

Advanced inverter applications (and requirements) for current-limited grid-forming inverters

Dr Behrooz Bahrani & Mr Si Phu Me

Department of Electrical and Computer Systems Engineering Monash University Melbourne, Australia

Presentation Outline

Power Engineering Advanced Research Laboratory [PEARL]

Topic 1: Transient Stability of GFMIs Current limitation and Transient Stability of GFMIs q-prioritized Current-Limited GFMIs

Topic 2: Stability Tools and Analytical Methods

Presentation Outline

Power Engineering Advanced Research Laboratory [PEARL]

Topic 1: Transient Stability of GFMIs Current limitation and Transient Stability of GFMIs q-prioritized Current-Limited GFMIs

Topic 2: Stability Tools and Analytical Methods

- Grid-forming inverters (GFMIs) are designed to mimic synchronous generators (SGs). e.g., GFM batteries.
- GFMIs improve system strength and frequency stability.

- Grid-forming inverters (GFMIs) are designed to mimic synchronous generators (SGs). e.g., GFM batteries.
- GFMIs improve system strength and frequency stability.

Synchronous Generators

- High overcurrent capability, i.e., 6 7 pu.
- \Rightarrow **No current limitation** is required.
- \Rightarrow Always in a **voltage-controlled** mode.

- Grid-forming inverters (GFMIs) are designed to mimic synchronous generators (SGs). e.g., GFM batteries.
- GFMIs improve system strength and frequency stability.

Synchronous Generators

- High overcurrent capability, i.e., 6 7 pu.
- \Rightarrow **No current limitation** is required.
- \Rightarrow Always in a **voltage-controlled** mode.

GFMIs

- Low overcurrent capability, i.e., 1.1 2 pu.
- \Rightarrow A current limiter (CL) is required.
- \Rightarrow In a current-controlled mode if CL is engaged.

MONASH

Power Engineering Advanced

Research Laboratory [PEABL]

Introduction: Transient Stability

- Transient stability (TS) is the ability to recover to a desired stable operation after a LARGE-signal disturbance.
- Large-signal disturbances: faults, severe voltage sags, phase jumps,
- Small-signal stability vs. transient stability.

Introduction: Transient Stability

- Transient stability (TS) is the ability to recover to a desired stable operation after a LARGE-signal disturbance.
- Large-signal disturbances: faults, severe voltage sags, phase jumps,
- Small-signal stability vs. transient stability.

Small-signal stability

- Stability around an equilibrium point (EP).
- Linearised model can be employed.

Figure 1: Small-signal disturbance.

Introduction: Transient Stability

- Transient stability (TS) is the ability to recover to a desired stable operation after a LARGE-signal disturbance.
- Large-signal disturbances: faults, severe voltage sags, phase jumps,
- Small-signal stability vs. transient stability.

Small-signal stability

- Stability around an equilibrium point (EP).
- Linearised model can be employed.

Figure 1: Small-signal disturbance.

Transient stability

- Stability in a wider range of operating condition.
- A non-linear model of the system is required.

Figure 2: Large-signal disturbance.

Introduction: Transient Stability

- Transient stability (TS) is the ability to recover to a desired stable operation after a LARGE-signal disturbance.
- Large-signal disturbances: faults, severe voltage sags, phase jumps,
- Small-signal stability vs. transient stability.

Small-signal stability

- Stability around an equilibrium point (EP).
- Linearised model can be employed.

Figure 1: Small-signal disturbance.

Transient stability

- Stability in a wider range of operating condition.
- A non-linear model of the system is required.

Figure 2: Large-signal disturbance.

It is important to understand the TS limit and the mechanism of instability of a current-limited GFMI.
⇒ Beneficial for tuning and proposing enhanced control.

Types of Current Limiter

• Mode-switching:

• Switch to (PLL-based or PLL-less) current-controlled mode.

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.

