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a b s t r a c t 
Mobile capped plans are being increasingly adopted by mobile operators due to an exponential data traf- 
fic growth. Users then often suffer high data consumption costs as well as poor quality of experience. In 
this paper, we introduce a novel content access scheme, Crowd-Cache , which enables mobile networking 
in proximity by exploiting the transient co-location of devices, the epidemic nature of content popularity, 
and the capabilities of smart mobile devices. Crowd-Cache provides mobile users access to popular con- 
tent cheaply with low latency while improving the overall quality of experience. We model the Crowd- 
Cache system in a probabilistic framework using a real-life dataset of video content access. The simulation 
results show that, in a public transportation scenario, more than 80% of the passengers can save at least 
40% on their cellular data usage during a typical average city bus commute of 10 minutes. Finally, we 
show the practical viability of the system by implementing and evaluating the system on Android de- 
vices. 

© 2017 Elsevier B.V. All rights reserved. 
1. Introduction 

The pervasiveness of smart mobile devices and rich media ser- 
vices are giving rise to exponential growth in cellular traffic of 
which video is predicted to account for more than 75% of the total 
available bandwidth by 2020 [1] . To cope with this demand, net- 
work operators have introduced capped data plans. However, dur- 
ing peak times, the high demand introduces high latencies which 
yield to reduced user quality of experience (QoE) [2] . The predic- 
tions are that demand will outpace the increases in capacity that 
will be provided by new technologies such as LTE + or 5G [3] . 

This produced significant research effort s to develop techniques 
for minimizing the cellular network data traffic and improving 
user QoE , broadly falling into three main areas: peer-to-peer sys- 
tems [4,5] , traffic offloading [6,7] and caching schemes [8–10] . 
Peer-to-peer systems, however, cannot guarantee timely content 
delivery, while traffic offloading schemes proposed so far assume 
the availability of a low cost network and deal with delays con- 

∗ Corresponding author. 
E-mail addresses: kanchana.thilakarathna@data61.csiro.au (K. Thilakarathna), 

fangzhou.jiang@data61.csiro.au (F.-Z. Jiang), sirine.mrabet@data61.csiro.au (S. Mra- 
bet), dali.kaafar@data61.csiro.au (M. Ali Kaafar), aruna.seneviratne@data61.csiro.au 
(A. Seneviratne), xie@ict.ac.cn (G. Xie). 

necting to the lower cost networks. Traditional in-network caching 
systems, on the other hand, are not effective as the delay and 
cost bottlenecks quite often occur on the last hop wireless link in 
mobile networks [11,12] . Likewise, local caching schemes including 
content pre-fetching [9] rely on the ability to predict user interests, 
which is a challenging task, often inaccurate and prone to errors or 
can altogether lead to loss of privacy. 

In this paper, we propose an alternative approach that exploits 
the transient co-location of mobile users and potential spatio- 
temporal correlation of content popularity. Along with the high ca- 
pabilities of the modern mobile devices, we postulate and verify 
that it is possible to take advantage of the observed correlations 
of user behavioral patterns to enable mobile networking in prox- 
imity. We propose a novel content distribution system, the ratio- 
nale of which is inspired by the delivery of information via the free 
newspapers in public transportation systems of major cities around 
the world such as Metro in NYC 1 . In the free newspaper distri- 
bution system, users consume content (reading the paper) whilst 
traveling but leave the content (the paper) when they leave. We 
propose Crowd-Cache , a system that provides storage facilities and 
a free local network in public places and transportation systems 

1 http://www.readmetro.com/en/usa/new-york/ 
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where users can cache locally and share in vicinity the content 
they have downloaded via other networks. The users who con- 
tribute to the cache also gets access to the content in the cache. 
Thus, as the cache gets populated by content from contributors, 
users in the proximity can access it locally. Crowd-Cache creates 
a cyber-physical space where users can exploit and share content 
even when Internet may not be available. This is fundamentally 
different from an in-network cache system, as the cache is not in 
the data path between server and client, and content is pushed to 
the cache via a different network to which it was downloaded. Fur- 
thermore, although the concept is similar, Crowd-Cache differs from 
caching in small cells, i.e. femto-caching, that Crowd-Cache servers 
are mobile and provided by user devices for the benefit of other 
users in proximity. 

There is no additional cost for the users of the Crowd-Cache sys- 
tem, except from a small energy penalty for pushing some content 
to the cache which we evaluate in this paper. There is no need 
to predict users’ interests, as what is available in the cache will 
be what other users of the system consumed. The appropriateness, 
and the content integrity and authenticity can be perceived as an 
obstacle for Crowd-Cache deployment. These can be adequately ad- 
dressed through well known techniques that are used in the user 
generated content hosting platforms as discussed later in this pa- 
per. 

This paper makes the following contributions: 
• We design a novel mobile system to reduce mobile data traffic 

exploiting the transient co-location nature of mobile users, the 
spatio-temporal correlation of content popularity and enabling 
mobile networking in proximity along with the capabilities of 
the modern smartphone devices. 

• We model the video content access and the corresponding 
content consumption patterns and behavior of mobile users 
in public transportation systems using a unique large real-life 
dataset containing more than 500K users and 9.5M video re- 
quests from a popular video content provider. 

• We study the transient aspects of content consumption patterns 
and show that even though number of requests change with 
the time of the day, the popularity of different video categories 
do not change with time. Furthermore, we show that the actual 
consumption is less than 30% of the total view time for more 
than 80% of the video requests and the view time exponentially 
decrease with regard to the length of the video. 

• We simulate the proposed system and show that more than 
80% of the passengers can save at least 40% on their cellu- 
lar data usage during a typical average city bus commute of 
10 min. In particular, the cache hit rate can vary from 25% to 
65% depending on the shape of the content popularity distri- 
bution. In addition, the performances of various cache replace- 
ment policies are investigated and compared with real life con- 
tent request patterns. 

• We demonstrate the feasibility and practicality of the proposed 
system through the development of an Android application to 
evaluate the energy consumption and data transfer latency ex- 
perimentally. 
The remainder of the paper is organized as follows; 

Section 2 summarizes the related work. The Crowd-Cache sys- 
tem details are presented in Section 3 . We model our proposed 
system using a real-world dataset in Section 4 . In Section 5 , the 
performance of the system is evaluated first through a simulation 
study and then through measurements of the Android-based 
real-life implementation in Section 6 . Finally, Section 7 discusses 
future work and Section 8 concludes the paper. 

