
A Software-Defined Flexible Inter-Domain
Interconnect using ONOS

Himal Kumar†, Craig Russell?, Vijay Sivaraman†, Sujata Banerjee∗
†UNSW, Australia, ?CSIRO Data61, Australia, ∗Hewlett-Packard Enterprise Labs, US

Emails: himal.kumar@unsw.edu.au, Craig.Russell@data61.csiro.au, vijay@unsw.edu.au, sujata.banerjee@hpe.com

Abstract—This paper describes the architecture, use-case, and
evaluation of a software-defined interconnect. Interconnects at
Internet Exchange Points (IXPs) today comprise a layer-2 data-
plane and BGP control-plane. We architect, implement, and
deploy an SDN-based IXP using ONOS that provides equivalent
functionality, while additionally supporting better ARP hygiene
and enhanced traffic telemetry. Our system also provides private
Internet peering, such as between an enterprise and a cloud
provider. We demonstrate a novel use-case enabled by our
system, wherein an enterprise can dynamically and transparently
switch between public and private peering to access cloud
services at appropriate quality and cost points. Evaluation of our
solution with real traffic demonstrates that it enables enterprises
to manage cloud connect costs flexibly without compromising
quality, opening the door to innovative solutions not possible
before.

I. INTRODUCTION

Interconnections between network domains are growing at
a rapid rate: content providers (like Netflix, Google, and
Facebook) have strong motivations to increase their direct
connectivity with Internet Service Providers (ISPs) to reduce
network bottlenecks and latencies to improve user experience.
Simultaneously, enterprises are seeking direct connections
with cloud providers (like Amazon and Microsoft) to have
better access to their own IT infrastructure hosted in the cloud,
as well as with other enterprises with whom they exchange
substantial traffic. The growing need for inter-connects is
fueling business for Internet Exchange operators (IXPs) and
private-cloud operators who are experimenting with different
service and pricing models suited to the public and private
peering needs of their customers.

The interconnect architecture remains relatively simple: the
data-plane can be a layer-1 circuit in the case of a private
inter-connect between two domains, and a layer-2 fabric for
a public peering between several domains. The control plane
is de-facto BGP, either between the two peers (in the private
case) or between each domain’s border router and the route-
server run by the IXP (in the public case). The natural
separation of the data-plane and control-plane in the inter-
connect architecture lends itself to the application of software
defined networking – this is nicely illustrated in [1] [2] [3],
which shows that an SDN-based IXP architecture (called SDX)
can replicate current functionality and additionally offer new
features (such as traffic engineering and security mitigation)
that are infeasible today.

Prior work, such as SDX, has focused on public inter-
connects. In this paper, we extend the architecture to in-

clude private inter-connects, which are becoming increasingly
important for enterprises seeking dedicated connectivity to
their cloud providers (e.g. AWS DirectConnect and Azure
ExpressRoute), or to other enterprises with whom they may be
exchanging large traffic volumes (e.g. DropBox and TurnItIn).
In fact, it is becoming increasingly common for an enterprise
to have a public peering at an IXP in order to get general
Internet access, and one or more private peerings at that IXP to
access cloud providers and/or other enterprises in a dedicated
manner. The aim of this work is to develop a system (CAS-
ToR) that can handle both public and private inter-connects in
a unified manner, built on top of a commercial-grade SDN
platform (ONOS). Our system can match functionality of
existing IXPs, and additionally enable new use-cases that allow
an enterprise to manage their traffic seemlessly across the
public and private inter-connections. Our specific contributions
are:

• We architect and implement a system called CASToR
(Connectivity As-a-Service to Top-of-Rack) that provi-
sions public and private inter-connects between domains
at an IXP. CASToR is built on ONOS, a commercial-
grade SDN controller, and currently deployed on a re-
search test-bed in Australia inter-connecting 10 orga-
nizations. CASToR implements IXP hygiene (dropping
multicasts and containing broadcasts), while supporting
improved telemetry of inter-connect traffic volumes.

