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Abstract—The main obstacle for the implementation of
multiple-input multiple-output (MIMO) phased arrays is the
large number of matched filters due to the waveform diversity
provided. In this paper, we propose an array thinning technique
targeted at MIMO phased arrays with a limited number of
matched filters in each receiver. We formulate this thinning
problem as a subproblem of joint Tx-Rx selection which chooses
k transmitter-receiver (Tx-Rx) pairs from the available N pairs.
We then show that the solution space of the new problem is highly
overlapped with the global joint selection. Hence, the matched
filter constrained (MFC) selection, which operates over a far
smaller space achieves the solution with less computational effort.

Keywords—Array thinning, MIMO radar, adaptive array beam-
forming, STAP, antenna selection, convex optimization.

I. INTRODUCTION

The success of multiple-input multiple-output (MIMO)
communications led to the application of MIMO arrays as an
effective mechanism for enhancing radar system performance
[1]. This is due to the advances in orthogonal frequency
division multiplexing (OFDM) and code division multiple ac-
cess (CDMA), which enable transmission diversity. A MIMO
phased array comprises an array of antennas, transmitting a set
of noncoherent orthogonal waveforms that can be extracted at
the receiver by a corresponding number of matched filters. Im-
proved spatial diversity, parameter identifiablity, and detection
performance result from the added degrees of freedom (DoFs)
in MIMO phased arrays compared to the single-input multiple-
output (SIMO) phased arrays [2], [3].

The advantages of the MIMO configuration are delivered at
the expense of a significant increase in the problem dimension-
ality. For a standard SIMO system using a uniformly spaced
linear array, it has been shown that the information extracted
from the elements includes redundancy due you a spatial
correlation lag [4]. This redundancy can be avoided either by
designing a minimum-redundancy linear array (MRLA) [5], or
thinning the full array by a smaller subset of elements [6]–[8].
Generally each receiving element (antenna patch) is connected
to a dedicated front-end which is a great deal more expensive
than the receiving element itself. The dedicated front ends
add hardware cost to the computational cost that afflict large
arrays. This problem is further exacerbated in large MIMO
arrays where the dimensionality of the problem is given by the

product of the number of receive elements with the number of
transmit waveforms. Thus, the increasing use of large arrays
in MIMO systems makes array thinning an important tool
to reduce the redundancy as well as the computational and
hardware costs.

Array thinning can be developed by adaptive spatial sam-
pling [9] and non-uniform sparse array design [10]. Generally,
the channel capacity, resolution, estimation performance, and
directional detection are dependent upon the array aperture
and geometry. The idea of minimum redundancy has been
successfully applied to the design of physical Tx/Rx arrays
to form MIMO virtual arrays with maximum contiguous
aperture, i.e., minimum redundancy virtual arrays (MRVA)
[11]. Furthermore, the two-level autocorrelation property of
the difference sets (DSs) has been successfully exploited to
maximize the virtual aperture [12].

In this work we focus on the problem of array thinning
for large adaptive MIMO phased array in order to economize
the system in terms of hardware and computational costs. We
first introduced the idea of MIMO phased array spatial thinning
for interference cancellation for spacetime-adaptive processing
(STAP) in [13]. In that work we formulated the joint Tx-
Rx selection problem as a non-convex optimization and used
relaxation methods to study the solution. Furthermore, we pre-
sented a factored version that reduces the size of the solution
space while being able to achieve comparable or even better
output signal-to-interference-plus-noise-ratio (SINR) than the
joint solution. Another challenge in MIMO phased arrays is
the large number of matched filters needed for the full array.
As noted the dimensionality of the signal space in a MIMO
system is given by the number of matched filters multiplied
by the number of orthogonal waveforms, which can be quite
large. We propose to apply array thinning to the reduce the
number of matched filters. In particular, we propose MIMO
phased array spatial thinning for interference mitigation in a
STAP framework when there is limited number of matched
filter in each receiver.