2. Related Work 
Of the three broad categories of peer-to-peer, traffic offloading 

and caching systems, the most relevant to Crowd-Cache is the work 
on caching systems. The work on caching again broadly falls into 
three areas: caching at the edge of the network, caching for per- 
sonal use and opportunistic caching. Additionally, we also compare 
and contrast systems that provide similar functionality as Crowd- 
Cache . 
2.1. Caching at the edge of the network 

There are many proposals for proactive caching at the edge of 
of the network [13,14] . Mashhadi et al. [13] propose opportunis- 
tic download from dedicated Access Points (APs) that do proactive 
caching. This requires, however, the availability of APs with inter- 
net access. In addition, all nodes behave as peers, with all the trust, 
security and privacy issues associated with peer-to-peer systems. 
The cache in Crowd-Cache in contrast does not require internet ac- 
cess, and the nodes do not behave as peers. VideoFountain [14] de- 
ploys kiosks at popular venues to store and locally distribute con- 
tent. The primary aim is to cache messages that users generate at 
different locations where the kiosk is located, which are then made 
available to users in the vicinity of a kiosk. Thus the system, simi- 
larly to opportunistic networks, relies on human mobility to carry 
content between kiosks. In contrast, Crowd-Cache does not rely on 
the users explicitly carrying information, but rather on the tran- 
sient colocation of mobile users and the spatio-temporal correla- 
tion of content popularity. Erman et al. [15] propose a cost-benefit 
trade-off model to investigate the caching benefits at different lev- 
els of a cellular network. However as mentioned earlier, caching 
at the base stations is not effective as the bottlenecks quite often 
occur on the last hop wireless link in mobile networks. 
2.2. Caching for personal use 

Similar to in-network caching, caching at the end-user devices 
(e.g., smartphones) has also been studied previously [8,16] . Qian 
et al. [8] show that there are 17–20% redundant data transfers on 
cellular networks as a majority of current mobile web applications 
under-utilise the caching capabilities. In [16] , the authors focus on 
the QoE improvement of web browsers and show that 60% of the 
requests can be served by a browser cache of only 6MB. Predict- 
ing user consumption of content and pre-fetching the content by 
caching it on the user’s device to minimize the network conges- 
tion and cost, has been also evaluated in [9,17,18] . The effective- 
ness of content pre-fetching heavily relies on accurate prediction 
of future demand and the ability to find uncongested and lower 
cost network to pre-fetch the data. However, it has been shown 
that accurately predicting user behaviour and the network avail- 
ability is a challenging task [19] . In addition, it also raises numer- 
ous privacy issues [20] . Crowd-Cache caches content and makes it 
available to other nearby users, which is inline with studies that 
argue in favour of exploiting redundant data transfers [8,16] and 
emanates the system from the need for user behavior and network 
availability predictions. 
2.3. Opportunistic caching at mobile devices 

Taghizadeh et al. [21] present a social community based cooper- 
ative caching system. It is aimed at minimising the cost of content 
distribution to users with common interests that are physically co- 
located. All users cache content via an ad-hoc network. Ioannidis 
et al. [4] and Han et al. [22] propose a distributed caching mech- 
anism for the purpose of social welfare where users cache content 
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and opportunistically propagate it through a networking infras- 
tructure. Similarly, Whitebeck et al. [5] propose a hybrid content 
delivery system in which content is distributed opportunistically, 
with acknowledgments to a central service provider. VIP delega- 
tion [23] replicates data using networking infrastructure on a few 
“socially important” (VIP) users in a mobile network. VIPs in turn 
distribute the content to other users opportunistically. In our pro- 
posed content sharing and collaboration scheme uDrop [24] , user 
devices are leveraged to provide a distributed mobile cloud storage 
service. All these cooperative caching methods suffer from the vari- 
able delays, higher energy consumption and the trust, security and 
privacy issues of opportunistic networks. In contrast, Crowd-Cache 
users only need to trust the Crowd-Cache server, and does not in- 
troduce any significant energy costs or delays. In fact as we show 
in this paper Crowd-Cache improves the accessibility and hence the 
user QoE due to the higher data transferring rates of short-range 
networks. 
2.4. Collaborative media sharing in public transport 

There has been works proposing to install information hubs 
in public transport vehicles [25,26] . Bluespots [25] is a bluetooth 
based peer-to-peer distribution framework. While Bluespots is de- 
signed to function as an information waypoint in public tran- 
sit, it does not act as a data transit system. Hence, streaming 
user QoE wont be improved as proposed in Crowd-Cache . Drag- 
onNet [26] leverages the spatial diversity of wireless signal qual- 
ity across different parts or public transport vehicle to reduce the 
amount of Internet outage and improve throughput when travel- 
ing. The proposed protocol reduces average communication black- 
out from 6 s to 1.5 s, and at the same doubles the aggregate 
throughput. In addition, Tasiopoulos et al [27] propose a user QoE 
assessment framework for collaborative media streaming system in 
urban railway networks. Despite numerous studies in the area of 
content distribution in public transport, to the best of our knowl- 
edge, Crowd-Cache is the first to bridge theoretical work in video 
content distribution in public transport to a real-world system im- 
plementation in Android that could be deployed in large-scale. 
3. Description of Crowd-Cache 

Crowd-Cache leverages off the transient colocation of devices 
and the epidemic nature of content popularity, namely the ob- 
servation that users in a particular location or users traveling to 
a same destination are likely to be interested in the same set of 
content with a high probability [28,29] . This is done by allowing 
the users to contribute the content that they have downloaded and 
consumed to a local store ( CC-server ) via a local network ( CC-LAN ), 
and making content on the CC-server available locally. If content is 
obtained from the CC-server , users will reduce their cellular data 
usage. Moreover, thanks to the higher capacity of the local net- 
works, latency will be minimized and as a result, the user QoE will 
be improved. 
3.1. Crowd-Cache: an overview 

Users access the Crowd-Cache system via an application, CC-app , 
on their devices 2 . The CC-app enables users to access web content 
via the cellular network and via the CC-LAN when available. The 
CC-server is provided by either another mobile device or a dedi- 
cated device, acting as a local server. The CC-server also acts as an 
access point for the CC-LAN . Access to the CC-LAN is granted se- 
curely through the CC-app using standard WiFi authentication, i.e. 

