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a b s t r a c t 
Location-based social discovery networks (LBSD) is an emerging category of location-based social net- 
works (LBSN) that are specifically designed to enable users to discover and communicate with nearby 
people. In this paper, we present the first measurement study of the characteristics and evolution of 
location-based communities which are based on a social discovery network and geographic proximity. We 
measure and analyse more than 176K location-based communities with over 1.4 million distinct members 
of a popular social discovery network and more than 46 million locations. We characterise the evolution 
of the communities and study the user behaviour in LBSD by analysing the mobility features of users 
belonging to communities in comparison to non-community members. Using observed spatio-temporal 
similarity features, we build and evaluate a classifier to predict location-based community membership 
solely based on user mobility information. 

Crown Copyright © 2016 Published by Elsevier B.V. All rights reserved. 
1. Introduction 

Location-acquisition technologies like GPS on smartphones have 
rapidly promoted the use of location-based services. Foursquare 1 
is a traditional Location-Based Social Networks (LBSN) which en- 
ables users to share their real-time locations, by checking into a 
set of venues in the proximity of their geographic location. The 
popularity of LBSNs has attracted substantial research interest as 
data collected from LBSNs enable studies of individuals’ online 
and offline behaviours, ranging from human mobility modelling 
[1,2] to user behavioural analysis [1,3] , user re-identification [4] , 
user anonymity analysis [5,6] and social relationship recommenda- 
tions [7,8] . 

A new category of LBSNs are Location-Based Social Discovery 
(LBSD) networks that are specifically designed to enable users to 
discover and communicate with nearby people such as Sweetr [9] , 
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1 https://foursquare.com . 

WhosHere, 2 WeChat, 3 Yik Yak [10] and Momo. 4 Recently in April 
2014, Facebook launched a new opt-in service called “Nearby 
Friends”, which enables users to share real time location and dis- 
cover nearby friends [11] . As an emerging new type of services, 
LSBDs are yet to be thoroughly studied compared to number of 
measurement studies of LBSNs such as Twitter . This is primarily 
due to the inability to capture data and unavailability of real-world 
datasets. 

The potential offered by LBSD services is unique, and is mainly 
driven by the different nature of these applications, where users 
typically discover and establish new social relationships based on 
their actual real-time location. The intrinsic key difference between 
general LBSNs and specific LBSDs lies then in the understanding 
of physical human social interactions versus distant online social 
interactions. The peculiar features of LBSDs offer new opportuni- 
ties to perform in-depth studies of physical location-based social 
links at a large scale, and in particular observing human commu- 
nities and groups which would in turn allow the design of effi- 
cient location-aware content delivery, caching and recommenda- 
tion strategies. 

2 https://web.whoshere.net . 
3 http://www.wechat.com/en/ . 
4 http://www.immomo.com . 
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In this paper, we study LBSD network communities using a 

dataset collected from an increasingly popular social discovery mo- 
bile application, “Momo”. Momo offers three main functions, 1) It 
allows users to discover other Momo-enabled devices in their sur- 
roundings based on the geographical proximity. 2) It enables in- 
stant messaging that allows (subsequent) user communication. 3) 
Momo also provides users with function to join communities that 
are created in their proximity. Unless users explicitly opt-out of 
location updates, by default user status and location is publicly 
revealed and updated to other nearby users. Hence, by monitor- 
ing the Momo service, a rich set of spatial and temporal informa- 
tion about users and their communities can be collected. Overall, 
we analyse information of more than 176,0 0 0 Momo communities, 
comprising more than 1.4 million community members. We also 
study over 355 million geo-updates of 6.7 million Momo users col- 
lected over a period of 71 days. We share our collected dataset 
with the research community. 5 

The contributions of this paper are the following. First, we 
study the social structure of the new network comprising LBSD 
application users, with a focus on the community to community, 
user to user and user to location networks. We show that Momo 
users although having a higher activity, exhibit a lower geograph- 
ical diversity with higher regularity. Further, the results show that 
Momo users tend to join communities in the local neighbourhood 
and thereby users in small cities are more connected to each other 
compared to larger cities. We compare the feasibility of random 
and degree-popularity based selection of locations and users in op- 
portunistically propagating content. In particular, the results show 
that it is possible to reach more than 50% of users within 3 days 
through approximately 15% of the locations or users, providing 
opportunities for location-based caching or opportunistic delay- 
tolerant content delivery. 

Second, we characterise user mobility behaviours in LBSDs and 
analyse mobility patterns of users depending on whether or not 
they are community members. We show that there is a high simi- 
larity in individual user trajectories within communities, which can 
be explained by the social discovery nature of the application itself. 

Third, we leverage these location-based similarity metrics to 
train a classifier for community membership prediction through 
a supervised learning approach. We evaluate the efficiency of the 
classifier, that solely based on mobility patterns, aims to predict 
social interactions through LBSD community membership, for both 
cases of worldwide users and users belonging to a single city. Our 
results show that even sparse information derived from individ- 
ual trajectories provides a very accurate prediction of community 
membership, with a precision up to 91% and recall of 72%. 

The rest of this paper is organised as follows. We describe the 
dataset in Section 2 . Then, we introduce and analyse structural 
characteristics of different subgraphs in which our data has been 
embedded in Section 3 . In Section 4 , we characterise user mobil- 
ity features within and out of the communities for the purpose 
of community membership prediction. We evaluate the efficiency 
of community membership prediction in Section 5 . We outline re- 
lated work in Section 6 . Finally, Section 7 concludes the paper. 
2. Datasets and general characteristics 

We first briefly describe the operations and unique features of 
the LSBD mobile application - Momo and the datasets used in our 
study. We follow up with the study of the basic characteristics and 
the evolution of the location-based communities in Momo over 
time. 

5 Dataset will be available with the published version of this paper. 

2.1. An LBSD application: Momo 
Momo is a mobile application, available for both iOS and An- 

droid devices, that has attracted more than 100 million users. 
Momo includes typical social network services ranging from in- 
stant messaging and status updates to location-based features in- 
cluding users’ location “check-in” as a profile status and venues 
rating (reviews). However, Momo is primarily used as a social dis- 
covery service, where once a user launches the application, the 
user can discover a list of nearby Momo users ranked by their ge- 
ographic proximity to the user’s actual location. The location and 
the status of the user is simultaneously publicly revealed to other 
nearby users (and friends 6 ). This discovery feature makes Momo 
quite unique compared to other typical LBSN services. Individuals 
can then send personal messages, share content or update status 
visible only to users nearby. They can also add these newly discov- 
ered users as new friends. 