• We demonstrate a use-case that allows the IXP to
seamlessly toggle traffic from an enterprise to its cloud
provider between their public and private inter-connects,
based on policy. We also develop an economic model
that the enterprise can use to adjust the trade-off between
quality and cost for its cloud traffic.

• We evaluate our system using traffic from a high-speed
traffic generator, to validate its latency and loss perfor-
mance when toggling traffic between public and private
inter-connects, and quantify the associated economic ben-
efits for the enterprise.

The rest of this paper is organized as follows: §II presents
relevant background work on IXPs, SDN, ONOS, and cloud-
connects needed for this work. In §III we present our CASToR
architecture and implementation, while the cloud-connect use-
case is presented in §IV. Our system is evaluated in §V, and
the paper is concluded in §VI.



II. RELATED WORK

The use of SDN at an IXP has been explored in [1], which
proposes a framework called SDX that allows policies to be
specified and enforced at the public exchange in conjunction
with BGP. This framework is extended in iSDX [4] to scale
to support a large number of flow-rules resulting from the
compilation of network policies so they fit into the limited
hardware resources of the exchange fabric. The work at TouIX
[2] focuses on migration of traditional exchange points to
an OpenFlow-based architecture, emphasizing the need for
innovation in current IXP architectures.

The above frameworks have largely focused on public
peering at IXPs. With a growing number of enterprises moving
their IT infrastructure to the cloud, public cloud providers
have started offering direct private connects, such as Amazon
DirectConnect [5] and Azure ExpressRoute [6]; such private
connections are a growth area for IXPs, e.g. Equinix’s “cloud
exchange” platform [7]. Simultaneously, IXPs such as IIX are
also offering private inter-connects [8] for enterprise partners
that exchange a significant volume of traffic with each other.
Our framework allows public and private inter-connects to be
managed in a unified manner, as will become evident in the
next section.

III. CASTOR ARCHITECTURE

Our CASToR application is a controller based architecture
for interconnections at an exchange point or a data center.
It enables fast and dynamic provisioning of peers using a
simple User Interface and caters to both public and private
peering arrangements. CASToR gives the IXP operator the
flexibility and desired control to add/delete/change a peering
or interconnection in real time without maintaining any static
configuration files. A high level CASToR stack architecture is
shown in Fig. 1. We describe the structure and key components
of the CASToR application next.

Fig. 1: CASToR Architecture

A. The Platform: ONOS
CASToR is built as an application on top of the ONOS

[9] controller. ONOS provides a scalable, high availability,
industry grade controller platform to build intelligent appli-
cations thereby making it viable for large scale commercial
networks such as an IXP. ONOS also provides a built in Intent-
Framework [10] for installing low level flow rules into the
network devices using abstract high level intents. CASToR
exploits the Intent-Framework of ONOS to install flow rules
into the IXP fabric using MultiPointToSinglePoint,
HostToHost and FlowObjective intents which allows
CASToR to be decoupled from the low level details and
provide better APIs. CASToR uses OpenFlow as the south-
bound protocol and the relevant switch drivers provided by
ONOS to program the switches.

B. Public Peering: Route Server
In our CASToR architecture, we use the Quagga [11]

routing suite for the route servers at the exchange point. Every
connecting peer runs a BGP session with the exchange route
servers and advertise the prefixes reachable from them. The
route server, Quagga then selects the best routes based on the
BGP path selection parameters and metrics and advertise them
back to all the peers. Route servers are only used for public
peering where every peer receives the reachability information
to every other peer connecting and peering at the IXP. In a
public peering scenario all the route servers and the connecting
peers are required to be configured to be in the same subnet
for scalability.