2 The CC-app could also be an extension (plug-in) to mobile web-browsers. 

CC-LAN 

CC-Server 

CC-app 1 
CC-app 2 

Cellular Network 

2. Download from the custodian 

!!3. Push to 
the cache 

4. Cache hit 
1. Cache miss

Fig. 1. Operations of the Crowd-Cache system. 
WPA. When a user attempts to access content, the CC-app connects 
to the CC-server via the CC-LAN . If the content is available on the 
local CC-server , the content is served from the CC-server . If not, the 
CC-app connects to the cellular network and downloads the con- 
tent. Once the content is downloaded and consumed, the CC-app 
pushes the newly downloaded content to the CC-server when the 
CC-app reconnects with the CC-server . The CC-server makes a local 
decision as to whether or not to update its cache with the newly 
pushed content using a content replacement strategy. The opera- 
tions of the Crowd-Cache system are schematically shown in Fig. 1 . 
3.2. Application scenario and incentives 

While we conceive several deployment scenarios of the Crowd- 
Cache system, we aim to focus on its deployment in public trans- 
port at this stage. It is reported that 83% of the US commuters 
use mobile phones during their daily commute 3 . Additionally, it 
has been observed that there is spatio-temporal correlation of con- 
tent access patterns of commuters in public transport [29] . To this 
end, we believe that content distribution within city buses could 
be a potential application scenario for Crowd-Cache . In this sce- 
nario, a device under the control of the bus driver, powered via the 
power outlet of the bus, acts as the CC-server and the access point 
for the CC-LAN . Initially, the CC server would be either empty or 
only contains the data that was downloaded by the bus driver via 
a cellular network connection. The CC-server is then populated by 
commuters as they get on the bus and start using the CC-app . The 
users will not use the app and provider, e.g. transport companies, 
will not deploy the service, if they don’t have tangible incentives 
from the service. The potential incentives and disincentives of the 
CC-service are described below: 

For CC-app users: Incentives for users to subscribe to the 
Crowd-Cache system is naturally driven by the willingness to mini- 
mize their cellular data downloads. Furthermore, as will be shown 
in Section 6 , when the content is delivered from the local CC-server 
via the CC-LAN , latency and the device energy consumption are re- 
duced. User will be able to and prefer to use their own devices, 
which are already customized with their personal preferences, e.g., 
browser bookmarks, and user accounts, for in-bus/train entertain- 
ment compared to a fixed entertainment systems with screens at- 
tached to seats. 

3 https://www.gfi.com/blog/survey- 95- 6- of- commuters- in- the- us- put- company- 
data- at- risk- over- free- public- wi- fi/ 

https://www.gfi.com/blog/survey-95-6-of-commuters-in-the-us-put-company-data-at-risk-over-free-public-wi-fi/


K. Thilakarathna et al. / Computer Communications 100 (2017) 104–117 107 
With respect to energy consumption, the extra energy con- 

sumed to push the downloaded content to the CC-server will be 
offset by the reduction in energy consumption when downloading 
data from the local CC-server since the energy consumed through 
a WiFi connection is provably lower than that of cellular net- 
works [30] . The CC-server , on the other hand is, in our public trans- 
portation scenario, connected to a power source. 

For CC-server providers: CC-app can either be supported via 
online advertisement or through subscriptions. The ad supported 
version of the app displays an advertisement whenever it receives 
data from the CC-server . However, as these ads are locally served 
ads, received data does not consume any of the (capped) cellular 
data plan of the users. Typically, local ads include company per- 
sonalized promotional material to the travellers, including the pur- 
chase of tickets for future travels and trip information etc. The CC- 
app and CC-server update their advertisement impression counts 
whenever they connect to a low cost network, for example their 
home WiFi network, for accounting and detecting fraudulent activ- 
ities. The revenue generated from the subscriptions or advertise- 
ments will be used to compensate the CC-server provider. How- 
ever, CC-app users are not expected to spend more than what they 
would have saved for their cellular data expense. 

In addition, there are multiple incentives for a transport com- 
pany to become CC-server provider. As the services will be accessed 
through the travelers’ own devices, the deployment costs are mini- 
mal for the transport company to providing in-bus/train entertain- 
ment to passengers. Since CC-system does not provide Internet ac- 
cess to passengers, it is cheaper to operate than traditional WiFi 
hotspots as there is no additional cost of broadband Internet con- 
nections. Furthermore, CC-system can be easily extended to provide 
relevant analytic and intelligence about customers to the transport 
company, such as identifying returning customers (possibility of re- 
ward program) and efficient customer feedback. 
4. Crowd-Cache system model 

To investigate the effectiveness of the cellular bandwidth saving 
for CC-app users and the benefits received by CC-servers through 
serving content to CC-app users, we first model the Crowd-Cache 
system using a real-world dataset (as described below), by deriv- 
ing probabilistic models of user behavior for mobile content ac- 
cess. Then, the derived models are used to simulate the behav- 
ior of Crowd-Cache system under various workload/user conditions. 
The dataset provides insights of user consumption pattern, and we 
also vary the model parameters to gain extra insight under differ- 
ent scenarios. 
4.1. Dataset in use 

We use logs of video content access of mobile users of PPTV, 
one of the largest VoD service providers in China, for one week 
in December 2011. PPTV has 22 categories of videos [31] . The logs 
provide content requests from three major cities - Shanghai, Bei- 
jing and Tianjin, which correspond to 9.5 million requests, gen- 
erated by more than 500K mobile users through mobile web- 
browsers or the client app on various mobile devices, e.g. iPhones, 
iPads, Android devices. Table 1 summarizes the statistics of the 
dataset. 

There are several limitations of the dataset. First, due to the 
high percentage of movies and TV series episodes, the average 
length of a video is about 50 min, which is much larger than online 
video services such as YouTube. However, the average length of ac- 
tual view time is about 18 min. Secondly, majority of requests are 
done using WiFi ( ∼ 75%). Although user viewing behavior differs 
slightly when they are using cellular and WiFi as shown in [32] , 
we believe that user of Crowd-Cache would behave similar to using 

Table 1 
Summary of PPTV dataset. 

Field Statistics 
Duration 7 days–Dec. 2011 
No. users 516,149 
No. content requests 9,579,576 
Video categories 22 (news, movies, etc) 
Per. of WiFi requests 76.15% 
No. requests/user/day 2.65 
Avg. length of a video 50 min 
Avg. length of view time 18 min 
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Fig. 2. Content popularity of PPTV dataset. 
WiFi due to free mobile data cost while accessing content. As a re- 
sult, we do not treat WiFi requests and cellular requests separately 
in our system modeling. Additionally, the number of requests per 
user per day is low due to the factor that major of users are not 
heavy users, therefore, in the remainder of this section, we anal- 
yse the popularity and the size characteristics of videos, as well as 
the transient aspects of content access and consumption patterns 
of this data for the purpose of modelling the Crowd-Cache system. 
4.2. Popularity distribution of video content 

It has been previously reported that the popularity of online 
video content is best modelled by a Zipf-like distribution, i.e. 
Weibull [32,33] . Fig. 2 shows the maximum likelihood estimation 
(MLE) fit of a Weibull distribution for the PPTV dataset using the 
SciPy Library 4 . The videos are ranked based on the number of re- 
quests. We obtain the MLE parameters for the Weibull distribution 
equal to a shape α of 0.48 and a scale λ of 1875. This suggests that 
a Weibull distribution represents a good approximate of the actual 
popularity distribution (with an R 2 goodness-of-fit value of 0.914). 

