

GLA-678 C.Z

REPUBLICA DE CHILE MINISTERIO DE OBRAS PUBLICAS DIRECCION GENERAL DE AGUAS

BIBLIOTECA

de le

DRECCHA CILIRAL AGUAS

El presente informe fue preparado en el Sub-Departamento de Estudios Hidrológicos del Departamento de Hidrología por,

Pedro Valdivia Holzapfel Geólogo

INVENTARIO DE GLACIARES. HOYA DEL RIO TINGUIRIRICA. VI REGION.

PUBLICACION INTERNA EH 84/

Santiago, Septiembre 1984.

INVENTARIO DE GLACIARES DE LA HOYA DEL RIO TINGUIRIRICA

VI REGION

		Påg.
1.	INTRODUCCION	1
1.1.	Objetivos y Antecedentes del estudio	
1.2.	Ubicación del área y accesos	2
1.3.	Método de trabajo	3
1.3.1	Inventario de Glaciares	
1.3.2	Cartografia	5
1.3.3	Fotografías Aéreas	6
1.3.4	Restitución Aerofotogramétrica	
1.3.5	Personal de Apoyo	8
1.4.	Trabajos Anteriores	
2.	FISIOGRAFIA	14
2.1.	Limites Orográficos	
2.2.	Concepción de las formas	
2.2.1	Ajuste de Curvas (Terreno)	15
2.2.2	Ajuste de Curvas (Hielo)	19
3.	HIDROGRAFIA	24
3.1.	Variables Meteorológicas	
3.1.1	Temperatura (º C)	
3.1.2	Humedad Relativa (%)	
3.1.3	Presión Atmosférica (mb)	25
3.1.4	Horas de Sol (Hrs)	
3.1.5	Radiación Solar (Langley/Día)	
3.1.6	Viento (nudos)	
3.1.7	Evaporación (mm/mes)	
3.1.8	Pluviometria (mm de agua)	
3.1.9	Nivometrîa (mm de nieve)	26
3.2.	Cursos Fluviales	
3.3.	Hidrometria	29
3.4.	Calidad Físico-Química de las Aguas	36
4.	GLACIOLOGIA	40
4.1.	Marco Geológico	

	II	Pág.
1 2	Inventario de Glaciares	43
	Archivo Básico de Datos	73
4.2.2	Extensión Areal de los glaciares	
4.2.3	Cotas de Glaciares	46
4.2.4	Orientación de los Glaciares	
4.2.5	Tipos	49
4.2.6	Formas	
4.2.7	Características del Frente	
4.2.8	Perfil Longitudinal	
4.2.9	Fuente de Alimentación	
4.2.10	Linea de equilibrio (nieve)	52
4.3.	Estimación del espesor del hielo	53
4.4.	Volûmen de Hielo y Equivalente en Agua	54
4.5.	Eventos Glaciales	
	ADENDICE 4 LAMINAC 4 of 47	E 0
	APENDICE 1 LAMINAS 1 al 17	58
	APENDICE 2 LISTADO COMPUTACIONAL	75
	PLANO GENERAL	
	BIBLIOGRAFIA	88
FIG	URAS	
(Nº)	
1	Ubicación del área de estudio	2
2	División Hidrográfica de la Hoya del Río Tinguiririo VI Región .	a 4
3	Area cartográfica a escala 1:10000. Hoya del Río Tir	
3	guiririca.	7
4	Grupo Punzones - Palomo - Tinguiririca. (Lliboutry,	
	1956).	11
5	Gráfica computacional de la distribución del terreno)
	en hectáreas no acumuladas vs. la altura expresada e	en

metros. Ecuaciones resultantes del método de ajuste

Curva hipsográfica del terreno y ecuaciones obtenidas

17

17

de curvas.

por ajuste de curvas.

F	IGURAS	Pāg.
7	Gráfica computacional de la distribución de la cubie <u>r</u>	ray.
	ta de hielo no acumulada en hectáreas, vs. la altura	
	en metros.	18
8	Gráfica computacional de la distribución de la cubie <u>r</u>	
	ta de hielo no acumulada en hectáreas vs. la altura	
	en metros. Ecuaciones resultantes del método de ajus-	
	te de curvas.	20
9	Curva hipsográfica de la cubierta de hielo y ecuacio-	
	nes obtenidas por ajuste de curvas.	21
10	Curva hipsográfica de la cubierta de hielo	22
11	Variación interanual de acumulación de nieve. Laguna	
	El Teniente, 2456 m.	28
12	Distribución media anual de los caudales del río Tin-	
	guiririca en los sectores bajo y sobre la Junta con	
	el Río del Azufre.	30
13	Caudales medios mensuales de los afluentes del Río	
	del Azufre para las excedencias indicadas.	30
TABL	2.0	Påg
		ray
(Nō)		
1	Cartografía Base Regular Base IGM., Escala 1:50000	5
2	Fotografias Aéreas verticales Hycon 1955-1956. Lineas	
	de vuelo.	6
3	Grupo Palomo-Tinguiririca. Areas de hielo. (Lliboutry,	
	L. 1956)	12
4	Distribución porcentual de la superficie del terreno	
	(km²), en función de la altura (m), clasificados por	
	subhoyas.	16
5	Clasificación de zonas de hielo en función de la curva	
	hipsográfica.	23
6	Ruta de nieve Laguna El Teniente VI Región.	27
7	Caudales medios mensuales Río Tinguiririca bajo Junta	
	Azufre. Años 1944-1981.	31
8	Caudales medios mensuales. Río Tinguiririca sobre Jun-	
	ta Azufre. Años 1944-1981.	32

TA (N	BLAS ⁹)	Påg
9	Ecuaciones y coeficientes de regresión de caudales medios mensuales (m³/seg). Río Tinguiririca en sectores	
	sobre y bajo Junta con el Río del Azufre.	33
10	Caudales medios mensuales de los afluentes del Río del	
	Azufre, en m ³ /seg. (Arretz, L 1984, en preparación).	
	Estimación de Probabilidades.	34
11	Recursos del Estero La Pascuala en su afluencia al Río	
	del Azufre. (Arretz, L. 1984, en preparación).	35
12	Calidad Química de las aguas del Río Tinguiririca. Años	
	1970-1972.	37
13	Análisis Químico de las aguas del Río de los Cipreses.	
	Año 1984.	38
14	Distribución areal de Glaciares en función de la Altu-	
	ra. Clasificados por subho yas .	45
15	Areas totales, expuestas, cubiertas, de ablación, y de	
	acumulación.	45
16	Valores de cotas medias máximas y mínimas por subhoya.	47
17	Alturas medias de acumulación y ablación ponderadas en	
	función de la superficie englaciada.	47
18	Orientación de las áreas glaciares de acumulación y	
	ablación (Nº y %).	47
19	Orientación de los glaciares por subhoya	48
20	Clasificación y número de glaciares por subhoyas	
	(Digito 1)	50
21	Clasificación de formas glaciares por subhoyas	
	(Digito 2)	50
22	Características del frente glaciar por subhoyas	
	(Digito 3)	50
23	Clasificación de perfiles glaciares longitudinales	
	(Digito 4)	51
24	Fuente principal de alimentación de los glaciares	
	(Digito 5)	51
25	Clasificación de las morrenas	51
26	Volumenes de hielo y equivalente en agua	55

CONCLUSIONES Y RECOMENDACIONES

El presente informe corresponde al inventario de las áreas cubiertas por nieve y/o hielo mayores que 0.2 Há., registradas en las subhoyas de los ríos Tinguiririca Alto, San José, Portillo y del Azufre.

La hoya hidrográfica considerada tiene una superficie de $990.5~\rm km^2$, con una altura media de terreno de 3389 m. y se extiende entre los paralelos 34° 35' y 35° 00'. Lat. S. y entre los meridianos 70° 15' y 70° 45' Long. W., en la VI Región, Chile.

Mediante técnicas de restitución aerofotogramétricas, se confeccionaron 17 láminas cartográficas de la Alta Cordillera, a escala 1:10000 y curvas de nivel cada 10 m. de las áreas mas significativas de nieve y/o hielo, dispuestas bajo el sistema de coordenadas U.T.M.

La distribución areal media de la hoya del Río Tinguiririca, ponderada en función de su altura y clasificada en subhoyas fue del 22,8% para el río Las Damas; del 18,3% en el caso del río Tinguiririca Alto; del 15,0% en el río San José; del 24,9% para el río Portillo y del 19,0% en el río del Azufre, con alturas medias de 3633, 2713, 3714, 3287 y 3632 m. respectivamente.

•

La clasificación y tabulación de información relativa a 261 glaciares reconocidos indica, que en el año 1955, se registró una superficie cubierta por nieve y/o hielo de 106,5 km2, equivalentes al 10,7% del área total considerada, de las cuales su mayor concentración igual a 1,2 km² se distribuye alrededor de los 3600+108 m.s.n.m. De la totalidad de la superficie de hielo evaluada en $1\overline{a}$ hoya, el 97% corresponde a glaciares con superficies expuestas, el restante 3% son glaciares con superficies cubiertas.

El tamaño areal promedio de los glaciares es de 50 Hå., mientras que el rango mas significativo dentro del total de la superficie englaciada se ubica entre 0.2 y 3,0 Hå., cuyos glaciares representan el 76,6% del total de la superficie englaciada.

El mayor número de glaciares (49%), se ubica en tamaños del rango 0.2-0.3~Hå.

El mayor glaciar de las hoyas del río Tinguiririca es el glaciar Universidad, número 24 de la subhoya Río San José, con una extensión de 29,7 km 2 .

La altura en que se encuentran los glaciares varía desde la cota 2200 m hasta los 5020 m. La cota mínima promedio es de 2848+ 196. La cota máxima promedio es de 4631+16 m. La cota estimada como lí nea de equilibrio máximo en glaciares descubiertos es de 3850 m.

Las orientaciones dominantes de los glaciares se encuentra en las componentes Sur. (Al W, un 43,4%; al E, un 23,0%). En el resto de las orientaciones domina el sector occidental (S W, W, NW por sobre el sector oriental (SE, E, NE)

Las formas mas comunes de los glaciares son las formas glaciares de faldas o glaciaretes (43,3%), de montaña (41,7%) y glaciares de valle (11,9%).

El volumen de hielo existente en la hoya del Río Tinguiririca, corresponde a un cubo de 2,24 Km. de lado, equivalente a una altura continua de hielo de 11,4 m. distribuída sobre la superficie total de la hoya, o también representable por un paralelógramo de 106,5 km² con una altura de 106,1 m. de hielo, de los cuales el 67,3 es aportado por la hoya del Río San José. Estimada la densidad media del hielo en 0.8 gr/cm³ las reservas de agua en forma de hielo se ca culan en 9,0 km³.

Del balance de caudales registrados en los dos brazos fluviales de las estaciones Tinguiririca sobre y bajo Junta con el Azufre, se puede establecer que la hoya del Río Azufre (contiene los afluentes Portillo y San José), aportaron durante el período 1944-1972 una relación de caudal equivalente al 63 % del caudal superficial, repecto del caudal proveniente del Río Las Damas.

Respecto de la calidad de aguas, en el caso de las muestras provenientes del Río Tinguiririca, es posible observar un decai miento de la conductividad específica durante la temporada de verano que probablemente se encuentre asociado al incremento de caudales de deshielo. En el caso demuestras provenientes del Río de Los Cipreses, en general presentan un pH ácido, con presencia de Arsénico en cantidades que no exceden la Norma Chilena Oficial y similar conteni do de Boro en todos los casos. Respecto de la presencia de fierro, este excede en veces la Norma mencionada en el caso del cobre es significativa en sólo 1 muestra e implicaría una contaminación base natural.

La Dirección General de Aguas tiene por delante la necesidad de poner a la Cordillera de Los Andes bajo coordenadas numéricas, acción que apoyada en la cartografía computacional, le permitirá desarrollar buenos modelos físicos del terreno, para reproducir e incluso anticipar algunos fenómenos asociados al ciclo hidrológico. Los esfuerzos en este sentido deben ser favorecidos a fin de facilitar las tareas que exigen respuestas prácticas e inmediatas.

