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ABSTRACT
Social sensing has received growing interest in a broad range of
applications from business to health care. The potential benefits of
modeling infectious disease spread through geo-tagged social sens-
ing data has recently been demonstrated, yet it has not considered
contagion events that can occur even when co-located individuals
are no longer in physical contact, such as for capturing the dynamics
of airborne diseases. In this study, we exploit the location updates
made by 0.6 million users of the Momo social networking applica-
tion to characterize airborne disease dynamics. Airborne diseases
can transmit through infectious particles exhaled by the infected
individuals. We introduce the concept of same-place different-time
(SPDT) transmission to capture the persistent effect of airborne
particles in their likelihood to spread a disease. Because the survival
duration of these infectious particles is dependent on environmen-
tal conditions, we investigate through large-scale simulations the
effects of three parameters on SPDT-based disease diffusion: the air
exchange rate in the proximity of infected individuals, the infectiv-
ity decay rates of pathogen particles, and the infection probability of
inhaled particles. Our results confirm a complex interplay between
the underlying contact network dynamics and these parameters,
and highlight the predictive potential of social sensing for epidemic
outbreaks.
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1 INTRODUCTION
Social sensing is a rapidly emerging research field where individ-
uals play an important role in data collection. Social sensing in-
cludes data from social networking services, e.g, Facebook, Twitter
and Google+, where user opinions, behaviors, and feelings can
be collected through their online activities. It also includes the
environmental and location information collected by sensors that
are embedded in personal devices such as mobile phones. The po-
tential of these data has been utilised in the fields of marketing,
transportation, urban planning, and health care [1]. Social media
data has been recently shown to help predict infectious disease
spreading [3]. Geo-tagged data from social sensing have also high
potential to facilitate modeling infectious disease spread based on
human movement.

1.1 Related Work
A specific disease type that has not been extensively studied in the
context of social sensing is airborne infectious diseases (AID).These
diseases may be transmited from infected to susceptible individuals
that are in close proximity. An AID-infected individual generates
infectious pathogens as droplets through expiratory events like
coughing and sneezing which scatter in their proximity. Thus,
anybody within the reach of droplets may contract the disease by
inhaling these pathogens [7]. The study of AID has shown that the
generated droplets become light-weight particles after aerosaliza-
tion that may suspend in the air for a long time [24]. Susceptible
individuals may contract the disease if they visit an area where an
infected individual has recently visited, even if the latter has left
the location. In this case, there is no direct interaction (or contact)
between the infected and susceptible individuals, but there is an
indirect transmission path of pathogens (over time) through the
visited location. The direct transmission path where both individu-
als are present in the proximity can be termed as the same-place
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same-time (SPST) transmission. The indirect transmission path
over time can be termed as the same-place different-time (SPDT)
transmission. In SPDT, the probability of infection transmission
decays with the elapsed time after the infected individual leaves
the place as the generated pathogens are removed by air circulation
and lose their infectivity over time [21]. While infectious disease
spreading based on the SPST is widely studied [12], only few re-
searchers have considered the indirect path in developing epidemic
models [13, 17]. However, the influence of indirect transmission
paths due to SPDT is not studied separately to understand its impact
on epidemic spreading. Several studies have analysed the likeli-
hood of infection for being within a small geographic region, i.e.
locally [9, 20]. However, they did not analyse how this influences
epidemic phenomena, i.e. globally. As AID are known to spread
through indirect transmission paths, it is important to characterize
the SPDT for an accurate modelling of AID spreading.