C. Private Peering
Our CASToR application also provides the ability to pro-

vision a private peering, which is essentially a cross connect
between two peers who are willing to exchange traffic directly
with each other. This can be motivated by the high volume
of traffic being exchanged between these two entities, or a
requirement of quality of service (e.g. low latency or high
throughput) between these peers. A private peering typically
entails establishing a dedicated BGP session running between
the two peers. The IXP can provision a simple (layer-1 or
layer-2) cross-connect to the peers so they can operate their
own private (layer-3) BGP session. Our implementation has
the capability to offload this task from the enterprise by
proxying the BGP, in the form of a “virtual route-server” at the
exchange, on their behalf. This virtual router-server is again a
light Quagga instance which only runs the BGP control-plane,
and no data-plane traffic ever passes through it. The detailed
working of private peering, and its co-existence with public
peering, is explained in §V.

D. CASToR APIs and Interface
One of the objectives of CASToR is to enable the IXP

operator to provision connectivity through the exchange via
a simple web-interface. CASToR provides a rich REST API
based north-bound interface that allows a web-based front-end
GUI to be built, as well as an east-west interface for a customer
to express intents.



Fig. 2: CASToR User Interface

1) CASToR GUI: We develop a proof-of-concept GUI for
the IXP operator to provision the connectivity in the exchange
fabric, as shown in Fig. 2. A MongoDB backend is used
for data persistence, and interacts with CASToR via REST
APIs. To enable a peering, the operator enters the required
information (Customer Name, IP address, Connecting Port,
DPID of the switch) into the front-end interface, which then
communicates and stores this information into the backend
database. The database synchronizes and passes this informa-
tion to CASToR to provision the required connectivity.

2) CASToR Intent APIs: CASToR exposes REST based
APIs to the connecting peers to pass specific intents or policies
desired by them. Peers pass simple JSON formatted data to
CASToR to express an intent to achieve a desired state of the
network pertaining to the performance of their connection at
the IXP. An example of such an intent, which we illustrate
in the next section, is to switch the traffic between the public
and private inter-connects based on some preset performance
criteria.

3) ARP Hygiene: ARP storms have always been a concern
at the IXPs and its minimization is crucial [12]. Hundreds
of peers may ARP for their next hops which may lead to
significant congestion in the layer-2 exchange fabric leading
to what is called ARP storms. In our SDN based architecture,
the controller has the knowledge of the exact locations of
the peers (DPID and Port number where peer is connected).
CASToR uses this topology information provided by the
ONOS controller to unicast the ARP traffic appropriately,
preventing ARP floods. CASToR installs apposite flow rules
into the switching fabric to match the ARP traffic and unicast
it to the right switch/port. To achieve this, CASToR uses the
MultiPointToSinglePoint ONOS intents where the
single point is equivalent to the peer having the target protocol
address of the ARP packet and multi-points would be all other
remaining peers who can send ARP packets. The intent results
in installation of flows into the fabric to match on the Target
Protocol Address and EthType ARP (0x0806) and output it to
the correct ports. These rules are best installed in a separate
table on the switch if the hardware and drivers support it; at
present our rules are installed in a single table to maintain
generality.

IV. CLOUD-CONNECT USE CASE

We now illustrate how our CASToR platform supports
Cloud-Connect in a cost-effective manner. An enterprise’s
cloud traffic typically has high temporal variation – this could
be due to the enterprise’s private data center load overflowing
on to the public cloud provider during peak times (known
as Cloud Bursting) or due to multiple traffic types that have
different usage patterns. For example, our University’s traffic
to/from the Amazon cloud over the past 12 months is shown
in Fig. 3 – the variability is accountable to both the nature of
cloud bursting, and to the fact that student access to streaming
video (e.g. Netflix) is sourced from AWS. Provisioning the
private inter-connect to deal with peak load is expensive, while
exchanging traffic over the public inter-connect is susceptible
to quality fluctuations. We show how our platform enables a
flexible peering arrangement that can help achieve the best of
both worlds.

