EGAT

An Overview of Green Hydrogen Production and Energy Storage Facilities, the Lam Takhong Wind Hydrogen Power Plant

By Yosapol Rathamarit

Electricity Generating Authority of Thailand

Thailand's search for new energy

Thailand's search for new energy

Figure 1: Global levelized cost of electricity benchmarks, 2009-2022

Source: BloombergNEF. Note: The global benchmark for PV, wind and storage is a country-weighted average using the latest annual capacity additions. The storage LCOE is reflective of a utility-scale Li-ion battery storage system with four-hour duration running at a daily cycle and includes charging costs.

Significant reduction in prices per MW of renewables, but storage is necessary to mitigate transients

Green Hydrogen Case Study: EGAT Lam Takhong wind hydrogen hybrid

- Green Hydrogen from wind energy, 12x2 MW wind turbines, by electrolysis
- First grid scale green hydrogen production and wind hydrogen hybrid plant in Southeast Asia
- Electricity from hydrogen feeds EGAT learning center, first sync in 2018

EGAT Lam Takhong Electricity Flows

Hydrogen Energy Storage Ssystem

Excess Electricity

EGAT Lamtakhong Renewable Energy Park

Components of the Hydrogen Energy Storage System Lam Takhong

Operation of the Lam Takhong Hydrogen Energy Storage System

Design Parameters of Lam Takhong Hydrogen Energy Storage System

Efficiency of Energy Storage is 31-42%

Green Hydrogen from Lam Takhong

- 1 kg of green hydrogen uses 41.73 kwh of electricity (highest efficiency)
- LCOE of electricity from Lam Takhong wind turbines is 3.1 baht
- 1 kg of green hydrogen LCOE 129.6 baht (3.4 USD) in electricity costs
- With electrolyzer equipment costs, 1 kg of green hydrogen costs 238.6 baht ~ 6.27 USD

Hydrogen as Energy Storage: Lam Takhong Experience

- Usage of hydrogen, limited by issues with fuel cell
- Lesson 1: chemical generation limited by property curves
 - Break in deterioration
 - I-V-load curves
 - High currents strain electrical components, inverter/converter

Hydrogen as Energy Storage: Lam Takhong Experience

Lesson 2: System is simple but every part is critical

Hydrogen as Energy Storage: Lam Takhong Experience

- Lesson 3: Hydrogen stored for long time, but Electrolyzer membrane is permeable
 - Hydrogen safely stored without leaks over a year during wait for inverter converter fix
 - Long storage caused permeation of oxygen to hydrogen side, dangerous
 - Purging of Electrolyzer, O₂ in H₂, H₂ in O₂ sensors for safety

The Future of Hydrogen in Thailand

The Future of Hydrogen in Thailand

- Future RE generation capacity set by Alternative Energy Development Plan overseen by regulator
- In 2037 new RE capacity is 18.7 GW, 38.1% of planned capacity in 2037

Renewable Type	New Installed Capacity in 2037 from 2018 (MW)		Total Capacity in 2037 (MW)
Solar	9,290		12,139
Floating Solar	2,725		2725
Wind	1,485		2,989
Hydro	0		2,920
EGAT will be hybrid floating solar, hydro, BESS power plant			
Biomass	3,500		5,790
Biogas	1,183		1,565
Waste	444		975
Total	18,696		29,411

The Future of Hydrogen in Thailand

Lower Electricity Cost, Excess Electricity, New Technologies = Low Cost Green Hydrogen

Reliable, High Eff. Electricity Generation= Lower Investment for Storage and Electrolysis

The Future of Hydrogen in Thailand

Mixing of Hydrogen with Natural Gas up to 20%

EGAT

Thank You Questions: Yosapol.r@egat.co.th