VIC

Servers at the WA Observatory

This project develops a scheme and prototype for utilising advanced AI technologies to manage and efficient utilise of solar energy. The expected outcomes is an energy sharing trustworthy framework that enables commercial customers reducing energy bills. The project will lead to a sustainable solution for SMEs and contribute to environment protection.

A&F

This project explores using fermented plant protein peptides in milk formulas for the elderly with potent antioxidant and anti-inflammatory properties. The expected outcome is to ferment plant protein peptides, analyse their bioactive compounds, and assess their in vitro bioactivities. The project aims to develop nutritious, easily digestible, novel dairy formulas, potentially reducing the burden of age-related health concerns on individuals and healthcare systems.

Manufacturing picture

This project is developing a real-time quality assurance system to detect precision assembly errors and validate CNC machine performance using quantitative data. The expected outcome is an intelligent, data-driven quality control method that improves the accuracy and reliability of ultra-precision manufacturing. This technology will potentially result in improved product traceability, reduced defects, and increased compliance with medical and military standard for the advanced manufacturing industry.

Manufacturing picture

This Project aims to invent new modes of heterogeneous catalysts (Catalytic Static Mixers - CSMs) to drive new and scalable chemical reactions. The expected outcome is to create catalysis technologies to broaden and sustain Australia’s chemical industries. The potential benefits are the creation of new catalysts, increased technology uptake by industry and the utilisation of critical minerals and rare earth elements in catalysts.

Environment picture

This project aims to quantify methane emissions from wastewater treatment plants. The expected outcomes are improved understanding of methane emissions from within the plant, their spatial and temporal variability, and how they contribute to the total emissions. This may reduce emissions of methane.  

Servers at the WA Observatory

This Project will investigate cyber security risk mitigation approaches to secure the integrity of sensor information feeding into critical infrastructure operational systems and digital twins. The expected outcome is the development of guidelines for implementing robust cyber security measures. This may enhance resilience against cyber threats and ensure the integrity of decision-making processes.​

Servers at the WA Observatory

This Project will design quantum-safe threshold encryption and/or authentication algorithms. The expected outcome is the design of methods, techniques and their software prototype to implement quantum-safe threshold encryption and/or authentication algorithms. The potential benefit is to enhance the security of Australian critical infrastructures, safeguarding them against quantum attacks.

Servers at the WA Observatory

This Project develops techniques for the migration to post-quantum cryptography (PQC) to secure critical infrastructure from quantum attacks. The expected outcome is the design of methods, techniques and their prototype to implement trusted PQC migration. The potential benefit is to enhance the security of Australian critical infrastructures against quantum attacks

Servers at the WA Observatory

This project will explore the integration of artificial intelligence (AI) and large language models (LLMs) to predict organisational cybersecurity risks and mitigate threats in advance. The expected outcomes are an enhanced cybersecurity framework, better threat intelligence techniques and user-centric designs, and an adaptable solution. This may help businesses to identify cyber risks and prevent cyber incidents prior to happening and avoid financial losses and brand damage.   

Servers at the WA Observatory

This Project aims to develop multimodal and responsible artificial intelligence (AI) for automated robotic surgery assessment. The expected outcome is to develop multimodal and responsible AI for automated robotic surgery assessment. The potential benefit is enhanced surgical training, improved patient outcomes, reduced training costs, and increased transparency.