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Abstract: Optical colonoscopy is known as a gold standard screening method in detecting and removing cancerous polyps. During
this procedure, some polyps may be undetected due to their positions, not being covered by the camera, or missed by the surgeon.
In this paper, we introduce a novel ConvNet algorithm to map the internal colon surface to a 2D map (visibility map) which can
be used to increase awareness of clinicians (particularly junior clinicians) about areas they might miss. This was achieved by
leveraging a colonoscopy simulator to generate a dataset consisting of colonoscopy video frames and their corresponding Colon
Center Line (CCL) points in 3D camera coordinates. A pair of video frames were used as input to a ConvNet, whereas the output
was a point on the CCL and its direction vector. By knowing 3D centerline points for each image and modeling the colon as a
cylinder we could unroll images to build a visibility map. However, note that this model is just for visualization, in practice the actual
colon need not be cylindrical nor even symmetric. We validated our results using both simulated and real colonoscopy frames.
Our results showed that using consecutive simulated frames to learn the colon centerline can be generalized to real colonoscopy
video frames to generate a visibility map.

1 Introduction map). Such a map can provide useful information about uncovered
areas during colonoscopy, map the position of any detected polyp,
Colorectal cancer (CRC) is the second cause of cancer mortality and be used as a reference to follow up with patients. Previous work
in Australia, and worldwide [1, 2]. The chance of survival can be taking a similar approach ([7] and [9]) generates a visibility map
increased to 90% if it is diagnosed at early stages. Colonoscopy using the following steps: (i) estimate camera pose and infer 3D
is a common practice to detect and remove colonic polyps, yet the structure, (ii) fit a cylinder into the 3D structure to estimate an aver-
chance of missing polyps is relatively high [3]. This might be due to age radius, (iii) compute the center-of-dark region for each frame,
polyp structure and position (e.g. behind a fold) or lack of coverage (iv) using camera parameters and the center-of-dark region, project
of colon surface. Under optimal conditions, it is expected that around the cylinder onto endoscopy images and unroll the images (into band
90-95% of the colon to be inspected, while in practice only 81% of images), (v) stitch the band images to generate a visibility map.
the colon mucosa is typically visualized [4]. While polyp detection Since this method is based on camera pose estimation and 3D recon-
from colonoscopy videos has been widely investigated [5], fewer struction, it can be computationally expensive and complex and can
studies have investigated how to assist clinicians, particularly junior be unstable and fail for sparsely textured frames with the complex
clinicians in ensuring complete coverage during the procedure [6-8]. structure of the colon wall. In particular, [9] uses traditional fea-
One previous approach to detecting missed areas focuses on ture point matching methods, for which performance can be poor

detecting regions behind haustral fold [6]. For example, Ref [8] pro- in difficult visual conditions, such as arise in colonoscopy.
poses a generative adversarial network method to estimate colon One approach to improve robustness is to use ConvNet methods
depth from real images by using simulated images. However, here such as [8] or [10] to directly generate the 3D structure of a colon,
we aim to generate a map of the internal colon surface (visibility or ConvNet approaches to compute optical flow that can then be

— = — — \\
/ Realistic simulated Colon centerline (ccl) f&\ f/ Real colonoscopy \\\
| colonoscopy video frames simulator in camera view | video frames

&

Trained (CNN)

Estimate
‘ colon centerline

i

Train Convolutional Neural Validate and test - u
Network (CNN) to learn = trained (CNN) on Generate band image&

\ ccl from frames simulated frames J\ Visibility map Q
\ / \\ v along (ccl

Fig. 1: A schematic of the proposed processing pipeline.
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used to estimate structure [11]. However, these methods either need a
dataset annotated with depth, which is hard to obtain for real optical
colonoscopy, or they predict depth from a single frame which adds
complexity. Generating complete 3D information is not necessary to
infer visibility and is a significant source of error. We propose a novel
approach, we use regression and train a network to learn directly
simple low-dimensional geometrical parameters of a colon segment
(here, centerline) in camera coordinates and use this to directly esti-
mate a visibility map. We propose a ConvNet to learn the colon
centerline (CCL) and its direction from simulated colonoscopy video
frames. Our proposed method consists of two phases: (i) train a Con-
vNet with simulated colonoscopy video frames for which their colon
centerlines (CCL) in camera coordinate are known (a pair of consec-
utive frames is used as input to the network and the output is a point
of CCL and its direction), (ii) test the ConvNet on real colonoscopy
video frames by generating a visibility map. The summary of our
method is presented in Fig.1. Our contributions are as follows: (i) an
algorithm that combines motion and appearance cues from training
data from an endoscopic simulator to learn to predict the centerline
of the colon from RGB-only image sequences obtained during real
and simulated endoscopic procedures; (ii) this is the basis of a new
algorithm that learns to project optical colonoscopy frames to a map
to enable accurate visualization of visual information over an endo-
scopic procedure; (iii) we show that this leads to the generation of
a more accurate map with a smoother mapping and reduced arti-
facts compared to previous methods, without requiring additional
information (e.g. CT or hardware end-effector localization [12, 13]).

