

The 9th International Conference, Integration of Renewable & Distributed Energy Resources (IRED2022)

Frequency control of the National Electricity Market: Challenges and Opportunities

Theme: The Global Power System Transformation Consortium (G-PST)

25 October 2022

Hassan Haes Alhelou, Ph.D., SMIEEE

Chief Investigator of G-PST Topic 6,

Senior Researcher,

Monash University, Australia

Introduction

Problem Statement

Challenges and Issues

Cocord Opportunities and Suggestion

3

The Big Picture of PS Frequency

□ 100-127V / 50Hz

■100-127V / 60Hz

- The world's first AC power system in England, 1881
- The world's first DC power system in NY(USA), 1882
 - The war of currents, 1888
- 1888-Second World's War: 16.66Hz and 133.33Hz
- Afterwards: 50Hz or/and 60Hz

Future: Hz??

220-240V / 50Hz

220-240V / 60Hz

4

General Picture of Frequency Stability

"Frequency stability refers to the ability of a power system to maintain steady frequency following a severe system upset resulting in a significant imbalance between generation and <u>load</u>."

 $M\frac{\mathrm{d}\Delta\omega}{\mathrm{d}t} = P_{\mathrm{m}} - P_{\mathrm{e}} - P_{\mathrm{D}} = P_{\mathrm{acc}}$

Inertia (H): The greater the inertia, the less acceleration will be observed and the less will be the frequency deviation. Inertia is proportional to the total rotating mass.

Load Frequency Relief (D): The greater the load damping, the less contingency FCAS will be required and the less will be the frequency steady-state deviation. Load damping is proportional to the total rotating mass in demand-side.

10

NEM Frequency Control: Reality vs Assumptions

- **5** Power Regions
- Geographical Constraints
 - Weak Interconnectivity
- Hybrid HVDC/AC Interconnectivity
 - high Uncertainties and Variability
 - **Fast Dynamics**

- One Single Balancing Area
 - Market Issue
 - Ignoring boundaries
 - Low variability
 - Slow SCADA System

GLOBAL PST

Source: AEMO Vebsite+ Alhelou et al, "NEM Frequency Control: Challenges and Opportunities" Preprint

NEM Frequency Control: Performance Metrics/Standards

Source: AEMO's report on frequency stability + Alhelou, et al., "NEM Frequency Control ...", preprint 2022

GLOBAL PST

CONSORTIUM

Frequency Security Assessment

- **Considering eMobility Contribution**
 - **ISP's Scenarios**
 - **Demand-side opportunities**

GLOBAL PST

CONSORTIUM

Figure 7

DEMAND

[GW]

pue

Electrification

9

Scenario input assumptions

Credible Event=699.32MW

Source: Alhelou et al, "An Affordable Sophisticated Frequency Control for Australian National Electricity Market System Considering Industry and Infrastructure Challenges" Preprint 2022

Enhanced and Reliable Services are crucial for Energy Transition

2 Demand-side is a promising source, Yet highly challenging and complex.

11

Understanding the boundaries between market and technical sides

Assessing the reliability and affordability of PE-based FCAS sources

GLOBAL PST CONSORTIUM **The Global Power System Transformation** (G-PST)

- Identifying Challenges
- Providing unique Solution
- Developing New Approaches

- **Enabling Energy Transition**
- Securing and Stabilizing Frequency
 - **Discovering possible alternatives** for FCAS sources

Collaborate with us!!

GLOBAL PST CONSORTIUM

12

Behrooz Bahrani Chief Investigator Monash University

Hassan Haes Alhelou **Chief Investigator Monash University**

Jin Ma Chief Investigator The University of Sydney

MONASH University

Thank You!!

NEM Frequency Control: AGC System

0s

GLOBAL PST

CONSORTIUM

Source: Internet website

Source: AEMO Vebsite+ Alhelou et al, "NEM Frequency Control: Challenges and Opportunities" Preprint

Time

0s

16

NEM/International System Frequency Issues

Frequency Regulation Issues: Current AGC System, High Variability and Uncertainties from GS and DS, Regulation FCAS Activation Issues.

Frequency Stability Issues: Fluctuating Inertia, Unknown Load Frequency Relief, Mixed Dynamics,

Frequency Security Issues: Separation events, High single credible event in some regions,

Frequency Market Issues: Allocation of FCAS, rule changes

Frequency Regulation Issues: Involving DER and demand-side, upgrading infrastructure and FCAS activation rules, regionalizing FCAS and services.

Frequency Stability Issues: Introducing inertia spot market for virtual inertia and inertia emulation, compensating shortfall of load frequency relief, seeking new stability rules.

Frequency Security Issues: regionalizing FCAS, adopting security issuesresilient control and preventive approaches.

Frequency Market Issues: More flexibility to operators