A. Flexible Hybrid Peering

In the current peering model at an exchange point, an en-
terprise peers with a cloud provider either on public or private
peering. There is a fixed cost associated in provisioning both
types of peering charged by the IXP. Once a peer or customer
decides whether to choose public or private, the provisioning is
very much static and not changed unless required. Most of the
IXPs charge a monthly fixed port fees for both types of peering
in addition to one time costs like equipment and relocation
costs, as explained in [13]. We propose in our architecture to
use private and public peering together in a hybrid model to
optimize cost and maximize performance based on volume-
based dynamic pricing. An enterprise can have the flexibility
to switch between private and public based on real-time traffic
performance. This provides an enterprise the ability to trade-
off their traffic between cost and performance and creates an
opportunity for the IXP to run it as an extra value added
service for economic gains.

Fig. 3: AWS Traffic Loads of UNSW

An enterprise may want to switch its traffic or a part of
it from public to private to gain better performance and low
latency depending on the type of traffic. Since the public
link is a shared link, one may not always get the desired
performance on it. Switching to private peering comes at a
higher cost but better performance which makes it inevitable
to have control over switching in real time as per needed to
save costs and maximize performance. Fig. 4 shows a high



level architecture of the proposed hybrid model. An enterprise
would usually have a single point of connection to the IXP
fabric which bifurcates into two, public and private, to connect
to the cloud provider. Dotted lines show that the enterprise is
able to communicate with CASToR using the exposed APIs
to pass intents or policies to influence the path of their traffic.

Public Cloud-Connect: In Public Peering, an enterprise
peers with the route servers at the exchange point using BGP.
The enterprise runs a BGP session with the route servers and
advertises its prefixes which are then further advertised and
propagated to other peers which are peering with the IXP on
public peering arrangement. In our architecture, public peering
occurs exactly in the same way as it would at a traditional
exchange point. A peer would get its next hop addresses and
AS path from the route servers and then the data would be
transmitted at layer-2.

Private Cloud-Connect: Private peering is a direct path
between two peers like a cross-connect and provides a shortest
high bandwidth path with only one next hop though at a higher
cost. Private peering delivers better quality of services and
traffic control but can also be more expensive. An enterprise
would usually have a public peering at an IXP but can also
peer privately with a cloud provider depending on business and
traffic needs. There are two major challenges to support hybrid
peering with traditional architecture: First, the enterprise will
need to have a separate dedicated link for private peering on a
different subnet to peer with the cloud provider privately and
will also have to run an extra BGP session on it. Secondly, an
enterprise does not have any visibility into the link states of
other peers or cloud at the IXP to make switching decisions
themselves. In our architecture, the IXP runs the dynamic
private peering on behalf of an enterprise as a service to
provide better performance. The enterprise only needs to have
a single link to the IXP to have both types of peering. The IXP
runs a virtual route server for the enterprise which runs a BGP
session with the cloud on a separate private link and announce
the prefixes for the enterprise to the cloud. The enterprise
now has two BGP sessions with the cloud , one being run
by the IXP which results in cloud receiving two next hops for
the prefixes being advertised. These prefixes may or may not
overlap in case of public and private depending upon what
traffic needs to sent on which path. This is solely decided by
the enterprise. In this way, the IXP provides the enterprise with
the capability of dynamic hybrid peering as a service without
exposing any information about network states of other peers.

B. Intent Based Switching

We introduce Intent Based Switching [14] to toggle traffic
dynamically between the public and private inter-connects, in
order to realize the flexible hybrid inter-connect. The high-
level intent passed by the enterprise to the IXP, in order to
switch traffic from the public to the private inter-connect, could
be as follows:

Switch my cloud traffic from public to private if there is
congestion on the public cloud link, with following parame-
ters: Source : A group of source prefixes for which traffic is to

Fig. 4: Proposed Peering Architecture

be toggled; example: {192.168.1.0/24, 192.168.2.0/24}. Des-
tination : A cloud provider; example: {Amazon}. Conditions
: Cloud public link utlization exceeds threshold CH ; example:
{Condition: Destination Link Capacity, CH=0.7}. Actions :
Toggle; example: {to Private inter-connect}. A similar intent
for reverse action, namely moving traffic from the private
back to the public inter-connect, can be defined to take effect
whenever the load of the Cloud provider’s public link falls
below threshold CL, of say 0.4.

