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ABSTRACT Small-cell caching utilizes the embedded storage of small-cell base stations (SBS) to cache
popular network contents, for the purpose of reducing duplicate transmissions in mobile networks and
offloading the data traffic from macro-cell base stations. In this paper, we propose a random small-cell
caching system, where each SBS randomly caches a subset of popular contents with a specified caching
probability. We particularly focus on the probability that mobile users can successfully download their
requested files from the SBSs, namely, successfully downloading probability (SDP). A sophisticated path-
loss model incorporating both line-of-sight (LoS) and non-LoS (NLoS) transmissions is introduced into the
SDP analysis. By modeling the distribution of the SBSs as a Poisson point process, we develop theoretical
results of the SDP performance based on stochastic geometry theory. Additionally, we investigate the impacts
of the parameters of the SBSs, i.e., transmission power and deployment intensity, on the SDP. Monte Carlo
simulations show the consistency with our derived SDP. Also, numerical results validate our analysis on the
related parameters and their impacts on the SDP performance.

INDEX TERMS Wireless caching, content-centric communications, small-cell networks, stochastic
geometry, NLoS channels.

I. INTRODUCTION
Wireless data traffic has been increasing dramatically in
recent years due to the proliferation of smart mobile devices
and various mobile applications. The driving forces behind
this traffic growth have fundamentally shifted from being
the steady increase in demand for connection-centric com-
munications, such as phone calls and text messages, to the
explosion of content-centric communications, such as mobile
video streaming and content sharing. Network traffic obser-
vation indicates that mobile users’ requests usually concen-
trate on a small portion of popular contents, e.g., movies
and blockbusters [1], thereby leading to a large amount of
duplicate transmissions of these contents. Motivated by this
observation, intelligently caching some popular contents into
network nodes has been proposed to effectively reduce the
duplicate transmissions as well as offload data traffic from
macro-cell base stations [2]. Caching in 3G and 4G mobile
networks is shown to be able to reduce the traffic by one third
to two thirds [3]–[5].

Generally, wireless caching consists of two phases: a con-
tent placement phase and a content delivery phase [6].
In the content placement phase, popular contents are cached
into the storage units of network nodes that are close to
mobile users (MU). In the content delivery phase, the cached
popular contents can be quickly retrieved to serve the MUs.
Usually, the content placement phase is carried out during
off-peak hours. In this sense, caching can shift the traffic load
from peak hours to off-peak hours, alleviating the backhaul
congestion.

Several caching strategies for wireless networks have been
proposed recently. The authors in [7] analyzed the strat-
egy of caching contents in the Evolved Packet Core of the
LTE networks. In [8] and [9], the authors studied the strat-
egy of caching in radio access networks, with an aim to
push the contents even closer to the MUs. The concept of
‘‘Femtocaching’’ proposed in [9] and [10] utilized femto-
cell base stations in heterogeneous cellular networks as dis-
tributed caching devices. Additionally, caching strategies
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for the device-to-device (D2D) networks were investigated
in [11]–[13], where each mobile terminal caches part of
popular contents and exchanges information with each other
via D2D communications.

FIGURE 1. The system model of small-cell caching.

Since currently small-cell base stations (SBS) have been
widely deployed in heterogeneous cellular networks [14], this
dense deployment of SBSs provides a basis for implementing
the caching technology, referred to as small-cell caching,
as illustrated in Fig. 1. In the small-cell caching, popular
contents are cached into the storage of SBSs, and ready
to be fetched by the MUs. Current research on the small-
cell caching mainly focuses on the deterministic placement,
where contents are placed and optimized for fixed networks,
i.e., assuming that the locations of network nodes and the
channel state information are known beforehand [9], [15].
However, in practice, the distribution of the SBSs and the
wireless channels vary from time to time.

In this paper, we consider a random small-cell caching sys-
tem, in which each SBS randomly caches a subset of popular
contents with a specified caching probability. We consider
such a system in the context of a stochastic network, where
the distribution of SBSs follows a Poisson point process, the
wireless channels in the network are Rayleigh fading, and the
path-loss model embraces both line-of-sight (LoS) and non-
line-of-sight (NLoS) paths. To evaluate the performance of
the caching system, we focus on the probability that mobile
users (MU) can successfully download their requested files
from the SBSs, namely, successfully downloading proba-
bility (SDP). We develop the SDP expression based on the
stochastic geometry theory. Since the derived SDP expression

is complicated, we propose a simplified formulation of
the SDP with the help of mathematical approximations.
Furthermore, we investigate the impacts of the parameters of
the SBSs, i.e., transmission power and deployment intensity,
on the SDP. Monte-Carlo simulations are shown to be consis-
tent with our derived SDP expressions. Numerical results also
validate our analysis on the impacts of the related parameters
on the SDP.