Several researchers [10, 16, 19] have applied empirical contact
data to understand disease diffusion dynamics. These data are
collected from small communities such as schools, hospitals, and
conference venues. In these studies, the contact frequencies are
high and the spreading dynamics are overestimated. They do not
explain the disease spreading at larger spatial scales, such as where
spreading occurs within neighbourhoods, cities, or countries. Con-
tact information representing large populations can provide more
realistic modelling. Some researchers [2, 22] used cell-phone call
records to model human movements emulating large social net-
works. However, human movement can only be tracked at the
base-station level (covering a wide area in many cases, on average
within a 600 m error). Another approach of tracking the move-
ments of people at global level is to use air passenger data as in [8].
This data provides a human movement model for a larger commu-
nity but its spatial resolution of tracking individual locations is
explicitly low and cannot capture individual interactions. In addi-
tion, researchers also investigated the potential of using geotagged
Tweets for tracking the human movement as they provide finest
locations information of individuals [11]. However, the update
regularity varies significantly among users, leading to frequent
data sparsity. In addition, users have to opt-in for the inclusion of
geo-tags, limiting its ability to capture relevant contact for disease
spreading. Furthermore, AID spread modeling requires information
about co-location of the individuals that is not explicitly available
in geotagged tweets.

1.2 Contributions and Structure
In this paper, we investigate the impact of SPDT transmission on
disease spread through a data-driven study using social sensing.
Data-driven studies are the first step to understand the dynamics of
disease spreading on real contact networks. In previous data-driven
studies, the interaction data have been limited to a community or
a small number of individuals and thus cannot be used to analyze
epidemic phenomena on a large-scale network. In our study, we
exploit the location updates gathered by 0.6 million users of the
Momo application in the entire city of Beijing. Momo is a location-
based social networking application in which users locations are
updated to the Momo server continuously as they move during
the use of the app. The authors of [4] have collected about 356

million location updates for 6 million Momo users over 40 cities in
the world over a 71 day period. We derive contact networks for the
users in Beijing based on these location updates. For analysing AID
spreading phenomena on this network, we first formulate a generic
infection risk model to find the probability of infection by being in
close proximity. The air exchange rate (AER), the rate of decrease in
the infectiousness of airborne particles, and the infection probability
for a pathogen are the crucial factors to determine the infection
risk. We investigate how these parameters impact disease spread
and identify the contribution of the SPDT transmission. Finally, we
study the conditions for the disease to become a larger outbreak.
This paper is organised as follows. A generic formula for cal-

culating infection risk based on likely exposure is introduced in
Section II. We describe our methods for modeling disease dynamics
in Section III. Simulation results and analysis are presented in the
Section IV. In Section V, we discuss the outcomes and the limitations
of our study while Section VI concludes the paper.

2 INFECTION RISK FORMULATION
To investigate airborne disease propagation via the SPDT propaga-
tion model, we first formulate the infection risk of a person that
either has direct contact with an infected person or visits a location
where an infected person has recently been present. Infection risk is
modeled based on the availability of pathogen-containing particles
in the considered proximity. Consider an infected individual coughs
at a rate of f (cough/s) and each cough is of volume v (m3). If the
pathogen concentration in cough droplets is c (particle/m3), the
particle generation rate by an infected individual can be formulated
as:

д = f vc (particle/s) (1)
The generated droplets evaporate quickly and their fate is de-

termined by their sizes. Droplets below 5 µm in size dry down to
droplet nuclei, which can be suspended in the air for a long time
and can travel by air turbulence [14]. Droplets above 5 µm settled
down to ground quickly. Around 20% of generated droplets can
be in the range of 1 to 5 µm while droplets below 1 µm can be
ignored as their pathogen concentration is almost negligible. Thus,
the airborne particle generation rate by an infected individual is

д̄ = 0.2f vc (particle/s) (2)
In practice, these particles can be found 20m away from the sources [7],
and it has been shown to travel up to 100 m in the direction of air-
flow [9]. For simplicity, we consider that the particles are available
homogeneously within a radius d m from the source of generation
and up to a constant height h m. Thus, the generated particles will
be distributed in the air of volume:

V = πhd2 (m3) (3)
The number of particles that are added to unit volume each second
is:

n =
д̄

V
=

0.2f vc
πhd2

(particle/(sm3)) (4)