Another key distinguishing feature of Momo is the location- 
based communities. Momo users can create communities (groups) 
at a particular location, which are then advertised among nearby 
users. Likewise, users can discover communities created in their 
proximity, ranked by distance to their current location, and send 
a request to join the community. In essence, Momo communities 
are tightly linked to the location where they have been created, 
and the community membership indicates that users have at least 
once visited that location after the community has been created. 
While communities can be created for different purposes, the ap- 
plication is mainly intended to foster proximity-based social inter- 
actions (social discovery function) among users with similar inter- 
ests. Community members can then share content only within the 
community, discover fellow members’ respective locations and op- 
erate in a closed (multicast) “circle”. To some extent, Momo com- 
munities are similar to the notion of circles of friends in OSNs, ex- 
cept that Momo friends happened to be at the same location. 

As mentioned in the introduction, in addition to MoMo, there 
are number of other LBSDs or social networks that also provide 
LBSD services. For example, YikYak [10] allows to anonymously 
create or discuss message threads within a radius of five miles 
and mainly targets college campuses as a service to spread local 
news and gossips [12] . Sweetr [9] has similar features with Momo 
and allows to discover nearby users and share content such as 
text, photos, audio, and video with them. Two popular social net- 
works Facebook and WeChat have LBSN features named as Near By 
Friends [11] and People Nearby [13] , respectively. In general, LBSDs 
target applications such as dating, find people with similar inter- 
ests, discuss or spread locally important news items, content shar- 
ing or game play with nearby users, and providing more person- 
alised recommendations. 
2.2. Datasets 

Momo-enabled devices communicate with the server via a set 
of network APIs. The nearby API was used as in [14] to collect an 
extensive set of location updates originating from different mon- 
itored areas. By varying the geographic coordinates of a Momo 
client, a crawler was deployed to collect location updates of nearby 
users in every 15 min for a period of 71 days (from May to Octo- 
ber 2012). This enabled the collection of location updates of more 
than 6 million users worldwide. We refer to this location updates 
dataset as Updates and Table 1 introduces basic characteristics of 
Updates . 

The second dataset, Communities consists of a snapshot of 
the different communities existing in the Momo network as of 

6 Similar to other OSNs, Momo users unconditionally share their location with 
their friends irrespective of their location. 
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Table 1 
Momo LBSD network summary. 

Updates statistics 
users ∈ users ̸∈ 
communities communities 

# of users 355,490 6,438,821 
# of updates 45,797,455 311,668,101 
# of location grids 204,585 551,685 
Avg updates per user 128.83 48.40 

Communities statistics 
# of communities 176,874 

# of distinct members 1,465,393 
Avg users per community 13.47 
Avg communities per grid 3.33 

Fig. 1. Distribution of the Momo communities at the end of the data collection 
period. 
February 2013. Using the group API, information about more 
than 176K Momo communities spreading over 48 countries, 
and comprising more than 1.4 million members, were collected. 
Communities dataset includes information such as the creation 
time, the creation location, the creator ID as well as the members 
IDs. Table 1 introduces the main characteristics of Communities 
dataset. The location grids correspond to the coverage areas of the 
Momo client that was used to crawl real-time activity of nearby 
users. 7 The Momo client recursively selected candidate monitor- 
ing points within the location grids of 1 × 1 km 2 area for pur- 
pose of discovering all other users’ activities within the considered 
monitoring area. Further details of crawler design and the utilized 
Momo APIs can be found at [14] . 

The notion of communities has been rolled out several months 
after we start collecting Updates and as such Updates contains 
mobility information of only 24% of district community members 
(355,490). We also note that due to limitations of the Momo APIs, 
it was only possible to monitor the real-time behaviour of active 
users in the monitored areas as per the content of the Updates 
dataset. Fig. 1 shows the global distribution of the 176,874 com- 
munities. While Momo is most widely used in China, other areas 
in US, Canada, Europe and Australia also attract a significant num- 
ber of communities. Beijing represents the most dense city with 
8435 groups. Next, we present the basic characteristics and evo- 
lution of the Momo location-based communities since this feature 
has been rolled-out (in October 2012). 
2.3. Characteristics of Momo communities 

Table 1 introduces the main characteristics of Updates and 
Communities datasets. While the number of users belonging to 
communities is drastically lower than non-members, interestingly 
community members exhibit more than two times higher average 

7 Monitoring locations for clients are based on a modified version of the 2- 
dimensional closest point search algorithm in lattices [15] . 

Fig. 2. Growth in community creations per day. 
number of updates per user compared to non-members. On aver- 
age, each community comprises more than 13 members, and 3–4 
communities co-exist on each grid. 

Fig. 2 depicts the daily community growth. The very first set 
of communities can be considered experimental, with a one-week 
slow start of less than on the average 10 new communities per 
day. The pace of community growth became extremely faster in 
early October 2012 with almost 10 0 0 communities created each 
day. The growth received a major bursts with a daily increase of 
20 0 0 new communities at the end of January 2013 (correspond- 
ing to the Chinese New Year public holiday, and a the release of 
a new version of Momo on Android and iOS). Fig. 3 a shows the 
daily community creation patterns in China. 8 There is a noticeable 
peak between 9:00 PM and 12:00 midnight, while newly created 
community distribution is merely steady throughout the day. The 
peak of community creations during late night suggests that Momo 
application is heavily used during that period of time as people 
would generally be more inclined to discover nearby users after 
work. Fig. 3 a also indicates that comparatively fewer community 
creations are happening in weekends compared to weekdays. This 
type of information can be leveraged when designing value added 
services on top of LBSDs. For example, these observations allow 
advertisers to make decisions on what is the most suitable time to 
advertise some products for LBSD communities so that the maxi- 
mum number of users can be reached. 

The maximum number of users within a Momo community is 
set according to the level of activity of the community. Initially, the 
maximum size is limited to 20 members by default. To increase the 
maximum size from 20 to 30 (resp. 40 and 50), community mem- 
bers have to generate more than 300 messages per day for 10 con- 
secutive days (resp. 40 and 100). Fig. 3 b shows the distributions 
(PDF and CDF) of the community size. Overall, approximately 80% 
of the groups have less than 20 members. Notably, once a commu- 
nity is upgraded to the next level, there is a high likelihood that 
the community size increases to reach the maximum size of the 
new level (depicted by the sharp drop in the probability at the size 
limits). Since active participation is required to expand the com- 
munity size, larger communities can be considered to contain sus- 
tainable social relationships. 

Further investigating the potential of the dynamic structure of 
the social discovery aspects of the application, we find that 80% 
of the communities are created in only 40% of the locations as 
shown in Fig. 4 a. We also observe that 50% of the locations ac- 
commodate only one community, i.e. the majority of the locations 
are either hot or cold spots for community creation. To realise the 
“rich-gets-richer” phenomena, we analyse the effect of prior pop- 
ularity of an existing location (attractiveness of a location) on the 

8 Communities created in China represent 98% of the total number of monitored 
communities. 
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Fig. 3. Creation times and size of communities. 