Young G. (1973) desarrolló el programa computacional MASBAL, que permite describir gráficamente cualquiera forma superficial (expresión planar) siempre que este circunscrita a una red ordenada de puntos, como es el caso de las coordenadas UTM., que tienen puntos de intersección ortogonales cada 100 metros. Tal es el caso de los planos confeccionados mediante levantamientos aerofotogramétricos de los glaciares en las hoyas de los ríos Tinguiririca y Aconcagua.

La cartografía obtenida permitirá la evaluación de los datos de una manera eficiente, limpia, confiable y rápida, además de correlacionar de manera inmediata la altitud, pendiente, cobertura, orientación y microrelieve. De esta manera, los procesos de ablación quedan restringidos a variables geodésicas definidas. La altitud es especialmente importante respecto de la temperatura del aire (ubicación de la isoterma de 0°C), de igual manera las pendientes en relación con el Azimut que afecta notablemente el conjunto de la radiación solar directa.

Pedraza, A y Rauh, R. (1984), aplicaron con éxito el programa de gráficos computacionales en glaciares, al comparar los glaciares del Valle del Aparejo entre los años 1955-1980. Ambos planos fueron confeccionados bajo el mismo criterio del Inventario de glaciares. En este caso se utilizó el Programa SYMAP, en lenguaje Fortram, en operación CMS y a disposición de los usuarios en el Centro de Computación de la Universidad de Santiago, USACH.

dia

cal

F1 u

Zu-

972

Scai

al es

mp-

en

●s i g

●na-

Dado el tremendo quehacer geológico asociado con el agua en nuestro país y las escazas posibilidades de desarrollo que por la geología ha dedicado la DGA., y en general el MOP., esta debe tender a facilitar convenios de estudios con el Servicio Nacional de Geología y Minería (SERNAGEOMIN), especificamente en Geoquímica.

Necesitamos formar un geólogo aplicado a fenómenos hidrotermales y volcánicos. De esta manera tendríamos la capacidad de a cercarnos al espíritu del agua al captarla en los gases de las fumarolas y burbujas en explosión al conocer la contaminación base de nuestro propio terreno y sus respectivos pulsos, fenómenos sobre los cuales el sub-Depto. Operaciones y Control podría registrar y nuestro laboratorio analizar con excelencia y así medir, sumar y restar con el objetivo de buscar los elementos químicos que se rela cionan en las diferentes áreas termales del país, tendiendo a generar el catastro de las Fuentes termales de Chile.

Con el objetivo de controlar las fluctuaciones de los glaciares, en esta hoya, se propone observar mediante técnicas aerofotogramétricas, los glaciares Nº 36, 40 y 47 de la subhoya Río Las Damas; los glaciares Nº 24 y 33 de la subhoya Río San José; los glaciares Nº 20 y 34 de la Subhoya Río Portillo y finalmente los glaciares Nº 34 y 36 de la subhoya Río del Azufre.

Desde el punto de vista del control en terreno, se deben seleccionar glaciares menores a las 3 Há. de superficie y que sean accesibles sin dificultad, tendiendo a considerar alguna masa de hielo que sea representativa de los efectos actuales de volcanismo y los procesos hidrotermales asociados, por cuanto estructuralmen te el área evidencia un fuerte tectonismo y cuyas fisuras provocan la ascención de líquidos y gases magmáticos que dan origen entre otros a los denominados Baños del Flaco.

REPUBLICA DE CHILE MINISTERIO DE OBRAS PUBLICAS DIRECCION GENERAL DE AGUAS

INVENTARIO DE GLACIARES DE LA HOYA DEL RIO TINGUIRIRICA, VI REGION

- 1. INTRODUCCION
- 1.1 OBJETIVOS Y ANTECEDENTES DEL ESTUDIO:

El presente informe tiene como objetivo, realizar el Inventario de Glaciares de la Hoya Hidrográfica del río Tinguiririca, en la VI Región, como una contribución a los programas hidrológicos desarrollados por el Departamento de Hidrología de la Direc - ción General de Aguas del Ministerio de Obras Públicas (DGA/MOP).

Su propósito es determinar la distribución y las principales características de las reservas de agua congelada contenidas en 261 glaciares reconocidos en los Andes de Chile Central, mediante el análisis de las propiedades físicas relativas a la ubicación, superficie, cotas, pendientes, orientación, superficie cubierta, altura de línea de nieve, espesores medios y volúmenes, además de la Clasificación Internacional conforme con la Norma UNESCO, representada por la Hoja Estandart de Datos del Secretariado Técnico Temporal (TTS) de la Oficina del Inventario Mundial de Glaciares (WGI).

El estudio considera los métodos y los procedimientos de trabajo empleados, las técnicas utilizadas y los progresos realizados, además de las aplicaciones del inventario al discutir sus implicaciones futuras.

Conforme a las recomendaciones derivadas del Decenio Hidrológico Internacional (IHD. 1965-1974), programa en el cual intervienen muchos países que trabajan de manera individual o colectiva en adelantar el conocimiento del agua y sus procesos, Chile en cumplimiento de la Resolución I-12, inició el Inventario Nacional de Masas de Hielo Perenne y Nieve que recubren nuestra extensión territorial.

Este inventario, cuya dirección técnica pertenece al grupo de trabajo de la Comisión Internacional de Hielos y Nieves (ICSI), extenderá la base de datos para posteriores estudios del Servicio Permanente de Fluctuación de Glaciares (PSFG), con residencia en Zürich, Suiza.

1.2 UBICACION DEL AREA Y ACCESOS:

La Región estudiada se ubica entre los paralelos 34º 35' y 35º00' Lat. S. y entre los meridianos 70º 15' y 70º45' Long.W. Específicamente se extiende desde el borde occidental de la Cordi - llera de Los Andes de Chile Central y hasta la zona limítrofe con la República Argentina. La Figura 1, muestra la ubicación espacial, referida a las ciudades más cercanas.

A partir de la Región Metropolitana, las vías de acce so para vehículos motorizados, son la carretera panamericana al Sur Longitudinal 5, a la altura de los Km. 117 y 140, que corresponden a las ciudades de Rengo y San Fernando.

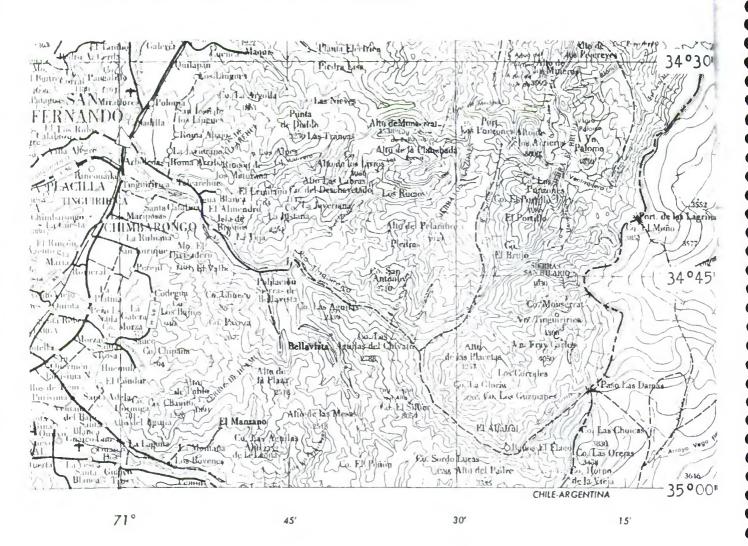


Figura Nº l Ubicación del Area de Estudio

A partir de la ciudad de Rengo, en la Provincia del Cachapoal, y paralelo al río Claro existe un camino pavimentado con a gregados pétreos que va hasta la localidad de Las Nieves (Km. 13), en donde comienza un camino de tierra que conduce hasta el Túnel y Embalse Los Cristales (Km. 48).

Desde allí y a lomo de mulas, se puede transitar por \underline{u} na huella contenida en el plano del sombrero andino que conduce al $c\overline{e}$ rro El Palomo (4850 m), cuyas faldas sur generan las subcuencas de los ríos Portillo y San José, ambos afluentes del río Tinguiririca.

El área es directamente accesible desde la ciudad de San Fernando por un camino de agregado pétreo (Principal I-45), que bordea el río Tinguiririca hasta la localidad de Las Peñas (Km. 27), desde donde comienza un camino de tierra que se extiende hasta Las Termas del Flaco, 48 Km. al interior, hacia las nacientes del río Tinguiririca, cuyas aguas tienen su génesis en el Río Las Damas. En general, el acceso vehicular es posible durante los meses de Diciembre a Mayo. Transporte aéreo es posible desde el aeródromo público de San Fernando, ubicado aproximadamente unos 2 km. al Norte de la ciudad.

1.3 METODO DE TRABAJO:

El procedimiento utilizado en la preparación del inventario, consideró los siguientes aspectos:

1.3.1 INVENTARIO DE GLACIARES.

La caracterización y clasificación de los glaciares existentes en el área se ejecutó de acuerdo con la Norma Internacio nal propuesta por la Oficina del Secretariado Técnico Temporal del Inventario Mundial de Glaciares (TTS/WGI). Müller, F., y Caflisch, T., Zurich, 1980, más algunas normas definidas por la D.G.A., en es tudios realizados por Marangunic, C. (1979).

La distribución de las areas glaciares existentes fue ajustada en conformidad con la Nomenclatura Hidrográfica establecida para la D.G.A., por Benitez, A. (1980), la cual, por decisión interna del Sub-Departamento Estudios Hidrológicos se modificó, transformando el código de identificación 06 de la hoya por la cifra literal F, que identifica las subhoyas en estudio y cuyo gráfico y código se indica en la Figura Nº2.

Figura Nº2 División Hidrográfica de la Hoya del Río Tinguiririca. Región VI, Código F.

71°00

70°

130

35°00-

72°00 Long. W.

Los datos de cada glaciar que constituyen el Archivo Básico, fueron extraídos de la cartografía confeccionada mediante técnicas aerofotogramétricas a escala 1:10.000 de acuerdo con los antecedentes solicitados en la hoja Estandard de Datos (Apéndice 1), relativa al proceso de Inventario de Glaciares.

El cálculo de las áreas glaciares, discretizado cada 50 m de altura, fue realizado mediante el Planímetro Electrónico o Digitalizador Summagraphics, constituido por las unidades Display y Analítica, Modelos ID-416 e ID-2- CTR-20, respectivamente.

Los espesores para cada glaciar fueron asignados de acuerdo con la ecuación discutida en el punto 4.3

Los volumenes de hielo fueron calculados en función de las áreas y los espesores medios obtenidos.

Luego de la revisión final de los valores dispuestos en la Hoja Estandard, la entrada de datos se hizo mediante el proce so de Digitación Computacional, lo que físicamente permitió $rec{e}$ gistrar un diskette de simple densidad.

El listado computacional incluye las principales características de cada uno de los 261 glaciares reconocidos, conjuntamente con el plano general de ubicación del Inventario, y la serie de 17 planos de cartografía glaciar específica, reducidas por fotocopia a escala 1:50.000 constituyen el inventario físico publicable.

El presente inventario de glaciares se encuentra almacenado en la Oficina de Computación del Sub-Departamento Estudios Hidrológicos, en espera de pasar a integrar como Archivo de Glacia res el Banco Nacional de Aguas, permaneciendo a disposición de cual quier usuario.

1.3.2 CARTOGRAFIA:

•

PCA NA

900

Las bases cartográficas utilizadas como apoyo al Inventario, corresponden a las cartas (Sección 4230-F) a escala 1:50000 confeccionados por el Instituto Geográfico Militar de Chile (IGM), cuya nomenclatura se indica en la Tabla 1.

НОЈА	DENOMINACION	COORDENADAS	<u>OBSERVACIONES</u>
26	Río Clarillo	3430-7030	Hoja Regular
27	Cº Alto Los Arrieros	3430-7015	Avance Topográfico
35	Sierra de Bellavista	3445-7030	Hoja Regular
36	Termas del Flaco	3445-7015	Avance Topográfico

TABLA 1, CARTOGRAFIA REGULAR BASE IGM, ESCALA 1 : 50.000

1.3.3 FOTOGRAFIAS AEREAS:

Las superficies de los glaciares restituidos fueron previamente delimitados por la D.G.A. en transparencias sobre las fotografías aéreas verticales Hycon, las que fueron tomadas durante la temporada de Enero y Febrero de 1955-1956. Las líneas de vue lo y sus características generales se indican en la Tabla 2.

