Health and Biosecurity

Generalisation of the radiotherapy atlas contouring (TRAC) tool
This project will develop AI tools to both define and check medical image segmentations in radiotherapy clinical trials and clinical practice. The expected outcome is to develop quality assurance tools from artificial intelligence techniques and data from multiple medical imaging modalities. This project will have potential to improve patient outcomes and ensure effective implementation of advanced radiotherapy technologies and clinical trials.

AI for Early Detection of Neurodegenerative Disorder in Elderly
This Project aims to develop outcome measures for early detection of neurodegenerative disorders using artificial intelligence (AI) and various sensing modalities, offering personalised support to older adults. The expected outcome is the creation of AI algorithms to detect early signs of neurodegenerative disorders in older adults living independently at home. The potential benefit is early detection of neurodegenerative disorders in older adults, improving quality of life and effective disease management.

Applying imaging methods and data analytics to explore the listening brain
This Project aims to understand brain circuits and processes supporting communication in individuals with hearing problems, including those who use devices such as hearing aids and cochlear implants. The potential benefits are that individualised strategies based on real-time brain states estimate algorithms to empower listening and support effective communication. The Project will use brain-imaging techniques‚ including those compatible with listening technologies, including electroencephalogram (EEG), to explore the listening brain. The Project will explore brain changes that arise from hearing loss, how changes in brain function – within and beyond the auditory brain – arise to support listening when hearing is impaired, and how these findings can be used as a part of devices such as cochlear implants that engage the rest of the brain to support an individual's listening.

Communicating in the real world
This project aims to utilise existing sensor technologies to evaluate the impact of hearing loss when communicating in noisy environments. The expected outcome is the discovery of novel analysis methods that utilise multi-sensor fusion techniques. The potential benefit is improved outcomes for individuals with hearing loss.