The paper is organised as follows. The idea of MIMO array
spatial thinning is reviewed in section II. Then the matched
filter constrained (MFC) version is elaborated in section III
and the lower bounds and discussion is presented in section
IV. Finally some conclusions are drawn in section V.
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II. MIMO ARRAY THINNING BY JOINT TX-RX
SELECTION

The performance of MIMO phased arrays can be char-
acterized by a larger virtual array. The positions in the new
virtual array are obtained as the combination of the location
of the transmitters by the receivers. Let the locations of the
transmitters PT and receivers PR be defined as

PT =


xT,1 yT,1
xT,2 yT,2

...
...

xT,M yT,M

 , PR =


xR,1 yR,1
xR,2 yR,2

...
...

xR,N yR,N

 . (1)

Then, the output convolution can be expressed in terms of the
MN virtual array elements as follows

PV = PR ⊗ 1M + 1N ⊗ PT, (2)

where ⊗ is the Kronecker product and 1N is a length-N vector
with elements equal to 1.

The spatial steering vectors of the desired signal and an
interference coming from (φs, θs) and (φj , θj) respectively are
given by

vs = ej
2π
λ PVus , vj = ej

2π
λ PVuj , (3)

where

ui = [sin θi cosφi sin θi sinφi]
T . (4)

The spatial separability of the desired signal and interfer-
ence can be represented by the angle between the signal and
interference subspaces. It is measured by the spatial correlation
coefficient as follows

αjs =
vHj vs
‖vj‖ ‖vs‖

=
vHj vs√

vHj vj
√

vHs vs
=

vHj vs
MN

. (5)

Specifically, the SCC gives the cosine of the angle between
the two subspaces. Therefore, the SCC is equal to 0 when the
signal and interference are mutually orthogonal. In general, a
smaller SCC relates to a larger separation between the two
subspaces.

Now suppose that we want to select a subset k of matched
filters out of the MN available filters. We introduce a length
MN selection vector c comprising entries that are 1 or 0, with
1 indicating that the corresponding MF is selected and 0 that
it is not. The SCC can then be expressed as [8]

|αjs|2 =
cTWrc
k2

, (6)

where Wr is

Wr = real(vjsvHjs), (7)

and

vjs = vs � vTj . (8)

For the vector v, we use vH and vT to denote the complex
Hermitian transpose and transpose, respectively. The notation
� represents Hadamard product and real(·) denotes the real
part of a complex matrix or vector.

Fig. 1. The solution space in MIMO spatial array thinning.

Using the above formulation, a minimization problem can
then be constructed with the aim of enhancing the separation
between the signal and interference subspaces. This is equiv-
alent to minimising the SCC and the problem is expressed as

min
c
|αjs|2

s.t. ci(ci − 1) = 0 i = 1...MN, (9)
and cT c = k.

We now rewrite the selection vector as the following selection
matrix

C =



Tx1 Tx2 · · · TxM
Rx1 c1,1 c1,2 · · · c1,M
Rx2 c2,1 c2,2 · · · c2,M
...

...
...

. . .
...

RxN cN,1 cN,2 · · · cN,M

, (10)

such that,
c = vec{C}, NM × 1.

Therefore, ci,j is the element that indicates whether the j-th
matched filter (which extracts the j-th waveform) in the i-
th receiver is selected. In the general joint selection case, we
choose the matrix entries without any additional restriction on
the structure.