The popularity of content i, P i is then considered as a Weibull 
probability function such that P i = αλ (

i 
λ

)(α−1) 
e −(i/λ) α where i > 0 

and α, λ > 0. The popularity of a content is actually the probabil- 
ity of that content is being requested in the future. For contents 
that is already in the cache, all future requests will be a cache 
hit. Therefore, the sum of probabilities of requesting a content pro- 
vides asymptotic expected cache hit rate for the cotnent that is in 
the cache. However, the popularity distribution in Fig. 2 has a con- 
siderable long tail due to the large variety of content access in a 
large geographical area. Since the Crowd-Cache system is mainly 
designed to operate in a confined geographical area for a limited 
period of time, the distribution of the content popularity should 
be narrower than the PPTV dataset. Hence, we further investigate 
the effects of content popularity in Section 4 by varying the shape 

4 SciPy Lib - http://docs.scipy.org/doc/ 

http://docs.scipy.org/doc/
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and scale parameters of the Weibull distribution whilst considering 
different content popularity scenarios. 
4.3. Size distribution and video categories 

The video size (in bytes) directly affects the storage capacity 
of the CC-server devices. As our dataset contains the length of a 
video in seconds, we calculate the size of videos with a bit rate 
of 330Kbps [34] . For some videos, the bit rate could be larger. 
However, even with this smaller value, the dataset contains signifi- 
cantly large videos, i.e. movies, which does not match with our ap- 
plication scenario of city buses because the probability of someone 
watching a complete movie while commuting in a city bus would 
be negligible in practice. Therefore, we only considered videos of 
length less than 10 min which accounts for 990,219 unique set of 
videos. The size of videos has been reported Gamma distributed in 
various studies [33] such that the size of content i , corresponds to 
a probability function S i = i (k −1) e −(i/θ ) 

θk $(k ) where i, k, θ > 0 and $( k ) 
is the Gamma function evaluated at k (we denote k and θ the 
shape and scale parameters of the distribution respectively). How- 
ever, the overall model does not fit well with the actual size dis- 
tribution ( R 2 = 0.31), due to the high percentage of certain video 
sizes. Therefore, the size of videos are modeled in two categories: 
0–13MB and 13MB–25MB as shown in Fig. 3 . The probability of re- 
questing content of the two categorizes is 1.8:1, based on the pop- 
ularity of videos in the two size categories. 
4.4. Transient aspects of content request and consumption 

Next, we study the popularity of different content categories 
over the time of the day. Fig. 4 a shows the average number of con- 

tent requests of videos of top four main categories, namely movie 
trailers, variety shows, animation and TV shows, during each hour 
of the day. Only the top four categories are considered as it cov- 
ers significant portion of the dataset and also clearly shows the 
dynamics of user interest over the time of the day. During the 
working hours ( ∼ 9am to 6pm), the number of requests are rel- 
atively stable across all four categories. Since analyzing charac- 
teristics of different categories have been studies in prior works, 
i.e. [31] , and is not the focus of this paper, we do not model user 
consumption pattern in a category basis. However, the model could 
be extended in our future work. The number of requests increases 
rapidly, peaking between 9pm–10pm. During this period, there is 
a greater number ( ∼ 5500 requests per hour) of requests for the 
larger categories of animation and TV videos. However, if we nor- 
malize the popularity of each category from the total number of 
requests for the particular hour, all categories show approximately 
steady behavior throughout the day as illustrated in Fig. 4 b. There- 
fore, we consider that the popularity of each video/size category 
does not change with the time of day. 

The average number of videos per user per day is about 2.65, 
which is considerably low and also depicts the heavy-tailed dis- 
tribution of inter-request-patterns. We extract inter-request-time 
for individual users from the dataset and then model the inter- 
request-time for content i, I i as a power law distributed, Weibull, 
with variables γ and β as the shape and scale parameters re- 
spectively. Fig. 5 a shows the CDF of inter-request-time of all users 
in PPTV and the Weibull distribution with MLE fit parameters of 
γ = 0 . 5 and β = 456 . 14 . In particular, approximately 50% of users 
request a video at least every 5 min and more than 80% every 
20 min. Since this is for bigger videos, the inter-request-time can 
be expected to be lower for other online video sharing services. In 
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Fig. 6. Distributions of view ratio of videos. 
addition, it is expected that in the application scenario of Crowd- 
Cache users would tend to request content more frequently as 
mobile devices are generally used for shorter periods by transit 
passengers [35] . Therefore, we focus on the distribution of inter- 
request-time of less than 10 min considering an average duration 
for a bus stop is approximately 10 min. Fig. 5 b shows that again 
it follows the shape of a Weibull distribution with γ = 0 . 7 and 
β = 110 parameters and R 2 value of 0.9909, where 80% of users 
request new content in at least every 3–4 min. 

Fig. 6 a shows the probability distributions of the view ratio, de- 
fined as the view time normalized by the length of the video, for 
all videos. It shows that more than 80% of the videos have less 
than 0.3 view ratio. Even though the average length of a video 
is as large as 50 min, the users rarely watch a full video leading 
to an average actual view time of just 18 min ( Table 1 ). More- 
over, the median view time is as low as 1 min. This needs to be 
considered in designing systems such as Crowd-Cache , as it deter- 
mines whether it is reasonable to cache the full content. How- 
ever, the average view ratio is considerably higher ( > 0.4) for the 
shorter videos ( < 35MB) as shown in Fig. 6 b, and as expected, the 
view ratio reduces as the size of video increase. We model this 
relationship of view ratios as a linear combination of exponential 
functions such that, the view ratio of a video of size s > 0 as 
V s = a ∗ exp(λ1 ) + b ∗ exp(λ2 ) where a = 0 . 4 , b = 0 . 53 , λ1 = −0 . 3 , 
λ2 = −0 . 006 and exp (λ) = λe −λs . The exponential model provides 
considerably close representation of content view ratio of PPTV 
users with 0.995 R 2 goodness-of-fit test value. 