ROLLO/LINEA/SERIE	FECHA	ALTURA (m)	DISTANCIA FOCAL (mm)
26/16/4252-4261	Feb.23,1955	10.440	152.63
147/17/24870-24880	Feb.29,1956	10.558	153,35
12/18/1770-1780	En. 22,1955	10.650	153,62
7/19/1108-1116	En. 8,1955	10.503	153,62

TABLA 2. FOTOGRAFIAS AEREAS VERTICALES HYCON 1955-1956 LINEAS DE VUELO.

La orientación absoluta de los estereomodelos fue apoyada mediante puntos seleccionados obtenidos desde los avances to pográficos a escala 1:50.000, mencionados.

Dado que la lectura gráfica a partir de estos, permite una precisión de 0.20 ± 0.5 mm., se espera una precisión de eje cución de la restitución cercana a +-10 m tanto en planimetría como altimetría, error que desde el punto de vista del trabajo es mínimo con respecto a otros inventarios realizados con anterioridad.

1.3.4 RESTITUCION AEROFOTOGRAMETRICA:

Los trabajos de restitución aerofotogramétrica de los glaciares de la hoya del río Tinguiririca, fueron contrata - dos por la Resolución D.G.A. Nº 371 del 24 de Agosto de 1982, me - diante la cual se aceptó la oferta presentada por el Servicio Aerofotogramétrico (SAF/FACH), conforme a lo establecido en las Actas de Calificación, Evaluación y Adjudicación de la Propuesta Privada.

El instrumental técnico utilizado fue un Stereocartógra fo "SANTONI" mod. IV, un Stereosimplex "SANTONI" mod. II C, un P.U.G.-4 "WILD" para la transferencia de puntos y un Coordinatógrafo "ARISTO"

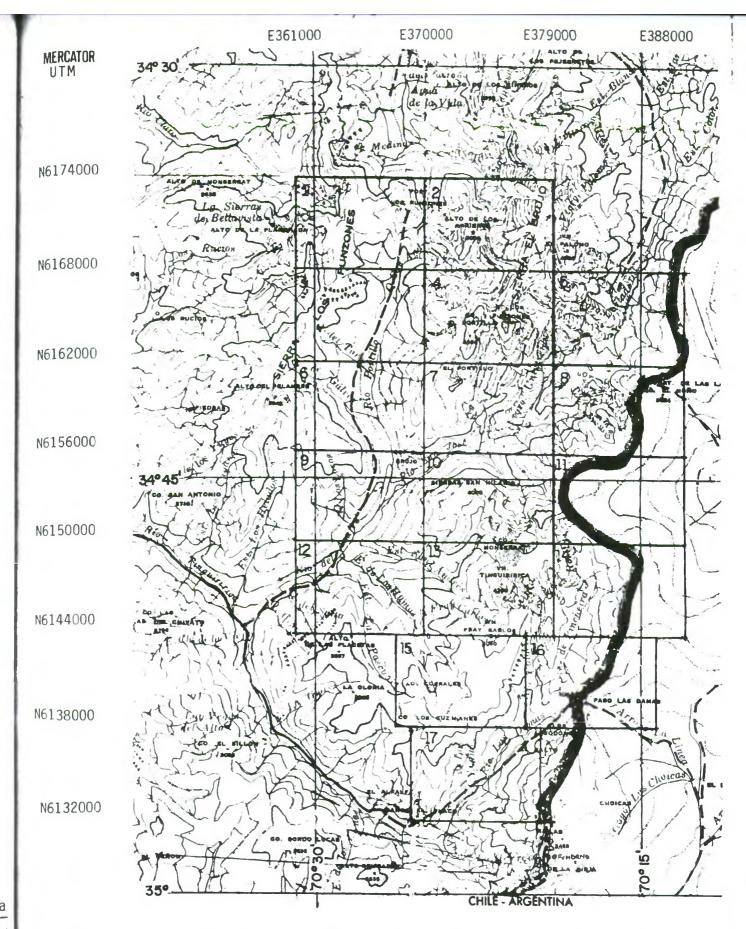


Figura N $^{\circ}3$ Area cartografiada a escala l : 10000 Hoya del Río Tinguiririca. Coordenadas UTM.

La ejecución de las restituciones fue realizada por la Sra. Marina Bennette L. y los Sres. Sgto. lº Ernesto Cuevas D. y Sgto. lº Adán Fuentes A., pertenecientes a la Sección restituciones y cuyos originales fueron confeccionados por la Sección Dibujo de la Escuadrilla Cartográfica del SAF.

La superficie procesada fue evaluada en $106,46~\rm Km^2$ e im plicó la confección de 17 láminas de $114x65~\rm cm$., dibujadas a tinta chi na y sobre papel plástico indeformable, a escala $1:10.000~\rm con$ curvas de nivel cada $10~\rm m$ de casi todos los glaciares de la Hoya del río Tinguiririca, dispuestos sobre una base cartográfica reticulada según el sistema de coordenadas U.T.M., limitada entre los puntos E3610000 y E388000 en longitud y N6132000 y N6174000, en latitud, cuyo equivalente geográfico se encuentra indicado en la Figura $N^{\rm o}3$.

El autor, se desempeñó como Inspector Fiscal de los trabajos mencionados.

1.3.5 PERSONAL DE APOYO:

Los aspectos de reconocimiento de terreno fueron apoyados por el Geólogo Sr. Augusto Schultz G. y por el Andinista Sr. Alber to Peralta R., pertenecientes a los Subdepartamentos Estudios Hidrológicos y Operación y Control, respectivamente.

Con el objeto de trasladar el equipo hacia las zonas al tas del valle y arrendar cabalgaduras para el reconocimiento terres - tre se contrataron los servicios del arriero Sr. Cupertino Valdivia C. con domicilio inmediato al Retén de Carabineros en la localidad de Baños del Flaco.

El tratamiento matemático de los problemas relativos al trazado y ajuste de curvas (Programa PRINT-PLOT), como la complementación, listado y ordenamiento computacional de los datos, fueron ejecutadas por el Ing. Sr. Brahim Nazarala G., perteneciente al Sub-Depto. de Estudios Hidrológicos, apoyado por el mini computador IBM, Modelo 5110.

1.4 TRABAJOS ANTERIORES:

Sobre el área en estudio se han realizado varias expediciones, muchas de las cuales han servido de base a detallados in formes. Con el objetivo de establecer una perspectiva histórica de las ideas fundamentales que percibieron sus autores, se ha realizado una somera compilación de esos trabajos. Aun cuando ellos no representan la totalidad del pensamiento y/o de los procesos que afectaron el área, esos relatos permiten conocer algunas realidades básicas.

60.

•i m

On-

Pa ~

er

60-

●C.

a

a I

Pu-

.

0

.

•

•

\$10.000°

•

En sus estudios relacionados con problemas limítrofes, el Ing. Risopatrón, L. (1903), definió para el sector cordillerano com prendido entre las latitudes 30º40' y 35ºS, que las nevazones durante los meses de Marzo y Abril se encuentran en relación de 4 es a 7, describiendo para el día 5 de Abril de 1898 una caída de 80 cm. de nieve en el campamento Mondaca, ubicado a 3178 m. de altura, luego de 9 hrs. En la mañana del 7 de Abril, obtuvieron la temperatura mínima mas baja de cuantas observaron, igual a-23º C.

Comenta además, la formación de penitentes por efecto de la exposición de los rayos de sol unida a la influencia del viento, fenómenos que alteran las formas de los campos de nieve. Mencio na los campos de nieve roja, el cual atribuye una relación con las huellas de animales por depositación de una determinada arcilla. Se refiere a Darwin, quien plantea como hipótesis, que este fenómeno tie ne su explicación en la existencia del Protococcus nivalis, pequeñas esferas de una milésima de pulgada de diametro.

Respecto de la linea de nieves, supone como limite in ferior de las nieves eternas entre las latitudes 30° y 35° S, un pla no inclinado con expresión al oeste que tiene sus cotas entre los 4800 y 4500 m. respectivamente.

Bruggen, J. (1929), en referencia al valle del Río Tin guiririca, observó que cerca de la frontera, el término del glaciar Palacios se encuentra a 2.700 de altura y al otro lado del portezuelo de Las Damas, en las minas de Las Choicas, encontró el término de los pequeños glaciares a 3.400 m. y como asimismo evidencia de la línea de nieve a los 3.500 m.

Más al sur a la salida del río Tinguiririca desde la cordillera, importantes morrenas terminales de la última época glaciar cuyos sedimentos extendidos a lo largo del valle constituyen la meseta o Isla de Los Briones, separa por mas de 12 Kms. el río principal de su afluente austral, el río Claro.

La meseta se compone de arcilla glaciar muy típica, la superficie es un poco ondulada, notándose algunos drumlins. La altura de las morrenas en su extremo Oeste es de unos 600 m. hallándose el río unos mts. debajo de la superficie de la meseta; pero más al Este el río Tinguiririca como el Claro han cortado un valle de a lo menos 100 m. de hondura en la morrena.

Las morrenas del avance postglacial se encuentran entre 1.400 y 1.650 m. de altura; detrás de ellas se halla una extensa planicie conocida bajo el nombre de "Vegas del Flaco" que correspon de al fondo de un antiguo lago estancado por las morrenas.

Groeber P. (1951), en su estudio de la Alta Cordillera (29º 30º a 37º Lat. S.) cita notables cambios regresivos de los estadios glaciares. Fundamenta su hipótesis en observaciones comparativas entre la expedición realizada en 1914 a la zona englaciada del Río Atuel (Argentina) y visitas posteriores de las cuales registró que el glaciar en referencia habría retrocedido aproximadamente 4,5 Km, estimando en consecuencia que mas de medio Km³ de hielo habría desaparecido probablemente entre 1915 y 1949.

Lliboutry, L. (1956), describe el área como un intrincado nudo de montañas extensamente englaciado hacia las cabeceras de los ríos Cachapoal y Tinguiririca, en donde destaca el macizo del Palomo (4850), apenas menos elevado que el cerro Portillo o Alto de los Arrieros (4986), lugar desde donde nacen los mayores glaciares de la zona. La define como una región húmeda de fuerte caudal y en don de hubo una extensa glaciación que disectó profundamente la peneplanicie, dejando grandes y profundos valles.

Las precipitaciones en esta región aumentan bruscamente, al par que los veranos son mas secos. En invierno la nieve se mantiene a los 1.500 m. o sea, mil metros mas bajo que frente a la ciu dad de Santiago, correspondiendo la mitad de las precipitaciones en eT Espilañillo (equivalente a la altitud de San José de Maipo) a nevadas.

La línea de equilibrio de los glaciares baja a 3300 m. Los ventisqueros toman caracteres alpinos, formándose circos bien caracterizados con neveros que perduran todo el año con abundantes grietas y seracs.

Los penitentes son escasos o ausentes en la zona glaciar de ablación, la cual presenta una superficie bastante regular siendo apta para ser recorrida a pie.

Reconoce el cerro Palomo como un volcán apagado, cuyas capas de lavas aparecen cortadas por la erosión del lado Este y Noreste, e inserta en la misma recta que ocupan los volcanes Tinguiri rica, Fray Carlos, Alto del Padre (volcán según Klohn, C. 1960), Plan chón, Peteroa, Descabezado, etc. Su forma cónica contrasta con las afiladas cuchillas que bajan del Cº Alto de los Arrieros. Al Este de la Sierra del Brujo se extiende el glaciar Universidad que da nacimiento al río San José, ver Figura Nº 4.

Para el Grupo Palomo - Tinguiririca, el mismo autor, determinó las siguientes áreas de hielo, ver Tabla Nº 3.