The rest of the paper is organized as follows. We first
describe the system model in Section II and discuss the
random caching process in Section III. Then we conduct
the performance analysis of the proposed caching strategy
in Section IV. Our simulations and numerical results are
provided in Section V, and conclusions are summarized
in Section VI.

II. SYSTEM MODEL
A. NETWORK MODEL
Let us consider a cellular network consisting of multipleMUs
and SBSs that are operating on the same frequency spectrum.
We model the distributions of the SBSs and the MUs as two
independent homogeneous Poisson point processes (HPPP)
8 and 9, with the intensities λs and λu, respectively. The
transmission power of the SBSs is denoted by P. The path-
loss function of the channel from an SBS to anMU is denoted
by ζ (d), where d represents the distance between them. The
multi-path fading is modeled as Rayleigh fading with unit
power, and hence the channel power gain of the multi-path
fading is denoted by h ∼ exp(1). All channels are assumed to
be independently and identically distributed (i.i.d.).
As well known, the standard path-loss function can be

calculated as ζ (d) = d−α . Empirically, the exponent α
ranges from 2 to 5. Although this standard path-loss function
has been widely adopted, it has some limitations, especially
when analyzing the densely and randomly distributed SBSs.
Thus, we will focus on another path-loss model in the follow-
ing, which is more practical in real systems, distinguishing
whether the path loss is the type of LoS or NLoS. According
to 3GPP [16], when considering the impact of LoS/NLoS, the
path-loss function is expressed as

ζ (d) =

{
ζL(d) , A1d−α1 , for LoS,
ζN(d) , A2d−α2 , otherwise,

(1)

where A1 and A2 are the path losses at a reference distance
d = 1 for the LoS and NLoS cases, respectively. Also,
α1 and α2 are the exponents corresponding to the LoS and
NLoS, respectively. Generally, we have α1 < α2, i.e., the
path loss in LoS channels is smaller than that in the NLoS
ones. The path-loss model in Eq. (1) is currently supported
by 3GPP [16].

Denote by L the event that the path between a trans-
mitter and a receiver is an LoS path. Typically, the prob-
ability of L is a monotonically decreasing function with
respect to the distance d between them. According to 3GPP,
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the LoS probability is represented by

Pr(L) =

1−
d
d1
, 0 < d ≤ d1,

0, d > d1,
(2)

where d1 is a distance threshold. In the case d ≤ d1, the
probability of LoS is a linearly decreasing function of d .
When d > d1, the contribution of LoS to the path loss
will disappear and the channels are considered to be NLoS.
Furthermore, in the scenario where d1 = ∞ and α1 = α, the
path-loss model defined in Eq. (1) degrades to the standard
path-loss model.

B. CONTENT REQUEST MODEL
Assume that network contents are stored in the form of files.
We consider a file library consisting of M popular files with
the same size. We denote by q = [qm : m = 1, · · · ,M ]
the popularity vector, where qm represents the probability
that them-th file is requested by theMUs. The vector q can be
viewed as the request probability mass function (PMF) of the
M files. According to [17], the request PMF of the files can be
modeled as a Zipf distribution, and the request probability qm
is calculated as

qm =
1
mτ∑M
i=1

1
iτ
, (3)

where τ is the exponent of the Zipf distribution. A larger τ
implies a more uneven popularity distribution among those
files. From (3), the probability of requesting a particular
popular file goes to zero as M → ∞ when τ < 1, while
it converges to a constant value for τ > 1.
Due to the limited storage, each SBS cannot cache the

entire file library. Therefore, we assume that the library is
partitioned into N non-overlapped subsets, referred to as file
groups (FG). Each SBS can only cache one of these N FGs,
while an FG can be stored by multiple SBSs. The scenario of
FGs with overlapping subsets of files will be considered later,
which will be compared to the non-overlapping scenario. We
denote by Gn the n-th FG, n ∈ {1, · · · ,N }. The probability
that an MU requests a file in file group Gn, denoted by Qn, is
thus given by

Qn =
∑
l

ql, ∀l, s.t. the l-th file is in Gn. (4)

III. RANDOM SMALL-CELL CACHING
The random caching strategy consists of two stages. In the
first stage, namely, file placement stage, each SBS inde-
pendently caches an FG, say Gn, with a specified caching
probability, denoted by Sn. Hence, from the perspective of
the entire network, the fraction of the SBSs that caches Gn
is on average equal to Sn. Since the distribution of SBSs in
the network is modeled as an HPPP with the intensity of λs,
according to the thinning theorem in HPPP [18], we can view
the distribution of SBSs that cache Gn as a thinned HPPP with
the intensity of Snλs.