4.5. Transient aspects of passengers on a bus 
We consider a scenario of hosting the CC-server in a bus as de- 

scribed in Section 3 , where users are within the communication 
range for the duration of the bus journey ( T ). The number of users, 
N , is dependent on the number of passengers which we consider 
equals a constant, say 50, for simplicity. Since Crowd-Cache is a 
passive content storage, the transient aspects of CC-app users such 
as the number of users in the bus at a given time, duration of the 
bus journey of each user and then, content access and consump- 
tion behaviors of users determine the effectiveness of the Crowd- 
Cache at a given time. We model the transient aspects of the bus 
journey as follows. 

We assume there are bus stops every 10 minutes in a bus route. 
For simplicity, we also assume that all passengers on board use 
the CC-app . The time a user is connected to the CC-server , ( τ ), is 
considered to follow a Log-normal distribution which models well 
the bus journey travel time as suggested in [36] . That is, after 
τ = e µ+ σ 2 / 2 time on average CC-app users get off the bus and dis- 
connect from the CC-server , where µ = 0 . 6197 and σ = 10 . 48 are 
mean and standard deviation of τ . 

An overview of the transient aspects for content requests are, 
therefore, modeled in Fig. 7 . In a nutshell, during the period of in- 
teraction with Crowd-Cache system, passengers are to request con- 
tent based on the modeled popularity and size distribution based 
on the extracted inter-request time distribution. The view ratio 
of each video content is also modeled depending on the size of 
the video as discussed. In addition, an overview of traffic model 
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Fig. 7. Content request model diagram. 

Fig. 8. Traffic model diagram. 
Table 2 
Summary of Crowd-Cache system model. 

Transient nature of content access behavior 
Content popularity Weibull - α= 0.48, λ= 1875 
Size Gamma - category1: k 1 = 2.139, k 2 = 52.388 

category2: θ1 = 2.4486, θ2 = 0.3425 
Category ratio category1 : category2 = 1.8 : 1 
Inter-Request-Time Weibull - γ = 0.7, β= 110 
View ratio Exponential - a = 0.4, λ1 = -0.3, b = 0.3, λ2 = -0.006 

Transients of bus scenario 
Duration of a ride T = 1 h 
Bus stops Every 10 mins 
Capacity of a bus N = 50 
No. of Passengers Peak, Off-peak, Random 
Association time Log-normal ( µ= 0.6197, σ= 10.48) 

is shown in Fig. 8 . We assume the following three traffic models, 
which broadly represent bus commuters. 
• Peak: The bus is full all the time, i.e. N = 50 , i.e. assuming the 

same number of passengers getting on and off the bus. 
• Off-peak: 10 passengers get on board at every bus stop, if there 

is enough room. If not, the bus will be filled up to its maximum 
capacity. 

• Random: At the bus stop, a random number of passengers gets 
on board. The number varies from 0 to the remaining capacity 
of the bus. 

5. Performance evaluation 
We developed an event-driven simulator based on Python to 

evaluate the performance of the Crowd-Cache system. Simulator 
uses system model parameters summarized in Table 2 as input to 
determine the cache hit rate and the bandwidth savings. 

We assume that there are no packet losses and no significant 
transfer delays as the system only needs to support up to a few 
tens of users in a limited area (due to maximum number of con- 
current WiFi connection). Higher number of users could be sup- 
ported by multiple Crowd-cache at multiple positions. In the sim- 
ulation, to reflect the variation of view ratio of the same content 
size, we randomly assign a view ratio for a particular content size 
from the actual dataset. This, we believe, will better reflect the 
actual user viewing behavior comparing to the simple view ratio 
model shown in Fig. 6 b. For each evaluation metric, we run 20 
simulations and show the average value. We first consider the case 

where there is an unlimited storage at the cache. Then, we also ex- 
amine the system performance under practical resource constraints 
along with different cache replacement policies. 
5.1. Performance with an unlimited cache – The cache hit rate and 
bandwidth saving 

The expected cache hit rate, referred here as ( E [ H s ]) is the prob- 
ability of finding a user requested item in the cache, thus, E[ H s ] = ∑ 

∀ i P i where P i is the popularity of content i . The actual cache hit 
rate is the ratio between the number of hits and the total number 
of requests for a considered time duration. If the content popu- 
larity distribution does not vary in time, the actual cache hit rate 
should converge to E [ H s ] asymptotically. Intuitively, regardless of 
content request pattern, the long term hit rate shall approach ex- 
pected cache hit rate. However, real-world content access pattern 
is always highly dynamic and correlated. We present the compari- 
son of expected hit rate with actual hit rate to evaluate the impact 
of request pattern correlation. 

Fig. 9 a shows the cache hit rate values after populating cache 
for 24 h with three traffic models under various content popular- 
ity distribution shapes by varying the parameters of the Weibull 
distribution. The scale of the content popularity distribution is con- 
sidered equal to the empirical PPTV dataset ( λ = 1875 ). 

The peak traffic model gives the highest cache hit rates due to 
the larger number of contributors to the Crowd-Cache . In particular, 
the expected cache hit rate is higher than 55% in the peak traffic 
scenario, regardless of the type of popularity distribution. Notably, 
in the off-peak scenario, the observed minimum cache hit rate is 
still greater than 25% for the most distributed content popularity 
shape ( α closer to one). The random traffic model yields to a 50% 
expected hit rate for the particular shape value ( α = 0 . 48 ) of the 
PPTV dataset, which suggests a considerable potential of high per- 
formance for PPTV customers and alike when using Crowd-Cache . 
Moreover, the random expected hit rate does not change signifi- 
cantly with the increase in the shape parameter validating the po- 
tential gain in local cache irrespective of the content popularity 
distribution. The difference in expected and actual value is signif- 
icant, and actual value is always lower in comparison. The reason 
is mainly due to expected performance measures the long-term fu- 
ture performance of current Crowd-cache, while actual value mea- 
sures the current traced hit rate considering prior measurements. 
In the case of unlimited cache, expected results would always be 
equal or higher than actual results. Similarly, Fig. 9 b shows the im- 
pact of the scale parameter of the content popularity distribution 
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Fig. 9. The cache hit rate performance during a one hour bus ride. (a). as a function of the shape α of content popularity, and when λ = 1875 , (b). as a function of the scale 
λ of content popularity, and when α = 0 . 48 . 

Fig. 10. Cache hit rate against time with varying α. 
on the cache hit rate. As expected, hit rate drops as scale value of 
popularity distribution increases, because a larger scale represents 
a wider pool of content. Moreover, different traffic modes has a 
similar impact to the hit rate as in Fig. 9 a. 