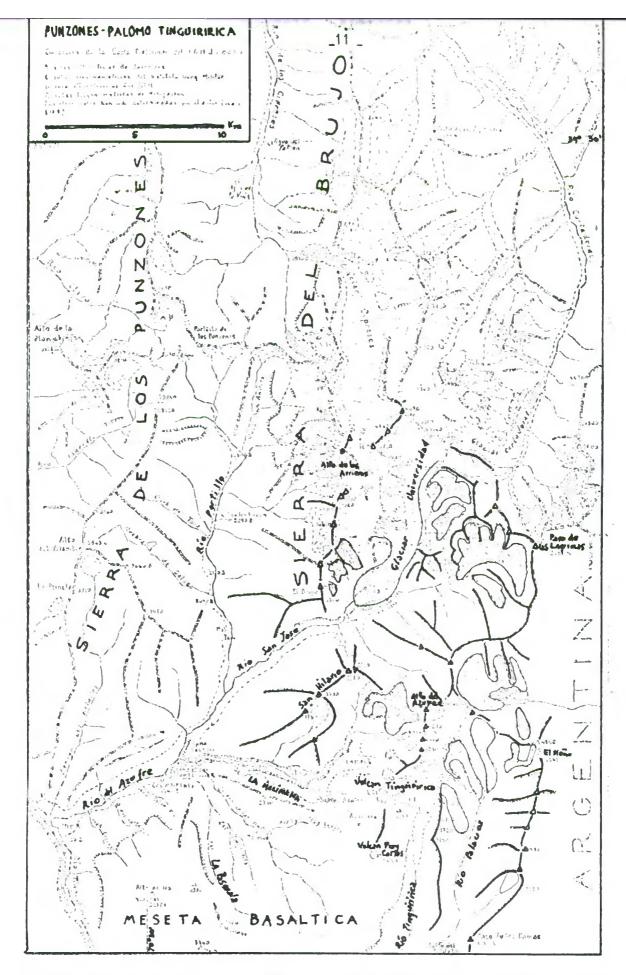


FIGURA N° 4 Grupo Punzones - Palomo - Tinguiririca. (Lliboutry,L.1956).

de

HOYA	TOTAL (Km²)	CUBIERTO (Km²)
PORTILLO	13,5	
SAN JOSE	42,0	2,7
AZUFRE SUPERIOR	3,0	
TINGUIRIRICA SUPERIOR	20,3	2,4
TINGUIRIRICA MEDIO	2,7	
TOTAL	81,5	5,1

TABLA 3 GRUPO PALOMO-TINGUIRIRICA. AREAS DE HIELO (Lliboutry, L. 198

Otras consideraciones realizadas por Lliboutry (Op. cit. Pag. 336), respecto a la velocidad de desplazamiento anual de la lengua del glaciar Universidad, registran un valor de 120 m/año, que se fundamenta en la expresión superficial o geométría de las ojivas generadas por compresión, cuyas fuerzas tienen expresión en grietas de desgarramiento Transversales inclinadas 20º.

Al final del verano de 1955-1956 (año normal), la linea de neviza fue de 3200 m. para el glaciar Universidad, pero para los pequeños glaciares no ascendió sobre los 3500 m. (una variación de hasta un 8.6% en altura). Esta fue, dice, la primera diferencia no tada con respecto de los glaciares existentes en las cercanías de Santiago, en donde la linea de neviza se situa en los glaciares con una variación positiva entre 400 y 500 m respecto de los glaciares mayores.

Según Marangunic C. (1979), la línea de equilibrio en los glaciares de la hoya del río Maipo se determinó en términos promedios a los 3872m., ambas discrepancias probablemente sean debidas al rol de las aguas de fusión recongeladas.

Lankenau, (1958) en referencia al Glaciar Palacios, ubicado en el sector SE del área observó el término de su lengua a los 2.700 metros de altura estableciendo además, que la línea de nieves al lado sur fue de 2960 al final del mes de Marzo de 1939.

El presente informe sitúa el término de su lengua en los 2900 m.

Mercer, J. (1962), en parte de su estudio relativo a las variaciones de los glaciares en los Andes, se refiere al grupo de los Arrieros (4986) - Cerro Sosneado (5189), que físicamente es representado por una franja que se extiende entre el Paso Molina 34º 25'S y hacia el Paso Las Damas 34º53'S., indicando que a principios de siglo Martin (1909) tomó fotografías al glaciar de los Cipreses (Fuera del área en estudio), el cual correspondía a un glaciar de valle de caida moderada y de lengua con cubierta detrítica comentando que entre 1957 y 1959 habría retrocedido en forma notable, cita a García (1957).

Hace mención además, al glaciar Universidad nombre propuesto por Lliboutry (1956), al cual Lankenau, 1958, lo llamó Resurrección, contando también a Echeverría, (1960) quien lo denominó San José.

Fundamentado en las fotografías aéreas tomadas por el U.S. Army Force (FL. 2, R 169-171 y FL. 2, V 167-171), sobre la Sierra de Bellavista (34º 35'Lat. S. y 70º 30' Lat. W.) y de notas obtenidas por un grupo de expedicionarios pertenecientes a la Universidad de Chile, determinó que la lengua del Glaciar Universidad habría retrocedido aproximadamente 1 Km., entre dichas fechas, agregando que el área muestra un elevado número de pequeños y escalonados glaciares, muchos con lagos proglaciares.

Caviedes J. (1979) en su estudio Inventario de glaciares de la hoya del Río Cachapoal, límite septentrional de nuestra área e inmediata al Norte del Cº Alto de Los Arrieros, estimó una superficie de 1902 Km², reconociéndo 146 glaciares que representan 222 Km². Estableció además, que el vólumen total de hielos era en 1955 de unos 22.8 Km³, lo que representaba una reserva de agua cercana a los 18 Km³ calculados a una densidad de 0.8 gr/cm³. Indica que la altura media de los frentes glaciares disminuye según el sentido Norte-Sur, desde los 3460 a los 2900 m.s.n.m. reconoce, que casi la mitad de las áreas englaciadas se ubican entre los 3000 y 3500 m. Aún cuando para la mayoría de los glaciares inventariados sus frentes presentaban una actitud estacionaria sólo el glaciar Cachapoal habría avanzado unos 600 m entre los años 1955 y 1968.

AGRADECIMIENTOS

pro

A la Dirección General de Aguas (D.G.A.) y al Servicio Aerofotogramétrico (S.A.F.).

Al Pool de Secretarias de nuestra Dirección.

A la Dirección de Riego por las facilidades en fotoreducción, y finalmente a mis compañeros de labores públicas.

2. FISIOGRAFIA

2.1 LIMITES OR OGRAFICOS

Orográficamente el área se extiende por el Norte, desde el Porte zuelo Los Punzones entre el macizo Alto de los Arrieros (5000 m.s.n.m.) en dirección del Cerro El Portillo (4986 m), hasta la Sierra El Brujo, reorientando hacia el Este por el borde limítrofe con el Portezuelo de las lágrimas en el Cerro El Moño (3631 m) y hacia el Sur por el pla no del Sombrero Andino pasando por la localidad del Paso Las Damas (3050 m), hasta el cerro Horno de la Vieja con límite meridional en el cordón Alto del Padre (3585 m) y el Cerro Sordo Lucas (3583 m), corres pondiente a la divisoria de aguas norte de la hoya del río Teno.

Buenas indicaciones de toponimia y cotas determinadas, entrega la cartografía confeccionada por Lliboutry, L.(Op.cit.), respecto del Gru po de Cerros Punzones - Palomo - Tinguiririca, que se incluye en la Fig. 4 del presente informe.

2.2 CONCEPCION DE LAS FORMAS

Los aspectos orográficos del terreno fueron interpretados como problemas de sucesión de formas expresados como naturaleza última de la realidad, recordando que la ciencia para predecir la evaluación de los fenómenos, muestra que el Determinismo en la evolución de las formas no es riguroso y una misma situación local puede dar nacimiento, bajo efectos de factores desconocidos o inobservables a consecuencias de apariencias extremadamente diversas.

Las formas de seres vivientes ha sido atendida desde hace siglos por los biólogos, en cambio la morfología de la naturaleza inanimada no parece tener el interés de los físicos-químicos, sólo el aspecto de forma de las nubes en meteorología, la geología estructural y la geomor fología por las formas de relieve terrestre son ejemplos entre otros. No existe aún la integración global que se eleve por encima de la des cripción puramente verbal. Citar por ejemplo que es probable que en hidrodinámica los fenómenos sean aún mal comprendidos al no valorar el rol que juega la morfogénesis en el espacio de 3 dimensiones. Magnífico ejemplo de clarividencia la de Arcy Thompson al comparar la forma las medusas con aquellas figuras de difusión de una gota de tinta en el Es la riqueza de formas, sus dinámicas internas, su caracter mas o menos integrado lo que explicará la diversidad casi infinita de apariencias del mundo exterior y quizás también la distinción fundamental de la vida y no vida, análogamente las formas debidas al hielo (aqua sólida) y el agua líquida (hielo).

2.2.1 AJUSTE DE CURVAS (TERRENO)

O U U

· Carlos

El concepto cualitativo es considerado como un cuantitativo pobre, en el límite entre aquello que calcula todo y no explica nada (New ton) y/o explica todo y no calcula nada (Descartes). En este sentido y consecuente con la filosofía planteada por Thom, R. (1972), se obtuvieron las relaciones areales completas de la zona estudiada, generando gráficos en cuyos eje (x) o absisa, se dispuso la superficie en hectáreas versus las alturas en el eje (y) u ordenada.

Apoyado mediante técnicas computacionales (punto 1.3.5) se procedió al ajuste de las curvas hipsográficas resultantes, obteniéndose ecuaciones de 2º y 3º grado, Exponenciales y Potenciales, que permitan relacionar la superficie del terreno vs. la altura del terreno y hielo. Se cree que estos resultados tienen valor restringido en sentido nacional. Respecto de sistemas de montañas comparables, como es el caso de Asia, no existe en la práctica bibliogafía o conocimientos suficientes y / o adecuados.

Una forma simple de evaluación superficial del terreno se indica en la Tabla 4 que corresponde a la distribución areal y porcentual de cada subhoya hidrográfica, discretizada cada 300 m. de altura, sobre un total de 990,5 \mbox{km}^2 .

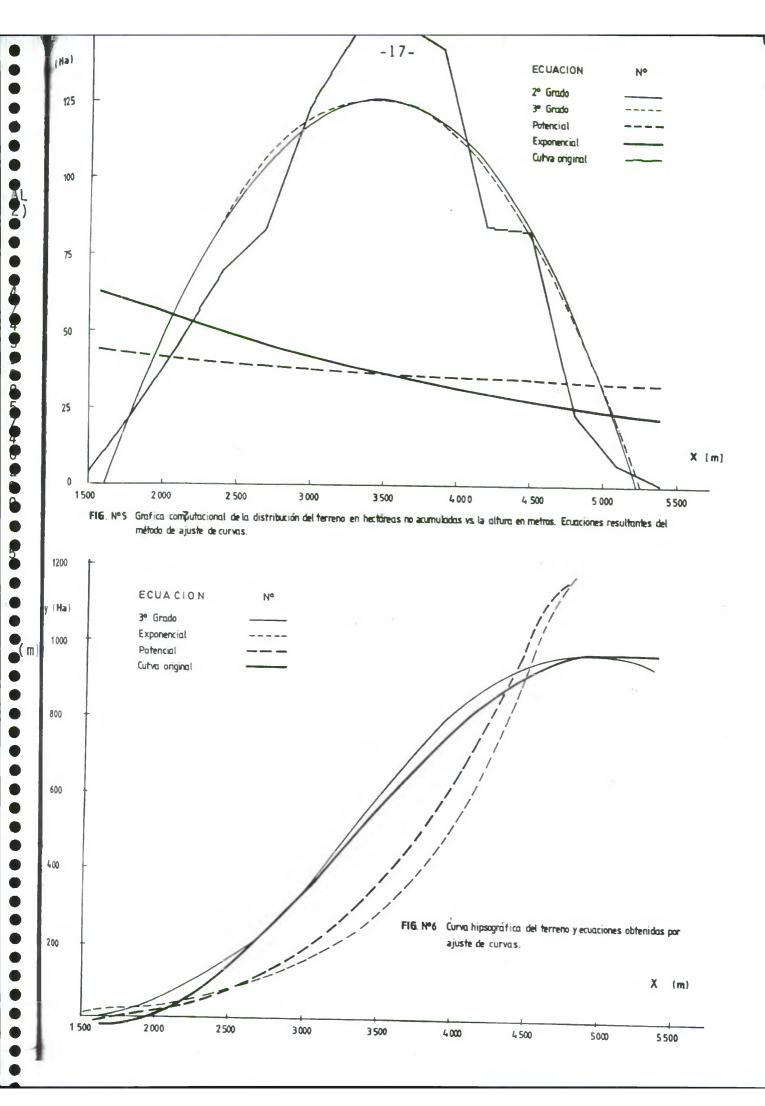
La Figura N 9 5 muestra las curvas gráficas registradas por la distribución areal del terreno en altura. El mayor porcentaje, equivalente al 15,2% se distribuye a los 3.600 m.