Our CASToR application performs the switching by com-
puting a binary parameter Z that takes value 1 for private
peering and 0 for public peering for this particular enterprise-
cloud relationship. Z is calculated by the application iteratively
every minute as per below, where C is the current utilization
of the public link to the cloud provider.

Zi+1 = dC − CHe+ Zi ∗ dC − CLe (1)

Whenever Zi+1 differs from Zi, the traffic is toggled between
the public and private inter-connects. The implementation
details of how this is achieved is described in §V.

C. Economics and Costing Model
Both types of peering have two cost components - fixed

and variable. The variable cost of public peering is expressed
as Ppub = A

∑n
i=1 Xi(1 − Zi) and for private peering as

Ppri = B
∑n

i=1 Xi ∗ Zi, where:
• A : This is cost of peering per unit volume on a public

link.
• B : Cost of peering per unit volume on a private link.
• X : The volume of traffic from that enterprise to the

various peers on either public or private inter-connect.
• Z : Switching binary variable: 0 for public peering and 1

for private.
This variable cost is calculated on a minute or on an hour

basis. The fixed component includes the cost of provisioning a
physical private-connect and peering port fees and is charged
monthly by the IXP.

We expect B > A, namely sending a byte of traffic on
the private inter-connect costs more than on the public inter-
connect. The simplified total variable cost for an enterprise to
connect to a single cloud provider is therefore:

Ptot = A ∗X ∗ (1− Z) +B ∗X ∗ Z (2)



Fig. 5: Experimental Setup

where X denotes the volume of traffic the enterprise sends to a
single cloud on private or public inter-connect. Our application
calculates the value of Z, and the volumes of traffic to calculate
the total cost and provide it to the enterprise as a feedback
so that they can make cost optimization decisions by passing
intents.

V. PROTOTYPE EVALUATION

Fig. 5 shows our experimental network comprising an SDN
enabled exchange point using the CASToR application. It
consists of two OpenFlow switches (NoviFlow NS1132s) [15]
with two 10Gb/s inter-switch links acting as the exchange’s
layer-2 fabric. We assume that the fabric has infinite capacity
with respect to bandwidth and is therefore never a bottleneck.
Fig. 5 also shows two public route servers (Route-Server 1
and 2) used for BGP sessions with the Peers, as is typical
in most current IXPs, as well as a private route server
and an ONOS controller that runs the CASToR application.
In the experiments we used four peers connecting to the
exchange point, three enterprises (A, B and C) and one Cloud
Provider that connect via border routers as shown. The border
routers used for the experiments were two Cisco 3800 series
routers, another NoviFlow NS1132 switch controlled by the
Vandervecken virtual routing software [16] and a Pica8 P3295
[17] switch also controlled by Vandervecken. We generated
traffic for the experiments using a Spirent TestCenter system
with separate physical interfaces connected to each border
router. The route servers and the ONOS controller were all
Ubuntu 14.04 virtual machines hosted in an OpenStack cloud
environment. Only Enterprise A had a private peering enabled
with the Cloud Provider shown by green lines. The IXP hosts
a private route server on behalf of enterprise A to run a BGP
session with the cloud on a separate interface and IP subnet.
The three enterprise border routers (A, B and C) only peer
with the two IXP public route servers. Dotted lines show
the control plane connectivity between ONOS/CASToR and
the IXP switch fabric while solid lines show the data plane
connectivity.

We focus the following discussion on Enterprise A and
the Cloud Provider and consider the others as general peers
present at the IXP (which in general could number in the tens
if not hundreds for a large IXP). For simplicity, we refer to
Enterprise A and the Cloud Provider as just A and Cloud
respectively. A has a single 10Gb/s physical link with the IXP
fabric but two different data paths to the Cloud - private and
(shared) public as shown. The Cloud has a 1Gb/s public link
and a 10Gb/s private link with the IXP fabric.

