#signal processing

Real-time quality assurance and machine validation for ultra precision manufacturing
This project is developing a real-time quality assurance system to detect precision assembly errors and validate CNC machine performance using quantitative data. The expected outcome is an intelligent, data-driven quality control method that improves the accuracy and reliability of ultra-precision manufacturing. This technology will potentially result in improved product traceability, reduced defects, and increased compliance with medical and military standard for the advanced manufacturing industry.

Applying imaging methods and data analytics to explore the listening brain
This Project aims to understand brain circuits and processes supporting communication in individuals with hearing problems, including those who use devices such as hearing aids and cochlear implants. The potential benefits are that individualised strategies based on real-time brain states estimate algorithms to empower listening and support effective communication. The Project will use brain-imaging techniques‚ including those compatible with listening technologies, including electroencephalogram (EEG), to explore the listening brain. The Project will explore brain changes that arise from hearing loss, how changes in brain function – within and beyond the auditory brain – arise to support listening when hearing is impaired, and how these findings can be used as a part of devices such as cochlear implants that engage the rest of the brain to support an individual's listening.