Fig. 4. Distributions of community creation location. 
probability of new community creations at that location, as shown 
in Fig. 4 b. We observe that if a location already attracted 51–60 
communities, approximately 17 communities would be created at 
that location in the next 3 months. When the existing number of 
communities drops to 1–10 communities, it will only get on aver- 
age 6 new communities in the next 3 months. Up to the size of 
60 communities, there is a clear trend that the more popular the 
location is, in terms of previously created communities, the more 
new communities it will attract. Note that the statistics for a num- 
ber of communities in a location larger than 60 are not illustrated, 
as we observe only 6 locations with more than 60 communities. 
Hotspots provide the spatial dimension for service providers who 
operate on top of LBSDs. For example, similar to previously identi- 
fied peak times, location hotspots with respect to community ac- 
tivities also can be leveraged to efficiently reach large numbers of 
users for services such as advertising, promotions, and content dis- 
tribution. 
3. Social structure of Momo 

In this section, we characterise the communities and commu- 
nity members in the Momo LBSD network. We first model Momo 
as a tripartite graph which users, communities and locations are 
represented by nodes as shown in Fig. 5 . Communities are rep- 
resented as community nodes - c ∈ C . Community members are 
considered as user nodes - u ∈ U , where an edge between two 
user nodes u i and u j is defined by their membership of the same 
community and is denoted by e (u i , u j ) ∈ E u . Likewise, an edge 
e (c i , c j ) ∈ E c between two community nodes c i and c j reflects that 
both share at least one member. Edges e ( c i , u j ) represent the mem- 
bership of user nodes in communities. All locations visited by 
the users are represented as location nodes - l ∈ L . For each lo- 
cation node l i visited by a user node u i , the graph comprises an 

Fig. 5. Tripartite Graph representation of Momo. 
Table 2 
Summary of structural properties of G c . 

Vertices Edges Density Diameter Assortativity 
64124 1,227,902 9.117e-05 14 0.216952 

edge e (u i , l i ) ∈ E l , where location nodes represent grids of 1 ×
1 km 2 . In the following, we analyse the three sub-graphs shown in 
Fig. 5 which represent the Community Graph: G c (C , E c ) , the User- 
User Graph: G u (U , E u ) and the User-Location Graph: G l (U , L , E l ) . 
3.1. Community graph 

Momo community graph, G c (C , E c ) corresponds to communi- 
ties sharing at least one common member and comprises 164,124 
nodes (communities) and 1,227,902 edges. In Table 2 , we present 
the basic characteristics of the community graph. We observe that 
the Momo community graph has a very low density (measured as 
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Fig. 6. Centrality of users within cities of different densities around the world. 
Table 3 
Summary of structural properties of G u . 

Property Beijing Shanghai Vancouver London Paris Ottawa 
Nodes 72580 3004 1653 860 387 100 
Edges 1.02e06 46834 24286 9252 5535 828 
Density 0.0 0 039 0.0103 0.0178 0.0251 0.0741 0.1673 
Diameter 12 7 6 7 5 4 
Assortativity 0.2412 0.5077 0.6221 0.7134 0.7279 0.7361 

|| E c || / (|| C || 
2 )) indicating a lower number of edges between Momo 

communities. This suggests that Momo users join a smaller num- 
ber of communities. We find that 95% of the users joined less 
than 4 communities indicating that they join only the most rele- 
vant groups. Moreover, community size can be only increased by 
showing community activities such as posts and chats. As a re- 
sult, community creators will also add only the most relevant users 
to the communities who will potentially interact with rest of the 
members. Table 2 also shows that Momo community graph has 
a high degree assortativity. This indicates that communities with 
the same degree tend to be connected to each other in Momo. 
Again this is due to the limited number of community member- 
ship per user. As a result of the limited community membership, 
the size of the communities varies less. For example, we observed 
that 50% of the Momo community nodes have less than 10 users 
and this lower variation in community size causes high degree 
assortativity. 

To understand which communities Momo users join, we calcu- 
late the assortativity coefficient, r = tr(e ) −|| e 2 || 

1 −|| e 2 || ∈ [-1,1] as per [16] , 
for the Momo community graph according to the city where com- 
munities have been created. Here e = E / || E || is the normalised 
mixing matrix. Elements of E , i.e. E ij indicate the number of edges 
that connect communities created in city i to the communities cre- 
ated in city j and || E || is the sum of the all elements in E . Assorta- 
tivity coefficient, r = 1 means the edges between communities are 
highly assortative with group creation location while r = 0 means 
the edges are random. r = −1 means edges are disassortative to 
the group creation location. We find that the assortativity coef- 
ficient by city is 0.6982; a high value that indicates as expected 
that community membership in Momo is highly associated with 
the community location, as users tend to join communities in the 
same neighbourhood (i.e. consistent with location-based social dis- 
covery function of the application). 
3.2. User-User graph 

As shown previously, the connectivity of Momo community 
graph is highly related to the city of the community. We then char- 
acterise the behaviour of Momo users in geographical neighbour- 
hoods. We select six major cities around the world and measure 

structural properties of the user-user graph G u , within each city as 
summarised in Table 3 . We observe that the lower the number of 
users in a city, the larger the density and degree assortativity in 
the user-user graph. This indicates that within smaller cities users 
are more likely to connect to each other. Although this may be not 
surprising as the social discovery nature of Momo drives such a be- 
haviour, this observation finds application in opportunistic content 
delivery networks. Since an edge represents the same community 
membership, there is high probability of visiting the same location 
(at least the community creation location). 

We further evaluate the significance of individual users in a 
community through Betweenness and Closeness centrality mea- 
sures. Betweenness B (u ) = ∑ 

s,t∈ U σ (s,t| u ) 
σ (s,t) , is the fraction of shortest 

paths that pass through a user u , where σ ( s, t ) is the number of 
shortest paths between users s and t and σ ( s, t | u ) is the number of 
shortest paths passing through u . Fig. 6 a shows that betweenness 
of individuals increases with the density of the city. In particular, 
while there are 10–15% of users with betweenness greater than 
0.01 in Paris and London, all users in Beijing are with betweenness 
less than 0.01. Therefore, there are more users of higher impor- 
tance in terms of user to user connectivity in smaller cities com- 
pared to larger cities. The users of higher betweenness could be a 
good choice for content caching applications such as opportunis- 
tic content delivery, as they improve the dissemination of content 
effectively. 

