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Organization

Thrusts

wnifi

consortium

Leadership

Establish management & governance structure
to support sustained US leadership in GFM tech

Develop/Update Interoperability Guidelines and
Functional Requirements

Advisory Board
SETO + WETO + OE
Industry + Academia

ESIG + GPST

Research & Development
e Advance R&D for GFM technologies
e Ensure a coherent & comprehensive portfolio
of solution sets

e Integrate & evaluate new capabilities,
products, & processes

Demos & Commercialization

¢ Provide guidance & transition R&D to
commercial products and applications

e Demonstrate solutions that showcase multi-
vendor interoperability

e Bring together public+private entities

Outreach & Training
Develop expertise, networks, & training
Communication & dissemination strategies
Engage community at all levels of supply
chain
Build awareness of issues, & create alignment
amongst stakeholders




Integration and Validation -- Focus

Mod/Sim Controls

A Primary/Secondary

GEM Control Schemes C/PHIL, Hardware Results

in Heterogeneous Systems

Sim. System Results

Integration &

C/PHIL, Hardware Results Validation
A R&D
blans for 20 MW Demos/Commercialization
demonstrations
20 MW < Standards
>
Demo C/PHIL, Hardware Results £\ 5uation orotocols Development

and scenarios



Integration and Validation — Scope

1. Testing infrastructure and IBR baseline characterization
* Develop and document experimental capabilities for unit
and systems-level characterization GFM HIL Type
* Baseline capabilities of current GFM devices —
complement modeling, controls and hardware areas

P-HIL

C-HIL

2. GFM IBRs in representative power systems = y —
 Evaluating R&D work product and quantifying ' '
improvements over baseline

kW

3. 1+MW scale multi-vendor experiments ——
 Hardware demonstration for heterogeneous systems

el CENREL

UNIVERSITY
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characterization

Flexibility & Scalability

DC Current
Transducer

Analog DC
Voltage Signal

—_——— e — — — = e ]

Programmable
DC Load Bank

.. = - - _____________________

Power Hardware-in-the-Loop

Controller HIL Power HIL
High fidelity control systems  High fidelity Unit Response

I -
DC/DC Converter | | 0 v

Pure Simulation Pure Hardware

Extended system representation Nonlinear interactiofis

CHIL, PHIL, and Hardware evaluation of GFMdn systems:
* Mixtures of GFM, GFL, rotating machines Fidelity
* Normal operating conditions

e Contingency conditions (fault, blackstart)




2. Integration of GFM into Power Systems

* Develop testing protocols and scenarios for UNIFI Interoperability Guidelines and
Functional Requirements

* Criteria for evaluating single units, aggregations of units, and heterogeneous systems

e Specifications necessary for GFM IBRs to ensure seamless interoperability with the
power system

* Apply testing protocols to evaluate models and hardware/control prototypes produced
by the other R&D Areas, or provided by industry partners
* Quantify the impact of GFM behavior in heterogenous systems
* Consider both normal and contingency conditions over all time-scales
* Evaluate Consortium proposed interoperability behaviors
* Evaluate R&D products from across the Consortium




Hierarchical Ca

Test Plan: How/what
you’re measuring for
a given scenario

[

Specificity

egorization of GFM Use

Single element of a system that can be measured, varied, or incorporated into a reference
system to evaluate a case study.

* GFMsize

* GFM Control (Control type, droop offset/slope, etc)

* GFM DC-source

* Load characteristics (power factor, THD, machine/resistive/electronic composition)

In-depth investigation of specific phenomena or capability a reference system that
can be further studied

May be several specific case studies for each use case, demonstrating the varying
system configurations, challenges, and benefits.

Operational systems (real or simulated) that can be evaluated for different
scenarios/operation modes/asset mixes, etc.

Can be analyzed entirely simulated environment, in the lab with combination
of physical hardware and simulation, or in a deployed system

Concept in system analysis to broadly identify, clarify, and organize
system requirements

Apply innovations developed through the project to such systems to
assess their value or to demonstrate their readiness for use by
industry in commercially deployed systems.



