Data Mining and
Knowledge Discovery pp. 1–31 (2016)

[36] Tian, J., Qu, C., Xu, W., Wang, S.: Kinwrite: Handwriting-based authentication
using kinect. In: NDSS (2013)

[37] Tversky, B., Sherman, T.: Picture memory improves with longer on time and
o↵ time. Jrnl. of Exp. Psychology: Human Learning and Memory 1(2), 114–118
(1975)

[38] Twitter, I., et al.: https://github.com/twitter/twemoji
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A Detailed Security Analysis of the Cognitive Scheme

Random Guess Attack: Let p

RG

denote the success probability of a random guess.
This probability is conditioned on the event a\ x being empty or not. Since this event
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shall be frequently referred to in the text, we give it a special name: the empty case.
Now the probability that i pass-objects are present in a, is given by P [|a \ x| = i] =�
k
i

��
n�k
l�i

�
/

�
n
l

�
, from which it follows that P [|a \ x| = 0]

.

= p

0

=
�
n�k

l

�
/

�
n
l

�
. We shall

use the notation
.

= when defining a variable. Thus, p
RG

= p

0

+ (1� p

0

) 1

d .

Brute Force Attack and Information Theoretic Bound: This attack is only pos-
sible after A has observed m > 0 challenge-response pairs (or samples) correspond-
ing to successful authentication sessions. Before observing any samples, i.e., m = 0,
all possible

�
n
k

�
subsets are possible candidates of the target secret x. We denote a

candidate by y, where quite possibly y = x. After observing one sample, the proba-
bility that a y 2 X is still a candidate for the secret x is given by p

0

+ (1 � p

0

) 1

d .
Thus, we expect

�
p

0

+ (1� p

0

) 1

d

�m �
n
k

�
subsets in X to still remain as candidates

for x after observing m challenge-response pairs. Equating the above to 1, gives us
m

.

= m

it

= �log
2

�
n
k

�
/log

2

(p
0

+ (1� p

0

) 1

d ). We call m

it

, the information theoretic
bound on m. This is the least (expected) number of samples needed to be observed to
obtain a unique candidate for the secret.

Meet-in-the-Middle Attack: This attack [20] works by first computing k
2

-sized subsets
of X on each of the m observed challenge-response pairs, and storing the m-element
response string together with the subset in a hash table. After that, for each possible
“intermediate” response string in Zm

d , and for each k
2

-sized subsets ofX we compute the
final response string of m-elements. If this response string matches at least m(1� p

0

)
responses4 in the response string of the target secret x, we insert the intermediate
response string together with the corresponding k

2

-sized subset in the same hash table.
Any collision in the hash table marks a possible candidate for x (by combining the two
k
2

-sized subsets). The time and space complexity of this attack is
�

n
k/2

�
.

Frequency Analysis: Frequency analysis is an attack proposed by Yan et al. [42]5

which could be done either independently or dependent on the response. In response-
independent frequency analysis (RIFA), a frequency table of �-tuples of objects is
created, where 1  �  k. If a �-tuple is present in a challenge, its frequency is
incremented by 1. After gathering enough challenge-response pairs, the tuples with the
highest or lowest frequencies may contain the k secret objects if the challenges are
constructed with a skewed distribution. In the response-dependent frequency analysis
(RDFA), the frequency table contains frequencies for each possible response in Zd, and
the frequency of a �-tuple is incremented by 1 in the column corresponding to the
response (if present in the challenge).

First, note that our cognitive scheme is resistant to RIFA since the challenges are
drawn uniformly at random without considering pass or decoy objects. This follows
from Lemma 17 in [4]. To see that RDFA is also not applicable, define the indica-
tor random variable I(x0) which is 1 if x

0 2 a, where x

0 ✓ x 2 X. We define a
similar indicator random variable I(y0) for y

0 ✓ y 2 X

n�k, where X

n�k denotes
the set of n � k decoy objects. Now for RDFA to be inapplicable we should have
P [I(x0) = b | r = i] = P [I(y0) = b | r = i], for i 2 Zd, b 2 {0, 1} and |x0| = |y0|. Us-
ing Baye’s rule P [I(x0) = b | r = i] = P [r = i | I(x0) = b]P [I(x0) = b]/P [r = i]. Now,
P [r = i] = p

0

· 1

d + (1 � p

0

) 1

d = 1

d . Also, from Lemma 17 in [4] P [I(x0) = 1] =

4 i.e., the expected number of samples that do not belong to the empty case.
5 We borrow the term frequency analysis from [4].
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P [I(y0) = 1] =
�
n��
l��

�
/

�
n
l

�
, where �

.