Fig. 6 b shows the distribution of user closeness in all chosen 
cities. Closeness is defined as C(u ) = 1 / ∑ 

v ∈ U d(u, v ) 
∥ U ∥−1 and it repre- 

sents the inverse of the average distance ( d ( u, v )) to all other users. 
Similar to betweenness, closeness of individuals increases with the 
density of the city they belong to. For instance, approximately 90% 
of users in Beijing have a closeness value less than 0.3, whereas 
more than 95% of users in Paris have a closeness value higher than 
0.3. This indicates that the probability of two users having sim- 
ilar set of interests is higher in smaller cities due to the higher 
closeness in user-user relationships. Therefore, when the interests 
of a few users are known (especially the users with higher close- 
ness), there is a higher probability that a significant portion of 
other users will have a similar set of interests in these small cities. 
This observation can be exploited for targeted advertising. 
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Fig. 7. Diversity and frequency of updates in Momo community members and non-members. 
3.3. User-Location graph 

Next, we analyse the bipartite graph G l (U , L , E l ) , considering 
Momo users (user nodes U ) and locations at which they checked- 
in as the location nodes L . G l consists of 355,490 user nodes be- 
longing to at least one community connected to the set of 204,585 
location nodes. There is an edge e ∈ E l between a user node and a 
location node, if the user has updates in that location. 

We characterise the user mobility based on the structural prop- 
erties of G l . Fig. 7 a illustrates the activeness of users by the CDF 
of updates per a community member and a non-member. Approx- 
imately 35% of Momo community members have more than 100 
updates compared to the 10% for Momo users who do not belong 
to any community. We believe that these non-members are prob- 
ably using Momo as traditional LBSN service while the community 
members take advantage of the LBSD features. 

In a traditional LBSN such as Foursquare , location updates are 
user driven, (i.e. when the user visits an important landmark and 
she decides to report). Thus, the data collected from such a LBSN 
application does not represent the actual mobility patterns of the 
user. However, in Momo, the application in background is contin- 
uously scanning for nearby users and therefore location informa- 
tion collected from such an app more accurately represents user 
trajectories. Therefore, it can be expected that the number of dis- 
tinct locations per user in a LBSN dataset is less than the number 
distinct locations per user in a LBSD dataset, (i.e. Momo provides 
fine-grained rich sample of user trajectory data compared to LBSN 
service like Foursquare ). 

This is exemplified by the fact that Momo community mem- 
bers visit on average more distinct locations than non-members 
as shown in Fig. 7 b. More than 85% of Momo non-members have 
visited less than 10 distinct locations, highlighting the application 
usage difference between Momo community members and non- 

members. Fig. 7 c illustrates the number of distinct users who vis- 
ited a particular location (1 × 1 km 2 area). There are nearly 40% 
of locations with only one distinct user. This could be related to 
the home location of individual users. For other locations, the dis- 
tribution of community members and non-members are compara- 
tively similar ( Fig. 7 c) despite the higher activeness of community 
members. 

Moreover, we characterise the geographical diversity in user 
trajectories. Entropy of an individual user can be defined as 
−

∑ 
p log p 

log n , where p is the portion of updates at a location and n 
is the number of distinct checked-in locations. The entropy value 
of zero signifies that a user consistently visits only a single loca- 
tion, while entropy value of one indicates that a user has visited 
more than one location in equal proportions. Fig. 7 d illustrates the 
fact that Momo community members visit a selected set of loca- 
tions more than other locations as the entropy values are lower 
than non-members. Overall, these basic characteristics of user mo- 
bility suggest that there is a difference in mobility behaviours be- 
tween community members and non-members, which is further 
exploited in the next section. 

Then, we investigate how many of the user’s top locations are 
representative of the entire graph. G k 

l , where k = 1 , 2 and 5, rep- 
resents the sub-graphs consisting of only k most frequently visited 
locations for each user. Table 4 summarises the structural prop- 
erties of these sub-graphs where g ( G l ) is the largest connected 
component. G 1 

l consists of user’s most frequent location only and 
therefore all user nodes are connected to just one location node. 
As a result, the largest connected component of G 1 

l consists of only 
0.14% user nodes and one location node. However, G 2 

l has a largest 
connected component covering over 92% of the user nodes. In- 
creasing k further has only an insignificant impact as G 5 

l and G all 
l 

cover only an additional 3–4%. 
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Fig. 8. Portion of users that can be reached from different portions of location nodes and user nodes. 
Table 4 
User-Location graph G l (U , L , E l ) . 

Top k locations 
Top-1 Top-2 Top-5 All 

Users 355,490 355,490 355,490 355490 
Locations 62,687 84,370 120,062 204,585 
Components 62,687 18,941 12,409 10,175 
∥ u ∈ g ( G l ) ∥ 0.14% 92.34 % 95.25% 96.22 % 
∥ l ∈ g ( G l ) ∥ – 68.29% 86.57% 94.09% 

To illustrate the applicability of these findings, we first select 
the top x % (with x varying from 0 to 100) of the location (204,585) 
and user (355,490) nodes, based on degree centrality in G l and ob- 
serve the coverage of user nodes. A node u is considered as cov- 
ered by a node v , if there is a path between u and v . The baseline 
selection criteria in such applications would be to randomly select 
certain users or location nodes and then calculate the maximum 
number of users that can be reached. In Fig. 8 a, we first com- 
pare random and degree based location selection, which demon- 
strates considerable improvement in coverage for degree based se- 
lection compared to random selection for the total trace duration. 
In particular, random 5% of the locations cover less than 30% of 
users, whereas top 5% of the locations with highest degree cen- 
trality cover more than 85% of users. Fig. 8 b shows no significant 
improvement in degree based user selection due to the lower di- 
versity of check-in locations of Momo users, i.e. users visit selec- 
tive set of locations repeatedly as shown in Fig. 7 b. If we select 
more than 1% of users, random and degree based selections pro- 
vide nearly the same coverage and in some cases random selec- 
tion performs better than degree based selection. Note that ran- 
dom selection does not require any user private information such 
as check-in patterns or connected networks. Therefore, these re- 
sults provides insights to develop privacy-aware opportunistic con- 
tent dissemination strategies that perform similar to schemes that 
collect number of user private information to make context-aware 
selection of users to replicate or cache content. 

Then, the propagation time is constrained to 1, 3 and 7 days to 
investigate the effectiveness of opportunistic content dissemination 
in real-life applications. If we select top 5% ( ∼ 10K) of the location 
nodes, it is possible to cover more than 30% ( ∼ 107K) of the total 
number of users within just one day as shown in Fig. 8 a. According 
to Fig. 8 b, it is possible to achieve 30% of coverage within one day 
from selecting even lesser portion of user nodes ( ∼ 1%) due to the 
fact that users being dynamic are more likely to reach other users 
compared to stationary location nodes. Further, approximately 50% 
( ∼ 178K) of users can be covered within 3 days by selecting 15% 

of location or user nodes. The portion of users that can be covered 
within 7 days are less than 70% in both cases. 

