#machine learning

Servers at the WA Observatory

This Project will improve the accuracy of estimates of Australia’s 3D motion and deformation using machine learning methods. This will apply new methods to hundreds of Global Navigation Satellite System (GNSS) sites to improve understanding of Australia’s vertical land motion and sea level research. This may improve satellite positioning products used by Australian industry, government and researchers. 

Health and Biosecurity picture

This Project aims to develop outcome measures for early detection of neurodegenerative disorders using artificial intelligence (AI) and various sensing modalities, offering personalised support to older adults. The expected outcome is the creation of AI algorithms to detect early signs of neurodegenerative disorders in older adults living independently at home. The potential benefit is early detection of neurodegenerative disorders in older adults, improving quality of life and effective disease management.

Servers at the WA Observatory

This project aims to advance the field of human movement science by addressing the challenges encountered when developing a low-cost, automated system for screening the movement of pre-elite student-athletes. Leveraging state-of-the-art artificial intelligence (AI), markerless motion capture and stereo vision technologies, this research will tackle critical challenges in biomechanics and sports science.

Health and Biosecurity picture

This Project will develop deep-learning models to predict interactions of ribonucleic acid (RNA) with other molecules. The expected outcomes are to improve prediction capabilities to decode RNA interactions in disease mechanisms, identify novel therapeutic modalities, and improve existing therapies for targeting RNA. This could result in enhanced capacity to design new therapies and potential to optimise RNA targeting molecules for therapeutic applications. 

Health and Biosecurity picture

This Project aims to understand brain circuits and processes supporting communication in individuals with hearing problems, including those who use devices such as hearing aids and cochlear implants. The potential benefits are that individualised strategies based on real-time brain states estimate algorithms to empower listening and support effective communication. The Project will use brain-imaging techniques‚ including those compatible with listening technologies, including electroencephalogram (EEG), to explore the listening brain. The Project will explore brain changes that arise from hearing loss, how changes in brain function – within and beyond the auditory brain – arise to support listening when hearing is impaired, and how these findings can be used as a part of devices such as cochlear implants that engage the rest of the brain to support an individual's listening. 

Health and Biosecurity picture

This Project will leverage artificial intelligence to develop and validate synthetic computed tomography (CT) from magnetic resonance imaging (MRI) in the abdominal and lung regions. The expected outcomes are an AI-based synthetic CT model, thorough technical and clinical validation and potential patent/licensing opportunities. This may reduce unnecessary ionising radiation of CT in patients and improve treatment efficiency during radiotherapy planning.

Servers at the WA Observatory

This Project will develop an AI-based robotic programming interface based on large-language model that allows practitioners, regardless of their technical expertise, to efficiently program and control robots. The expected outcomes are to improve efficiency in designing and deploying clinical lab automation and to expand the use of robotics within laboratories. This may lead to improvements with workflow for clinical lab automation, particularly during high-demand situations like pandemic outbreaks.

Servers at the WA Observatory

This Project will investigate cyber security risk mitigation approaches to secure the integrity of sensor information feeding into critical infrastructure operational systems and digital twins. The expected outcome is the development of guidelines for implementing robust cyber security measures. This may enhance resilience against cyber threats and ensure the integrity of decision-making processes.​

Environment picture

This project will investigate the use of artificial intelligence (AI) to improve weather forecasts and discover how AI forecasts can advance farming decisions by coupling with crop models and smart farming tools. This is an exciting opportunity to develop or integrate novel AI-enhanced weather forecasts into real world modelling applications, for example in the sugarcane industry. With research being undertaken alongside real farm advisors, your research can help industry to optimise resource use and enhance overall farm productivity while minimising environmental impact.

Servers at the WA Observatory

This Project aims to develop multimodal and responsible artificial intelligence (AI) for automated robotic surgery assessment. The expected outcome is to develop multimodal and responsible AI for automated robotic surgery assessment. The potential benefit is enhanced surgical training, improved patient outcomes, reduced training costs, and increased transparency.