This problem can be interpreted as the selection of a subset
of elements from the virtual array (see Fig. 1). However,
the feasible solution space for this optimization has some
important subspaces. The joint selection optimization problem
puts a constraint only on the number of output matched filters.
Since any subset of filters is a possible solution, the entire
set of transmitters must necessarily transmit their waveforms.
If the matched filters corresponding to a particular transmit
element are not used, keeping the transmitting element active
leads to wasted transmit power. This situation can be avoided
by factorizing the selection problem into a transmit and receive
sub-problems. Suppose that we select kT out of M transmitting
elements and kR out of the available N receive elements. The
overall selection matrix becomes C = cT × cTR , where cR and
cR are the selection vectors for transmit and receive sides
receptively. To factorize the problem we write the selection
vector as c = cR⊗ cT. In [13] we showed that this formulation
leads to a factored problem with transmitter and receiver
factors. The feasible subspace for the factored problem is the
intersection of the optimum Tx and Rx feasible subspaces as
shown in Fig. 1.

The factored formulation enables us to manage the trans-
mitter power and as a result the SNR. Moreover, the number
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of receivers is decreased which leads to a great hardware
reduction. However, a specific receiver should be active with
all of the corresponding matched filters. Additionally, as shown
in our previous work the number of transmitters and receivers
is reduced at the expense of diminished spatial diversity. To
maintain the spatial diversity that is offered by MIMO arrays
while at the same time reducing the hardware and computation
overheads, the selection should be applied directly to the
number of matched filters in each receiver. In this way, the
spatial diversity can be preserved yet the system dimension
can be significantly decreased.

III. MATCHED FILTER CONSTRAINED MIMO ARRAY
THINNING

Placing a limit on the number of matched filters in each
receiver requires control over the sum of the rows in the
selection matrix C. Suppose we have only kM available
matched filters in each receiver, then we rewrite the squared
SCC as

|αjs|2 =
vec {C}T Wrvec {C}

kNM
. (11)

The restriction on the number of active elements in each row
to kM is expressed in the optimization problem as the equality
constraint

C 1M = kM , N × 1. (12)

Thus, a matched filter thinned MIMO phased array design
that is aimed at making the signal and interference subspaces
as orthogonal as possible is defined as follows

min
C
|αjs|2

s.t. ci,j(ci,j − 1) = 0 i = 1...M, j = 1...N (13)
C 1M = kM .

The binary constraints make the optimization problem a two-
way partitioning and hence a non-convex problem. Thus, we
first verify whether the problem is bounded. To this end, we
begin by reformulating the optimisation using the Lagrangian
relaxation as

L(c,µ,ν) = vec{C}TWrvec{C}
+ vec{C}T diag(µ)vec{C} − µT vec{C}
+ νT (C× 1M )− νTkM
= vec{C}T (Wr + diag(µ))vec{C}
− µT vec{C}+ (1M ⊗ ν)T vec{C} − νTkM
= vec{C}T (Wr + diag(µ))vec{C}
+ ((1M ⊗ ν)− µ)

T vec{C} − νTkM , (14)

where µ and ν are MN × 1 and N × 1 Lagrange multiplier
vectors. The Lagrangian dual function for the quadratic form
of (14) is written as follows

g(µ,ν) = inf
c
{L(c,µ,ν)}

− 1
4 ((1M ⊗ ν)− µ)

T
( 1
k2NM

Wr + diag(µ))−1×
((1M ⊗ ν)− µ)− νTkM
if 1

k2NM
Wr + diag(µ) � 0

−∞ otherwise.
(15)

Using the Schur complement condition for positive semidefi-
niteness of a block matrix, the concave function listed in (15)
is formulated as the maximization problem,

max
µ,ν

g

s.t

[
1
k2NM

Wr + diag(µ) − 1
2 ((1M ⊗ ν)− µ)

− 1
2 ((1M ⊗ ν)− µ)

T −νTkM − g

]
� 0.

(16)

The above convex optimization problem is a semidefinite pro-
gram that can solved using CVX [14]. Based on the assumed
duality, the obtained maximum value forms a lower bound for
the problem in (13).