As we have observed that the top few nodes play an important 
role in content delivery applications, we now measure the stabil- 
ity in rankings of nodes over time. Consider the set of top 10 user 
nodes on two consecutive days U 1 and U 2 , and then the overlap of 
the two sets is given by O (U 1 , U 2 ) = ∥ U 1 ∩ U 2 ∥ 10 . O (U 1 , U 2 ) represents 
the stability of the top 10 nodes in the considered time window. 
Fig. 9 shows the variation in the stability index ( O (U 1 , U 2 ) ) of top 
10 user and location nodes over a period of 18 days considering 
time windows of 1, 3 and 7 days. Location nodes are almost per- 
fectly stable irrespective of the time window as shown in Fig. 9 a, 
i.e. most popular locations of the day will be the most popular lo- 
cations of the day after as well, with very high probability. The be- 
haviour of user nodes however changes with time. Fig. 9 b shows 
that the probability of having the same top 10 user nodes in two 
consecutive days is almost zero. However, the stability of the user 
nodes increases as we increase the window size. If we consider 
one week time window, the probability of having the same top 10 
users in the next week increases to approximately 70% indicating 
regular behavioural patterns of users. 
3.4. Summary of results 

In this section, we characterised the communities and user be- 
haviour in the Momo LBSD network and compared it with other 
online community networks. The main findings are; 
• Momo users join only fewer number of communities compared 

to other community networks due to restriction in community 
memberships and the social discovery nature of the applica- 
tion. As a result, users tend to join only communities in the lo- 
cal neighbourhood. Consequently, users in small cities are more 
connected to each other compared to larger cities’ users. 

• LBSD users visit a limited set of locations regularly. Further, 
Momo community members are more active LBSD users com- 
pared to non-members. 

• Degree (popularity) based selection performs better in location 
selection for content caching, while random selection is as ef- 
fective as the degree in selecting users for content caching. 
Since random selection does not require any user private infor- 
mation, this observation provides insights to develop privacy- 
aware content delivery methods. 

• Considering only the top 15% of the locations or the users with 
the highest degree centrality, allows to reach more than 50% of 
the users within 3 days providing insights for possible applica- 
tions such as delay-tolerant content sharing and advertisement 
propagation. 
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Fig. 9. Stability of the degree centrality O (U 1 , U 2 ) of the top 10 user and location nodes over 18 days. 
• The rank of locations does not change significantly over time, 

while the rank of users is relatively unstable. However, due to 
regular behavioural patterns of users, rank of users shows a sta- 
ble behaviour when considering longer time windows. 

• The probability of creating new communities is higher on al- 
ready popular locations (“rich-gets-richer”), which augments 
the applicability of services such as distributed content caching 
at top locations. 

4. Characterising user mobility features 
In this section, we characterise user mobility based on location 

updates of Momo users. We analyse the similarity in user mobil- 
ity patterns with a focus on features that distinguish community 
members from non-members for the purpose of community mem- 
bership prediction in Section 5 . Extensive amount of information 
generated by LBSD users, including the time and frequency of lo- 
cations they have visited, can be used for community membership 
prediction. While different types of information can be utilised, 
e.g. user attributes available from private/public profiles, friendship 
lists, etc. we only focus on information that is easily accessible by 
a LBSD application, i.e. time and location of user check-ins. 

We consider all users who belong to at least one community 
and have at least one update in Updates dataset as our working 
set, | U | = 355 , 490 . We define the pairs of users belonging to the 
same community to have a positive (undirected) community mem- 
bership - Positives . If a given pair of users does not belong to a 
same community, we assume a negative community membership 
- Negatives . However, when selecting users with negative commu- 
nity memberships, if two users who do not have a positive com- 
munity membership are randomly selected from the set of world 
wide users, they are highly unlikely to show a mobile homophily. A 
more challenging scenario, is when users with negative community 
memberships are selected from a single city, that enables the pos- 
sibility of them showing same mobility features as users with pos- 
itive memberships. In the subsequent analysis, we consider both 
cases of positives/negatives extracted from users of either world- 
wide and belonging to a single city. A user belongs to a city if her 
most frequent updates are from that city. We present various mo- 
bility measures for comparing users in Beijing (city with the high- 
est number of users) and Vancouver (city with the highest number 
of users outside China). 
4.1. Spatial distance in updates 

Let the updates trajectory of a user u be a list of tuples < l u , 
t u > , where l u ∈ L u represents locations and t u timestamps. The 
location and timestamp of the i th update is denoted by l u ( i ) and 

t u ( i ) respectively and the total number of updates is denoted by 
N u . 

We extract the most frequently visited location of a user u as, 
MV (u ) = arg max 

l∈ L u N(u, l) 
where N(u, l) = ∑ N u 

i =1 δ(l, l u (i )) , and δ( x, y ) = 1, if x = y and 0 
otherwise. N ( u, l ) is the number of times user u has visited lo- 
cation l . The spatial distance between the most frequently vis- 
ited locations of users u and v is then calculated as, D (u, v ) = 
distance (MV (u ) , MV (v )) . 

Fig. 10 shows CDFs of the spatial distance between the most 
frequently visited locations for sets of positives and negatives in 
Beijing, Vancouver and worldwide. In Fig. 10 a, we observe a clear 
distinction between positives and negatives when we consider the 
global Momo network (note the log-scale in the x-axis). Fig. 10 b 
shows that D ( u, v ) are lower than 10km for majority of positives. 
Only 20% of negatives in Beijing exhibit such a geographical close- 
ness. Our results for Beijing are to be expected and inline with 
what has been previously observed in [17] which shows that face 
to face human contacts and phone contacts are confined within a 
distance of 5 miles (8 km) and 100 miles (160 km) respectively. 

Interestingly, the difference between the two curves is less sig- 
nificant in Vancouver, with almost 60% of the negatives having 
their distance lower than 10km, due to the smaller geographical 
area of the city. In Vancouver, a city with much less Momo users, 
it might be more challenging to rely solely on such a feature to 
separate positives from negatives. 
4.2. Diversity in updates 

Considering the spatial usage patterns of users, we focus on the 
probability of visiting the same locations by the users belonging to 
the same community (in particular community creation locations). 
A naive approach to capture this likelihood is to utilise the num- 
ber of common locations visited by two users ∥ L u ∩ L v ∥ . In Momo, 
40% of the positives share at least one common location suggesting 
the intuition of co-location similarity between positives. We then 
compute the Jaccard-index to measure the similarity of the loca- 
tions patterns visited by a pair of users as JS(u, v ) = ∥ L u ∩ L v ∥ ∥ L u ∪ L v ∥ . 