Una segunda agrupación equivalente al 14,9% se distribuye a los 3.300 m.

La altura media de toda la hoya, ponderada en función del área re sultó igual a 3.389 m. La distribución areal media de la hoya del Río Tinguiririca, ponderada en función de su altura y clasificada en subhoyas fue del 22,8% para el Río Las Damas; del 18,3% en el caso del Río Tinguiririca Alto; del 15% en el Río San José; del 24,9% para el Río Por tillo y del 19,0% en el Río del Azufre.

La expresión de la curva entre la superficie de terreno no acum \underline{u} lada y la altura, generó ecuaciones de la forma.

- a) Parabólicas
 - 2° Grado = -318,47 + (0,25975 Altura)-(3,7928 10^{-5} Altura)
 - 3° Grado = -279,93+ (0,21994 · Altura)-(2,5478 · 10° · Altura)-(1,2029 · 10° · Altura)
- b) Potencial


 $P = (248,08 \times Altura)^{-0},23262$

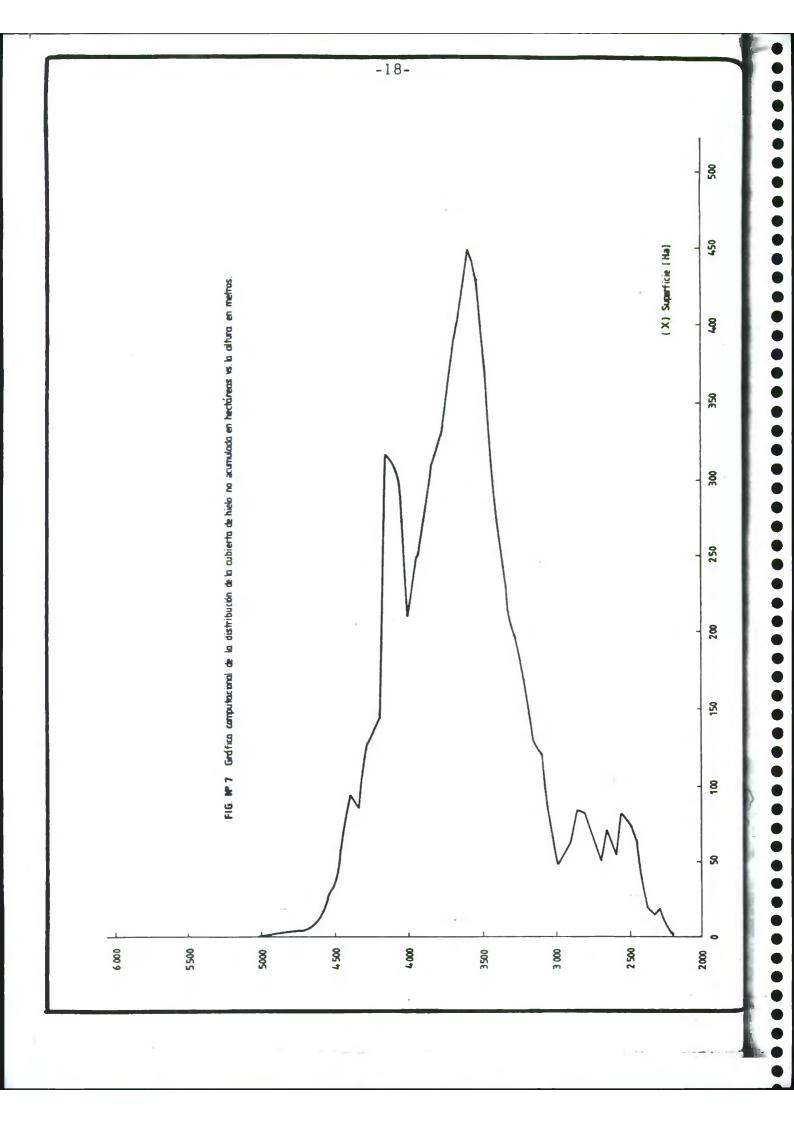

SUBHOYAS RIO	F020 LAS DA- MAS.	F021 TINGUI- RIRICA.	F022 SAN J <u>0</u> SE.	F023 PORTI- LLO.	F024 DEL AZU- FRE.	TOTAL (Km2)
ALTURA (m)						
1500 1800 2100 2400 2700 3000 3300 3600 3900 4100 4400 4700 5000 5300	1,5 8,4 14,5 22,8 34,4 42,5 36,4 31,0 25,6 8,8 0,2	2,5 16,4 28,9 27,3 26,1 29,0 30,4 18,7	0,5 2,9 7,4 16,9 19,0 23,2 36,3 18,5 15,8 4,1 4,1	1,9 7,3 10,4 18,7 22,8 37,7 40,2 42,0 37,2 13,7 8,6 4,0 1,4 0,3	4,1 12,2 13,1 17,5 24,0 24,1 30,3 21,2 33,0 7,3 1,2 0,3	4,4 23,7 45,4 69,5 83,9 123,9 148,0 150,5 141,7 84,4 83,0 24,2 6,9
Total (Km2)	226,1	180,8	149,0	246,2	188,3	990,5
Porcen- taje (%)	22,8	18,3	15,0	24,9	19,0	100% y
Altura Media (n)	3633	2713	3714	3287	3632	3389 (

TABLA 4 DISTRIBUCION PORCENTUAL DE LA SUPERFICIE DEL TERRENO (KM²), EN FUNCION DE LA ALTURA (M). CLASIFICADAS POR SUBHOYAS.

400

200

c) Exponencial

....

•

•

•

•

• • •

•

•

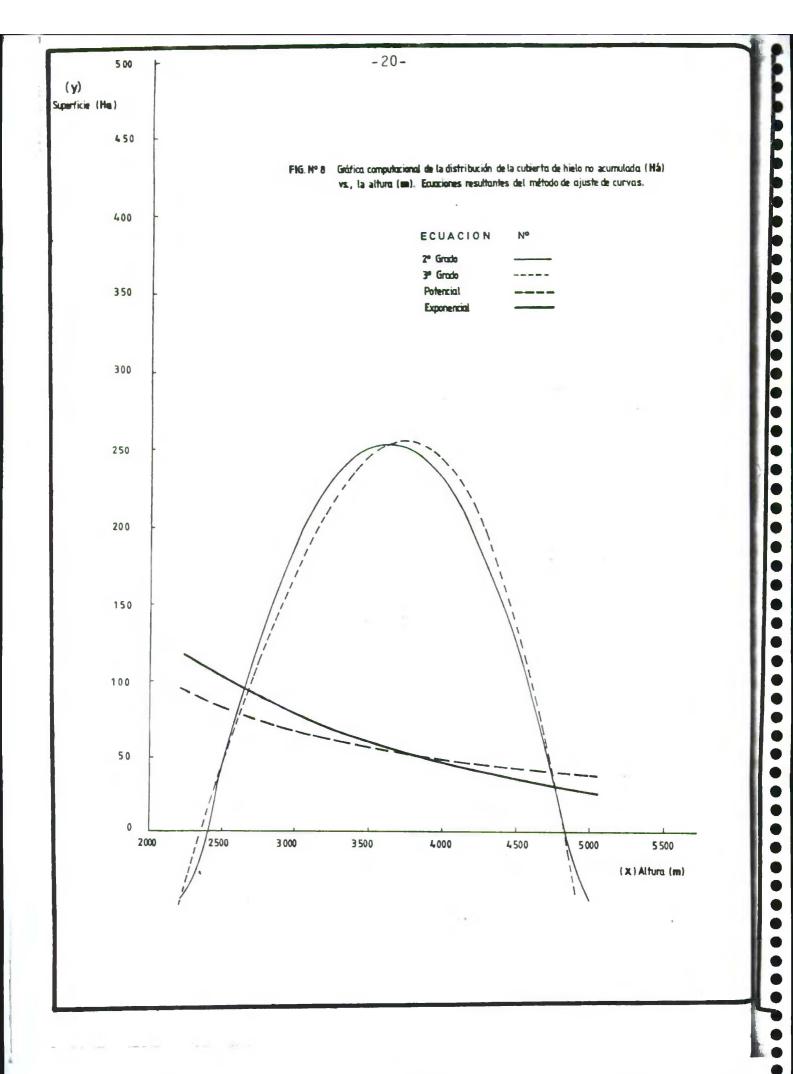
$$E = 96,087 \cdot e^{-0.00026963} \cdot Altura$$

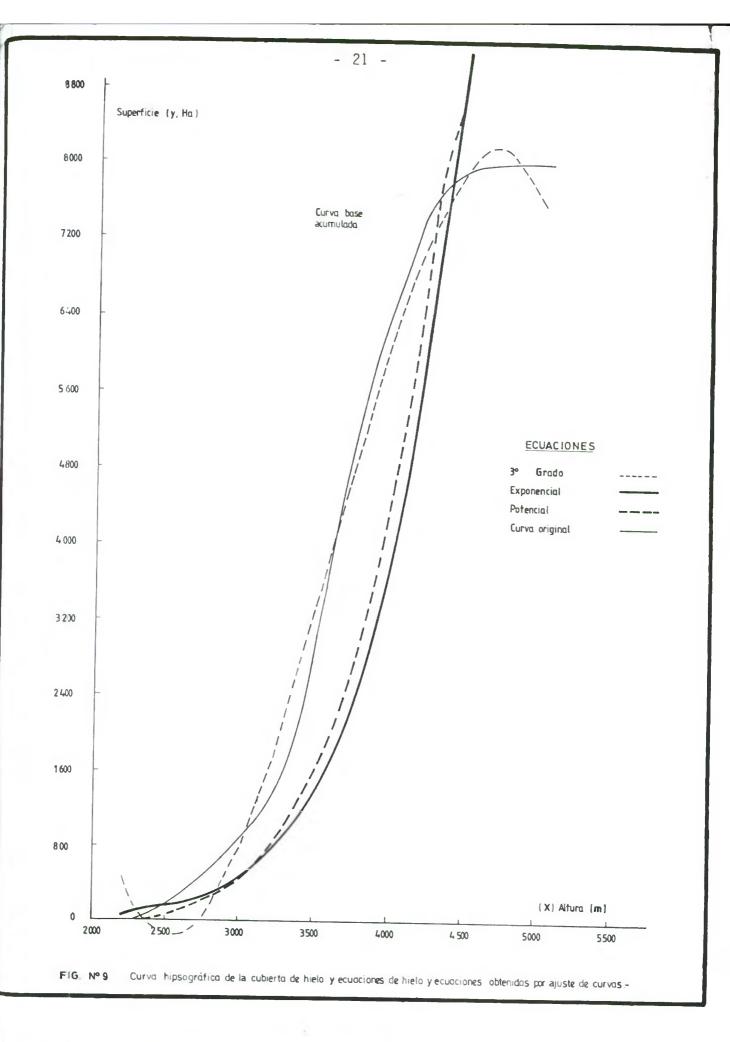
La Figura Nº6 muestra los gráficos resultantes del ajuste de la curva hipsográfica (Area acumulada indicada en la ordenada), que genero ecuaciones de la forma:

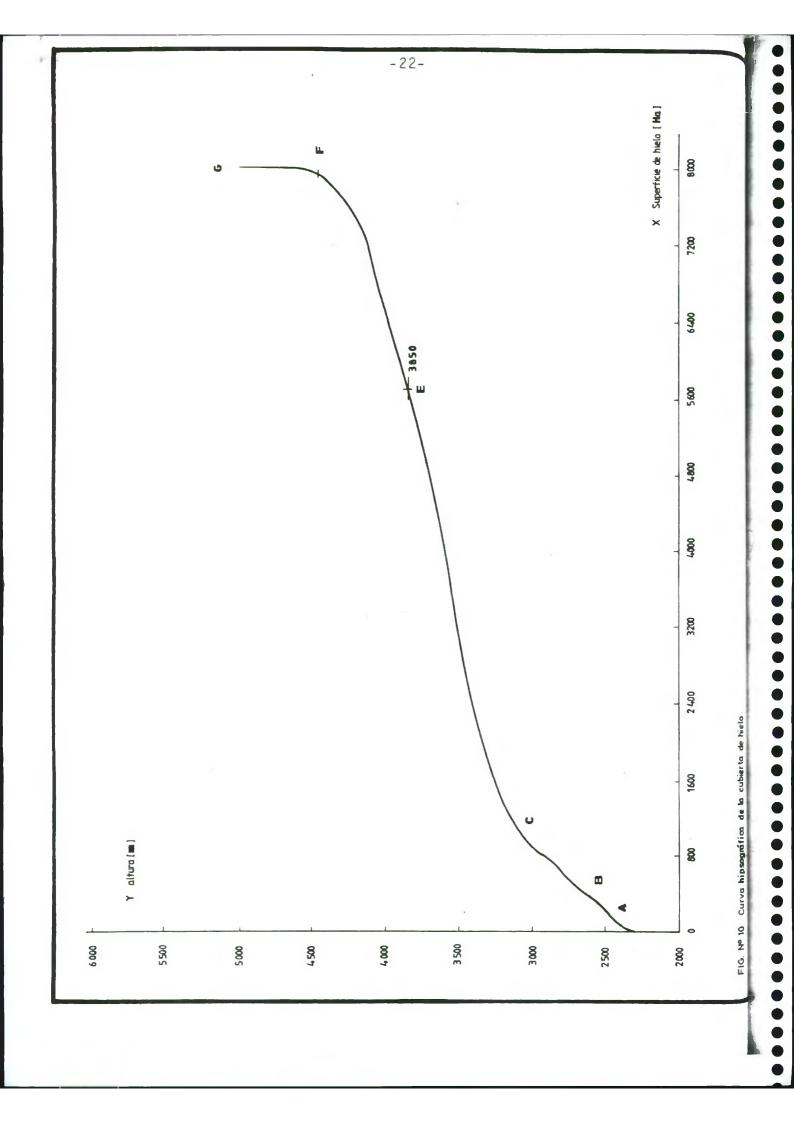
Potencial: 9,5279 · 10⁻¹² · Altura 3,8412

Exponencial: 5,5352 · e ,0011406 . Altura

2.2.2 AJUSTE DE CURVAS (HIELO)


En el caso del terreno cubierto de hielo o mas estrictamente de la intersección entre el hielo y el terreno expresado en hectáreas vs. la altura en metros, se obtuvo la relacion gráfica computa - cional indicada en la Figura $N^{\circ}7$.


Los puntos máximos de cada gráfico presentan una caída o arqueamiento hacia el eje donde se ubica la variable dependiente, aún cuando se interpreta como un proceso de culminación, esta explicación resulta insuficiente.


La Figura $N^{\varrho}8$ muestra la expresión de la curva entre la relación areal o cubierta de hielo no acumulada vs. la altura y cuyo ajuste generó ecuaciones de la forma;

- a) Parabólicas
 - 2º Grado = 1975 + (1,231 · Altura)-(0,00017001 · Altura²)
 - 3° Grado = 585,7+ (0,0010456 · Altura)+(0,00018 · Altura²)(3,22 · 10^{-8} · Altura³)
- b) Potencial: $(4,38 \cdot 10^5)$ · Altura^{-1,09}
- c) Exponencial : 375,22 · e -,00051 . Altura

•

•

•

Análogamente la figura Nº9 muestra la curva hipsográfica (área de hielo acumulada), las ecuaciones resultantes del proceso de ajuste cuyas formas son:

3º Grado: $59575 - (57,313 \cdot Altura) + (0,017364 \cdot Altura^2) - (1,5943 \cdot 10^6 \cdot Altura^3)$

Potencial: 4,718 · 10⁻²³ · Altura⁷,2095

Exponencial: 1,3987 · e^{0,0019697 · Altura}

De este conjunto numérico lo único rescatable en el momento es la relación de corte entre las ecuaciones potencial y exponencial, que probablemente correspondan a un "punto de equilibrio" para los casos indicados en las figuras N $^{\rm o}5$ y $^{\rm g}$ respectivamente. El alcance matemático de esta expresión resulta incomprensible aún como hecho práctico.

La Figura 10 muestra el gráfico de la curva hipsográfica pura resultante de la relación cubierta de hielo vs. altura en metros. De acuerdo a las inflexiones en el trazado es posible distinguir algunos probables estadios glaciares que se expresan en la Tabla 5.

ZONA	DENOMINACION	Altura (metros)
A-B: B-C:	De caída gravitacional mínima De inestabilidad (probables	2400 - 2550
C-E:	avances y retrocesos) De equilibrio del hielo (Area	2550 - 3080
E-F:	de balance de masa) De recarga compuesta (Area de	3080 - 3850
F-G:	balance de masa) De caída gravitacional máxima	3850 - 4450 4450
	be carda gravitacional maxima	4430

TABLA 5 CLASIFICACION DE ZONAS DE HIELO EN FUNCION DE LA CURVA HIPSOGRAFICA.

HIDROGRAFIA

3.1 VARIABLES METEOROLOGICAS

A modo de conocimiento general y con el objetivo de describir la situación climática que caracteriza la zona comprendida entre el valle central y aquella denominada como precordillera, con extensión hasta la media montaña, se ha considerado integrar los fenómenos meteorológicos que constituyen el cuadro sinóptico local, apoyado en las estadísticas recopiladas por la Comisión Nacional de Riego (1976), las cuales están fundamentadas en estaciones de observación de la VI-Región.

3.1.1 TEMPERATURA (°C)

Según un perfil E - W, las temperaturas medias anuales varían desde 12 (°C) a la salida del valle Andino y hasta unos 14 (°C) en las proximidades de la costa. Las temperaturas medias mensuales del período de invierno fluctuan entre 7 y l2 (°C), mientras que las medias mensuales de la estación verano entre 12 y 20 (°C).

Las temperaturas máximas medias son del orden de 27 a 28 (°C) en oposición a las mínimas medias cercanas a 2 (°C) y cuyos valores mas bajos se presentan en el mes de Julio.

Las temperaturas máximas absolutas registradas en el valle central alcanzan los 32 ($^{\circ}$ C), siendo sus mínimas absolutas del orden de -4 ($^{\circ}$ C) las cualesse presentan fundamentalmente durante el mes de Julio.

Observaciones de la temperatura del aire realizadas por Puig y Valdivia (1977), en la alta cordillera de la Región Metropolitana (33º07' Lat. S.), indicaron para el periodo Febrero-Marzo y a una altura de 3765 m.s.n.m., una temperatura promedio diaria cercana a los 2 (ºC). El gradiente térmico estandard del aire determinado para di cho período a esa misma latitud, varía entre 0.76 a 0.82 (ºC) por ca da 100 m de altura, antecedentes que permiten ubicar la isoterma de 0 (ºC) entre los 4000 y 4050 m.s.n.m.

3.1.2 HUMEDAD RELATIVA (%)

La humedad relativa media anual es del orden del 73(%) y presenta rangos de variaciones medias mensuales entre el 55 y 90 (%) para las estaciones de verano e invierno respectivamente.

3.1.3 PRESION ATMOSFERICA (mb., al nivel de la estación)

Los valores presentan un promedio anual de 960(mb), con promedios mensuales que varían entre 957 y 963 (mb).

3.1.4 HORAS DE SOL (hrs.)

La información disponible corresponde a la ciudad de Ranca - gua e indica un promedio anual de 2683 (hrs). Los promedios mensua les para la estación de verano varía entre 357 (hrs), mientras que en invierno fluctuan entre 99 y 217 (hrs).

3.1.5 RADIACION SOLAR (Langley/Día)

El registro de dos estaciones indica un promedio anual de 369 (Ly / dia), en contraste con las 130 a 330 (Ly/dia) registradas durante la estación de invierno.

Estas mediciones corresponden a valores de radiación global, y fueron tomados de diagramas proporcionados por actinógrafos.

3.1.6 VIENTO (nudos)

•

La velocidad media anual del viento sería de unos 8 (nudos), con una variación media mensual durante la época de verano de 8,2 a 9,5 (nudos) y durante la época de invierno entre 6,2 a 7,8 (nudos).

3.1.7 EVAPORACION (mm/mes)

En la zona del valle central, la evaporación resulta ser cercana a los 1200~(mm~/año), con valores medios mensuales entre 75 y 215~(mm/mes) para la época de verano y entre 20 y 80 (mm/mes) para la temporada de invierno.

3.1.8 PLUVIOMETRIA (mm de aqua)

Las precipitaciones pluviales caídas en el valle central, en las proximidades de la ciudad de San Fernando (350 m.s.n.m.), alcan zan los 700 (mm/año), las cuales hacia la parte de alta cordillera podrían alcanzar un orden de magnitud cercana a los 3000 (mm/año).

En general las precipitaciones tienen lugar durante el periodo de invierno, el que se extiende entre los meses de Abril a Septiem - bre, destacándose los meses de Junio y Julio como los meses mas lluviosos.

3.1.9 NIVOMETRIA (mm. de nieve)

En sentido estricto, en **el á**rea no existen rutas de nieve que puedan proporcionar una información local. Los antecedentes disponibles corresponden a la estación Laguna El Teniente, controlada por ENDESA, ubicada en los 34º05' Lta.S. y 70º24' Long.W, a una altura de 2456 m.s.n.m.

Sus registros entre los años 1972 y 1982 se indican en la Tabla Nº 6 y sus valores se encuentran graficados en la Figura Nº 11

3.2 CURSOS FLUVIALES

Conforme con la división hidrográfica, ver Figura Nº2, el cur so superior del río Tinguiririca (FO2) está constituído por los afluentes río del Azufre (FO24) y río Las Damas (FO21) que drenan los sectores cordilleranos ubicados hacia el NE y SE de la cuenca andina, respectivamente.

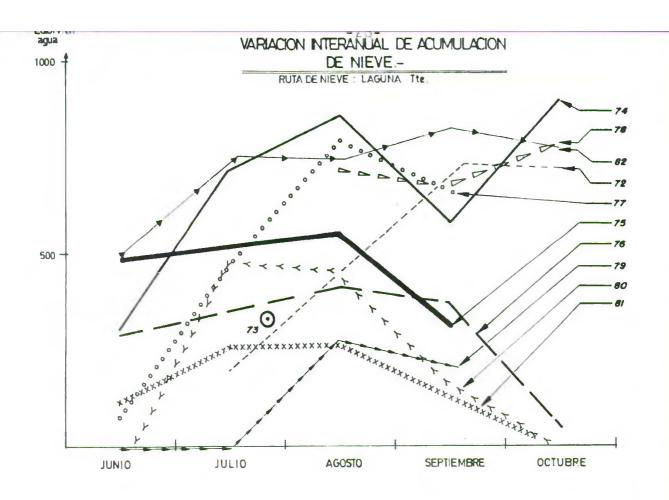
El río Las Damas tiene su origen en la localidad denominada las Tres Rositas, que corresponde a las cabeceras englaciadas de los cajones de Palacios y Pincheira, existiendo entre sus nacientes y su junta una distancia cercana a los 2.5 km. A partir de su confluencia, ambos ríos toman la dirección SW con una longitud de 15 km. aproximadamente, hasta recibir por su ribera izquierda las aguas de origen glaciar que provienen del Cajón de Lo Herrera, cuya Junta se ubica unos 2 km. a guas arriba de las Termas del Flaco. Desde su confluencia con el estero Lo Herrera, el río Tinguiririca cambia de rumbo al NW y corre en un valle ensanchado hasta las Vegas del Flaco y luego hasta su junta con el río del Azufre, por espacio de 24 kms.