= |x0| = |y0|. From this, it follows that P [I(x0) = 0] =

P [I(y0) = 0]. Now, P [r = i | I(y0) = b] = P [r = i] = 1

d , since the responses are not de-
pendent on the decoy objects. Finally, we see that P [r = i | I(x0) = 1] = 1

d , since at
least � pass-objects are present in the challenge, and the response is the sum modulo
d, which due to the randomness of weights is distributed uniformly in Zd. If I(x

0) = 0,
there are two possibilities. Either ��1 or less number of pass-objects are present in the
challenge, in which case the response is again uniform in Zd, or none of the pass-objects
are present (empty case). But in the latter case, we ask the user to output a random
response in Zd. Therefore, the probability of observing a response r = i is 1

d . From this
it follows that our scheme is secure against RDFA.

Coskun and Herley Attack: Since only l objects are present in each challenge, the
number of pass-objects present is also less than k with high probability. Let u denote
the average number of bits of x used in responding to a challenge. The Coskun and
Herley (CH) attack [14] states that if u is small, then candidates y 2 X, y 6= x, that
are close to x in terms of some distance metric, will output similar responses to x.
If we sample a large enough subset from X, then with high probability there is a
candidate for x that is a distance ⇠ from x. We can remove all those candidates whose
responses are far away from the observed responses, and then iteratively move closer
to x. The running time of the CH attack is at least |X|/

�
log2 |X|

⇠

�
[14] where |X| =

�
n
k

�
,

with the trade o↵ that m ⇡ 1

✏2
samples are needed for the attack to output x with

high probability [2, 7]. The parameter ✏ is the di↵erence in probabilities that distance
⇠ + 1 and ⇠ � 1 candidates have the same response as x. As we choose higher values
of ⇠, the complexity of the attack decreases but the probability di↵erences become
less prominent, which in turn means that more samples m need to be observed. The
optimal value of ⇠ is when the time complexity is below a threshold, giving us a value
of ✏ from which the number of required samples m can be obtained [2].

Linearization: We begin by assigning an order to the n objects in the global pool. We
can then represent the secret x as an n-element binary vector x of Hamming weight
k (where xi = 1 indicates that object i is present in the secret). Similarly, a challenge
c = (a,w) can be represented by the n-element binary vector a of Hamming weight l

(indicating the presence of the corresponding object) and the n-element vector w of
Hamming weight  l, where wi = 0 if ai = 0. Let ⌘ 2U Zd. Then our cognitive function
f can be rewritten as f(x, c) = bw · x + ⌘(1 � b) mod d, where b = sgn(a · x) is the
sign function. Now, consider the case r

.

= f(x, c) = 0. This is possible if b = 1 and
w ·x ⌘ 0 mod d, or when b = 0 and ⌘ = 0. In the latter case, note that w ·x = 0 (even
without the modulus), and hence trivially w ·x ⌘ 0 mod d. On the other hand, if r 6= 0,
we again have the possibility that if b = 1, w · x ⌘ r mod d or if b = 0, then ⌘ = r.
However, we cannot write the latter as an equation in x and w without including the
non-zero noise term ⌘.

Thus one attack strategy is to keep samples corresponding to a 0 response to build
a system of linear congruences. After n such congruences have been obtained, A can
use Gaussian elimination to obtain a unique solution for x, thus obtaining the secret.
That is, create the matrix W whose ith row corresponds to the weight vector from the
ith challenge ci such that the corresponding response is 0. This gives us the system of
linear congruences Wx ⌘ 0 mod d, where W is an n⇥ n square matrix. Of course, W
needs to be a full rank matrix. This can be done by observing a little over n samples
(with 0 response), because with high probability a randomly generated W is of full
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rank if l is large enough [2, 29]. For instance, with (k, l, n) = (14, 30, 140) we found
that a fraction 0.29 of the matrices generated had full rank by running a Monte Carlo
simulation with 10,000 repetitions. Note that since the response is uniformly distributed
in Zd, we expect to construct W after observing dn challenge-response pairs. Thus, we
are discarding all challenges that correspond to a non-zero response.

Another way of linearization that does not discard any challenges, but requires the
observations of the same number of challenge-response pairs, is to introduce (d � 1)n
new binary variables. We illustrate this using d = 2 as an example. Let wi denote the
ith n-element weight vector. Then we can form the system

0

BBBBBBBBBBB@

w

1

1 0 · · · 0
w

2

0 1 · · · 0
...

...
...
. . .

...
wn 0 0 · · · 1

wn+1

0 0 · · · 0
...

...
...
. . .