We assume that at a particular time instant an MU can
only request one file, and hence the distribution of MUs who
request the files in Gn can be modeled as a thinned HPPP with
the intensity Qnλu. We view the SBSs that cache Gn together
with the MUs that request the files in Gn as the n-th tier of the
network, denoted by Tier-n.

In the second stage, namely, file delivery stage, theMU that
requests a file in Gn will associate with an SBS that caches Gn,
and then tries to download the file from it. Generally, each
MU tends to associate with the SBS which can provide the
strongest received signal strength (RSS). The RSS from an
SBS depends onmany factors, such as the transmission power
of the SBS, the distance and channel status between the SBS
and the MU. Since the transmissions powers of the SBSs are
assumed to be the same, statistically the nearest SBS provides
the strongest average RSS.

Therefore, in our paper, we assume that when an MU
requests a file, it will associate with the nearest SBS
that cache it. Furthermore, to guarantee the transmission
quality, we assume that only when the received signal-to-
interference-and-noise-ratio (SINR) at the MU is no lower
than a pre-set threshold, say, δ, can the requested file be
successfully downloaded.

IV. PERFORMANCE ANALYSIS
In this section, we develop the average probability of the
eventD that an MU can successfully download the requested
file from its associated SBS in the random caching, namely,
average successful download probability Pr(D).

A. RECEIVED SINR
To obtain Pr(D), we start from the probability that a
typical MU in Tier-n, say, located at the origin, can success-
fully download the requested files from its associated SBS.
According to Slyvnyak’s Theorem [18], the received SINR γn
at this typical MU from its nearest SBS in Tier-n can be
formulated as

γn =
Phx0ζ (‖x0‖)∑

xj∈8\{x0} Phxjζ (‖xj‖)+ σ
2 , (5)

where σ 2 denotes the Gaussian noise power at the MU,
x0 denotes the location of the serving SBS which is the
nearest to the typical MU in Tier-n, and xj denotes the
location of the interfering SBSs in 8. Also, hx0 and hxj
denote the corresponding power gains of the channel
fading.

Let δ be the pre-set SINR threshold, i.e., the min-
imum SINR required for successful transmissions, and
let Dn be the event that the typical MU in Tier-n can
successfully download the requested file from its associ-
ated SBS. Then the probability of Dn can be formulated
as

Pr(Dn) = Pr(γn ≥ δ). (6)
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Based on the result of Pr(Dn) in Tier-n, we obtain the average
probability of the event D as

Pr(D) =
N∑
n=1

Qn · Pr(Dn). (7)

We can see from Eq. (7) that Pr(Dn) is the key to obtaining
Pr(D). Therefore in the following, we focus on the analysis
of Pr(Dn).
Note that in the scenario, when the different FGs may

have an overlapping subset of files, the probability Pr(D)
still has the same formulation as Eq. (7). However, all the
subscripts n in Eq. (7) should be changed to m, because we
should consider both the request probability and the caching
probability of each file Fm, i.e., Sm and Qm, instead of each
FG Gn. Therefore, in this scenario, the specific SBSs that
cache Fm and the MUs that request Fm are viewed as Tier-m.
Since the formulations of SINR and Pr(D) are the same, we
omit the analysis for this scenario with overlapping subsets
of files for brevity.

B. ANALYSIS OF Pr(Dn)
To simplify the notation, we define z , ‖x0‖ as the distance
between the typical MU and its nearest SBS in Tier-n. Since
in Tier-n the deployment intensity of SBSs is Snλs, and the
number of the SBSs k in an area of A follows the Poisson
distribution, the probability of the event that there is no SBS
in the area with the radius of z can be calculated as [18]

Pr(k = 0 | A = πz2) = e−ASnλs
(ASnλs)k

k!
= e−πz

2Snλs . (8)

By using the derivative of (8), we can obtain the prob-
ability density function (PDF) of z, denoted by fn(z),
as fn(z) = 2πSnλsz exp(−πSnλsz2).