The particle concentration in the proximity of infected individu-
als continuously increases. However, in practice, there are environ-
mental factors that reduce the particale concentration. As the air in
a space is exchanged [6], particles are removed from the space and
their concentration in the air decreases. The particle concentration
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is also decreased due to the fact that the pathogen-carrying particles
lose their ability to cause infection over time. The rate of decrease
in particle infectivity depends on the humidity and temperature.
We consider that at the initial stage of aerosolization, (1 − ρ)% of
particles lose their infectivity and further α% of them lose their
infectivity every second thereafter [21]. If the air exchange rate is r
(1/s), the number of active particles in a unit volume after t seconds
of their generation will be:

nt = ρn (1 − r )t (1 − α)t

= ρnbt
(5)

where we define b = (1 − r )(1 − α). If an infected individual stays
t seconds in a location, the amount of active particles in a unit
volume at time t is the accumulative sum of particles that survive
until time t after their generation during time zero to time t . Thus,
the number of active particles at time t exhaled by an infected
individual can be computed as:

Nt =

∫ t

0
ρnbt−t

′
dt

′

=
ρn

ln (b)
(
1 − bt

) (6)

If a susceptible individual with a pulmonary rate ofq stays within
d meters of the infected individual from time t0 to t1, the exposure
for direct contact Ed can be given by the following equation:

Ed = q

∫ t1

t0
Ntdt

=
qρn

ln(b)

∫ t1

t0

(
1 − bt

)
dt

=
qρn

[ln (b)]2
[
(t1 − t0) ln (b) + bt1 − bt0

]
(7)

If the infected individual leaves the location, the generated particles
persist in the proximity which may infect susceptible individual. If
the infected individual leaves the location at time t1, the particle
concentration decreases as follows:

Nt = Nt1b
t−t1

If a susceptible individual stays at the location from time t2 to t3,
the exposure to the indirect contact Ei is :

Ei = q

∫ t3

t2
Nt1b

t−t1dt

=
qNt1
ln (b)

(
bt3−t1 − bt2−t1

) (8)

The time t2 is equal to time t1 if the susceptible individual has
arrived at the location before the infected individual left otherwise
t2 is greater than t1. The total exposure of the susceptible individual
due to both paths to the pathogen-carrying particles created by
individual is

E = Ed + Ei (9)
If the susceptible individual interacts with n infected individual in
the same location, the total exposure is given by:

ET =
n∑

k=0
Ek (10)

where Ek is the total exposure due to the kth infected individual.
According to theWells-Riley model [20], the probability of infection
for the estimated exposure is given:

P = 1 − e−γ ET (11)

where γ is the infectivity parameter for the particles.

3 METHODOLOGY
In this section, we present our methodology of evaluating the im-
pact of SPDT transmission that leverages the derived probability of
infection by (11), an epidemic dissemination model, and a contact
network derived from a large-scale real world user mobility dataset.

3.1 Empirical Data
We utilize location information of the social discovery network
Momo1. Momo enables the interaction of nearby users by sharing
the user location with other users in the proximity. Every time a
user launches the Momo app, a location update is forwarded to the
Momo server. The server sends back the latest location updates of
all users within the close proximity. We have previously collected
these location updates via a set of network API provided by Momo
servers in every 15 minutes for a period of 71 days (during May
to October 2012) [23]. The dataset contains 356 million location
updates from about 6 million Momo users around the world, but
primarily in China. Each database entry includes coordinates of
the location, time of update and user ID. In this study, we only
consider the updates from Beijing, the city with the highest number
of updates, for the period of 33 days from 17 September, 2012 to 19
October, 2012. This dataset has almost 56 million updates from 0.6
million users.

3.2 Epidemic Model
We adopt the susceptible-exposed-infected-recovered (SEIR) epi-
demic model to emulate airborne disease propagation over the
dynamic contact network formed by the traces of the Momo users.
Individuals are in one of four states any time and change the states
as in a stochastic process through the four possible disease states,
namely, susceptible (S), exposed (E), infectious (I) and recovered
(R). If a susceptible individual in state S comes into contact with
an infected individual, they will be exposed to infectious particles
and may contract the disease. At the beginning of contraction, a
susceptible individual enters the state E where they cannot infect
others. The exposed individuals will be infectious (I) after a latency
period of σ−1 days with a rate σ . The infected individual contin-
ues to produce infectious particles over its infection period of µ−1
days until they enter the recovered state R. Here, µ is the rate of
recovering from the disease. It has been shown that σ−1 ranges
between 1 to 2 days and µ−1 between 3 to 5 days for influenza-like
diseases [5]. As the values can vary for each individual even for the
same disease, we draw the parameters from a uniform distribution
within the observed empirical ranges. We use the probability of
infection (11) as the disease transmission probability.