Fig. 11 shows the CDFs of Jaccard similarity between positives 
and negatives in global Momo network, Beijing and Vancouver. 
Again, there is a difference in location trajectories of users be- 
longing to the same communities and users outside the respec- 
tive communities. As can be seen from Fig. 11 a, approximately for 
all the negatives in the global Momo network, similarity score is 
close to zero. This is expected because the two users to be consid- 
ered are very likely to be in two countries. According to Fig. 11 b, 
when considering users confined to a city, we still obtain JS > 0 for 
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Fig. 10. Distance between the most frequently visited locations D ( u, v ). 

Fig. 11. Jaccard Similarity of visited locations JS ( u, v ). 
some negatives. However, the observed similarity values are rather 
small with approximately 95% of the similarity values for negatives 
in Beijing being lower than 0.1. Similar to our previous observation 
for spatial distances, Vancouver users exhibit very high similarity 
irrespective of the community membership. We further evaluate 
the efficiency of such a feature in community membership predic- 
tion in Section 5 . 
4.3. Co-location in updates 

Jaccard similarity does not capture how frequent two users hap- 
pen to be in the same location. Intuitively, users belonging to one 
community may visit the same set of location more frequently 
than negatives. Here, we define possible co-location metrics to cap- 
ture different aspects of co-location. 

We consider the spatial co-location rate as, 
SCoL (u, v ) = ∑ 

l∈ L N(u, l) × N(v , l) 
N u × N v 

which represents the probability of users u and v to visit a com- 
mon location. Since SCoL does not take into account the time at 
which users visit common locations, we define spatial-temporal 
co-location rate STCoL ( u, v ) as, 
ST CoL (u, v ) = ∑ N u 

i =1 ∑ N v 
j=1 H(# − | t u (i ) − t v ( j) | ) δ(l u (i ) , l v ( j)) 

∑ N u 
i =1 ∑ N v 

j=1 H(# − | t u (i ) − t v ( j) | ) 
where H(x ) = 1 , if x > 0 and H(x ) = 0 otherwise. 

STCoL captures the likelihood that two users have their updates 
co-located during a # time interval. Fig. 12 a shows the variation of 
STCoL with different # values for positives. We observe that there 
are a very few users (less than 10%) who have visited the same lo- 
cation within a 1-hour time frame (i.e. STCoL > 0). Only 16% of 

users within the same community having a nonzero co-location 
rate ( SCoL ), in addition to the essential co-location at the commu- 
nity creation location. 

Fig. 12 b shows the CDFs of co-location rates of positives and 
negatives in two different cities, and we note that the difference 
between the distributions is significantly higher for Beijing users 
compared to Vancouver positives and negatives. This again sug- 
gests that it might be easier to differentiate between community 
members in larger cities (from the perspective of number of users 
and density of Momo network.) 

We further investigate possible other metrics and define a 
spatial-cosine similarity, spatial co-location normalised by the 
norm of the user trajectories. For each pair of users u and v , 
SCos (u, v ) = ∑ 

l∈ L N(u, l) × N(v , l) 
N( u ) × N(v ) 

where N(u ) = √ ∑ 
l∈ L u N(u, l) 2 . 

Fig. 13 a and b depicts the CDFs of SCos values for positives and 
negatives for global MoMo network, Beijing and Vancouver. While 
SCos values are zero for almost all the negatives for global and Bei- 
jing, and although 75% of the positives also have a zero, 25% of 
them have SCos greater than zero increasing the chances of identi- 
fying a positive community membership. Vancouver SCos has sim- 
ilar pattern to other similarity measures for the city. 

On the other hand, the popularity of a location might have an 
impact on the co-location rates and may drive user behaviour in- 
dependently from whether or not they belong to the same com- 
munity. In particular, high popular public locations such as railway 
stations and shopping malls may attract updates from a wide vari- 
ety of users. A lesser popular location (e.g. a pub) may only attract 
users with positive community membership. To capture this, we 
normalise the co-location rates using the popularity of the location 
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Fig. 12. Spatial-temporal co-location of visited locations STCoL ( u, v ). 

Fig. 13. Spatial-cosine similarity of visited locations SCos ( u, v ). 

Fig. 14. Spatial-cosine similarity of visited locations SCos ( u, v ). 
using a TF-IDF approach [4] . Specifically, we define location popu- 
larity as the inverse document frequency of a location l as follows: 
N IDF (l) = log ∥ U ∥ 

N(l) , where N(l) = ∑ 
u ∈ U H(N(u, l)) . N ( l ) is the num- 

ber of distinct users who visited the location l and U is the set 
of total users. A high value of N IDF ( l ) indicates that the location is 
rather unique to a very few users and conversely, smaller values 
indicate that the location is visited by a large number of differ- 
ent users. SCosTFIDF is the TF-IDF version of SCos and is calculated 
by multiplying SCos by N IDF ( l ). Fig. 14 a shows that the difference 
between positives and negatives is larger in Beijing for SCosTFIDF 
than SCos . Vancouver users also have high SCosTFIDF similarity val- 
ues, however the difference between the two distributions are sim- 
ilar to SCos . 

Diving further into co-location, we capture co-location dur- 
ing office time (defined as between 6:00am to 6:00pm) and per- 

sonal (nighttime and weekends) time of users. We define extra 
co-location rate by calculating STCoL only for personal time of 
users. Fig. 14 b shows extra co-location for Beijing. The results are 
counter-intuitive as extra co-location for 87% of positives is zero. 

In summary, it has been observed that there are number of mo- 
bility based features that can be used to distinguish community 
members from non-members. In the next Section, we use these 
features to evaluate the feasibility of community membership pre- 
diction among Momo users. 
5. Community membership prediction 

We model the problem of identifying positive community 
membership between users as a link prediction problem using mo- 
bility based features studied in Section 4 . Over 99% of the commu- 
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Fig. 15. Training & test edges from adjacency matrix. 
nities in our dataset were created after the end of Updates collec- 
tion. Therefore, we are predicting community memberships based 
on user’s past mobility data. 
5.1. Experimental setup 

Fig. 15 illustrates all the users found in our dataset in the form 
of an adjacency matrix. First, we divide the users in 4:1 ratio to 
seperate out the users to training and test sets so that 284,393 
users are in the training set and 71,097 are in the test set. A posi- 
tive membership or a positive edge exists between a pair of users 
if they belong to the same community. Two users not belonging to 
the same community are said to have a negative membership or a 
negative edge. When we train the model, we consider the positive 
and negative edges between all pairs of users that are only in the 
training set. Similarly, while evaluating the model we restrict our- 
selves to edges between user pairs that are only in the test set. To 
predict community memberships, we follow a supervised learning 
approach, where we train a classifier using the metrics discussed 
in Section 4 as features for positive and negative edges. 