...
w

2n 0 0 · · · 0

1

CCCCCCCCCCCA

0

BBBBBBBB@

x

1

...
xn

xn+1

...
x

2n

1

CCCCCCCCA

⌘

0

BBBBBBBB@

1
...
1
0
...
0

1

CCCCCCCCA

mod 2,

where xn+1

, . . . , x

2n are n new variables. The above system of equations is obtained
by observing 2n challenge-response pairs and re-arranging the 0 and 1 responses (the
top n rows correspond to r = 1). Let us call the 2n⇥2n matrix, W . By construction of
the last n columns of W , the 2n rows of W are linearly independent regardless of the
vectors w

1

, . . . ,wn as long as the vectors wn+1

, . . . ,wn remain linearly independent.
But we have seen above that this is true with high probability. Hence, we can use
Gaussian elimination again to uniquely obtain the secret. To see that the above system
is consistent with observation, consider the first row. If it corresponds to the empty
case, then by setting xn+1

= 1 we get the response 1. On the other hand, if it is not the
zero case then xn+1

= 0 satisfies the equation. Any of the two values of xn+1

satisfy the
0-response rows. Since the responses are generated randomly, we expect to obtain the
above system by observing dn challenge-response pairs. Note that if U were to respond
with 0 in the empty case, then we could obtain a linear system of equations after n

challenge-response pairs. The introduction of noise expands the number of required
challenge-response pairs to dn, an increase by a factor of d. Gaussian elimination is by
far the most e�cient attack on our scheme, and therefore this constitutes a significant
gain.

Generalization: With the exception of Gaussian elimination, all other attacks men-
tioned above have complexity exponential in one or more variables in (k, l, n). Since the
above linearization works after observing dn challenge-response pairs, we believe the
problem of finding a polynomial time algorithm in (k, l, n) which uses m < dn number
of samples (say (d�1)n samples) from the function described in Eq. 1 is an interesting
open question.

B Feature Comparison

Figure 3 shows the feature x, i.e., the x-coordinate, as a time series for the complex
word “xman.” For ease of view, we show the feature without normalization. Observe
that the way the word is written varies between di↵erent users (two samples from User
1, User 2 and User 3), while remains similar for the same user (User 1-A and 1-B).
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Fig. 3: Feature comparison of samples from three users.

C Feature Selection Algorithms

Algorithm 1: Select Features
input: Set of all features Q

tot

, a symbol 2 ⌦, a set of user-attacker pairs (U ,A).

1 Initialize Q

(0)

sel

 ;, i 0.
2 for j = 1 to |Q

tot

| do
3 Set i i+ 1.

4 Create temporary feature subsets Qj by adding feature qj 2 Q

tot

to Q

(i�1)

sel

.
5 for each (U ,A) pair do

6 Run Get z-List algorithm (Algorithm 2) with inputs Qj , U and A to get
a z-list.

7 Sum TPR and FPR values for all users for each value of 0  z  z

max

in the
z-list.

8 Let Qj be the temporary feature subset that has the minimum FPR sum with
TPR sum equal to 1.0.

9 Set Q(i)
sel

 Q

(i�1)

sel

[ {qj}, Qtot

 Q

tot

� {qj}.
10 Repeat Steps 2-9 until Q

tot

is empty.

11 Return Q

.

= Q

sel

from the Q

(i)
sel

’s that has the least FPR.
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Algorithm 2: Get z-List
input: Feature subset Q, registration and test samples from U , test samples

from A.
1 For the features in Q, find the optimal template Q̂ together with µ and � from

U ’s registration samples.
2 Initialize an empty z-list.
3 Initialize z  0, step 0.125, TP 0, FP 0.
4 while z  z

max

.

= 10 do

5 Set ~ µ+ z�

6 for each test sample from U do

7 if DTW distance between Q̂ and test sample is  ~ then

8 TP TP + 1.

9 for each test sample from A do

10 if DTW distance between Q̂ and test sample is  ~ then

11 FP FP + 1.

12 Compute TPR and FPR by normalizing the TP and FP values.
13 Update z-list with the tuple (z,TPR,FPR).
14 Set z  z + step.

15 Return z-list.

D Training Game Design

The training game consists of the following steps:

1. The user was shown a fixed number (initially 5) of emojis without weights. At
least one of them was a (random) pass-emoji. The user was told exactly how many
of their pass-emojis were present and was asked to tap on them. Gradually, the
emojis were increased from 5 to 25 in steps of 5 (with a corresponding increase in
pass-emojis).