1https://www.immomo.com
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Figure 1: Link creation and its timing

3.3 Disease Transmission Links
We utilize the location updates of Momo users to infer the potential
infection dissemination links based on the proposed infection risk
formulation and epidemic propagation model. We consider that
there exists a disease transmission link eBA between users A and B,
when a susceptible user Amakes a location update within δ seconds
and distance d of a location update made by an infected user B.
Here, δ is the maximum infectivity period of pathogen particles
and d is the maximum distance infection particles travel.

Fig. 1 illustrates an example timing diagram where B circles
represent the updates of the user B and the A circles present the
updates of the user A. At time t3, the user A is within d distance
of the location B has updated at time t1. Therefore, a link (dashed
arrow from B to A) is established from time t1. The subsequent
updates of B are compared with the current update of A until the
update time of B is greater than t3 or the distance is greater than d .
Thus, A has a link with B for the location updated at t2. For the next
update of A, the process repeats in checking all updates between
t1 and t5 and the link is extended until the next update of B. For
the update at t7, A has a link with B at t1, t2 and t4 but not at t6 as
their distance is beyond d for this update. Time t4 is the departure
time of B from the proximity of A. With the update at t8, the link
eBA is broken and t7 is the proximity departure time for A.The link
lasts from t1 to t7 during which A inhales particles generated by
B in the period of t1 to t4 through the direct path of duration (τd )
and indirect path of duration (τi ). The link creation process repeats
for all updates of A.The user A can have several such links with
the user B. Each link has three separate periods: initial pathogen
store time τs when the infected individual exhales pathogens before
the susceptible is around, the direct inhalation period τd when the
susceptible and infected individuals are within proximity, and the
indirect inhalation period τi when the infected has left the location
but the susceptible continues inhaling the particles. Any period
may have a zero value but τs and τi should be less than δ . We form
two separate networks for our simulation 1) SPDT where links
include all periods and 2) SPST where links exclude the indirect
inhalation period τi .

4 SIMULATION AND ANALYSIS
4.1 Simulation Setup
In this section, we use trace-driven simulations to explore the im-
pact of the SPDT transmission on airborne disease spread across
three parameters that underpin the diffusion process: air exchange
rate (AER), infectivity decay rate, and infection probability by an
inhaled pathogen. At the beginning of each simulation run, we
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(a) SPST contact network
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(b) SPDT contact network

Figure 2: The influence of air exchange rate on disease
spreading

%(/)0c$cvpvl
%(/)0c$cvpvn
%(/)0c$vpv1
%(/)0c$cvpv2
%(/)0c$cvpv3

%
&'
()
'(
c*
+(
,)
-)
./
(

3v

lvv

l3v

nvv

n3v

1vv

13v
2vv

%)0
3 lv l3 nv n3 1v

(a) SPST contact network

%(/)0c$cvpvl
%(/)0c$cvpvn
%(/)0c$vpv1
%(/)0c$cvpv2
%(/)0c$cvpv3

%
&'
()
'(
c*
+(
,)
-)
./
(

3v

lvv

l3v

nvv

n3v

1vv

13v
2vv

%)0

3 lv l3 nv n3 1v

(b) SPDT contact network

Figure 3:The disease prevalence changes with various decay
rates

randomly infect 100 users that have at least 5 contacts in the en-
tire traces while other users are assumed to be susceptible. The
simulation model of disease propagation determines which users
are entering into the exposed state at the current day of simula-
tion. To calculate the probability of a susceptible user becoming
infected, we estimate the exposure of each user for all links created
in the current day of simulation and accumulate over all the links.
The accumulated exposure determines the probability of becom-
ing infected, i.e, changing state to exposed state. We generate the
incubation period from a uniform distribution in the range of 1
to 2 days and the infectious period from a uniform distribution in
the range of 3 to 5 days. The next day’s simulation starts with the
exposed individuals and remaining infected individuals that have
not yet recovered. We characterize the disease diffusion dynamics
via the prevalence of disease Ip , which is the number of infected
individuals in the current day, and the total infections It caused
during the simulation period.