Based on Eq. (6), the probability that the typical MU
can successfully download the requested file in Gn can be
calculated as

Pr(Dn) = E [1(γn(z) ≥ δ)]

=

∫
∞

0
Ehx0 ,I

[
1

(
ζ (z)hx0
I + σ 2

P

≥ δ

)]
fn(z)dz, (9)

where I is defined as I ,
∑

xj∈8\{x0} hxjζ (‖xj‖), 1(·) is the
indictor function, and EX [·] denotes the expectation over the

variable X . As for the calculation of Ehx0 ,I
[
1
(
ζ (z)hx0
I+ σ

2
P

≥ δ

)]
in (9), by applying the distribution of hx0 , i.e., hx0 ∼ exp(1),
we have

Ehx0 ,I

[
1

(
ζ (z)hx0
I + σ 2

P

≥ δ

)]

= exp
(
−
δσ 2

Pζ (z)

)
EI
[
exp

(
−
δI
ζ (z)

)]
= exp

(
−
δσ 2

Pζ (z)

)
LI

(
δ

ζ (z)

)
, (10)

where LI (κ) is the Laplace transform of the random
variable I evaluated at κ .
Based on the path-loss model in Eq. (1) and Eq. (2), the

calculation of Pr(Dn) in (9) contains three parts: 1) When
z ≤ d1 and the LoS path happens with the probability Pr(L);
2) When z ≤ d1 and the NLoS path happens with the
probability 1 − Pr(L); 3) When z > d1 and only NLoS path
exists. Substituting (1) and (2) into (9), we have

Pr(Dn)

=

∫ d1

0
Ehx0 ,I

[
1

(
ζL(z)hx0
I + σ 2

P

≥ δ

)](
1−

z
d1

)
fn(z)dz

+

∫ d1

0
Ehx0 ,I

[
1

(
ζN (z)hx0
I + σ 2

P

≥ δ

)]
z
d1
fn(z)dz

+

∫
∞

d1
Ehx0 ,I

[
1

(
ζN (z)hx0
I + σ 2

P

≥ δ

)]
fn(z)dz. (11)

According to Eq. (10), we need to calculateLI

(
δ

ζL (z)

)
and

LI

(
δ

ζN (z)

)
for Eq. (11). In the case z ≤ d1, the received

signal, as well as the interference, comes from both the LoS
paths and the NLoS paths.

In the case z > d1, the received signal, as well as the
interference incurred by the SBSs of the same tier, comes
only from the NLoS paths, while the interference incurred
by other tiers comes from both the LoS paths and the NLoS
paths. Based on the range of z, we have the following theorem
regarding LI

(
δ

ζL (z)

)
and LI

(
δ

ζN (z)

)
.

Theorem 1: In the range of 0 < z ≤ d1, LI

(
δ
ζ (z)

)
can be

calculated by

LI

(
δ

ζ (z)

)
= exp

(
−λs2π

(
21

(
α1, 1,

ζ (z)
δA1

, d1

)
−

1
d1
21

(
α1, 2,

ζ (z)
δA1

, d1

)))
× exp

(
−λs2π

(
1
d1
21

(
α2, 2,

ζ (z)
δA2

, d1

)
+ 22

(
α2, 1,

ζ (z)
δA2

, d1

)))
× exp

(
Snλs2π

(
21

(
α1, 1,

ζ (z)
δA1

, z
)

−
1
d1
21

(
α1, 2,

ζ (z)
δA1

, z
)
+

1
d1
21

(
α2, 2,

ζ (z)
δA2

, z
)))

.

(12)

Here, ζ (z) can be either ζL(z) or ζN (z).
On the other hand, in the range of z > d1, since the received

signal only contains the NLoS part, we have

LI

(
δ

ζ (z)

)
= LI

(
δ

ζN (z)

)
, (13)
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which can be calculated by

LI

(
δ

ζN (z)

)
= exp

(
−λs2π

(
22

(
α2, 1,

ζN (z)
δA2

, d1

)))
× exp

(
− (1− Sn)λs2π

((
21

(
α1, 1,

ζN (z)
δA1

, d1

)
−

1
d1
21

(
α1, 2,

ζN (z)
δA1

, d1

)
+

1
d1
21

(
α2, 2,

ζN (z)
δA2

, d1

)))
× exp

(
Snλs2π

(
21

(
α2, 1,

ζN (z)
δA2

, z
)

− 21

(
α2, 1,

ζN (z)
δA2

, d1

)))
. (14)

In Eqs. (12) and (14), we have

21(α, β, u, d)

,
∫ d

0

rβ

1+ urα
dr

=
d (β+1)

β + 1 2F1

(
1,
β + 1
α
; 1+

β + 1
α
;−udα

)
, (15)

and

22(α, β, u, d)

,
∫
∞

d

rβ

1+ urα
dr =

d−(α−β−1)

u(α − β − 1)

×2F1

(
1, 1−

β + 1
α
; 2−

β + 1
α
;−

1
udα

)
, (α > β+1),

(16)

where 2F1(·, ·; ·; ·) represents the hyper-geometric function.
Proof: Please refer to Appendix A.
From the above analysis, by substituting Eqs. (12), (14)

and (10) into Eq. (11), we can thus obtain the analytical result
of Pr(Dn).