2. To help the user associate responses in Z
5

to words, mnmonic associations were
shown to the user as shown in Table 6. The mnemonic strategy used is a mixture of
the (rhyming) peg method, keyword method and picture-based mnemonics [9, 10].
The user was then given a series of easy questions with the correct answer being the
complex word. An example question was: “0 rhymes with hero, who is our hero?
xman or batman?” There were three di↵erent questions for each word, meaning the
user wrote each word three times.

3. This step was the same as Step 1 except that (a) the user was not told how many
of their pass-emojis were present, and (b) the number of images was increased from
5 to 30 in steps of 5.

4. This step was the same as Step 3 except that (a) the images also had weights in
Z
5

, and (b) the user had to compute f , map the response to the word and press
one of five buttons corresponding to the correct word.

5. This step was the same as Step 2 except that the questions asked were slightly
more di�cult, e.g., “0 rhymes with hero, is our hero.” The user had to write
each symbol two more times.
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response mnemonic word

0 hero xman is our hero
1 run bmwz runs on the street

2 the duck goes quak

3 I got hurt by a trident

4
can’t see four when it’s fogy

Table 6: Mnemonic mapping of cognitive response to complex words.

E Extended Results

E.1 Symbol Set Analysis

To dig deeper into why some symbol sets have poorer average FPR than others, we
did some further analysis. For the worst case scenario, we did the following for each
symbol: First, we fix z = 1, pick best features for each symbol through the feature
selection algorithm and pick first 10 biometric training samples from Session 1 to train
the classifier for each user. Next, we tested the classifier, (a) using user’s own last three
samples from Session 1 to obtain TPR values, (b) using user’s three samples from
Session 2 to obtain TPR values, and (c) using attacker’s three samples from Session
2 to obtain FPR values. The results are shown in Table 7. The average TPR for all
users for Session 1 is denoted TPR

1

, whereas for Session 2 is denoted TPR
2

. We can
see that the average TPR for Session 2 decreases from Session 1 for complex figures
drastically which means that users find it hard to repeat drawings of complex figures.
A near consistent average TPR but a high average FPR between the two sessions for
easy words and easy figures means they are repeatable but not secure against video
based observation attacks. The reason for easy words to be easily mimicked is because
of the presence of letters, which do not contain many sharp turns such as o, c and s.
The easy figures were easily attacked because drawing them does come naturally to
the users and hence they draw them slowly, which makes it easy for an attacker to
pick and then mimic. The results for complex words show that they are both highly
repeatable and cannot be easily mimicked. Users can write words fluently (due to years
of practice), thereby making them di�cult to be mimicked.

E.2 Training Time

Table 8 shows the time taken by di↵erent user groups in completing the training. Users
in both Group 2 and Group 3 spend 50% of their total training time for the cognitive
scheme to familiarize themselves with their pass-emojis and also learning how to use
the scheme. The time to collect biometric samples takes 50%, 30%, and 37% of the
total training time for Group 1, 2 and 3, respectively.
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Table 7: Results indicating repeatability and resilience against observation at-
tacks for di↵erent symbol sets.

Symbol Category TPR
1

(average) TPR
2

(average) Average FPR

easy words 0.93 1.00 0.24
complex words 0.91 1.00 0.05

easy figures 0.68 0.60 0.21
complex figures 0.70 0.53 0.39

Table 8: Average registration time (seconds) of di↵erent user groups in Phase 2.

Group
Pass-emojis Cognitive Biometric Total
selection time training time training time training time

1 128 0 129 257
2 114 284 174 573
3 105 359 282 746

E.3 Distribution of Symbols in the Empty Case

In the empty case, the user is supposed to write a random complex word. We want to
see if the resultant distribution of symbols is random or not. We had a total of v = 34
instances of the empty case. The probability of randomly choosing a word is 1

d = 1

5

.
The number of times, i, a word was written in a total of v empty cases, is once again
binomially distributed (conditioned on the null hypothesis) with this probability. We
consider i  3 and i � 11 as statistically significant (as they imply p < 0.05). The word
xman (corresponding to r = 0) was significantly overused (i = 13), whereas the word
bmwz (mapped to r = 1) was significantly less used (i = 2). The frequency of occurrence
of other words did not deviate (statistically) significantly. We believe the reason for
overuse of xman might be because the user thought that an empty case implies the
cognitive response is 0. Note that the users were told that they need to write any word
in the empty case.

E.4 E↵ect of Number of Pass-Emojis Present

The percentage of cognitive errors and authentication time increases with an increasing
number of pass-emojis present in the challenge (Table 9). The time taken in the empty
case is more than the time taken when one or more pass-emojis is present. This might
be because the user needs more time to ensure if it is indeed the empty case.