Fig. 10 depicts the variation of the actual cache hit rate values 
during one day bus ride, starting from empty Crowd-Cache with 
random traffic model. It shows the results for five different con- 
tent popularity distributions. α = 0 . 1 represent the extreme case of 
very large long-tail popularity distribution. α = 0 . 5 represents the 
popularity distribution for PPTV dataset. For α = 0 . 1 , the probabil- 
ity of requests for the most popular items is higher than other dis- 
tributions. As a result, there is a rapid increase in the cache hit rate 
early during the bus journey and stabilizes after the peak observed 
at the first stop of the bus reaching a 50% hit rate, due to the dis- 
parity of the content requests. As expected, the actual cache hit 
rate monotonically increases with time, as the new users joining 
the system tend to request popular content that is already cached. 
The performance of Crowd-Cache reaches a hit rate of 40–50% after 
one day of operation. 
5.2. Performance with limited cache – impact of cache replacement 
policies 

Isolated caching policy performance is a very well studied topic 
in the past decade. Cache replacement policy performances are 
highly dependent on two factors, the popularity dynamics of con- 
tent and content request pattern. Intuitively, a highly dynamic con- 
tent pool with large number of new arrivals might benefit more 
from recency based policies, while popularity based policies might 
perform better with periodic request patterns. However, the con- 
sensus has been that no single caching replacement policy would 

out perform all other policies in all scenarios. We picked some 
of the most representative policies to evaluate Crowd-cache perfor- 
mance under proposed public transit model. 

To represent an extreme case, where the cache is provided by 
a low end smartphone, we restricted the cache size to 2GB. For 
this evaluation, the content popularity was considered to be simi- 
lar to the PPTV dataset. We also assumed that the requested con- 
tent’s total size exceeds 2GB approximately in a 1 h period, after 
which the content was replaced according to the cache replace- 
ment policy. We considered a number of cache replacement poli- 
cies. The recency based LRU (Least-Recently-Used) and frequency 
based LFU (Least-Frequently-Used), two intuitive schemes, namely 
Evict Smallest/Largest, and two function based schemes. The two 
function based schemes either evicted content that has the low- 
est popularity value ( P c ) per unit size ( S c ) (popularity/size) or 
content with lowest utility metric U(c) = L + M c P c /S c , such that 
L ← min { U ( c ): every c in the cache} (Greedy-Dual-Size-Popularity 
(GDSP) [37] ). The cache miss penalty M c is considered to be one as 
the retrieval cost for cache misses are equal for all content items. 
GDSP was proposed to consider all three caching metrics, namely 
recency, size and popularity. 

Fig. 11 a shows the cache hit rates observed for different cache 
replacement strategies. All the strategies, except Evict-smallest, re- 
sult in cache hit rates higher than 10% after a 1 h trip. As expected, 
the two content popularity-based strategies show relatively high 
cache hit rates. Although LRU and LFU are two of the most popu- 
lar cache replacement strategies, their performance is not superior 
since content popularity is a better metrics than frequency in a in- 
dependent reference model (IRM) of content popularity. GDSP and 
Popularity show similar and best results for the considered envi- 
ronments. However, GDSP is expected to perform better than Pop- 
ularity when the content popularity change with time, since GDSP 
takes content access recency into account in its objective function. 

Higher cache hit rate does not always result in the highest 
bandwidth saving as can be seen in Fig. 11 b. Higher bandwidth 
saving also depends on the size of each hit content. For instance, 
even though cache hit rate for Evict-largest is higher than LRU and 
LFU by about 8%, bandwidth saving for both these strategies are 
almost similar. This is due to the fact that Evict-largest keeps more 
number of small videos in the cache. Furthermore, the difference 
between GDSP and Popularity are comparatively higher in band- 
width saving despite the fact that their hit rate performance is 
close. We do not focus on proposing a new caching replacement 
policy, while attempts to evaluate performance differences under 
our unique public transit scenario. Overall, if we employ a cache 
replacement policy which takes recency, popularity and the size of 
the content, the Crowd-Cache system performs reasonably well due 
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Fig. 11. Performance with limited cache at CC-server device, cache size = 2GB. 

Fig. 12. Performance variance of GDSP 
to the observed spatio-temporal content popularity correlation in 
proximity even under extreme conditions with only a 2GB cache. 
Moreover, the results show the worst case performance, i.e. start- 
ing a day with an empty cache. 

Lastly, we further show the performance variance of GDSP with 
regards to both hit rate and bandwidth saving in Fig. 12 . Fig. 12 a 
presents the variance of cache hit rate by plotting the traced hit 
rate at different time instance t of all requests in multiple re- 
peated experiments. It could be seen that the performance varies 
greater during the first 10 h, and the fluctuation shrinks while 
Crowd-Cache is being filled up and performance stabilizes. Simi- 
larly, Fig. 12 b shows the variance aspect of bandwidth saving, and 
the range of saving is considerably stable regardless of the status 
of cache. 
5.3. Transient aspects of passengers 

Fig. 13 a illustrates the effects of travel time of bus commuters 
which is determined by the log-normally distributed association 
time with CC-server ( τ ) and the duration between two consecutive 
bus stops. Since the same user is not going to request the same 
content multiple times, the Crowd-Cache receives diverse set of 
content requests (from the long-tail part of the popularity distribu- 
tion) when the same set of commuters travel for longer periods. As 
a result, Crowd-Cache achieves higher cache hit rate for short dis- 
tance bus rides, where there is frequent arrival of new commuters 
as shown in Fig. 13 a. In addition, mean association time is the de- 
ceive factor as the cache hit rate does not vary significantly with 
the bus stop length for a given association time. Therefore, Crowd- 
Cache performs better in metro type transport scenarios similar to 

our application scenario. Overall, the heat map depicts that for the 
majority of the cases cache hit rate after 24 h reaches more than 
30% even for 2GB cache. 

Additionally, we investigate system cache hit rate under GDSP 
with different cache sizes and IRT in Fig. 14 . Both the shape γ and 
scale β parameters of IRT are varied to evaluate the system per- 
formance and cache size requirement under different workloads. In 
general, the γ value controls the distribution shape while the scale 
parameter β represents the skewness of the distribution. Fig. 14 a 
shows that higher γ values translates to higher cache hit rate re- 
gardless of cache size due to the increase in total number of re- 
quests. In contrast, Fig. 14 b illustrates that higher β values results 
in lower cache hit rate due to the large IRT value of the major- 
ity. In addition, cache size does not show significant effect after 
approximately 40GB which implicitly indicates the practical cache 
size requirement for Crowd-Cache . 
5.4. Benefits for Crowd-Cache users 

For a CC-app user, the amount of saving from the monthly data 
cap would be one of the primary objectives to use the CC-app . 
Therefore, we evaluate the cellular bandwidth saving for individual 
users during a bus ride. Each user associates with CC-LAN only for 
∼ 12 min in average according to log-normally distributed associ- 
ation time. Since CC-server starts empty at time = 0, the passengers 
during first several hours would be the users that receive lowest 
benefit. 

