#physics

Environment picture

This project aims to quantify methane emissions from wastewater treatment plants. The expected outcomes are improved understanding of methane emissions from within the plant, their spatial and temporal variability, and how they contribute to the total emissions. This may reduce emissions of methane.  

Environment picture

Methane is a potent greenhouse gas and an important contributor to climate change. This project will develop neural network-based methods to detect anthropogenic methane plumes in satellite imagery and quantify emission rates. The expected outcomes are better detection and monitoring of methane emissions in Australia compared to current methods, with enhanced temporal and spatial coverage. These advancements will enhance Australia’s capability to efficiently identify, quantify and mitigate methane emissions. 

S&A picture

The objective of this project is to develop and test new methods to integrate next generation satellite radar (InSAR) monitoring for ground motion with Global Navigation Satellite Systems (GNSS) positioning devices. This will focus on test sites where the student will investigate the optimal methods for combining multi-satellite InSAR with a network of Kurloo GNSS devices to provide robust 3D ground motion monitoring from space. The potential benefits may include the development of near-real time 3D hazard monitoring for critical infrastructure, extending to pre-collapse alerts, thus reducing the risk of catastrophic events.