Los cursos fluviales presentan un control estructural notable cuyos planos de falla, en ocasiones, se han transformado por las aguas en estrechamientos o gargantas de roca con anchos no superiores a los 8 m y con paredes que se alzan verticalmente sobre los 30 m y cuyo río presenta pendientes hidráulicas superiores al 5%.

En oposición a esta morfología los valles alcanzan anchos superiores a los 0,8 km., con pisos constituídos por materiales finos de sedimentación, los cuales tienen su génesis en acumulaciones laguna - res provocadas por antiguas morrenas frontales que bloquearon el va - lle y que luego de ser colmatadas por las aguas, se rupturaron provocando grandes inundaciones y transporte de material. Existen buenas e videncias en terreno respecto de este fenómeno, el cual tiene conti - nuidad sistemática en el tiempo, siendo en consecuencia un fenómeno catastrófico perfectamente previsible.

KUINS DE MIEVE

RESUMEN EQUIVALENTE EN AGUA(mm) -27-


ESTACION	LAGUNA	EL	TENIENTE	HOVA	RAPEL	 REGION	VI-0'HIGGINS
LATITUD	34906'		LONGITUD	709221	ALTURA		M S N M

					A		Ñ	C)			
	1972		1972 1973		1974		1975		1976		19	77
MES	DIA	m m.	DIA	mm.	DIA	mm.	DIA	mm.	DIA	mm.	DIA	mm.
MAYO			-						-			
OINUL					15	305_	15	477	15	290	15	_ 79
JULIO	14	205	15	328	15	719_					15	470
AGOSTO	16 -	457			15_	864_	_15_	551	15.	409	16	_800_
SEPTIEMBRE	19	729			15	579	15	313	15	368	17	660
OCTUBRE	16	721			15	8 <u>9</u> 7			15_	42_		
NOVIEMBRE												
DICIEMBRE												
MAX. AÑO		729				897		551		409		800

					A	Í	V	C)			
	1978		1979		1980		1981		1	982	1983	
MES	DIA	mm	DIA	mm	DIA	mm	DIA	mm	DIA	mm	DIA	mm
MAYO												
סואח ר			15	0.0	15	0.0	15	121	15	495		
JULIO			15	0.0	15	472	16	264	18	757	15_	630
AGOSTO	15	721	15	277	15	447	15	272	16	752	15	<u>5</u> 61
SEPTIEMBRE	15	683_	17_	213	15.	173	15	142	16	<u>825</u>		
OCTUBRE	15	787	15	0.0	15	0.0	15	0	15	785		
NOVIEMBRE												
DICIEMBRE												
MAX.AÑO		787		277		472		272		825		630

S/N=SIN NIEVE

TABLA NO 6 RUTA DE NIEVE LAGUNA EL TENIENTE VI REGION

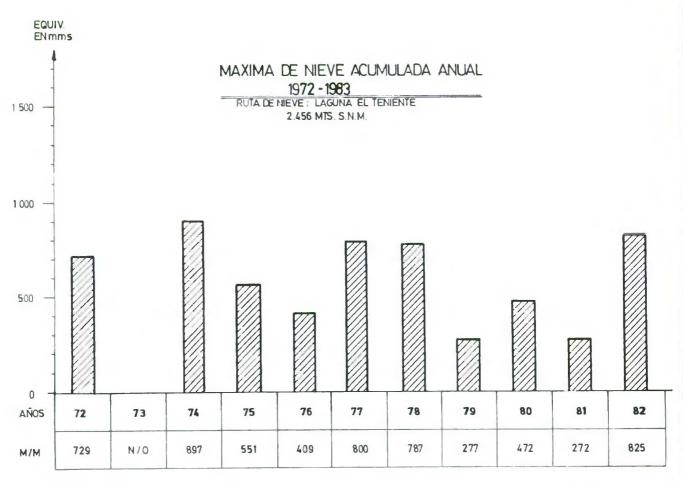
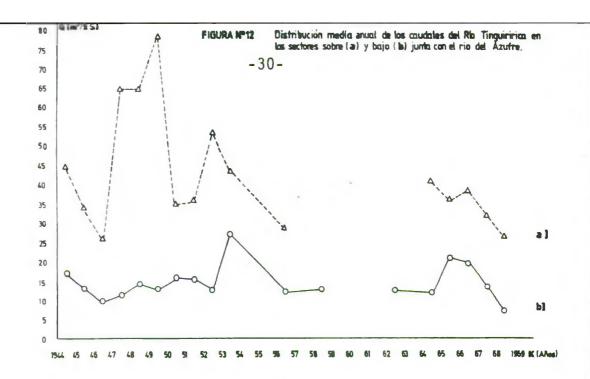
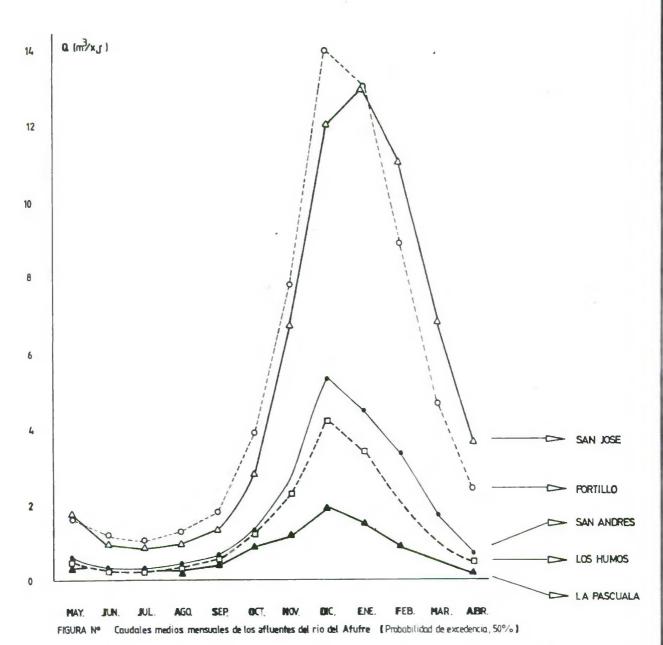


FIG. II VARIACION INTERANUAL DE ACUMULACION DE NIEVE Loguna El Teniente 2.456 n m.

El río del Azufre se extiende unos 14 Km. aguas arriba de la junta con el río Tinguiririca y tiene su origen en la confluencia de los ríos Portillo y San José, los cuales drenan el sector nororien - tal de la cuenca en estudio. El primero de ellos nace al pié occi - dental del cerro Portillo. En conjunto, las Quebradas de San Andrés y El Portillo se extienden por 19 Km. hasta la junta con el San José, el cual nace en el extremo sur del Glaciar Universidad y desciende aproximadamente 10 Km. en dirección al SW. El río del Azufre recibe por su ribera derecha al afluente proveniente de la Quebrada de Los Lo ros y por su izquierda los Esteros Los Humos, La Pascuala, del Salto \overline{y} Cipreses.


El curso superior del río Tinguiririca presenta un régimen hidrológico mixto. Su parte alta, sobre los 2800 m, es de tipo nival presentando crecidas importantes en verano, durante la época de deshielo. A menor altura corresponde un régimen pluvial con crecidas importantes en invierno. En la actualidad existe una sola estación hidrométrica que mide en conjunto el caudal proveniente de los ríos del Azufre y Tinguiririca (hacia el Río Las Damas), denominada "Tinguiririca bajo Junta Azufre". Geográficamente, se encuentra ubicada a los 34º58' Lat. S y 70º34' Long.W., una altura de 1024 m.s.n.m., con acceso por el camino de San Fernando a las Termas del Flaco en el Km. 60, a unos 4 Km. aguas arriba del Estero de Los Yuyos.


3.3 HIDROMETRIA

Las Tablas Nº 7 y Nº 8 , muestran respectivamente, la varia — ción media mensual de los caudales registrados desde 1944 hasta 1981, en la estación Tinguiririca bajo la junta con el río Azufre y la variación media mensual de los caudales registrados en la estación Tinguiririca sobre la junta con el río Azufre, la cual estuvo en funcio namiento desde 1944 hasta 1972. Esta estación fue controlada por la Empresa Nacional de Electricidad (ENDESA) y estaba ubicada a los 34º 51' Lat. S. y 70º32' Long. W., a una altura de 1400 m.s.n.m.

La Figura №12 muestra graficamente la distribución media anual de los caudales observados en el río Tinguiririca en los sectores bajo y sobre la Junta con el río del Azufre.

La Tabla Nº 9 muestra las ecuaciones de regresión y sus respectivos coeficientes de correlación entre los caudales medios mensuales observados en el río Tinguiririca en los sectores antes y sobre junta con el río del Azufre. En la ecuación general, (y) representa el valor predicho, (X) la variable predictiva (Φ) el coeficiente de correlación ajustado, que en términos anuales es del orden de 0.8 con excepción del mes de agosto que decae a 0.6.

ESTACION : TINGUIRIRICA BAJO JUNTA AZUFRE ROL : 16 107

FUENTE D.G.A. CAUDALES MEDIOS MENSUALES M3/Seg.

AÑO	ENERO	FEBR.	MARZO	ABRIL	MAYO	JUNIO	JULIO	AGOS.	SEPT.	OCT.	NOV.	DIC.
1944			31,0	19,0	14,3	13,7	13,7	15,5	24,1	33,3	63,2	97,5
1945	72,5	47,2	34,0	23,1	18,2			14,4	21,2	27,5	32,3	49,6
1946	53,0	47,6	34,9	17,3	12,1	11, 1	12,4	11,5	12,7	17,6	35,9	46,2
1947	55,1	48,7	31,5	14,2	10,9	11,3	11,9	11,1	13,4	21,4	42,6	50,6
1948	49,1	42,0	22,2	8,57	7,00	6,20	9,34	9,66	14,7	40,1	80,7	102
1949	79,4	49,7	25,5	15,9	38,9	21,2	15,2	14,8	16,8	34,0	57,3	53,9
1950	58,5	47,5	35,7	15,2	19,8	15,7	11,5	14,5	22,1	31,6	47,8	94,8
1951	78,8	50,2	29,7	15,9	12,8	13,0	17,5	18,6	18,5	31,7	55,1	83,2
1952	83,0	58,1	34,3	18,0	25,5	14,2	11,4	12,6	19,6	28,5	49,0	80,0
1953	56,0	50,0	30,5	16,2	11,6	13,6	13,4	57,0	33,0	30,5	87,0	120
1954	106	81,0	54,0	28,5	21,0	19,8						l
1955	40 0	11 5	20.0	10. 4	10. 4	10.0	13,8	13,4	17,0	28,5	64,0	61,0
1956	49,0	46,5	29,0	15,4	13,4	10,2	10,8	14,2	16,6	27,5	54,0	58,0
1957 1958	50,0	41,5	33,2 31,0	15,9	14,5	14,5 19,0	16,5 17,2	16,0	18,5	29,5	55,0	67,0
1959	58,0	54,0	32,0	21,5	21,0	19,0	17,2	17,5 22,5	19,2 28,5	40,5	59,0 75,0	72,0 116
1960	92,0	58,0	33,5	21,5	21,0			22,5	20,3	41,5	73,0	65,0
196 1	47,0	41,5	25,5		16,2							05,0
1962	47,0	71,5	25,5		11,4	11,5	10,8	11,6	13,4	27,5	48,0	54,0
1963	40,5	44,0	29,0	14,3	9,70	8,50	11,6	,0	.0,1	35,5	40,0	34,0
1964	102	62,0	33,0	18,0	12,2	11,2	11,2	11,0	16,0	27,5	41,0	44,0
1965	50,0	38,0	27,5	26,5	18,6	22,8	22,0	19,2	26,8	45,5	66,5	80,0
1966	75,5	59,0	36,2	24,2	18,1	19,3	22,8	17,6	25,8	39,9	58,6	62,9
1967	65,2	57,6	36,1	19,9	13,4	11,2	9,87	10,8	13,7	27,8	42,9	69,3
1968	58,6	46,8	25,0	13,2	10,0	8,43	7,70	7,41	7,69	8,36	21,8	25,7
1969	39,8	34,2	23,2	10,9			16,9	17,9	19,1	20,8	48,4	88,7
1970	62,3	48,3	29,1	16,8								
1971	38,0	33,2	21,6	10,4	9,01	8,00	15,7	15,7	17,7	36,9	72,8	69,5
1972	65,5	41,7	21,5	10,8	22,9	34,3	17,5	31,8				
1973		55,6	43,7	20,2	18,8	14,7	17,2	15,3	16,1	16,9	62,0	61,1
1974	55,5				15,7	14,9	16,2	14,6	13,4	32,3	52,3	60,1
1975	78,9	45,7	25,2	16,0	11,4	10,2			18,7	29,5	48,7	83,8
1976	70,5	40,8	24,0	13,0	10,3	14,4	9,07	8,21	10,3	16,8	47,2	58,1
1977	57,2	34,0	25,5	15,8	15,3	16,5	25,0	21,9	27,1		50,0	92,1
1978	85,0	65,8	36,1	20,0	15,4	14,6	40,2	24,1	27,4	53,9	76,2	134
1979	122	68,2	37,9	20,3	17,0	12,5	15,3	26,2	30,0	38,7	53,4	90,8
1980	109	67,0	43,1	39,6	41,3							
1981			30,1	18,4	21,7							

Tabla N° 7 Caudales medics mensuales en Río Tinguiririca Río Azufre. Años 1944 - 1981.