We highlight that the adjacency matrix is highly sparse be- 
cause the total number of possible negative training edges are (

284 , 393 
2 )

− ∥ E + 
train ∥ ≈ 40 bn, i.e. there are only 3 positive relation- 

ships for every 10 5 possible user pairs. This not only may lead to 
immense computational challenges in terms of time and memory, 
but also creates a huge class imbalance in our classification model. 
Therefore, we progressively vary the number of negative instances. 
We randomly generate negative training edges, k times the num- 
ber of positive training edges and then train the classifier with only 
(k + 1) × ∥ E + 

train ∥ edges. We vary k from 1 to 5 and study the im- 
pact of increasing the number of negative samples on the predic- 
tion performance. To mitigate the class imbalance problem, we also 
provide our classifier with a cost sensitivity matrix that weighs an 
error made on miss-classifying a true positive, k times the error 
made on miss-classifying a true negative. 

We show that it is possible to reconstruct the community mem- 
bership network of given users with high accuracy without any 
knowledge of the existing community membership of the user. Un- 
like several of the previous work in link prediction [4,7,18,19] , we 
consider the more challenging case of not taking any existing links 
between training and test users (unshaded portions of Fig. 15 ) for 
training the classifier as this will artificially increase the accuracy 
of the prediction since some of the test users are already used for 
training. In particular, for training the classifier, we consider only 
the cases where both users of an edge belong to the training set 
which is shown in the E train portion of Fig. 15 . 
5.2. Evaluation 

We first evaluate the performance of the similarity metrics dis- 
cussed in the previous section. In a simple model, we can set a 
threshold value for each metric to maximise the model’s accuracy 

Table 5 
Individual feature performance. 

Feature Accuracy Precision Recall F-measure AUC 
Distance 0.804 0.069 0.986 0.131 0.789 

SCos 0.840 0.982 0.042 0.080 0.700 
SCos-tfidf 0.835 0.992 0.012 0.025 0.700 

STCoL 0.803 0.984 0.016 0.031 0.635 
Jaccard 0.834 0.986 0.003 0.006 0.700 

Extra-CoL 0.803 0.881 0.025 0.050 0.572 
Table 6 
Prediction results. 

k Accuracy Precision Recall F-measure AUC 
Global 1 0.825 0.911 0.719 0.804 0.847 

2 0.863 0.875 0.689 0.771 0.847 
3 0.887 0.833 0.683 0.751 0.849 
4 0.901 0.811 0.657 0.726 0.848 
5 0.911 0.784 0.643 0.707 0.849 

Beijing 1 0.693 0.860 0.552 0.696 0.756 
2 0.756 0.768 0.386 0.514 0.764 
3 0.808 0.763 0.338 0.469 0.767 
4 0.826 0.671 0.253 0.368 0.759 
5 0.849 0.608 0.272 0.376 0.757 

Vancou. 1 0.738 0.887 0.547 0.677 0.776 
2 0.806 0.900 0.471 0.618 0.749 
3 0.846 0.893 0.436 0.586 0.744 
4 0.869 0.873 0.401 0.550 0.745 
5 0.887 0.877 0.372 0.522 0.742 

and predict whether or not a test edge is positive based on the 
threshold. Table 5 summarises the performance of each of the fea- 
tures for the whole Momo network. To measure the efficiency of 
such a simple classifier, we use traditional precision/recall metrics. 
We also calculate F-measure, which is the harmonic mean of pre- 
cision and recall. Area under the ROC curve (AUC) is another way 
of measuring the prediction performance, where instead of fixing a 
threshold, we vary it and calculate the area under the correspond- 
ing ROC curve. From Table 5 , we observe that while it is possible 
to achieve high precision from the individual measures, recall val- 
ues remain significantly low. The distance metric exhibits a higher 
recall value at the expanse of a very low precision. 

We then move to combine the above features and train a clas- 
sifier to perform the prediction. We use Vowpal Wabbit, 9 as it em- 
ploys a limited memory variation of standard BFGS algorithm to 
efficiently learn on very large sparse datasets. We build our train- 
ing model with all e ∈ E + 

train , considering increasing subsamples of 
negative edges from E −

train and all features shown in Table 5 . We 
also use the same proportion of positives and negatives in the test 
set. Table 6 summarises the performance of our prediction model 
for the complete dataset. 

Combining all features yields to significant improvement in the 
classifier performance as indicated by the improved accuracy, F- 
measure and AUC. Precision has slightly reduced compared to in- 
dividual feature performance, while recall has significantly im- 
proved. Without any prior knowledge of user’s demographics or 
social graph information, the results show that a major portion of 
Momo’s communities can be rebuilt with 91.1% of precision and 
71.9% recall. Increasing the size of negatives in the training set, de- 
creases the precision-recall values (while improving accuracy). This 
is to be expected as we increase the number of negatives keeping 
the number of true positives the same. Therefore, the likelihood to 
link the positives decreases. 

Learning from a smaller social graph makes the classification 
problem more challenging as the similarity in features between 

9 http://hunch.net/ ∼vw/ . 

http://hunch.net/~vw/
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positives and negatives increases. When model is trained from 
users of a city only, we could still achieve a precision rate of 86% 
in Beijing and 90% in Vancouver which is slightly lower than global 
results, as shown in Table 6 . In essence, we show solely based on 
partial and sparse mobility data of an LBSD network, it is still pos- 
sible to reconstruct the community graph with a high precision. 
6. Related work 

There has been an extensive research work on online commu- 
nities characterisation and detection spanning a number of fields 
of study. McAuley et al. [20] analyse social circles in Google+, Face- 
book and Twitter and develop a statistical model to detect user cir- 
cles from the network’s structural properties and user profile in- 
formation. Yang et al. [21] consider various interest-based online 
communities such as YouTube, LiveJournal and Friendster for the 
purpose of detecting online communities by leveraging the under- 
lying online friendship network. Traud et al. [22] propose assor- 
tativity coefficient based on user attributes as an effective graph- 
metric in detecting communities using Facebook data collected 
from 100 American universities. More recently, using Facebook and 
Twitter data Dunbar et al. [23] show that online social network 
communities show the same layered structure as found in offline 
networks. 

In contrast to online communities, LBSD services like Momo, al- 
low users to discover and join communities whose members are 
nearby. This makes LBSD communities quite unique, and different 
from other communities in online social networks previously anal- 
ysed in the literature [20–23] . To the best of our knowledge, this is 
the first study of LBSD communities, characterising user behaviour 
in such communities and showing peculiar features of the network 
graph along with the differences to online communities. 