We set the distance d , within which a susceptible individual can
inhale the infectious particles from infected individuals, to 20m [7].
We also assume that the particles can be scattered up to the ceiling
height h of 3m. We set the other parameters as follows: cough
frequency f = 18 (cough/hour) [15], total volume of the cough
droplets v = 6.7 × 10−3 (ml) [25], pathogen concentration in the
expiratory fluid c = 3.7 × 106 (particles/m3) [13], and pulmonary
rate q = 7.5 (l/min) [25].

In our first experiment, we study the impact of the air exchange
rate on the SPDT based diffusion dynamics. The AER is the pro-
portion of air particles that are circulated out of an area per hour.
If particles stay for longer, there is a higher chance of infecting
others. The AER, r , in residential areas varies according to the type
of the buildings and seasons. The authors of [18] reported that AER
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Table 1: Result summary of all experiments

r α γ Pmx (di) Pmx (d) Idi Id Ci

0.25 335 240 1448 972 49%
0.50 301 174 1276 872 46%
1.00 0.03 0.05 181 120 819 422 94%
1.50 125 117 406 238 70%
2.00 122 117 194 169 14%

0.01 385 226 2103 1070 96%
0.50 0.02 0.05 333 199 1641 950 72%

0.04 176 123 833 476 75%
0.05 146 121 287 218 31%

0.09 531 343 2711 1489 82%
0.50 0.03 0.08 488 314 2499 1332 87%

0.07 436 264 1934 1218 90%
0.06 373 173 1695 1017 94%

Table 2: Description of studied and model parameters

Symb Description Symb Description
r (h−1) Air exchange rate Idi Total infection in SPDT

α (min−1) Infectivity decay rate Id Total infection in SPST
γ Infection prob by a pathogen Pmx (di) Maximum prevalence in SPDT

Ci (%) Contribution of SPDT Pmx (d) Maximum prevalence in SPST

varies between 0.01 h−1 to 1.6 h−1. The AER varies when opening
doors, opening windows and using exhausts fans, or in open versus
closed spaces. We assume the AER varies within the range [0.01,
4] h−1 with various medians. We run the simulations for medians
2, 1.5, 1, 0.5 and 0.25 h−1, while setting the mean infectivity decay
rate of droplet nuclei α to 0.03/min and it is within the range 0 to
0.05. Each simulation is repeated ten times and the results report
the average of the simulation runs. In Table 1, we summarize the
results for the maximum prevalence of disease and total infection
occurred during the simulation period, and the increase in total
number of infections for SPDT relative to SPST. Table 2 defines the
notations used in the Table 1.

4.2 Results
Figure 2 plots the results comparing the SPST and SPDT spreading
with varying AER. Overall, SPDT results in up to five times higher
peak prevalence depending on the value of AER. For the high AER
value of 2, where all the air circulates out of the area twice per hour,
prevalence subsides once the initial infected individuals recover
indicating that the high air circulation rates prevent any disease
outbreaks. For smaller values of AER, SPDT leads to a significant
increase in prevalence compared to SPST as the persistence of links
in the contact network counteracts the effects of air circulation
and the likelihood of individual encounters leading to infection
increases. For AER=1.5, SPDT leads to a sustained prevalence of
around 50 individuals, while SPST maintains fewer than 10 infected
individuals. For higher AER, the rate of increase in prevalence with
SPDT relative to SPST decreases. With smaller air circulation rates,
the particles remain for longer in the air, but their infectivity also
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Figure 4: The changes in disease dynamics with the infec-
tiousness of pathogen

decreases over time, which limits the growth in the likelihood of
infection.