In the first four hour, nearly 65% of the users does not save 
any bandwidth irrespective of the size of the cache as shown in 
Fig. 13 b, while that reduces to ∼ 20% for the passengers that get 
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Fig. 13. (a) Cache hit rate against transient aspects of passengers, cache size = 2GB and the random traffic model. (b) Individual bandwidth saving for α = 0 . 48 . 

Fig. 14. (a) Cache hit rate against cache size and IRT shape γ (b) Cache hit rate against cache size and IRT shape β . 
on-board at the end of the day. Since these results are for 2GB 
and 128GB caches, the savings are expected to be much higher in 
real-world systems as it is possible to upgrade the storage of the 
CC-server device with an external storage device. Fig. 13 b illustrates 
that 80% of users save more than 40% of cellular bandwidth after 
20 h of initial bootstrapping phase if the cache is at least 128GB in 
size. 
5.5. Downloading and caching partial content 

As we have shown in Section 4 , users rarely watch a full video. 
In fact, longer the video is lower the proportion that the users 
consume. Therefore, it makes sense to download and cache only 
the parts of content that users actually consume. Although in real- 
world scenario applications will always download more than users 
would consume to reduce the time of buffing and improve user 
QoE, we consider the case which we are able to download exactly 
the length of video users are to actually consume. 

Fractions of videos that are consumed by users are therefore 
cached in Crowd-Cache . Once requested, the existing part of the 
video will be served locally. If the request is longer than the cached 
version, the additional pieces of the content are to be fetched from 
the original content server. Thus, the cached video will be updated 
to the newer version with every request. As a result, in principle, 
enabling partial content downloading and caching will increase the 
efficiency of caches. Thus, resulting in a higher cache hit rate when 
the cache size is limited. In Fig. 15 , the cache hit rate is compared 
whether partial caching is enabled. The cache size is limited to 2GB 
and cache hit rate is monitored for a period of 24 h. GDSP is used 
as the cache replacement policy for comparison. It can be seen that 
enabling partial caching could potentially increase the hit rate from 
25% to over 35% after populating the cache for 24 hours. 

Fig. 15. Partial content caching comparison for 2GB cache size w.r.t. cache hit rate. 
6. Experimental evaluation 

We implemented CC-app as an Android app and CC-server as 
an Android app [38] . Although the system concepts are valid for 
any popular content type, in our implementation we focus on the 
distribution of video content. 

The interface of the CC-app is shown in Fig. 16 a. When the CC- 
app is launched, it requests the unique IDs (URLs) of the most pop- 
ular videos from the video service providers. The current version 
includes both YouTube 5 and Dailymotion 6 content. The app also 
allows searching for a particular video or a set of related videos 
for a particular keyword. Once the relevant video IDs are received, 

5 https://developers.google.com/youtube/v3/ 
6 http://www.dailymotion.com/doc/api/graph-api.html 

https://developers.google.com/youtube/v3/
http://www.dailymotion.com/doc/api/graph-api.html
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Fig. 16. Android implementation of CC-app and the communication protocol. 
the networking interface switches to the available CC-LAN to ob- 
tain the list of videos that are cacheed in the CC-server as shown 
in Fig. 16 b. If there is any new content in the local cache of the 
CC-app , the app pushes it to the CC-server in the background, while 
the user is scrolling through the search results. 

Depending on the user request, the CC-app displays results, 
with an indication of whether the content can be obtained from 
the CC-server (green arrow) or needs to be downloaded via the cel- 
lular network (red arrow). If content can be obtained locally, the 
CC-app fetches the content from the CC-server via the CC-LAN at 
download rates between 2–6Mbps. If not, CC-app switches the net- 
work interface to the cellular network and downloads the video 
via the cellular network at a download rate of ∼ 400Kbps (the ex- 
periment was performed in 2014). The switching of networks is 
required because a majority of the current smartphones does not 
allow the simultaneous use of cellular and WiFi networking inter- 
faces. 

Measurements obtained using an implementation of the CC- 
server on a Samsung Galaxy S4 (i9306), and a CC-app on a vari- 
ety of smartphones from different manufacturers and with various 
capabilities are shown in Fig. 17 a. 
6.1. Throughput and latency 

Fig. 17 a shows that the throughput obtained on different de- 
vices with different Android versions, when only one CC-app is in 
use. The maximum rate of ∼ 6Mbps was achieved by the Samsung 
i9306 and the lowest rate of ∼ 1Mbps was achieved by the Huawei 
U8950. As can be seen, the achievable throughput is dependent of 
the device type. Despite this, overall, the Crowd-Cache not surpris- 
ingly still achieves significantly faster data rates than practical cel- 
lular networks. 

Fig. 17 b illustrates switch time between the cellular and the 
WiFi networks. When a device attempts to connect with CC-LAN 
for the first time (“First connection”), it takes between 5 and 7 s 
to associate and connect. Subsequent connections only takes 2 to 3 
s, since the authentication parameters for CC-LAN are stored under 
previously connected AP list. The switching time is barely notice- 

able as it occurs in the background whilst the users are scrolling 
through the search results. This is the worst case scenario, as these 
switching overhead are only temporary, since smartphones already 
start enabling the simultaneous use of multiple network inter- 
faces 7 . 
6.2. CC-app device energy consumption 

The device that hosts the CC-server is expected to be connected 
to a power source, and therefore energy usage will not be a con- 
cern. The CC-app however needs to be energy efficient. To inves- 
tigate the energy usage of using Crowd-Cache system, the energy 
consumption of a smartphones when using the CC-app is mea- 
sured by hijacking the battery which is connected to a shunt resis- 
tor ( R s = 15 m )). The voltage across the shunt resistor ( V s ) is then 
measured using a National Instruments CCB-6008, a multifunction 
DAQ (NI-DAQ) 8 . We perform a measurement per every millisecond 
and export the results using NI-LabView. CC-app is also configured 
to log time-stamps for start and end of event categories shown in 
Fig. 17 c. During the measurements, special caution has been taken 
not to introduce concurrent background activities. 

We consider the cache hit and cache miss, assuming that the 
CC-app is in the foreground of the device, and that the device is 
first connected to the CC-LAN . We also measure the energy con- 
sumption when downloading the same content through a cellular 
network (3G case). For the 3G case, we eliminate any streaming 
protocol- and/or foreground user interface related power consump- 
tion discrepancies by using the CC-app to access videos in the two 
experiments. Fig. 17 c shows the energy consumption normalized 
by the energy consumption of the 3G case. 

