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ABSTRACT 

The increase in the number of degrees of freedoms (DoF) 
that is afforded by multiple-input-multiple-output (MIMO) 
phased arrays is accompanied by an increase in hardware and 
computational costs. We mitigate this problem in a collocated 
MIMO phased array system by employing a selection strat­
egy where a subset of K transmitter-receiver (Tx-Rx) pairs is 
chosen from the available N pairs. We formulate the selection 
task as an optimization problem using the spatial correlation 
coefficient (SCC). Minimizing the SCC leads to an increase in 
the orthogonality of the signal and interference subspaces. We 
formulate and solve both the joint Tx-Rx selection problem 
and factored selection where the Tx and Rx are decoupled and 
treated separately. We show that both approaches can achieve 
excellent trade-off between performance and cost. While the 
factored problem compromises performance with respect to 
the joint Tx-Rx selection, it allows for better transmit power 
efficiency, thus increasing the received signal-to-noise ratio. 

Index Terms- MIMO Radar, Adaptive array beamform­
ing, antenna selection, convex optimization 

1. INTRODUCTION 

Multiple-input-multiple-output (MIMO) phased array radar, 
[1], continues to be the subject of intense research. A MIMO 
phased array transmits a set of noncoherent orthogonal wave­
forms that is extracted at the receiver by a set of matched filter 
banks. The diversity in the waveforms provides additional de­
grees of freedom (DoFs) with respect to standard phased ar­
rays and leads to superior performance in terms of detection, 
spatial resolution, and parameter identifiability [2,3]. 

Spacetime-adaptive processing (STAP) for phased arrays 
enables the design of optimum space-time adaptive filters to 
mitigate the effects of clutter and jamming signals [4,5]. Full 
dimension STAP, however, is plagued by high computational 
cost and slow convergence due to the severe requirements 
on training data for the filter design. A number of dimen­
sionality reduction approaches have been proposed over the 
years to tackle these issues. Low-rank and reduced-dimension 
techniques rely on the low-rank property of the interference 
signals to reduce the dimensionality of the covariance ma­
trix [6,7]. The beamformer is then designed by a reduced 

dimensional filter. Single snapshot and hybrid approaches, 
e.g. [8], improve the convergence by alleviating or eliminat­
ing altogether the need for training data. They do not how­
ever address the computational complexity problem. Alterna­
tively, dimensionality reduction can be achieved by approach­
ing the problem from the compressive sensing and sparsity­
awareness perspective [9]. 

Antenna selection strategies, on the other hand, have been 
proposed to simultaneously reduce the hardware and compu­
tational cost while preserving the performance [10,11]. As­
suming the number of front-ends (or channels) is limited, a 
switching scheme was proposed to select a subset of K of the 
available N antennas. This is done to maximize the separa­
bility between a desired signal subspace and an interference 
subspace. These approaches have been extended to antenna­
pulse selection in STAP [12]. 

STAP methods are also applicable in MIMO phased ar­
ray by extending the datacube to include the extra dimension 
generated by the orthogonal waveforms [1]. Although, this 
gives an increase in the rank of the jammer and clutter sub­
space, the application of STAP is more challenging and com­
putationally expensive [13], and dimensionality reduction be­
comes more critical. To this end, a sparsity aware algorithm 
has been proposed for target localization and DOA estima­
tion in collocated MIMO phased array systems in [14]. The 
authors propose a random array architecture in which a low 
number of transmit/receive elements are randomly distributed 
over a large aperture. However, the antenna placement is then 
fixed and a potential DoF is not exploited. Sparsity has also 
been used in distributed MIMO phased array in [15], but the 
method still involves all measurements. 

In this paper, we develop an approach to reduce both the 
measurements and processing requirements in a collocated 
MIMO phased array system using a transmitter-receiver (Tx­
Rx) pair selection strategy. For a MIMO system with M 
transmitters and N receivers, the Tx-Rx pair selection in­
volves selecting a subset of K out of the available M N pairs 
to maximize the separation between a desired and parasitic 
directions of arrival (DOAs). We formulate this problem as 
a non-convex optimization and obtain solutions using relax­
ation methods. However carrying out the selection at the 
matched filter end requires the use of all transmit and receive 
channels. Therefore, we present a factored selection strategy 
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where the Tx and Rx selection problems are decoupled and 
solved separately. Although this reduces the solution space 
with respect to the joint selection problem, it does provide 
a more efficient scheme for the radar power utilization and 
allows for the SNR to be enhanced. Finally, we demonstrate 
through simulations that both selection strategies significantly 
reduce computation and hardware costs while maintaining a 
performance that is comparable to that of the full array. 

The remainder of the paper is organized as follows. In 
section 2 we formulate the Tx-Rx selection problem for 
MIMO arrays. In section 3 we discuss the performance of the 
joint and factored selection approaches in terms of cost and 
power utilization. Section 4 presents some simulation exam­
ples to illustrate the performance of the proposed strategies. 
Finally, some conclusions are given in section 5. 

