Modeling Grid-Forming Technologies and Standardization

Presentation at IRED 2022

Ben York, Ph.D.Manager, DER Strategic Projects

Key Features of Synchronous Generators

- Mechanical inertia of the machine's rotor
- Damping torque
 provided by internal machine construction as well as external (machine-based) loads and their resistance
 to increasing frequency
- Synchronizing torque
 resulting from the completed reluctance path between machines and their resistance to changing load
 angle
- Governor response
 that adjusts the generator prime mover to regulate grid frequency (proportionally)

What About Inverters...

 Inverter-based generation in their standard form do not possess any of characteristics of synchronous machine

 It is possible to emulate them by adding additional (software) controls to the inverter

Emulation of Governor Response with Frequency-Watt

Controlling Voltage, Frequency, and Angle With PWM

<u>Inverter hardware</u> always creates a voltage source behind a (filter) impedance. It is the <u>inverter control</u> that creates a current or voltage source

Grid-Following and Grid-Following Inverters

Grid-Following Inverter (Current-Controlled Voltage Source)

Control **output current** based on desired output power (active and reactive)

Requires a grid voltage reference to follow

Grid-Forming Inverter (Voltage-Controlled Voltage Source)

Control **PWM voltage/angle** based on desired output power (active and reactive)

Degrees of Machine Emulation with Inverters

Example Grid-Forming Control Methods

Virtual
Synchronous
Machine (VSM)

Dispatchable
Virtual Oscillator
(dVOC)

UNIFI Modeling and Simulation Deliverables

Modeling and Simulation Working Groups

- WG 1: GFM Model Development and Theoretical Innovations WG
- WG 2: Use Case, Software Testbed, and Interoperability WG
- 15-20 members per WG from national labs, research institutes, universities, vendors, and utilities (meeting monthly)

GFM Model Library Structure

A few positive-sequence GFM models have been developed to represent popular control methods...

Positive-Sequence Model Developed by PNNL by Extending CERTS Droop

Single-loop structure model

Does not use/model cascaded inner loops

https://www.wecc.org/Reliability/Model%20Specification%20of%20Droop-Controlled,%20Grid-Forming%20Inverters PNNL-V2-Final.pdf

Positive-Sequence Model Co-Developed by EPRI, UIUC, UW, and UMN

Multi-loop structure model

Attempts to capture "fast" transients of inverter inner loops in the phasor domain

https://www.wecc.org/_layouts/15/WopiFrame.aspx?sourcedoc=/Administrative/Memo%20on%20Proposal%20for%20Generic%20GFM%20Model_v2.pdf&action=default&DefaultItemOpen=1

Status of generic GFM model development

Domain	Positive S	Sequence (Ba	alanced RMS)	3-Phase (Unbalanced RMS)			
Software	PSS/E	PSLF	PowerFactory	OpenDSS	PowerFactory	CYME	Synergi
Available Models	Droop VSM dVOC	Droop VSM dVOC	dVOC	dVOC	dVOC		

Domain		Elect	romagnetic Tran	Real-time		
Software	PSCAD	EMTP	PowerFactory	SIMULINK	PLECS	RTDS/Opal-RT/RSCAD/HyperSIM
Available Models	Droop VSM dVOC	Droop VSM dVOC	Droop VSM dVOC	Droop VSM dVOC	Droop (A) VSM dVOC	dVOC

Model Validation

Comparison of PSS/E, PSLF, and PSCAD (EMT) simulation results for the single-loop droop GFM control

Comparison of PSLF and PSCAD simulation results for the multi-loop GFM model (PLL-based, droop, VSM, and dVOC)

Comparison of PSLF and PSSE simulation results for the multi-loop GFM model (PLL-based, droop, VSM, and dVOC)

Upcoming Work

- Work on initial GFM model library that includes the model specifications and IBR models with basic GFM controls
- Coordinate with the Integration and Validation area on the usecase design
- Work with IBR vendors to get their inputs on the developed generic models
- Coordinate with the Control Area on the GFM control strategies
- Understand the applicability and limitations of different GFM models, and provide guidance on selecting these models for different study purposes

