Data61

AI motion capture system for enhancing human motor function
This project aims to advance the field of human movement science by addressing the challenges encountered when developing a low-cost, automated system for screening the movement of pre-elite student-athletes. Leveraging state-of-the-art artificial intelligence (AI), markerless motion capture and stereo vision technologies, this research will tackle critical challenges in biomechanics and sports science.

Clinical lab automation with AI human robot interface
This Project will develop an AI-based robotic programming interface based on large-language model that allows practitioners, regardless of their technical expertise, to efficiently program and control robots. The expected outcomes are to improve efficiency in designing and deploying clinical lab automation and to expand the use of robotics within laboratories. This may lead to improvements with workflow for clinical lab automation, particularly during high-demand situations like pandemic outbreaks.

Cyber security risk mitigation for sensor data integrity
This Project will investigate cyber security risk mitigation approaches to secure the integrity of sensor information feeding into critical infrastructure operational systems and digital twins. The expected outcome is the development of guidelines for implementing robust cyber security measures. This may enhance resilience against cyber threats and ensure the integrity of decision-making processes.

Resilient and quantum-safe threshold cryptography
This Project will design quantum-safe threshold encryption and/or authentication algorithms. The expected outcome is the design of methods, techniques and their software prototype to implement quantum-safe threshold encryption and/or authentication algorithms. The potential benefit is to enhance the security of Australian critical infrastructures, safeguarding them against quantum attacks.

Enabling Post-Quantum Cryptography (PQC) Migration
This Project develops techniques for the migration to post-quantum cryptography (PQC) to secure critical infrastructure from quantum attacks. The expected outcome is the design of methods, techniques and their prototype to implement trusted PQC migration. The potential benefit is to enhance the security of Australian critical infrastructures against quantum attacks

Enhancing cybersecurity with AI and Large Language Models
This project will explore the integration of artificial intelligence (AI) and large language models (LLMs) to predict organisational cybersecurity risks and mitigate threats in advance. The expected outcomes are an enhanced cybersecurity framework, better threat intelligence techniques and user-centric designs, and an adaptable solution. This may help businesses to identify cyber risks and prevent cyber incidents prior to happening and avoid financial losses and brand damage.

Evaluating Robotic Medical Surgery with Multimodal and Responsible AI
This Project aims to develop multimodal and responsible artificial intelligence (AI) for automated robotic surgery assessment. The expected outcome is to develop multimodal and responsible AI for automated robotic surgery assessment. The potential benefit is enhanced surgical training, improved patient outcomes, reduced training costs, and increased transparency.

Shaping human and AI collaboration in Security Operations Centres
This project investigates innovative solutions to enhance collaborative intelligence, leveraging human and artificial intelligence affordances, in security operations centres (SOC). The expected outcome is the development of socio-technical artifacts that leverage cyber threat intelligence for enhanced cyber situational awareness and sensemaking in SOCs. The potential benefit is faster and more effective responses to cyber threats in Australia.

Operationalising quantum communications
This project will develop infrastructure for quantum communications including quantum memory technology and quantum communication protocols. The expected outcomes are a quantum memory platform for free-space communications and software architecture for operating quantum communications. This could result in a solution for deploying quantum communications technology within Australia for government, industry and public utilisation.