2. RECONFIGURABLE MIMO PHASED ARRAY 

The ability of phased arrays to simultaneously steer a beam 
toward a signal of interest and many nulls in specific (inter­
fering) directions is determined by the spatial correlation co­
efficient (SCC) [16]. The SCC has a direct relationship to the 
output signal to interference plus noise ratio (SINR), which 
is dependent on the generalized inner product of the steer­
ing vectors of the signal and interference [l7]. The gener­
alized inner product, and hence the SCC, can be interpreted 
as the cosine of the angle between the signal and interfer­
ence subspaces. An SCC that is 0 implies that the signal and 
interference are mutually orthogonal. Thus, minimizing the 
SCC leads to an enhanced ability of the array processing al­
gorithms to carrying interference nulling. 

In MIMO systems the selection is a multidimensional 
optimization problem on the matched filters (that is Tx-Rx 
pairs). Below, we formulate both the joint Tx-Rx selection 
and factored Tx and Rx version and discuss their properties. 

2.1. Joint Tx-Rx selection 

Consider a MIMO phased array with M transmitters and 
N receivers. The system employs M mutually orthogonal 
waveforms at the transmitter and a corresponding set of M 
matched filters at each receiver element. The contributions of 
all transmitter and receiver pairs give a corresponding virtual 
array and an associated increase in the number of DoFs. The 
locations of the virtual elements are given by the convolution 
of the locations of the transmitters and receivers [18] . 

Let the location of the transmitters P T and receivers P R 

be defined as 

X T ,l YT,l XR ,l 

YR'l X T ,2 YT ,2 XR ,2 YR ,2 
PT = , PR = . . (1) 

X T ,M YT ,M X R ,N YR ,N 

Fig. 1. Collocated MIMO phased array example. 

Fig. 2. MIMO virtual array 

Then the positions of the M N virtual array elements are 

(2) 

where I N is a length-N vector with elements equal to 1, and 
o is the Kronecker product. An example of a collocated 
MIMO phased array is shown in Fig. 1. The array includes 
3 transmitters and 9 receivers positioned on a uniform 3 x 3 
grid. The virtual array for this configuration is depicted in 
Fig.2. Let (¢s ,Bs) and (¢j , Bj) be the DOAs (azimuth and 
elevation) of the desired signal and interference respectively. 
The steering vectors of the signal and interference are 

(3) 

where 

(4) 

The spatial correlation coefficient, which gives the degree 
of orthogonality between the signal and noise subspaces is 
defined as 

H Vj Vs 
Il vj llllvsll 

H Vj Vs 
MN 

(5) 

We now introduce a selection vector c that specifies whether a 
particular element is selected or not. Thus, the i-th element, Ci 

takes on a value of 1 if the corresponding element is selected, 
and 0 otherwise. Assuming K out of M N matched filters are 
active, SCC squared can be written as 

(6) 
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where W r is expressed as 

Wr = real(vjsvfs) , (7) 

and 

(8) 

This can be interpreted as the selection of a subset of ele­
ments from the virtual array, or equivalently a subset ofTx-Rx 
pairs or matched filters within the MIMO array. Recall that 
the goal here is to minimize the see and enhance the separa­
tion between the signal and interference subspaces. Thus, the 
joint Tx-Rx selection problem can be expressed as 

min lajs I2 
c 

S.t . Ci ( Ci - 1) = 0 i = L.MN, (9) 

and cTc = K. 

This binary selection problem is a non-convex optimization 
and is known to be NP-hard. Therefore we use two relax­
ation methods, specifically the Lagrange dual (LD) and direct 
semidefinite programming (SDP), to obtain lower bounds on 
the see [10]. 

2.2. Factored Tx and Rx selection 

The joint selection problem puts constraint only on the num­
ber of output matched filters. Since any subset of filters is a 
possible solution, the entire set of transmitters must necessar­
ily transmit their waveforms. When the matched filters cor­
responding to a particular transmit element are not used, this 
leads to wasted transmit power. This problem can be avoided 
by factorizing the selection problem into transmit and receive 
sub-problems. Suppose that we select KT out of M transmit 
elements and KR out of the available N receive elements. The 
overall selection vector is then c = CT ® CR, where, CR and CR 
are the selection vectors for transmitters and receivers, recep­
tively. The factored see becomes 

1 . 12 - (~ ® cR)TWr(~ ® cR ) (10) 
al B - (KT X K R)2 . 

Thus, the factored TxIRx selection problem can be expressed 
as 

S.t. Cr,i(Cr,i - 1) = 0 i = L.M, 

CR ,i (CR ,i - 1) = 0 i = L.N, 

c~~ = K T , 

c~ CR = K R • 

Now we factorize W r as 

(11) 

(12) 

Using the properties of the KronecKer product, the numerator 
of Eq.1O is rewritten as 

(~ ® cRfWr(cT ® cR) = (cT ® cRf(Wr,T ® Wr,R)(CT ® cR) 

= (~Wr,T ® ~Wr,R)(Cr ® cR ) 

= (C~Wr,TCr)(C~Wr,RCR)' (13) 

Thus the factored see in Eq.1O can be expressed as a mul­
tiplication of two sees with respect to transmitters and re­
ceivers, 

and the selection can be solved as two separate sub-problems. 