C. DISCUSSIONS ON PARAMETERS
1) TRANSMISSION POWER P
We analyze the impact of the power P on Pr(Dn), and have
the following remark.
Remark 1: From Theorem 1, we can see that LI (κ) is

independent of the transmission power P. Further combined
with Eq. (10), we conclude that Pr(Dn) increases with the
enhancement of P. However, when P is large enough, the
item exp

(
−

δσ 2

Pζ (z)

)
in Eq. (10) approaches to one. In this case,

Pr(Dn) converges to a constant in terms of P.

2) DISTANCE THRESHOLD d1
We consider two limit cases of the distance threshold d1,
namely d1 → 0 and d1 → ∞. Both cases can be viewed as
the standard path-loss model. In the case d1→ 0, only NLoS
paths present and LoS paths will disappear, and the path-loss
function can be written as ζ (d) = d−α2 . In the case d1→∞,

only LoS paths present and NLoS paths will disappear, and
the path-loss function is ζ (d) = d−α1 . We have the following
theorem.
Theorem 2: For the two limit cases of d1, the probability

Pr(Dn) can be expressed as

lim
d1→0

Pr(Dn)

=

∫
∞

0
πSnλs exp

(
−
zα2δσ 2

P

)
× exp

(
−πλsz2((1−Sn)C(δ, α2)+ SnA(δ, α2)+Sn)

)
dz2,
(17)

and

lim
d1→∞

Pr(Dn)

=

∫
∞

0
πSnλs exp

(
−
zα1δσ 2

P

)
× exp

(
−πλsz2((1−Sn)C(δ, α1)+ SnA(δ, α1)+Sn)

)
dz2,
(18)

where A(δ, α) , δ 2
α−2 2F1

(
1, 1− 2

α
; 2− 2

α
;−δ

)
, and

C(δ, α) , 2
α
δ

2
α B
(
2
α
, 1− 2

α

)
. Furthermore, B(·) represents

the beta function.
Proof: Please refer to Appendix B.
Considering d1→ 0, when the transmission power P goes

to infinity, the item exp
(
−
zα2 δσ 2
P

)
in Eq. (17), approaches

one. Then we have the closed form of Pr(Dn) as

lim
d1→0,P→∞

Pr(Dn) =
Sn

(1− Sn)C(δ, α2)+ SnA(δ, α2)+ Sn
.

(19)

Similarly, we can obtain limd1,P→∞ Pr(Dn) by replacing α2
in Eq. (19) with α1.
Remark 2: From above discussions, when d1 → 0 (or

d1→∞) and P→∞, the probability Pr(Dn) is independent
of the deployment intensity λs.

D. SIMPLIFIED EXPRESSION VIA APPROXIMATIONS
For those general cases 0 < d1 <∞, the results in Theorem 2
are not applicable. At the same time, the expression of Pr(Dn)
in Eq. (11) is quite complicated, and thus cannot provide
insightful results for a better understanding of Pr(Dn). In this
subsection, we will focus on how to obtain a simplified form
of Pr(Dn) via some approximations. First, we can neglect the
third item of Eq. (11), since signals ranged from z to infinity
is quite weak compared with that ranged from 0 to z. Second,
we can further neglect the second item, since signals from the
NLoS paths is quite weak compared with those from the LoS
paths. Therefore, Pr(Dn) in Eq. (11) can be approximated as

Pr(Dn) ≈
∫ d1

0
Ehx0 ,I

[
1

(
ζL(z)hx0
I + σ 2

P

≥ δ

)]

×

(
1−

z
d1

)
fn(z)dz. (20)
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Next, we observe the expression of LI

(
δ
ζ (z)

)
in Eq. (12).

