#environmental science

Mineral Resources picture. These images are taken by Colin Veitch in the Microscopy Unit - he works in Waurn Ponds.

In-situ recovery (ISR) is emerging as a transformative technique for the extraction of copper (Cu) from Australian sediment-hosted deposits and reprocessing of mine tailings. In contrast to conventional hard-rock mining, ISR offers a non-invasive, environmentally sustainable and economically viable alternative, with the potential to unlock copper resources from low-grade or marginal deposits. As Cu is essential for the electrification of transport and renewable energy systems, ISR technologies hold significant potential to contribute to the global development and deployment of low-carbon energy and transport infrastructure in a manner that minimise impacts on the environment and local communities. This project, in collaboration with EnviroCopper Ltd, will investigate the mineralogical, geochemical, biological and kinetic aspects of fluid-rock interactions during ISR of the Kapunda Cu deposit, South Australia. By addressing these aspects, it will advance our understanding of ISR processes and support its broader adoption at both national and global scale.

Environment picture

This project will investigate the use of artificial intelligence (AI) to improve weather forecasts and discover how AI forecasts can advance farming decisions by coupling with crop models and smart farming tools. This is an exciting opportunity to develop or integrate novel AI-enhanced weather forecasts into real world modelling applications, for example in the sugarcane industry. With research being undertaken alongside real farm advisors, your research can help industry to optimise resource use and enhance overall farm productivity while minimising environmental impact.