3. DISCUSSION 

The factored Tx-Rx selection operates on a subspace of 
solutions that is included in the joint Tx-Rx optimization. 
Therefore, the factored problem reduces the search space 
and hence computational cost of obtaining the solution, but 
may not achieve the global solution of the joint problem. 
However, selecting a subset of transmitters allows the avail­
able total transmit power to be allocated only to the chosen 
elements. This is in contrast to the joint selection problem 
where all transmitters must be operational to guarantee that 
all matched filters are available for selection. Thus, assum­
ing a total available transmit power Pe = PT , the transmit 
power per element in the factored case is Pe = PT / KT as 
opposed to PT / M for the joint selection case. To illustrate 
the effect this has on the output SINR, we consider a scenario 
where a total transmit power PT is available. Now the power 
received by the m-th matched filter in the n-th receiver is 
Pn ,m = aPe, where a represents the channel gain (including 
target cross-section.) Assuming that the interference is much 
stronger than the noise, the output SINR can be expressed 
as [10]: 

Pe ( 2) SINRoUI = aK (J"2 1 - lajs l , (15) 

where (J" 2 is the variance of the noise. This expression shows 
the interplay between the input signal to noise ratio and the 
see for the joint and factored approaches. Whereas the see 
in the factored case may not be the global optimum that can be 
obtained in the joint optimization, the input power is higher 
and consequently the output SINR is increased. Nonetheless, 
turning transmitters off leads to better power efficiency. It 
is important to note that the allowable transmit power per ele­
ment may be capped (due to the available transmitter dynamic 
range) which may limit the gain achievable by the factored 
approach. 
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4. SIMULATION 

eonsider a MIMO phased array system compnsmg a 5-
antenna uniform linear collocated array. The azimuth angle 
of the signal of interest is assumed to be 1Ys = 0. 37f, while that 
of the interference azimuth, 1Yj, is varying from 0 to ~. We 
aim to select k = 6 Tx-Rx pairs for the joint problem and 2 
Tx and 3 Rx elements for the factored version. The minimum 
see value is calculated first by exhaustive search for both 
cases and the lower bounds are computed using evx [19]. 
The solution space for joint problem contains e:) = 177100, 
however for the factored problem this number is reduced to 
@ x (~) = 100. The results for both cases are depicted 
in Fig. 3. Firstly note that the lower bounds are tight as the 
curves coincide. Furthermore, the see obtained by joint se­
lection is generally lower than that of the factored approach. 
This confirms that the joint selection achieves the global so­
lution over all possible Tx-Rx. The factored selection, on the 
other hand, is suboptimal as it operates on a subspace of the 
possible solutions. 

We now set the interference elevation 1Yj = 0.17f and 
solve the selection problem for an increasing subset of anten­
nas ranging from 1 to 25. For the factored case, the number of 
elements is calculated by factorizing 1 to 25 excepts the prime 
numbers. Where more than one factorization is possible, the 
one with the minimum number ofTx elements is used. As can 
be seen in FigA, the joint selection outperforms the factored 
version for different number of selected elements. 

Finally, we compare the performance of the joint and fac­
tored approaches in terms of the output SINR. The results in 
Fig. 5 show that the factored approach is able to achieve a 
higher SINRout . This is due to the increase in transmitted 
power per element, Pe, which counteracts the degradation 
in the achievable see value. The effect of the increase in 
Pe is made clear by showing the curve corresponding to a 
Pe = PT / M which is the value used in the joint selection. 
Also notice that the output SINR given by the joint selection 
remains comparable with that of the full array even when a 
significantly smaller number of pairs are used. For instance 
selecting 15 out of 25 Tx-Rx pairs would substantially reduce 
the computational cost of the STAP processing but would re­
sult in less than 0.5 dB loss with respect to the full array 
(13.56 dB). In the factored case, however, the increase in Pe 

can have a much more pronounced effect than the see and 
therefore an improvement on the full array can be obtained. 

5. CONCLUSION 

In this paper, we proposed Tx-Rx pair selection for MIMO 
phased array radar in order to achieve significant hardware 
and computational cost savings. We formulated the joint Tx­
Rx selection problem as an non-convex optimization and used 
relaxation methods to study the solution. Furthermore, we 
presented a factored version that reduces the size of the so-
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Fig. 3. Optimum see squared vs. lower bounds for joint 
Tx-Rx and factored TxlRx problems. 
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Fig. 4. Optimum see squared for different number of an­
tenna subset. 
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Fig. 5. SINRout for different number of antenna subset. 

lution space, yet is able to achieve comparable or even better 
output signal to interference and noise ratio than the joint so­
lution. We presented simulation results that show the effec­
tiveness of the proposed techniques in reducing the problem 
dimensionality while maintaining a performance that is com­
parable to the full array. 
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