2 Method

A colon centerline (CCL) is a curve in space that represents the cen-
ter of a surface of revolution that approximates the structure of the
colon (the green line in Fig.2). Note that the Colon is not gener-
ally a surface of revolution, and our method does not require it to
be. Our aim is to learn to predict a CCL in 3D camera coordinates.
This provides the viewed colon segment center and direction. Using
this information, we locally generate a cylinder and project it onto
the image to unroll it to build a small portion of a visibility map.
These portions can then be joined to form a map of the internal colon
surface. Considering the importance of understanding CCL and its
application in our method, first we explain how a visibility map can
be generated by knowing the CCL, then we introduce a ConvNet to
learn the CCL.

Fig. 2: (a) A colon with its centerline, P, is a point on the CCL
and Py is the direction to a second point (red arrow), (b) a cylin-
der generated in the direction of colon and (c) is the projection of
cylinder onto the image and the band image.

2.1  Cylindrical model

A cylinder model can be determined in camera coordinates by esti-
mating P,.; as the point of intersection between the CCL and the
image plane (or, the closest point on the CCL to the center of projec-
tion if they do not intersect (Fig.2, a,b)). A vector with direction of
the CCL in camera coordinates Py..; from P, is defined by taking
a point on the CCL at a geodesic distance a from P,.;, where s < a
is the length of the vector. Then a line segment in the direction of the
CCL can be defined as:

P(i) = {iPuces + Pectli € [-0.01,d]} M

where d is the length of the cylinder. Then the surface of the cylinder
P (i) can be estimated by:

Pe(i) = {iPgect + Pec+rucos(0) + rvsin(0)|

, %)

i€[-0.01,d],0 € (0,2m)}
where r is the radius of cylinder and u and v are vectors orthogonal
to the CCL. Note that defining P,...; is based on a point at a distance
so that smoothness of direction is maintained by being well ahead
of the camera viewing location. This means that a local cylinder will
remain in the overall direction of the colon and be less subject to
rapid change at corners. The definition here is aimed to produce a
smoothly changing mapping.

2.2 Band image and visibility map

2.2.1 Band image: By knowing intrinsic camera parameters,
the above cylinder can be projected onto the colonoscopy video
frame to unroll it and generate a radial strip called a band image
(Fig.2 c) [7]. The radius of the cylinder is set to be constant
throughout. The radius of 2cm was empirically chosen for our
experiments.

2.2.2  Visibility map: Band images were stitched by computing
average motion flow in the x and y directions, estimated by FlowNet2
[14] from consecutive band images. A median filter was applied on
the average of motion flows to ensure a consistent motion. Some
examples of a visibility map generated by our method and method
explained in Ref[7] are presented in Fig.6 (first panel in each group).

2.3 Loss function

The loss function took the L2 norm between predicted and ground
truth centerline information. Specifically, there were two separate
terms, being the error for the CCL point P, and the direction
Pd;clp with X as scale coefficient. The final loss is the sum of these
terms:

L= IPccl _Pccl,,‘2+/\|Pd_;cl _Pd:cl”2 (3)

2.4  ConvNet and implementation details

2.4.1 Network architecture: In our experiments, we used VGG
due to its high performance on our dataset. VGG is a ConvNet
which consists of 16 convolutional layers, with a uniform architec-
ture. We modified this architecture to take two consecutive frames
as input, in a similar manner to FlowNet2 [14] and [11]. The final
fully connected output layer was reduced to predict six parameters,
representing a CCL P, and its direction Py,

24.2  Pre-image processing and implementation: Since the
simulated frames have different color distribution in comparison to
real frames. We equalized both real and simulated video frames and
resized them to comply with the input size of the ConvNet. A pre-
trained VGG was used to learn colon centerline parameters. The
learning rate was set to le-4 and the network was trained for 100
epochs using the TensorFlow interface [15].

3 Experiments and Results

3.1 Dataset

3.1.1  Simulated video frames: Simulated colonoscopy video
frames with realistic appearance including specular reflection, tex-

ture and blood vessels, were generated using high fidelity simu-
lator employing a complex parametric mathematical model. Using
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Fig. 3: Validation of trained VGG on simulated training dataset (left panel), Test network for generalization by using a simulated colonoscopy
video which has not been used in training or validation (right panel). x, y, z represents centerline point and dir is for the direction of colon.

OpenGL, information such as colon centerline points and camera
pose could be extracted for each frame. We used the colon centerline
as ground truth in our experiments. Our simulated dataset consists
of 20,827 video frames from segments of 12 different simulated
colons which were generated by a variety of possible camera motion.
Frames were generated at a simulated rate of 30 frames/second with
the size of 676x540 pixels. This was split into 80% training and
20% validation frames. We also generated a separate video for test
that was not used in training or validation.