3: IMW Hardware Demo
1 MW Experiment — at NREL in Year 3

® Includes various physical sizes (250W-1MW)
® Three-phase, single-phase generation & loads
B GFM, GFL, & synchronous machines
B Comms interfaces (2030.5, SunSpec)
® Multiple source-side resources (PV, energy
storage, wind (if possible))
® Coupled to PHIL to evaluate scales: 1MW
microgrid to larger grids
® 50%, 75%, 90%, and 100% power contribution
from GFM IBRs
® Network connections (LV and MV, overhead

and conductors)

® Explore options to distribute demonstration
amongst capabilities in multiple partner labs (ex.
Via Real Time Simulation)

® |llustrate the Interoperability Guidelines at work
with multiple vendors and wide variety of




TMW Demonstration
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Preliminary Testing Capability for 1 MW demo

= Black start

* Loss of generation

= Phase unbalance

= Fault ride through

= |slanding (plan/unplanned) and reconnection
= Large inductive load

= GFL+ GFM + rotating machine at various penetration
= Mix of three-phase and single-phase load

* Frequency regulation (secondary control)

= Voltage regulation (secondary control)

* Overload (individual GFM inverter)
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Case Study: GFM for Alaska Villages | |
Avec. R

- —
ot Mary’s; -k
Pop 550 v s
Peak load: 600 kW (Wlnter)
Min load: 150 kW

“Mountain V111age, AK
Pop. 820
Peak load: 500 kW (winter)
Min load: 150 kW




GFM HIL Case Study: GFM for spinning reserve

[ §
m—— - m—— | ACEP
W2 SN A K
St. Mary’s MG Mtn. Village MG
3 diesel gensets, i i~
499 kW o908 kW EL's B {[][J F —:-— |
'. —————————————————

= ! | 12.47 kV 25 mi. tie line and eliminate Mtn.
I\ e d I: :] Village diesel plant

Storage-based
Grid-Bridge System (GBS)
500kW or 1MW

Type 4 EWT 900 kW
Wind Turbine-gen.

Goal:

1. Evaluate ability of GBS to reduce spinning reserve need of diesel

2. Compare 500 kW and 1MW sizes

3. Quantify power quality differences between diesel bank and diesel + GFM during contingencies



GFM HIL Case Study: GFM for spinning reserve
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Flicker, Jack, Javier Hernandez-Alvidrez, Mariko Shirazi, Jeremy Vandermeer, and William Thomson. "Grid Forming Inverters for Spinning Reserve in Hybrid Diesel Microgrids." In 2020 IEEE Power & Energy
Society General Meeting (PESGM), pp. 1-5. IEEE, 2020.



GFM HIL Case Study: GFM for spinning reserve
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« Power Hardware in Loop of GFM

Power System Simulation
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P-HIL testing of GFM can result in instability

i
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* Highly distorted waveform in low inertia systems
* Noise Amplification
* eclectromagnetic coupling of the devices
* physical wiring

* measurement sensors
* Quantification Error

- m— * Magnetization current from internal transformer
DC Power Supply GEM Under Test AC Amplifier  * Calibration



* Filtering is needed to maintain stability

Real Time Simulation
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o f;g:(LP) — simul.ation, can lead to instability
g * Requires Lead Compensator
*  Works well in GFL HIL testing
g S
Phase shift
- Frequency(HZ) A. Summers, J. Hernandez-Alvidrez, R. Darbali-Zamora, M. Reno, J. Johnson, and N. Gurule, Comparison of Ideal

Transformer Method and Damping Impedance Method for PV Power-Hardware-In-The-Loop Experiments. 2019.
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* P-HIL testing of GFM can result in instability
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* Filtering is needed to maintain stability

Real Time Simulation
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" Filtering is needed to maintain stability
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