#ecology

Environment picture

This project investigates the functional response of floodplain vegetation to environmental drivers at multiple scales in the Murray-Darling Basin. The expected outcome includes a series of tools for prioritising the management of floodplain vegetation communities across the landscape of the Murray-Darling Basin at multiple scales and identifying thresholds for environmental watering. The potential benefits are spatial data and new knowledge that will guide future environmental flow management for the benefit of iconic floodplain vegetation communities and related ecosystem services, especially those important to irrigated agricultural, such as water quality. 

A&F

This project will explore the extent to which areas on farms such as semi-natural vegetation, tree plantings, woodlands, and shelterbelts benefit producers through ecological mechanisms, such as enhancing pollinators or pest predators along with broader aesthetic and Indigenous cultural benefits. The outcome of this project will provide an improved understanding of the scale and relative importance of these benefits in the agricultural production landscape of northern New South Wales. This project will directly support horticulturalists in the region and guide future policy.

A&F

This project investigates ecological interactions that influence disease spread in tree crop horticultural systems. The expected outcomes are improved understanding of ecological drivers of the dynamics of diseases and ecological intervention/restoration strategies for disease management. The potential benefit is chemically limited sustainable disease management in horticulture, benefiting industry and the environment.