According to (15) and (16), we can see that both
21(α, β, u, d) and 22(α, β, u, d) decrease exponentially
with the increase of α. Since we have α2 > α1, we neglect
those items in Eq. (12) that contain α2 as a parameter.
Therefore, LI

(
δ

ζL (z)

)
can be approximated as

LI

(
δ

ζL(z)

)
≈ exp

(
−λs2π

(
21

(
α1, 1,

ζL(z)
δA1

, d1

)
−

1
d1
21

(
α1, 2,

ζL(z)
δA1

, d1

)))
× exp

(
Snλs2π

(
21

(
α1, 1,

ζL(z)
δA1

, z
)

−
1
d1
21

(
α1, 2,

ζL(z)
δA1

, z
)))

. (21)

By substituting Eq. (21) into Eq. (20), we can obtain the
simplified expression of Pr(Dn). Compared with the exact
calculation of Pr(Dn) in Subsection B, the above approx-
imation on Pr(Dn) can dramatically reduce the calculation
complexity by two thirds.

E. FURTHER ANALYSIS WITH A SPECIAL CASE α1 = 2
As we have simplified the expression of Pr(Dn), we will
further consider the approximations in the following special
case. According to 3GPP [16], the practical value of the LoS
parameter α1 is 2.09. Therefore, in the following analysis, we
set α1 = 2 for simplicity. First, according to the definition of
21 in Eq. (15), we have

21

(
α1 = 2, 1,

ζL(z)
δA1

, d1

)
=

d21
2 2F1

(
1, 1; 2;−

d21
δz2

)

=
δz2

2
ln

(
1+

d21
δz2

)
. (22)

Similarly, we have

21

(
α1 = 2, 1,

ζL(z)
δA1

, z
)
=
δz2

2
ln
(
1+

1
δ

)
. (23)

Then we focus on

21

(
α1 = 2, 2,

ζL(z)
δA1

, d1

)
=
d31
3 2F1

(
1,

3
2
;
5
2
;−

d21
δz2

)
. (24)

According to the properties of the hyper-geometric function,
the following two equations hold:

2F1

(
1,

3
2
;
5
2
;−

d21
δz2

)
=

3δz2

d21

(
1−2F1

(
1,

1
2
;
3
2
;−

d21
δz2

))
,

2F1

(
1,

1
2
;
3
2
;−

d21
δz2

)
=

√
δz
d1

arctan
(
d1
√
δz

)
. (25)

By combining Eqs. (24) and (25), we can then obtain

21

(
α1 = 2, 2,

ζL(z)
δA1

, d1

)
= δz2d1 − δ

√
δz3 arctan

(
d1
√
δz

)
.

(26)

Similarly, there is

21

(
α1 = 2, 2,

ζL(z)
δA1

, z
)
= δz3 − δ

√
δz3 arctan

(
1
√
δ

)
.

(27)

Based on the above discussions, we can rewrite Eq. (21) with
the closed-form as

LI

(
δ

ζL(z)

)
= exp

{
−λs2π

(
δz2

2
ln

(
1+

d21
δz2

)
− δz2

+ δ
√
δ
z3

d1
arctan

(
d1
√
δz

)
−
Snδz2

2
ln
(
1+

1
δ

)
+
Snδz3

d1
− Snδ

√
δ
z3

d1
arctan

(
1
√
δ

))}
. (28)

V. NUMERICAL RESULTS
In this section, we present numerical and Monte-Carlo sim-
ulation results of Pr(D) versus various parameters. In the
Monte-Carlo simulations, the performance is averaged over
500 network cases, and in each case SBSs and MUs are
randomly distributed in an area of 5 × 5km2 according to
HPPP. Unless otherwise specified, the parameters throughout
this section are arranged as follows. First, to comply with the
3GPP standards [16], the transmission power and the noise
power are set toP = 30dBm (i.e., 1Watt) and σ 2

= −95dBm
(i.e., 10−12.5 Watts), respectively. Second, the parameters
related to the path-loss model also comply with [16]. To be
specific, we set α1 = 2.09, A1 = 10−10.38, α2 = 3.75,
and A2 = 10−14.54. Also, we set the distance threshold to
d1 = 0.3km.
Regarding the intensity of the HPPP distributed SBSs, we

have λs = 100/km2, representing that there are on average
100 SBSs per kilometer square. Additionally, we consider a
file library consisting of M = 100 files, which is divided
into N = 5 file groups, i.e., each SBS stores 20 files. The
Zipf exponent is set as τ = 1.4. We consider a simple
grouping strategy that the m-th file belongs to the FG Gn if
m ∈

