#biomedical engineering

Hydrogels with mechanical properties for 3D in vitro cell models
This Project combines different polymer chemistries to develop hydrogels that can be made stiffer or softer on-demand, replicating physiological processes. The expected outcome is the creation of hydrogels for 3D cell culture that better mimic native tissues in different stages of their development and disease. The potential benefit is improved in vitro/non-animal models with lower attrition rates and cost in drug discovery and development of advanced therapies.

Communicating in the real world
This project aims to utilise existing sensor technologies to evaluate the impact of hearing loss when communicating in noisy environments. The expected outcome is the discovery of novel analysis methods that utilise multi-sensor fusion techniques. The potential benefit is improved outcomes for individuals with hearing loss.