E.5 Pass-Emojis Chosen by Users

The probability that an emoji is present in a random sample of k emojis out of n is
k
n . Thus in v random samples, the probability that an emoji occurs i times is given by

p

.

=
�
v
i

� �
k
n

�i �
1� k

n

�v�i
. Setting v = 30 (30 users) in the above, we see that if an emoji

occurs i � 6 times in the 30 chosen pass-emojis, we consider the event statistically
significant (p < 0.05).6 Our results show that 15 emojis were selected by at least six

6 For the lower tail, we see that the probability is always higher than 0.05 since v is
small.
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Table 9: Time taken and percentage of cognitive errors a function of number of
pass-emojis present in a challenge.

# of pass-emojis Frequency Average time (sec) Cognitive errors (%)

0 34 18.08 0.00
1 83 14.63 36.14
2 111 17.52 42.34
3 67 16.90 44.77
4 40 18.30 50.00
5 21 22.60 52.38
6 4 16.22 25.00

or more users. Ten of the 15 emojis are animals, which seems to indicate that users
were choosing their pass-emojis using an animal theme. This is perhaps also due to the
fact that animals constituted a high percentage of the total emojis. The 15 emojis are
shown in Table 10 along with the number of users who chose them.

Frequency Emojis

9

8

7

6

Table 10: The 15 most popular emojis in users’ pass-emojis.

E.6 Recognizing Pass-Emojis

The minimum, maximum and average number of pass-emojis recognized was, respec-
tively, (7, 12, 9.0) for Group 1, (8, 13, 10.5) for Group 2 and (10, 14, 12.1) for Group
3. These results were obtained by asking the users to select their pass-emojis from
the total pool of emojis after a gap of one week. If the user does not remember any
of the pass-emojis, the probability of correctly selecting i out of k emojis is given
by p

.

=
�
k
i

��
n�k
k�i

�
/

�
n
k

�
. An i � 4 is significant (since p < 0.05). We can see that all

groups were able to remember a significant number of their pass-emojis. More train-
ing may help users in recognizing their pass-emojis in the longer term. However, the
higher recognition rates for both Groups 2 and 3 do not translate into higher success-
ful authentication attempts in Session 2. We investigate this issue in Phase 3. We also
conclude that without much training, users may easily recognize around up to 7 emojis
even after a gap in time.

E.7 Guessing Pass-Emojis

Here we consider that if an attacker can guess more than 4 pass-emojis of the target
user, then the attacker has significant advantage over random guess. Five of the 30

28



attackers were able to guess 4 or more pass-emojis of the target user, and one attacker
guessed as many as 11 as the attacker thought that the target user might have picked
pass-emojis according to a animal based theme. Picking theme based pass-emojis might
lead to more chances of being successfully attacked.

E.8 Questionnaire Statistics

At the end of Session 2, we asked the (30) users to fill a questionnaire on a Likert
scale of 1 to 5, where 1 means Strongly disagree, 2 means Disagree, 3 means Neither
Agree or Disagree, 4 means Agree and 5 means Strongly Agree. Overall, the results
indicate that, (a) users find rendering the words to be easy on smartphone, (a) users
liked playing the training game, and (c) users think that the number of pass-emojis
(14) is high. For more details, please refer to Appendix.

The general consensus about the ease of writing words on the smartphone screen
was a rating of 4. The users liked playing the training game during the registration
with an overall rating of 4. The overall usability of the scheme received mixed rating
from the users (3). However, the users who mostly rated 1 or 2 for usability said that
they are likely to use the system if it can provide a high security guarantees. The major
issue the users had with our scheme is the number of pass-emojis. The rating was 2
when the users were asked if they could manage 14 pass-emojis easily. A 53% of the
users say that they would not like to use the system because of 14 pass-emojis, and 30%
users found it hard to recognize their pass-emojis during authentication. Only 16% and
6% of the users complained about entering biometric responses and computing f .

Most users (53%) prefer 6-10 pass-emojis as their secret followed by 30% who prefer
no more than 5 pass-emojis. In response to the question on the size of l (i.e., the window
size), 53% of the users responded with 0-10 emojis. 23% users said 11-20 and a similar
percentage were fine with the current scheme (21-30 emojis). When asked how they
picked their pass-emojis, 18 users said they created a certain theme to make it easy
for them to remember their pass-emojis. Some users used multiple themes; 7 users said
that they picked animals, 6 users picked food items, 2 users picked tools, 2 users picked
sports, one picked recreation and one picked faces. Two users created a theme based
on a story. One story was: “Santa watching sports while eating a lot of food.”
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