Research Laboratory [PEARL]

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.
- Current reference saturator:

Research Laboratory [PEARL]

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.
- Current reference saturator:

Power Engineering Advanced Research Laboratory [PEARL]

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.
- Current reference saturator:

Power Engineering Advanced Research Laboratory [PEARL]

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.
- Current reference saturator:

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.
- Current reference saturator:

Types of Current Limiter

• Mode-switching:

- Switch to (PLL-based or PLL-less) current-controlled mode.
- Turn off voltage control function, only regulate current.
- Current reference saturator:

Power-Angle Curve

 $P_{\text{electrical}}$

π

S

 $source:\ https://www.powerstations.uk/tilbury-turbines/tilbury-b-power-station-turbines-9/$

October 24, 2022

Power

0

Power-Angle Curve

 $source:\ https://www.powerstations.uk/tilbury-turbines/tilbury-b-power-station-turbines-9/$

- Power-Angle curve and the equal-area-criterion are employed for TS study of SGs.
- We aim to derive the Power-Angle curve of current-limited GFMIs.

Power-Angle Curve

 $source:\ https://www.powerstations.uk/tilbury-turbines/tilbury-b-power-station-turbines-9/$

- Power-Angle curve and the equal-area-criterion are employed for TS study of SGs.
- We aim to derive the Power-Angle curve of current-limited GFMIs.
- A virtual synchronous generator (VSG) is studied in the next slides.

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Voltage controlled mode

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory (PEA BL)

Power-Angle Curve of Current-Limited GFMIs

Power Engineering Advanced Research Laboratory [PEARL]

Power-Angle Curve of Current-Limited GFMIs (cont.)

Power Engineering Advanced Research Laboratory (PEA BL)

Power-Angle Curve of Current-Limited GFMIs (cont.)

• The stability margin of a VSG is reduced by CLs.

Power-Angle Curve of Current-Limited GFMIs (cont.)

• The stability margin of a VSG is reduced by CLs. • As

$$\phi_{\rm sat} = \tan^{-1} \left(\frac{i_{\rm q}}{i_{\rm d}} \right),\tag{1}$$

where i_d and i_q are d- and -q components of the current, more negative ϕ_{sat} (or i_q) results in larger stability margin.

Power Engineering Advanced Research Laboratory (PEA BL)

Power-Angle Curve of Current-Limited GFMIs (cont.)

• The stability margin of a VSG is reduced by CLs.

• As

$$\phi_{\rm sat} = \tan^{-1} \left(\frac{i_{\rm q}}{i_{\rm d}} \right),\tag{1}$$

where i_d and i_q are d- and -q components of the current, more negative ϕ_{sat} (or i_q) results in larger stability margin.

 \Rightarrow q-prioritized CL is studied in this project.

Power Engineering Advanced Research Laboratory [PEARL]

Power Engineering Advanced Research Laboratory [PEARL]

Power Engineering Advanced Research Laboratory [PEARL]

q-prioritized Current-Limited GFMIs

• Derived the P-angle curve of a q-prioritized current-limited GFMI

Power Engineering Advanced Research Laboratory [PEARL]

- Derived the P-angle curve of a q-prioritized current-limited GFMI
- Voltage control loop can contribute to the transient instability.

Power Engineering Advanced Research Laboratory [PEARL]

- Derived the P-angle curve of a q-prioritized current-limited GFMI
- Voltage control loop can contribute to the transient instability.
- \Rightarrow Determine the power angle limit of current-limited GFMIs.

Power Engineering Advanced Research Laboratory [PEARL]

- Derived the P-angle curve of a q-prioritized current-limited GFMI
- Voltage control loop can contribute to the transient instability.
- \Rightarrow Determine the power angle limit of current-limited GFMIs.
- Expanded the study to a paralleled system, consisting of a GFMI and a grid-following inverter.

□ Implementing freezing mechanism or other anti-windup methods.

□ Adaptively adjust power setpoint of the GFMI to obtain larger stability margin.

□ Enhanced q-prioritised current limiter.

- Analyse and propose remedial methods to improve TS margin of GFMIs:
 - □ Implementing freezing mechanism or other anti-windup methods.
 - □ Adaptively adjust power setpoint of the GFMI to obtain larger stability margin.
 - □ Enhanced q-prioritised current limiter.
- Extend the studies to multiple-inverter-based-resource (multi-IBR) networks.
 - □ Derive a measurement for transient stability for a multi-IBR network.
 - \Box Analyse and validate impacts of GFMIs in supporting nearby assets during faults.

Presentation Outline

Power Engineering Advanced Research Laboratory [PEARL]

Topic 1: Transient Stability of GFMIs Current limitation and Transient Stability of GFMIs q-prioritized Current-Limited GFMIs

Topic 2: Stability Tools and Analytical Methods

Background, Motivation and Objectives

Power Engineering Advanced Research Laboratory [PEARL]

• Background:

□ The inverter-based resources in the Australian power network are growing rapidly.