[M
N (n− 1)+ 1, · · · , MN n

]
, ∀n ∈ {1, · · · ,N }. Note that,

the way on packing which files into a group does not affect
our theoretical derivations, since it only changes the values
of the request PMF {Qn}. For the caching probability, we set
Sn = Qn.
In all the following figures, three SINR thresholds are

investigated, i.e., δ = −3dB, −6dB, and −10dB. Fig. 2
shows the numerical (solid-line) and simulation results
(dashed-line) of Pr(D) when the transmission power of SBSs
grows from −40dBm to 40dBm. Note that the numerical
results are obtained based on the analysis in Subsection B
of Section IV. We can see that our analytical results are
highly consistent with the simulation ones. A smaller δ leads
to a higher Pr(D). Also, it is shown that Pr(D) increases
monotonically with P. In particular, when P is in the range
from−40dBm to 0dBm, Pr(D) increases dramatically withP.
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FIGURE 2. The numerical and simulation results of Pr(D) versus various
values of transmission power. The solid-line represents the analytical
results, and the dashed-line represents the Monte-Carlo simulations.

On the other hand, when P is large enough, say, P ≥ 10dBm,
further increasing P will not improve Pr(D). These phenom-
ena are consistent with our discussions in Remark 1.

FIGURE 3. The performance of Pr(D) versus various values of λs.

After verifying our analytical results by Monte-Carlo sim-
ulations, in the following, we only discuss the performance
of Pr(D) based on the analytical results. Fig. 3 shows the
Pr(D) versus various values of λs. Roughly speaking, Pr(D)
first increases and then drops down with the increase of λs.
However, Pr(D) is not always a convex function of λs, as
there are saddles that can be seen in the curves. In contrast,
Fig. 4 plots the standard path-loss model when d1 approaches
0, i.e., only NLoS remains, based on Eq. (17). It is shown
that Pr(D) first increases and then keeps constant in terms
of λs. Three power levels are investigated, i.e., P = 10dBm
(dashed-line), P = 30dBm (dotted-line), and P = 50dBm
(solid-line). We can see that when P is large enough, Pr(D)
will be independent of λs. This verifies our discussions in
Remark 2.

FIGURE 4. The performance of Pr(D) versus various values of λs for there
standard path-loss model, where we have d1 → 0. Three power levers are
investigated, i.e., P = 10dBm (dashed-line), P = 30dBm (dotted-line), and
P = 50dBm (solid-line).

FIGURE 5. The performance of Pr(D) versus the file popularity
exponent τ . The solid-line represents the exact results, while the
dashed-line represents the approximated results.

Fig. 5 shows the impact of the file popularity parameter τ
on Pr(D), where the solid-line represents the results for the
exact calculation of Pr(D), while the dashed-line represents
the approximated ones obtained by Eq. (20). First, it is shown
that the approximated calculation on Pr(D) derived is highly
constant with the exact one. Furthermore, we can see from the
figure that when the exponent of Zipf distribution increases,
Pr(D) increases accordingly. This means that a more uneven
popularity among the files will further improve the successful
download probability. We also investigate the impact of the
storage size of the SBSs on the performance.

Fig. 6 shows the performance of Pr(D) versus various
storage sizes. Again, it is shown that the approximate Pr(D)
matches the exact one. Furthermore, a large storage size helps
to increase the successful download probability.
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FIGURE 6. The performance of Pr(D) versus various storage size, i.e, the
number of files in each FG. The solid-line represents the exact results,
while the dashed-line represents the approximated results. We consider
the following storage size: 2,5,10,20,25 and 50. Correspondingly, there
are 50,20,10,5,4 and 2 FGs.

VI. CONCLUSIONS
In this paper, we analyzed the performance of a random
caching strategy considering the impact of LoS and NLoS
and the HPPP distributed SBSs based on stochastic geometry
theory. Specifically, we analyzed the probability of the event
that an MU can successfully download its requested files
from the storage of the associated SBSs, i.e., Pr(D). The
impacts of P and λs on this probability was also inves-
tigated. From the analysis and simulations, we concluded
that increasing the SBSs’ transmission power P is helpful
to improve the successful download probability. However,
Pr(D) keeps constant when P is large enough. Also, there
exists an optimal λs to maximize the successful down-
load probability. However, in the standard path-loss model,
when P is large enough, the Pr(D) will be independent
of λs. Finally, we showed that a larger disparity among the
files’ popularity and a larger storage size will improve the
performance.

