#environmental science

Enhanced resilience of irrigated agricultural floodplain landscapes of the Murray-Darling Basin
This project investigates the functional response of floodplain vegetation to environmental drivers at multiple scales in the Murray-Darling Basin. The expected outcome includes a series of tools for prioritising the management of floodplain vegetation communities across the landscape of the Murray-Darling Basin at multiple scales and identifying thresholds for environmental watering. The potential benefits are spatial data and new knowledge that will guide future environmental flow management for the benefit of iconic floodplain vegetation communities and related ecosystem services, especially those important to irrigated agricultural, such as water quality.

Enhancing sustainable land management practices through natural capital profiles
This project addresses knowledge gaps in environmental sustainability and social marketing, focusing on river health and sustainable land management practices via co-creation and adoption of Natural Capital Profiles. The expected outcome is to extend existing frameworks in social marketing, with a particular emphasis on the Co-Create – Build – Engage (CBE) process, to design more user-friendly behaviour change solutions for improved river health and land management practices. The project will potentially increase the adoption of Natural Capital Profiles by landholders, enabling healthier river ecosystems and better land management.

Every drop counts: ensuring water security in a changing climate in southwest Australia
This project investigates the impacts of climate change and land use change on water availability and quality in Southwest Australia. The expected outcome is to develop and assess management strategies to increase water yield and reduce sedimentation and evaporation losses. The project will support long-term water security for local communities and ecosystems.

Investigating interactions between sulfide minerals and in-situ recovery fluids for copper mining
In-situ recovery (ISR) is emerging as a transformative technique for the extraction of copper (Cu) from Australian sediment-hosted deposits and reprocessing of mine tailings. In contrast to conventional hard-rock mining, ISR offers a non-invasive, environmentally sustainable and economically viable alternative, with the potential to unlock copper resources from low-grade or marginal deposits. As Cu is essential for the electrification of transport and renewable energy systems, ISR technologies hold significant potential to contribute to the global development and deployment of low-carbon energy and transport infrastructure in a manner that minimise impacts on the environment and local communities. This project, in collaboration with EnviroCopper Ltd, will investigate the mineralogical, geochemical, biological and kinetic aspects of fluid-rock interactions during ISR of the Kapunda Cu deposit, South Australia. By addressing these aspects, it will advance our understanding of ISR processes and support its broader adoption at both national and global scale.

Valuing non-crop vegetation in horticultural landscapes of Australia
This project will explore the extent to which areas on farms such as semi-natural vegetation, tree plantings, woodlands, and shelterbelts benefit producers through ecological mechanisms, such as enhancing pollinators or pest predators along with broader aesthetic and Indigenous cultural benefits. The outcome of this project will provide an improved understanding of the scale and relative importance of these benefits in the agricultural production landscape of northern New South Wales. This project will directly support horticulturalists in the region and guide future policy.

Improving cropping decisions with AI-enhanced weather forecasts
This project will investigate the use of artificial intelligence (AI) to improve weather forecasts and discover how AI forecasts can advance farming decisions by coupling with crop models and smart farming tools. This is an exciting opportunity to develop or integrate novel AI-enhanced weather forecasts into real world modelling applications, for example in the sugarcane industry. With research being undertaken alongside real farm advisors, your research can help industry to optimise resource use and enhance overall farm productivity while minimising environmental impact.