Most of the research related to our work has focused on LBSNs 
with an emphasis on user behaviour analysis . Li and Chen [3] pro- 
vide a quantitative analysis of Brightkite by classifying users into 
different behavioural groups based on their in-app usage, mobility 
patterns and online social relationship. Pelechrinis et al. [24] study 
the LBSN Gowalla by defining user similarity metrics that account 
for the entropy of the visited locations. Cheng et al. [25] also anal- 
yse Gowalla by augmenting their data with twitter’s geo-tagged 
status updates to show that user trajectories follow a levi-flight 
pattern. Wang et al. [26] propose a framework to identify overlap- 
ping communities in Foursquare using the user-location check-in 
graph and the attributes of the users and venues. Similarly, Lim 
et al. [27] detect communities in LBSNs by augmenting the friend- 
ship graph of Foursquare with spatio-temporal links in the likes 
of being in a common-location and applying standard community 
detection algorithms such as LabelProp [28] and InfoMap [29] . 

Our work also studies to which extent sparse location data 
extracted from in-app usage can be used in detecting commu- 
nities. User mobility patterns have been well studied [30–33] to 
demonstrate the predictability of user mobility and its correla- 
tion with individual’s attributes and behaviour. Similarly, the like- 
lihood of online social ties based on the geographical distances 
and co-occurrences has also been studied for geo-tagged Flickr 
photographs [7] , Facebook [19] , Gowalla and Brightkite [2] . An- 
other aspect of user mobility patterns involves identifying groups 
of users who are travelling together [34,35] . For instance, Sen 
et al. [34] train a Support Vector Machine classifier to identify user 
groups who are walking together inside a shopping mall based on 
data collected from their smartphones. 

Research work on social link prediction include [4] and 
[18] which propose a number of network proximity measures and 
evaluate the benefits of different metrics to predict social relation- 
ship. The evaluation is based on a Call Detail Record (CDR) dataset 
obtained from a cellular operator and updates data from the LBSN 

Gowalla. Duan et al. [36] propose an ensemble enabled approach 
for the social link prediction problem that scales efficiently for 
larger networks and measure its performance in number of social 
network datasets such as YouTube, Flickr, and Wikipedia. More re- 
cently, Tang et al. [37] explored the problem of negative link pre- 
diction in social networks which allows to define friends as well as 
foes. 

The different nature of LBSD data (human driven updates 
related to activities in mobile social networking or in cellular 
networks versus physical closeness between users when joining 
communities) necessitates a specific study of this environment. 
Chen et al. in [14] studies user activity patterns in Momo and 
shows that user re-identification is possible by analysing spatial- 
temporal characteristics of the user mobility patterns. As opposed 
to this work, we focus our research on the characterisation of the 
location-based communities in the Momo network. In addition, 
we propose a community membership prediction machine learn- 
ing approach based on spatial and temporal similarity features ob- 
served in user mobility data, e.g. by observing different user mobil- 
ity patterns within and outside a community. We further explore 
the mobility traces to evaluate the potential of content dissemi- 
nation leveraging on user mobility. We also note that [14] stud- 
ied the Momo network before the community membership feature 
of the system was introduced. Xue et al. [13] study the behaviour 
of the WeChat users who are using the People Nearby feature in 
terms of anonymity and demographics and show that users tend 
to be anonymous when using LBSNs and more male users tend to 
use LBSN services compared to female users. In another work, Xue 
et al. [38] highlight the inherent privacy risks associated with LB- 
SNs that share users location as bands with other users and pro- 
pose counter measures to alleviate this problem. In contrast, our 
work in this paper focuses on studying the user behaviour of com- 
munities in LBSNs and predicting common community member- 
ships. 
7. Discussion and concluding remarks 

Using a unique dataset of a popular mobile application, we pro- 
vided a first in-depth analysis of user behaviour and communi- 
ties in LBSD networks. We analysed the evolution of more than 
176K communities and characterised spatial and temporal factors 
that affect the rate of community creation such as time of the day 
and the high influence of geographical location on user’s choice 
when joining communities. More specifically, our analysis showed 
that LBSD users are more active on night times (9:00 pm – 12:00 
midnight) compared to day time. Also, it was found that more 
LBSD activities are happening on weekdays compared to week- 
ends. Many online services utilize on cloud storage and process- 
ing services such as Amazon and rely on dynamic resource allo- 
cations. This temporal usage statistics will provide insights to effi- 
ciently allocate cloud resources for LBSD services and thereby re- 
duce the operating cost for LBSD service providers. Also it was 
found that majority of the locations in the network are either hot- 
spots or cold-spots in related to community activities and hot-spot 
are more likely to attract more communities showing a “rich-get- 
richer” phenomenon. Such spatial usage insights help other service 
providers who provide services on top of LBSDs such as advertis- 
ers to make better decisions about their service offerings. More- 
over, these rich-locations are the most effective places to deploy 
technologies for ad-hoc local communication and content sharing. 

We model the Momo network as a tripartite graph with differ- 
ent node types for locations, users, and communities and studied the 
structural properties of the graph. We found that due to limited 
amount of community memberships that are available for users 
they tend to join only the communities in the local neighbourhood. 
As a result, users in smaller cities are more connected compared to 
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users in large cities, indicating any value added service developed 
on top of LBSDs will have a greater impact on smaller cities. We 
also investigated how the Momo LBSD network can be leveraged in 
related to an opportunistic content distribution application where 
content can be cached in either locations or users in order to prop- 
agate to the rest of the users in the network. Our analysis showed 
that, degree (popularity) based selection performs better in loca- 
tion selection for content caching, while random selection is as ef- 
fective as the degree in selecting users for content caching. These 
results provide insights to design improved content delivery pro- 
tocols and content recommendation models by only using sparse 
location information of users without compromising user privacy 
by collecting their trajectory information. 

Afterwards, we analysed the similarity in user mobility patterns 
and showed that there is a difference in spatial and temporal be- 
haviour between Momo community members and non-members. 
Moreover, it is possible to reconstruct these communities accu- 
rately by predicting community memberships, solely based on mo- 
bility based features. The results of our supervised learning classi- 
fier show that it is possible to predict 82% of the possible commu- 
nity memberships between users with a precision up to 91% and 
recall of 72% in global Momo network. Furthermore, the classifica- 
tion problem becomes more challenging for smaller geographical 
areas such as small cities due to the observed high similarity of 
user mobility patterns. 

We envision several possible applications and future work of 
our findings. In particular, our results demonstrate the high po- 
tential for service providers who may monitor and retain data on 
user’s activities to infer real-life social relationships. For instance, 
advertisement networks can leverage location information to link 
users and learn shared interests without access to any other per- 
mission or user-provided explicit data. In one hand, this suggests 
that sharing location information can potentially lead to massive 
privacy risk of the user. On the other hand, this shows the po- 
tential to enable personalised services such as targeted advertise- 
ments and personalised movie recommendations without collect- 
ing personal information. In our future work, we aim to investigate 
on exploiting these insights in relation to such applications. 
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