IV. SIMULATION

For the simulation task, we use a uniform linear collocated
MIMO phased array containing 5 elements, in which the
azimuth angle of the signal of interest is fixed at φs = 0.3π
and the azimuth of the received interference, φj varies from
0 to π

2 . In this scenario we define the problem such that we
select first k = 10 matched filters in the global space without
any spatial restriction. In the second case, we choose kM = 2
matched filter in each receiver leading to k = 10 elements in
total. We calculate the Lagrange dual lower bound for both
cases. The lower bound for the first case is calculated based
on [13], while for the MFC case the formulation mentioned
in (16) is employed. Also, the optimum solution is found by
an exhaustive search for both schemes. Four curves including
the lower bounds and optimum SCC squared values are shown
in 2. The results demonstrate that the bounds are tight. Fur-
thermore, referring to the feasible solution space depicted in
Fig. 1, we conclude that the solution set of the matched filters
constrained case is a subset of the solution set of the global
optimization problem. An example solution that compares the
result of the joint and MFC selection approaches is depicted in
Fig. 3, where Fig. 3(a) displayes the unconstrained selection
of 10 matched filters from the matrix regardless to the receiver
(row), whereas 3(b) gives the result of selecting two matched
filters per receiver.

Fig. 2. Optimum SCC squared value vs. lower bounds for joint Tx-Rx and
MFC selection.
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(a) (b)

Fig. 3. Typical optimum selection matrix for the simulated scenario (a): Joint
selection. (b): MFC selection.

In the second simulation, we evaluate the selection strate-
gies for a fixed signal and interference scenario but for different
numbers of selected elements ranging from kM = 1 matched
filter per receiver (k = 5 total matched filters selected) to
the full matched filter set in each receiver (that is kM = 5
giving a total of k = 25 selected elements). The azimuth
angle of the interference is fixed at φj = π

10 . The results
observed in Fig. 2 are confirmed in this simulation task as
well as shown in Fig. 4. Apart from the case where only
one matched filter in each receiver is chosen, the minimum
SCCs obtained by both strategies coincide. Also, the number of
required matched filters in each receiver is depicted in Fig. 4.
To obtain the minimum SCC in the joint selection all matched
filters should be always active, which implies that in the most
general case, only computational saving is achieved. However,
by restricting the number of matched filter in each receiver the
same resolution is attainable along with a significant hardware
saving. Additionally, the feasible space is much smaller in the
MFC case. For instance in order to choose k = 10 elements out
of 25 filters we should search for the solution within a space
containing

(
25
10

)
= 3268760, but this search space is reduced to

a substantially smaller space containing
(
5
2

)5
= 100000. The

smaller space is approximately only 3% of the global feasible
space.

To study the effect of the array thinning output on the post
STAP algorithm we calculate the SINRout

SINRout = αk
PT

σ2

(
1− |αjs|2

)
, (17)

Where α represents the channel gain (including target cross-
section), PT is the available transmit power, and σ2 the
variance of the noise. The normalized SINRout is given in
Fig. 5. We observe that, for instance, selecting 15 elements
out of 25 either jointly or 3 matched filter per receiver,
SINRout leads to a SINR degradation of only by 1.2 dB. This
may be a small, acceptable value when considering that the
corresponding hardware and computation cost that is achieved
by MFC selection is quite significant.

V. CONCLUSION

In this paper we proposed a MIMO phased array spatial
thinning scheme that successfully thins the adaptive matched
filter banks in each receiver. We expressed the matched filter
constrained (MFC) selection problem as a reformulation of
the global joint spatial MIMO thinning aimed at interference
mitigation. We then proceeded to relax the non-convex MFC
selection using the Lagrange Dual Relaxation. This allowed the

Fig. 4. Optimum SCC squared value for different numbers of antenna subset.

Fig. 5. SINRoutfor different numbers of antenna subset.

lower bound was to be calculated based on the achieved dual
concave function. We showed through the attained lower bound
demonstrated that the solution space of the MFC selection
is a subset of the joint global selection case. Hence, the
computation and hardware savings obtained by joint selection
can be considerably enhanced by the proposed method.
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