APPENDIX A
PROOF OF THEOREM 1
According to [18], we have

LI (κ) = EI
[
exp (−κI )

]
= EI

exp
−κ ∑

xj∈8\{x0}

hxjζ (‖xj‖)


= Ehxj ,xj

 ∏
xj∈8\{x0}

exp
(
−κζ (

∥∥xj∥∥)hxj)


= Exj

 ∏
xj∈8\{x0}

1

1+ κζ (
∥∥xj∥∥)



= exp
(
−λs2π

∫
∞

0

(
1−

1
1+ κζ (r)

)
rdr

+ Snλs2π
∫ z

0

(
1−

1
1+ κζ (r)

)
rdr

)
, (29)

where to simplify the notation, we use r ,
∥∥xj∥∥. The inter-

ference I comes from two parts: the SBSs in other tiers which
locate in the entire area of the network, and the SBSs in the
n-th tier whose distances with the typical MU are larger than
z. Since distribution of the SBSs in other tiers can be viewed
as an HPPP with intensity (1− Sn)λs.
The first integral of (Eq. 29) can be calculated as∫

∞

0

(
1−

1
1+ κζ (r)

)
rdr

=

∫ d1

0

(
1−

1
1+ κζL(r)

)
×r Pr(L)dr +

∫
∞

d1

(
1−

1
1+ κζN (r)

)
rdr

+

∫ d1

0

(
1−

1
1+ κζN (r)

)
r(1− Pr(L))dr . (30)

After some manipulations, we arrive at∫
∞

0

(
1−

1
1+ κζ (r)

)
rdr

=

∫ d1

0

(
1

1+ (κA1)−1rα1

)
rdr

−

∫ d1

0

(
1

1+ (κA1)−1rα1
+

1
1+ (κA2)−1rα2

)
r2

d1
dr

+

∫
∞

d1

(
1

1+(κA2)−1rα2

)
rdr = 21 (α1, 1, (κA1)−1, d1

)
−

1
d1
21(α1, 2, (κA1)−1, d1)+

1
d1
21(α2, 2, (κA2)−1, d1)

+22(α2, 1, (κA2)−1, d1). (31)

For the second integral of Eq. (29), in the case z ∈ (0, d1),
we have∫ z

0

(
1−

1
1+ κζ (r)

)
rdr

=

∫ z

0

(
κζL(r)

1+ κζL(r)

)
r Pr(L)dr

+

∫ z

0

(
κζN(r)

1+ κζN(r)

)
r(1− Pr(L))dr

= 21(α1, 1, (κA1)−1, z)−
1
d1
21(α1, 2, (κA1)−1, z)

+
1
d1
21(α2, 2, (κA2)−1, z). (32)

Furthermore, when z > d1, we have∫ z

0

(
1−

1
1+ κζ (r)

)
rdr

=

∫ d1

0

(
1−

1
1+ κζL(r)

)
r Pr(L)dr
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+

∫ z

d1

(
1−

1
1+ κζN(r)

)
rdr

+

∫ d1

0

(
1−

1
1+ κζN(r)

)
r(1− Pr(L))dr

= 21(α1, 1, (κA1)−1, d1)−
1
d1
21

(
α1, 2, (κA1)−1, d1)

+
1
d1
21(α2, 2, (κA2)−1, d1)

+21(α2, 1, (κA2)−1, z)−21(α2, 1, (κA2)−1, d1). (33)

This completes the proof. �

APPENDIX B
PROOF OF THEOREM 2
When d1 goes to infinity, Pr(Dn) in Eq. (11) can be rewritten
as

Pr(Dn) =
∫
∞

0
Ehx0 ,I

[
1

(
ζL(z)hx0
I + σ 2

P

≥ δ

)]
fn(z)dz

=

∫
∞

0
EI
[
exp

(
−zα1δI

)]
× exp

(
−
zα1δσ 2

P

)
2πSnλsz exp(−πSnλsz2)dz.

(34)

For the item EI
[
exp (−zα1δI )

]
, we can follow a similar

derivation method in Appendix A and let d1 → ∞. Then
we have

EI
[
exp

(
−zα1δI

)]
= exp

(
− 2π

N∑
i=1,i 6=n

Siλs
1
α1
δ

2
α1

(
2
α1
, 1−

2
α1

)
z2

− Snλsπz2
2δ

α1 − 2 2F1

(
1, 1−

2
α1
; 2−

2
α1
;−δ

))
.

(35)

By substituting Eq. (35) into Eq. (34), we obtain
limd1→∞ Pr(Dn). By following the same method, we can find
limd1→0 Pr(Dn) for the case d1 → 0. This completes the
proof. �
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