0 100 200 300 400 500 600 700 800 900

Time (Seconds)

0

200

400

600

800

1000

1200

R
a

te
 (

M
b

p
s
)

Peering Traffic

Private Peering

Public Peering

Total Public Traffic

Fig. 6: Measured Peering Traffic

Each enterprise maintains BGP sessions with the two public
route-servers and receives prefixes of the Cloud with the
next hop addresses. The next hop to reach the Cloud on
the public link is via the blue interface of the Cloud border
router. Initially, all three enterprises (A, B and C) send traffic
to the Cloud via the cheaper public link. Fig. 6 shows the
corresponding traffic rate. The green curve shows the total
public traffic going to the cloud, while the blue and red
curves show the traffic from A to the Cloud via the public
and private links respectively. Table 1 shows the number of
dropped frames in different scenarios and the traffic rates of



A to the Cloud. Initially A transmits 200 Mbps and the total
public rate is close to 800 Mbps with no packet drops. At
approximately 300s, A bursts to 500 Mbps and begins to
experience packet drops as the total public rate exceeds the link
capacity of 1 Gbps resulting in congestion on the public link.
We can see from the table that A experiences an 11 percent
loss of frames during this time. At this moment, A then passes
an Intent to CASToR to change it’s traffic to the private link if
the public link capacity exceeds 70 percent and back to public
when it falls to 40 percent. CASToR then triggers the change
to shift the traffic to private peering which happens in two
stages.

Average Measure of Dropped Frames
Type of Peering Traffic Rate

of A
Dropped Frames
Count (%)

Public - No Congestion 200 0
Public - Congestion 500 1052582 (11%)
Private 500 0
Public-Private transit Any 1-3

TABLE I: Measure of Dropped Frames
First, when a packet from A reaches the exchange fabric,

CASToR instructs the OF switch to rewrite the source MAC to
that of the private route server and the destination MAC to be
that of the green interface of the Cloud’s border router. It then
instructs the OF switches in the fabric to output the traffic via
the respective ports in order to change the path. It essentially
overrides the default BGP behavior without requiring any
action from A (or indeed without A’s border router even being
aware of the path change). A still thinks that it’s traffic is
traversing the public link but in reality it is being switched to
the private link by the IXP due to the intent. All the header
rewrites are done by the OF switches in the data plane and no
traffic goes to the private route server.

Second, the reverse path of the traffic from the Cloud to
A is handled in a different manner. At this point the Cloud
will continue to send reverse traffic on the public link since
it has received no information to the contrary. This can be
changed by using the BGP path attribute MED (Multi-Exit
Discriminator). When a path switch is required, CASToR runs
an automatic script which changes the MED value of the BGP
announcement from the private route server to a lower value
compared to that from the public route servers. This results
in the Cloud’s preferred path to be the private link for those
particular prefixes. As a result of this change, when a packet
from the Cloud arrives at the IXP fabric on the private link, it is
destined to the MAC address of the private route server. Note
that the AS number of the private route server is same as A’s,
making the AS path the same over both the private and public
links. CASToR installs rules in the OF switch to rewrite the
destination MAC to the actual MAC address of A and forwards
it to the correct port to reach A. We can see in the figure that
at this stage the traffic shifts to the private link shown by
the red curve and the total amount of public traffic reduces.
Both stages happen quickly without dropping any packets in
transit. We purposely ran the experiment in the congested
state for some time to show the congestion and packets being

dropped. However, in a real scenario A would pass the intent
and specify the switching parameters in advance and CASToR
would enable an almost instant switchover thereby preventing
congestion on the public link. We experienced a very small
number of dropped frames (1 to 3) when the switchover
occurred. The whole switchover process happens in near real
time in an automated fashion without any intervention from
enterprise A or the Cloud. This switchover can be done for
any group of source or destination prefixes based on the
requirements of the enterprise. For example, an enterprise may
wish to keep latency sensitive traffic always on the private link
or it may keep the low priority traffic on the public link to
reduce transit costs. Switching to private peering can therefore
be used to provide better performance and potentially a lower
latency path.