As expected, cache misses results in more power consumption 
than 3G downloads due to the extra steps of checking the CC-server 
(Query time), and switching networks. It confirms that the larger 

7 http://galaxys5guide.com/samsung-galaxy- s5- features- explained/ 
galaxy- s5- download- booster/ 

8 http://sine.ni.com/nips/cds/view/p/lang/en/nid/201986 . 

http://galaxys5guide.com/samsung-galaxy-s5-features-explained/galaxy-s5-download-booster/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/201986
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Fig. 17. Practical measurements of throughput and latency, (a). Throughput over CC-LAN for different device types, (b). Switch time to CC-LAN for different device types, (c). 
Client device energy consumption measurements for the two application scenarios of cache hit and cache miss compared to direct content access through cellular network, 
(d). Absolute energy value comparison (note the log scale). 
the size of the requested file, the lower the relative energy con- 
sumption of the cache miss case. A cache hit results in signifi- 
cant energy savings compared to the 3G case regardless of the size 
of the video. There is a saving of ∼ 70%, primarily due to higher 
throughput achievable via the CC-LAN . The energy consumption for 
both download/view over CC-LAN and query time are small and is 
almost indistinguishable in Fig. 17 c. Fig. 17 d illustrates the abso- 
lute energy values of these small energy consumptions (note the 
log-scale). Query time proportion is larger for the smallest file as 
the total energy consumption is lower than other files. In the case 
of cache miss, switching to 3G consumes extra energy. However, it 
will not be a problem in future as the majority of smartphone will 
be able to simultaneously communicates over both WiFi and 3G 
interfaces. Overall, the amount of energy consumed in the cases 
of downloading via 3G networks is always larger than of local 
Crowd-Cache download, although the view only time is compara- 
tively similar in all three cases. This is due to the fact that mobile 
device is still at the high power state even after downloading the 
content for the 3G case. 

If we consider that there are four content size categories (de- 
noted c ), with a popularity likelihood of p c and a normalized en- 
ergy consumption of e hit 

c and e miss 
c for a cache hit and cache miss 

respectively, the expected normalized energy consumption E can 
be represented as a function of the cache hit ratio h as follows; 
E(h ) = h ∑ 

∀ c p c e hit 
c + (1 − h ) ∑ 

∀ c p c e miss 
c 

We notice that E ( h ) is a linear function of h with a gradient of ∑ 
∀ c p c (e hit 

c − e miss 
c ) and a y-intercept of ∑ 

∀ c p c e miss 
c . If we assume 

that the content popularity of the four content sizes are similar to 

the PPTV dataset, E ( h ) linearly decreases at a rate of ∼ 0.77 along 
with h . Moreover, for h > 0.0968, the normalized energy consump- 
tion E ( h ) is less than one. Therefore, if the Crowd-Cache achieves at 
least a 10% hit rate, users are very likely to save on the device en- 
ergy consumption. 
7. Discussion and future work 

The Android implementation of CC-app and CC-server presented 
here are expected to be developed further to enhance the practi- 
cal feasibility of Crowd-Cache system in terms of user QoE and ap- 
propriateness, integrity, and authenticity of content. Standard prac- 
tices such as hash filtering (registering with content identification 
databases 9 ) will be carried out at the CC-server to identify and re- 
move inappropriate content from the Crowd-Cache similar to any 
other user-generated-content distribution service. In addition, ad- 
equate take down policy, terms of service usage and privacy pol- 
icy will be employed to address practical deployment issues of in- 
tegrity and content authenticity. 

We consider that the CC-server only caches content that are 
only cacheable as some of the video content providers may not 
allow users to cache content and as some content are exclusive to 
individual users. However, at the time when Crowd-Cache becomes 
a popular service, such an issue can be mitigated by negotiating 
with content providers since Crowd-Cache may enhance the dis- 
tribution of their content. Moreover, we also intend to negotiate 
with local content providers such as PPTV. Since their customers 

9 e.g. https://www.audiblemagic.com/content-databases/ 

https://www.audiblemagic.com/content-databases/
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are monthly subscribed users, the service provider’s requirement is 
to deliver the content to all users as cheapest as possible. The CC- 
app can be easily extended to support such a scenario, where there 
are separate channels for specific content providers, e.g. PPTV sub- 
scribed users to access PPTV content stored in a Crowd-Cache . We 
are in the process of conducting experimental evaluation of Crowd- 
Cache system in scale under real-world public transport networks 
in Thailand. 

In this paper, we focused on the analysis of a single Crowd- 
Cache networks. However in practice, it might happen that mul- 
tiple Crowd-Caches co-exist, and number of ways exist to take ad- 
vantage of that. For instance, it is possible to synchronize the bus 
drivers’ Crowd-Caches at least once a day at the bus depot. We aim 
to further investigate the effect of multiple Crowd-Caches in our fu- 
ture work. We also intend to evaluate the efficiency and the practi- 
cal feasibility of the proposed advertisement distribution system as 
an incentive scheme integrating with the developed Android app. 
8. Conclusion 

Mobile video traffic has been driving an explosive growth in 
the mobile data traffic, with users of smartphone devices strug- 
gling to limit their usage to monthly capped data plans. We pro- 
posed a novel crowd-sourced mobile system - Crowd-Cache , that 
enables users to consume popular content for free in areas such 
as public transport through mobile networking in proximity. The 
Crowd-Cache provider selects a set of users to deploy crowd- 
sourced Crowd-Cache devices ( CC-server ) in public places and create 
a cyber-physical space where users can exploit content. The smart- 
phone users can access the CC-server ’s content storage via the ( CC- 
app ) mobile app. An advertisement based incentive scheme has 
been developed for users to become CC-server users. Using a real- 
world dataset and probabilistic modeling, we showed that more 
than 50% cache hit rate can be achieved during bus ride in peak 
hours regardless of the content popularity distribution. Moreover, 
with a 128GB of Crowd-Cache storage, more than 80% of the users 
reduce their cellular network usage at least by 40%. Results could 
be generalized to different scenarios by adjusting parameters in 
our proposed system model. Finally, we demonstrated the feasibil- 
ity of the system by developing an Android application. Through- 
put, latency and device energy consumption of the CC-app was 
evaluated using the measurements from real devices. Results show 
that CC-app users lowers the device energy consumption compared 
to accessing the content through cellular networks, if the proposed 
system provides at least 10% of cache hit rate. 
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