In the above experiment, we have studied disease prevalence for
a constant mean infectivity rate of 0.03 min−1. To model the effects
of temperature and humidity on the rate at which the particles lose
their infectivity, we analyze the effect of infectivity decay rate with
constant AER median of 0.5 h−1 that is calculated as the median for
the residential areas in the Beijing [18]. We change the infectivity
decay rate between 0.01 to 0.05 min−1. Figure 3 shows the results
for disease spreading on SPDT and SPST networks while varying
IDR. SPDT leads to higher overall and peak prevalence (increase of
70-200%) over SPST for all decay rates. For the highest decay rate
of 0.05, SPST fails to trigger any outbreak while SPDT causes an
infection peak at around 21 days. For SPDT, slower decay rates in
particle infectivity generally amplify this effect as links that survive
longer due to indirect transmission paths are more relevant when
the particles are infective for a longer period.

So far we assume that the probability of infection for an inhaled
pathogen is 0.05 [13]. To model the impact of changing infection
probability of a pathogen, we vary the infection probability between
0.05-0.09 with average conditions of AER 0.5 h−1 and infectivity
decay rate 0.03 min−1. The results are shown in Figure 4. As the
infectivity of the pathogen increases, the outbreak peak grows in
amplitude and width (duration). The peak prevalence is around 510
for SPDT with the infection probability 0.09 compared to around
330 for SPST. The number of total infected individuals for SPDT
and SPST over the simulated period of 33 days are 2711 and 1489
respectively.

5 DISCUSSION
The main goal of our study has been to characterize the SPDT trans-
mission process for AID. SPDT has strong dependency on individual
movements and weather conditions. To understand the interplay
of these parameters has required to study SPDT on real traces. In
our study, we use social sensing traces from location-based social
networking application Momo. Our simulations on a contact net-
work of 0.6 million individuals with realistic disease parameters
did not result in sustained epidemics. This is partly because the
airborne path is one transmission route among other routes in AID
and we consider only the infectious particle exhalation through
coughs. The lack of sustained epidemics may also be due to the
relatively small number of initially infected individuals (100 out
of 0.6 million). However, the simulation results shows that SPDT
transmission has a dominant role in AID spreading, signifcantly
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increasing the total infections by up to 94% over SPST in the 33
day period. Specific scenarios modelling high air circulation or
pathogen decay rates highlight the capacity of SPDT to lead to
outbreaks when SPST fails to grow the number of infected indi-
viduals. While the SPST-based network shows slow progress of
disease at moderate AER and infectivity decay rates, SPDT causes
more infection and sensitive to the weather conditions due to its
characteristics. There is also a complex interplay between the pa-
rameters we consider. For instance, smaller air circulation rates for
SPDT starts to have diminishing effect at some point as pathogen
infectivity decays over time.

Our approach has several limitations that we leave for future
work. The Momo dataset allows us to construct a large-scale net-
work for characterizing airborne disease spreading. However, some
Momo users do not regularly use the application. Thus, a complete
trajectory of an individual movement can not be tracked using this
data as several locations of each user are not included in the updates.
Secondly, the position estimates are often approximated by WiFi ac-
cess points when users are indoors. In our infection risk model, we
assume a homogeneous spatial distribution of infectious particles.
An interesting direction for future work is to use a heterogeneous
spatial-temporal distribution of particles.

The SPDT transmission model provides insights into the spread-
ing dynamics of AID as well as other diseases whose transmission
can be described by SPDT. The concept of SPDT can also be rel-
evant to other diffusion networks such as modeling information
propagation in ant colonies and content dissemination in online
social networks by posting and reposting mechanisms.

6 CONCLUSION
In this study, we proposed the new concept of the same-place
different-time to cover both direct and indirect disease transmis-
sion processes such as airborne infectious diseases. Based on the
proposed SPDT framework, we modeled the spread of AID by in-
corporating realistic environmental factors such as air exchange
rate and infectivity decay rate. Also, we conducted simulations
using Momo data and showed that SPDT can cover indirect air-
borne disease transmission in all the experimental cases, in contrast
to the same-place same-time. Future work will be to investigate
the effects of network structures on disease spread with diverse
experimental setups and extend the proposed model to study the
countrywide disease outbreaks.
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