3.1.2  Real colonoscopy video frames: We tested our trained
network on ten different segments of real colonoscopy video from
five different patients. Uninformative frames (frames with no techni-
cal or medical information) were removed. The videos were captured
by a 190HD Olympus endoscope, with frame size 13521080 pix-
els, and a capture rate of 50 frames/sec. In total 2515 real video
frames were used to test our method.

3.2 Performance on simulated colonoscopy videos

The absolute difference error results for the validation set are pre-
sented by boxplot in Fig.3 left panel, and results showing the
generalization ability of the network to predict the colon center-
line evaluated using the test video are shown in Fig.3 right panel.
In general, the absolute difference error for the centerline parame-
ters for validation and test sets was less than 0.15 ¢m and 0.40 cm
respectively. We performed an ablation study to demonstrate the per-
formance of our proposed method when only one frame was used for
training versus two frames. The results are shown in Fig. 4

3.3 Performance on real colonoscopy videos

As the CCL was not estimated in Ref [7] and camera parameters
along with the center-of-dark region was used to project cylinder
onto the image, we were unable to directly compare CCL results
from our method with them. Instead, we implemented the method of
[7] to generate a visibility map and compared it with a map gener-
ated by our proposed method. The projection of the cylinder using
our CCL ConvNet method is shown as the first row of Fig. 5 and the
second row shows those generated by [7] using the center-of-dark
region (COD) and camera R.t. In these sequences, camera translates
to the left side of colon occluding part of the darkest region, though
the centerline does not shift dramatically. For our method, the pro-
jected cylinder is correctly stretched to the side where it has moved
closer to the wall but retains orientation towards what appears as the
center. Whereas, for [7] the estimated centerline is shifted signifi-
cantly as the darkest region in the image is partially occluded shifting
the center-of-dark region, showing the limitations of this method. In
Fig.6, comparative examples of visibility maps generated by both
methods are presented for two short sequences. For the rightmost
visibility maps, our method shows fewer artifacts, the corresponding
video (see supplementary results) shows a fold which can be seen in
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Fig. 4: Comparison between the network when it trained with a pair
of consecutive frames versus one frame to estimate CCL parame-
ters, here (z1,y1,21) represent centerline point and dir is for the

direction of colon centerline.

our map but is lost in a less consistent map by [7]. In the left maps,
our method shows a region that is uncovered in this sequence due to
the downward tilt of the camera (see supplementary results), but this
is not shown by [7]. This reflects a more accurate estimation of the
centerline.

4 Discussion and Conclusion

This paper presented a ConvNet approach that learns the colon cen-
terline and its direction from optical colonoscopy frames. This is
used to roughly fit a collection of concentric circles to the colon seg-
ment in 3D, and project them onto the image to unroll the image
to form a band image. Stitching band images can provide a visi-
bility map which can show any uncovered regions. This can help
to improve awareness of uncovered areas, particularly for junior
clinicians, and so improve the quality of colonoscopy.

In comparison to existing methods ([7, 9]) which were based
on computing camera pose, 3D reconstruction and estimating the
center-of-dark region to estimate the centerline, we showed that the
colon direction and centerline point could be directly learned by a
ConvNet. Our results presented in Fig.3 indicated learning and gen-
eralization of the CCL by a ConvNet. Further our results indicated
that the estimation learned from simulated images can generalize to
real colonoscopy video frames, which has not been shown previously
for a ConvNet approach in optical colonoscopy.

Our approach used two frames, enabling the possibility to learn
optical flow to have an indication of structure, while also having
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Fig. 5: Projection of the cylinder onto a short sequence of real frames. The first row shows projection using CCL information estimated by our
ConvNet and the second row presents results from [7]. When the camera moves from middle to left, the position of the projected cylinder using
[7] changes with respect to the change of darkest region, but in our method, CCL remains consistent and keeps cylinder projection following

the true centerline position.
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Fig. 6: Two sample visibility maps generated from two different colon segments generated by our method and Ref [7]. On the left our map
shows an uncovered area, this has not appeared on the map generated by Ref [7]. The difference between our method and Ref [7] is also clear
as the map generated by our method has fewer artifacts and shows colon folds due to its consistency in CCL detection.

access to appearance parameters such as folds and dark regions in
estimating the centerline. We speculate that the ConvNet is able
to incorporate these features to gain a more effective model than
the previous more heuristic approach. The ablation study shows a
clear gain from using multiple frames. However, we will investigate
the performance of our ConvNet method using domain adaptation
methods such as Ref [16].

Our method currently projects the colon as a collection of concen-
tric circles with a same radius as a rough estimation, and therefore as
our future work we are aiming to train a network to learn additional
parameters of a colon segment such as radii for each chamber, along
with colon structure and camera parameters. Using VGG has been
shown to be effective, other networks such as ResNet and DenseNet
along with a bigger dataset will be investigated and compared with
the ConvNet used in this paper in future work.

In summary, our ConvNet-based method shows promising results
for colon centerline estimation and generating a map of the internal
colon surface. More investigations need to be performed to gener-
ate a real time visibility map with high precision. This can help
clinicians to make a better decision while inspecting a colon.
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