□ Therefore, the ability to maintain the system stability, security, and reliability under operating points variations becomes a challenging task.

Background, Motivation and Objectives

Power Engineering Advanced Research Laboratory (PEA BL)

• Background:

□ The inverter-based resources in the Australian power network are growing rapidly.

□ Therefore, the ability to maintain the system stability, security, and reliability under operating points variations becomes a challenging task.

• Motivation:

□ To enable system planners/operators to determine the operating point of various IBR.

 \Box To assess the system stability as the operating condition of the network changes.

Background, Motivation and Objectives

Power Engineering Advanced Research Laboratory (PEA BL)

• Background:

□ The inverter-based resources in the Australian power network are growing rapidly.

□ Therefore, the ability to maintain the system stability, security, and reliability under operating points variations becomes a challenging task.

• Motivation:

 \Box To enable system planners/operators to determine the operating point of various IBR.

 \Box To assess the system stability as the operating condition of the network changes.

• Objectives:

Development of a framework to assess IBR possible operating point region [EPRI].

□ Development of black-boxed stability analysis framework of IBRs considering operating points variation [Monash University].

Project outline

• Variations of the operating point may cause instability. For example, increasing the active power from 0.4 p.u. to 0.5 p.u. causes low-frequency oscillation at 1.8 Hz.

Project outline

• Variations of the operating point may cause instability. For example, increasing the active power from 0.4 p.u. to 0.5 p.u. causes low-frequency oscillation at 1.8 Hz.

- Therefore, topic 2 aims to
 - 1. Develop a black-box model for IBRs considering the operating point variations, where the full-order state-space/impedance model should be derived for verification purposes.
 - 2. Develop power flow scenarios.
 - 3. Evaluate system strength across an entire region.
 - 4. Identify the voltage control areas of the region.
 - 5. Determine priority of active and reactive power injection.

State-space modeling and verification

The active power reference, d-axis voltage reference, and q-axis voltage reference are changed at 100, 140, and 180 s, respectively.

October 24, 2022

MONASH

Research Laboratory [PEABL]

Small-Signal Modeling and Verification of GFMIs

State-space modeling and verification

The active power reference, d-axis voltage reference, and q-axis voltage reference are changed at 100, 140, and 180 s, respectively.

Impedance modeling and verification

 Z_{vsg}^{m} and $Z_{vsg}^{mea.m}$ represent the derived and measured impedance frequency responses, respectively.

VSG-Grid Interaction Analysis and Verification of GFMIs

Eigenvalues loci of the VSG-Grid system (SCR=3.0) as the voltage controller bandwidth increases

The eigenvalues loci indicates that the system becomes stable of the voltage controller bandwidth increases.

Power Engineering Advanced Research Laboratory [PEARL]

VSG-Grid Interaction Analysis and Verification of GFMIs

Eigenvalues loci of the VSG-Grid system (SCR=3.0) as the voltage controller bandwidth increases

The eigenvalues loci indicates that the system becomes stable of the voltage controller bandwidth increases.

Time-domain verification

Being Undertaken and Future Works for Small-signal Stability

- Being undertaken for small-signal stability.
 - Derived and verified the state-space model of the VSG.
 - Derived and verified the impedance model of the VSG.
 - Analyzed and verified small-signal stability of the VSG-Grid system using the derived small-signal model.

Research Laboratory [PEARL]

Being Undertaken and Future Works for Small-signal Stability

- Being undertaken for small-signal stability.
 - Derived and verified the state-space model of the VSG.
 - Derived and verified the impedance model of the VSG.
 - Analyzed and verified small-signal stability of the VSG-Grid system using the derived small-signal model.
- Future works for small-signal stability.
 - Perform the participation factor analysis for the VSG-Grid system.

• Modify the conventional impedance-based stability criterion of the grid-following inverters for the emerging grid-forming inverters.

• Develop the small-signal stability enhancement strategies of the VSG by reshaping the derived input impedance.

Power Engineering Advanced Research Laboratory [PEARL]

Thank you for your attention! Q/A

Dr Behrooz Bahrani & Mr Si Phu Me

October 24, 2022

18/18