VI. CONCLUSIONS

As interconnections between enterprises and cloud providers
are proliferating, there is a need to have a flexible architecture
which can cater to the dynamic traffic changes and deliver
better quality of service and customer satisfaction. This paper
is an attempt to add flexibility and innovation to the IXP
ecosystem to support dynamic hybrid peering which can be
provisioned using a web GUI. We developed a prototype
and implemented our architecture on a carrier-grade platform
and quantified the associated economic and quality of service
benefits. We validated our design and implementation using
experiments on real systems and hardware and deployed our
system on an Australia wide SDN testbed.

REFERENCES

[1] A. Gupta, L. Vanbever, M. Shahbaz, S. P. Donovan, B. Schlinker,
N. Feamster, J. Rexford, S. Shenker, R. Clark, and E. Katz-Bassett,
“Sdx: A software defined internet exchange,” ACM SIGCOMM, 2014.

[2] R. Lapeyrade, M. Bruyere, and P. Owezarski, “Openflow-based migra-
tion and management of the touix ixp,” NOMS 2016 - 2016 IEEE/IFIP
Network Operations and Management Symposium, 2016.

[3] J. Stringer, D. Pemberton, Q. Fu, C. Lorier, R. Nelson, J. Bailey,
C. Correa, and E. Rothenberg, “Cardigan: Sdn distributed routing fabric
going live at an internet exchange,” Computers and Communication
(ISCC), 2014.

[4] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rex-
ford, and L. Vanbevert, “An industrial-scale software defined internet
exchange point,” NSDI, 2016.

[5] “Amazon direct connect,” https://aws.amazon.com/directconnect/.
[6] “Microsoft azure expressroute,” https://azure.microsoft.com/en-us/

documentation/articles/expressroute-circuit-peerings/.
[7] “Equinix cloud exchange,” http://www.equinix.com.au/resources/

data-sheets/equinix-cloud-exchange/.
[8] “Iix console,” http://www.iix.net/.
[9] “Open network operating system,” http://onosproject.org/.

[10] “Onos intent framework,” https://wiki.onosproject.org/display/ONOS/
Intent+Framework.

[11] “Quagga,” http://www.nongnu.org/quagga/.
[12] V. Boteanu, H. Bagheri, and M. Pels, “Minimizing arp traffic in the

ams-ix switching platform using openflow.”
[13] W. B. Norton, Internet Peering Playbook.
[14] “Onf blog, intent: What, and not how,” https://www.opennetworking.org/

?p=1633&option=com wordpress&Itemid=155.
[15] “Noviflow,” http://noviflow.com.
[16] “Vandervecken,” https://github.com/routeflow/routeflow/tree/

vandervecken.
[17] “Pica8, white box sdn,” http://www.pica8.com/.

https://aws.amazon.com/directconnect/
https://azure.microsoft.com/en-us/documentation/articles/expressroute-circuit-peerings/
https://azure.microsoft.com/en-us/documentation/articles/expressroute-circuit-peerings/
http://www.equinix.com.au/resources/data-sheets/equinix-cloud-exchange/
http://www.equinix.com.au/resources/data-sheets/equinix-cloud-exchange/
http://www.iix.net/
http://onosproject.org/
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
http://www.nongnu.org/quagga/ 
https://www.opennetworking.org/?p=1633&option=com_wordpress&Itemid=155 
https://www.opennetworking.org/?p=1633&option=com_wordpress&Itemid=155 
http://noviflow.com 
https://github.com/routeflow/routeflow/tree/vandervecken
https://github.com/routeflow/routeflow/tree/vandervecken
http://www.pica8.com/

	Introduction
	Related Work
	CASToR Architecture
	The Platform: ONOS
	Public Peering: Route Server
	Private Peering
	CASToR APIs and Interface
	CASToR GUI
	CASToR Intent APIs
	ARP Hygiene


	Cloud-Connect Use case 
	Flexible Hybrid Peering
	Intent Based Switching
	Economics and Costing Model

	Prototype Evaluation
	Conclusions
	References

