ISGAN SIRFN, Mission Innovation, Clean Energy Ministerial, CSIRO, & DERIab "Grid Integration of Renewables – The Role of Research & Testing Facilities" 9th International Conference on the Integration of Renewable & Distributed Energy Resources Tuesday, October 25, 2022, Adelaide, Australia

How Can Testing Accelerate Renewable Energy Integration?

Jun HASHIMOTO

Renewable Energy Research Center, Fukushima Renewable Energy Institute,

National Institute of Advanced Industrial Science and Technology (AIST), Japan

Smart system validation platform

There are many demonstration projects for Smart Grid, Virtual power plants (VPP), etc.

Q How can we integrate each unique concepts to the market?

How can "Utility" and/or "Stakeholder" accept new concept to their system?

A holistic validation platform for a new concept is needed.

Hardware-In-the-Loop (HIL) technology is one of the KEY technology to proving the system

 Make a realistic environment in the Laboratory for pre-testing

 Acceptance test, Interoperability test, Operator training

•Time, Cost, and Risk Reduction

Platform to support the system development process

Copyright © 2022 National Institute of Advanced Industrial Science and Technology (AIST) All Rights Reserved.

What is Hardware-in-the-Loop?

What is HIL?

• A simulator (DRTS) capable of simulating various systems in real-time and consisting of one or more DuTs.

Rev How its work?

- Control signals from the DuT are reflected in the virtual system in the DRTS, and the results are fed back to the DuT.
- DuT runs on the virtual system, allowing for easy testing and verification, including system interaction, etc.

More flexible testing method

- HIL is a well-known technology in the Automobile and aircraft sectors.
- This technology will be the key to future power systems and harmonization with Model Base Design (MBD) concept is necessary.

Ex. Trends in XiLS and Virtual Authentication for Automated Driving

In Europe, accelerating to use of Virtual Testing for type certification

First Draft Submitted to Allow Virtual Testing as an **Alternative to Full-Scale Testing**

UNECE WP29

26e.pdf)

Virtual Testing (VT) using simulation, HIL, etc. is discussed in VMAD (Validation Method for Automated Driving) under GRVA, a subcommittee of the Automated Driving Committee.

Informal Working Group on AEBS for Light Vehicles

 Discussion about virtual testing for AEBS-M1/N1 Documents: AEBS-15-06 (Proposal from France) AEBS-15-09 (Feedback from OICA/CLEPA)

We discussed about the virtual testing of AEBS-M1/N1.

About the discussion about simulation issues, we received an opinion that VMAD-SG2 started to discuss about this issue, and VMAD-SG2 can be the right place.

We would like to receive guidance from GRVA on the way to proceed with virtual testing.

AEBS-12-07 Rev.1

Chair and Secretary IWG AEBS - GRVA 09

Virtual Testing based Type Approval Procedures for the Assessment of Pedestrian Protection developed within the EU-Project IMVITER https://www-esv.nhtsa.dot.gov/Proceedings/23/files/23ESV-000344.PDF

Example of acerating R&D of DER testing with PHIL

- Five prototype inverters are developed by manufacture in Japan.
- Different types of algorithm including GFM type are implemented to each device.
- Each device has been tested with PHIL.
 - IEEE Standard 9 bus system was used.
 - Over 200 test cases including generator trip and load trip events.

NEDO Project:FY2019-FY2021

FREA

国立研究開発法人 産業技術総合研究所 Msys is kinetic energy stored in a synchronous generator. The percentage of test case kinetic energy against stored and synchronous generators case.

<u>Acknowledgement</u>

This activities was supported by METI and NEDO

