NSW

Servers at the WA Observatory

This project explores strategies for developing a solar-powered EV charging network that ensures comprehensive coverage across urban and remote regions in Australia. The expected outcome is to enhance energy security, mitigate range anxiety, and protect user data, by leveraging AI-driven data analytics and privacy-preserving mechanisms. The project will potentially provide insights into the feasibility and design of a scalable and sustainable EV charging solution in Australia.

Servers at the WA Observatory

This project develops AI models to address the critical gap in automated interpretation of blueprints in construction domain. The expected outcome is an AI system that translates complex blueprints into plain language actional construction instructions. The project outcome will reduce errors, delays and cost in construction industry, enhancing productivity, safety, and sustainability. 

Health and Biosecurity picture

This project will develop AI tools to both define and check medical image segmentations in radiotherapy clinical trials and clinical practice. The expected outcome is to develop quality assurance tools from artificial intelligence techniques and data from multiple medical imaging modalities. This project will have potential to improve patient outcomes and ensure effective implementation of advanced radiotherapy technologies and clinical trials.

Servers at the WA Observatory

This project develops advanced multimodal sensing techniques for next-generation aerial robots to improve bushfire mitigation and pest management. The expected outcome is a robotic sensing prototype for real-time monitoring. This technology will deliver customer, national, industry, and public benefits through enhanced safety, sustainability, cost-efficiency, and support for Indigenous manufacturing. 

Health and Biosecurity picture

This Project aims to understand brain circuits and processes supporting communication in individuals with hearing problems, including those who use devices such as hearing aids and cochlear implants. The potential benefits are that individualised strategies based on real-time brain states estimate algorithms to empower listening and support effective communication. The Project will use brain-imaging techniques‚ including those compatible with listening technologies, including electroencephalogram (EEG), to explore the listening brain. The Project will explore brain changes that arise from hearing loss, how changes in brain function – within and beyond the auditory brain – arise to support listening when hearing is impaired, and how these findings can be used as a part of devices such as cochlear implants that engage the rest of the brain to support an individual's listening. 

Health and Biosecurity picture

This project aims to utilise existing sensor technologies to evaluate the impact of hearing loss when communicating in noisy environments. The expected outcome is the discovery of novel analysis methods that utilise multi-sensor fusion techniques. The potential benefit is improved outcomes for individuals with hearing loss.