1400 (M.S.N.M.)

S

00

51

3

00

32

70

LONGITUD

TINGUIRIRICA S.J. AZUFRE

RAPEL

CUENCA DEL RIO

ESTACION

ALTURA

LATITUE

AÑCS				ΰ	CAUDALES	MEDIOS	MENSUALES	ES					PROM.
	ABR	MAY	JUN	JUL	AGO	SEP	OCT	NCV	DIC	ENE	FEB	MAR	ANDAL
4		-			4	13.3	18.8	34.8	47.4	~	21.9	16.7	18.01
4	9	9	. ~	9	0	11.8	14.7	16.5	18.5	~	15.7	12.3	S/D
4	8	00		0	0	6.58	8.76	14.7	15.4	7	15.7		10.26
4		0		7	~	8.27	12.5	21.6	21.0	1	15.2	9.	11.39
4				7.15	6.63	9.39	17.2	25.2	31.9	25.5	15.6	10.2	13.91
5	0	4.1		3	9	9.10	16.3	21.4	18.2	7	14.5	-	13.15
0/5	6	m		E.	0.7	12.4	15.8	21.3	36.4	~	16.8	Ξ.	15.76
1/5	7	6.1		6	4	11.0	20.0	27.3	33.1		16.1	0	15.69
2/5	9	m		m	6.3	10.2	13.7	22.9	30.2		13.3	ω.	_
3/5	5	2		0	2	15.0	17.7	42.0	71.9	e tih	52.2	Ŋ.	27.17
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	S	m		0	Q/	g/s	S/D	S/D	S/D	9	S/D	7	
7 / 5	! =	2	-	4	9	7.38	15.0	26.7	7.20	7.	15.7	6	
7 2	. 1				68.9	8.31	13.9	26.0	23.6	7	14.5	10.5	11.88
7/5	2	ထ		.5	ω,	8.69	13.1	21.9	22.5	7	11.7	ω.	S/D
8 / 5		7		7	7	8.80	17.4	23.6	25.0	7	14.5	σ.	12.84
9/6	(1)	Q/	_	d/	4	12.0	15.9	28.8	31.8	2	S/D	2	S/D
9/0	,	4		6	ᅼ	8.22	13.4	23.6	21.5		11.2	S/D	s/p
1/6	4	ω.	- 0		7	13.9	23.9	S/D	S/D	9	20.9	m	S/D
2/6		0		.3		9.79	16.6	22.3	22.1	4	12.5	8.51	12.27
3/6	~		-	0/	0	g/s	14.9	26.0	S/D	2	S/D	16.3	
4/6	0.6		, •			8.80	15.2	18.8	19.3	0	14.6	10.5	
5/6	, ,	1.5		8	4.9	12.7	20.2	34.8	32.6	60	26.3	15.2	20.53
9/9	0					14.6	22.3	33.0	34.5	8	26.2	16.3	
9/1		8		00	33	9.38	18.6	21.9	25.4	6	15.8	10.9	and it
8/6	7.3	0			4.62	4.69	5.04	8.79	8.73	11.7	10.1	7.50	\sim
02/69	5.31	6.25	9.71	S/D	Q /	12.0	12.3	22.2	35.5	3	17.7	12.7	S/D

Caudales medios mensuales en Río Tinguiririca sobre Junta con el Río Azufre. ω Tabla No

Mes	y - C ₁ +C ₂ .X			eficiente de rrelación
Enero	32.9 + 1.24 .	Χ	7.92	0.87
Febrero	32.1 + 0.957.	Χ	4.73	0.87
Marzo	20.1 + 0.944.	X	3.38	0.86
Abril	5.17+ 1.52 .	Χ	3.16	0.78
Mayo	- 3.97+ 2.51 .	Χ	3.96	0.82
Junio	1.73+ 1.60 .	X	2.82	0.78
Julio	.92 + 1.69 .	X	2.24	0.83
Agosto	- 3.84+ 2.46 .	X	8.0	0.60
Septiembre	- 1.39+ 1.99 .	Χ	2.70	0.88
Octubre	1.86+ 1.84 .	X	4.94	0.81
Noviembre	10.2 + 1.79 .	Χ	8.50	0.84
Diciembre	31.6 + 1.44 .	Χ	14.2	0.80

Tabla Nº 9 Ecuaciones y Coeficientes de regresión de caudales medios mensuales (m³/seg).Río Tinguiririca en sectores bajo y sobre junta con el río del Azufre.

• • • • •

•

Del balance de caudales registrados en ambas estaciones se puede establecer que la hoya del río del Azufre que contiene los afluentes Portillo y San José, aportaron durante el período 1944-1972, una relación de caudal equivalente al 63 % del caudal super ficial, respecto del caudal proveniente del Río Las Damas, argumento que puede ser extendible a la actualidad.

Las Tablas 10 y 11 muestra los caudales medios mensuales de los afluentes del Río del Azufre ubicados en la cota 1500, expresados en (m³/seg), para las exedencias indicadas (Arretz, L. 1984).

La Figura Nº 13 muestra gráficamente la relación indicada en la Tabla Nº 10

					-3	1						
				1 6								
Portillo	2,8	1,4	1,3	1,5	2,2	5,2	9,0	15	14	16	6,3	2,8
San Jos é	2,6	1,0	1,0	1,1	1,5	3,6	7,6	13	14	14	8,0	4,1
San Andrés	1,0	0,5	0,4	0,5	0,8	1,8	3,2	5,7	5,2	3,8	2,4	1,0
Los Humos	0,8	0,5	0,5	0,5	0,7	1,7	2,7	4,6	3,8	2,7	1,5	0,6
Sub Total	7,2	3,4	3,2	3,6	5,2	12	22	39	37	30	18	8,5
La Pascuala	0,5	0,5	0,5	0,5	0,6	1,2	1,6	2,3	1,8	1,0	0,6	0,2
16,7 TOTAL	7,7	3,9	3,7	4,1	5,8	13	24	41	39	31	19	8,7
P: 50%												
Portillo	1,6	1,2	1,1	1,3	1,8	3,9	7,8	14	13	8,9	4,7	2,4
San José	1,7	0,9	0,8	0,9	1,3	2,8	6,7	12	13	11	6,8	3,6
San Andrés	0,6	0,3	0,3	0,4	0,6	1,3	2,7	5,3	4,5	3,3	1,7	0,7
Los Humos		0,3	0,3	0,4	0,6	1,3				-	-	
	0,5	-		•	-		2,3	4,2	3,4	2,1	1,0	0,5
Sub Total	4,4	2,7	2,5	3,0	4,3	9,3	19	35	34	25	14	7,2
La Pascuala	0,4	0,4	0,4	0,3	0,5	0,9	1,2	1,9	1,5	0,9	0,5	0,2
14,2 TOTAL	4,8	3,1	2,9	3,3	4,8	10	20	37	36	26	15	7,4
P: 80%									-			
Portillo	1,1	0,9	0,8	0,8	1,3	2,6	6,5	9,8	10	8,1	3,9	1,7
San José	1,4	0,6	0,7	0,7	0,9	1,8	5,8	9,1	11	10	6,1	3,2
San Andrés	0,4	0,2	0,2	0,3	0,5	0,9	2,1	3,6	3,7	2,9	1,3	0,5
Los Humos	0,3	0,3	0,2	0,3	0,5	0,8	1,8	2,9	2,9	1,9	0,8	0,3
Sub Total	3,2	2,0	1,9	2,1	3,2	5,7	16	25	27	23	12	5,7
	0,2	0,2	0,2		0,3	-	1,2	1,5	1,2	0,8	0,4	0,1
11,1 TOTAL	3,4	2,2	2,1	•	3,5	6,4	17	27	28	24	12	5,8
P: 95%												
Portillo	0,7	0,8	0,8	0,6	0,9	1,2	4,5	7,0	8,4	6,2	3,1	1,3
San José	1,3	0,6	0,6	0,5	0,6	1,0	4,5	8,4	9,7	9,1	5,4	2,8
San Andrés	0,2	0,3	0,2	0,2	0,3	0,4	1,5	2,6	2,9	1,5	0,8	0,2
Los Humos	0,2	0,2	0,2	0,2	0,2	0,4	1,3	2,0	2,0	1,3	0,5	0,1
Sub total	2,4	1,9	1,8	1,5	2,0	2,6	12	20	23	18	9,8	4,4
La Pascuala	0,1	0,1	0,1	0,1	0,2	0,7	0,8	0,8	0,5	0,2	0,1	0,1
8,6 TOTAL	2,5	2,0	1,9	1,6	2,2	3,3	13	21	24	18	9,9	4,5

TABLA N° 10 CAUDALES MEDIOS MENSUALES DE LOS AFLUENTES DEL RIO DEL AZUFRE, EN M/SEG. (ARRETZ, L. 1984 en preparación).

TABLA N° 11

●,5

€7 ●1

9,8

2

0,1

₹G.

RECURSOS DEL ESTERO LA PASCUALA EN SU AFLUENCIA AL RIO AZUFRE.

(ARRETZ, L. 1984, en preparación)

CAUDALES MEDIOS MENSUALES EN M3/SEG.

AÑO	MAY	JUN	JUL	AGO	SEP	OCT	NOV	DIC	ENE	FEB	MAR	ABR.
44/45	0,3	0,4	0,4	0,4	0,5	0,9	1,4	2,3	1,8	0,6	0,4	0,3
45/46	0,6	0,6	0,4	0,3	0,5	0,8	0,7	1,4	1,3	1,0	0,6	0,3
46/47	0,2	0,2	0,3	0,3	0,4	0,6	1,1	1,4	1,4	1,0	0,5	0,2
48/49	0,2	0,3	0,3	0,3	0,3	0,6	1,2	1,5	1,3	1,0	0,2	0,1
49/50	1,6	0,7	0,4	0,4	0,4	1,2	1,9	1,6	1,6	1,0	0,7	0,6
50/51	0,4	0,3	0,2	0,2	0,5	1,0	1,3	2,7	2,0	1,0	0,5	0,2
51/52	0,3	0,3	0,4	0,4	0,5	0,8	1,4	2,1	2,1	1,4	0,7	0,2
52/53	0,9	0,4	0,2	0,3	0,6	1,0	1,3	2,4	1,6	1,1	0,6	0,2
53/54	0,3	0,3	0,3	0,5	1,2	1,7	2,5	2,2	1,6	0,8	0,6	0,4
55/56	0,4	0,4	0,4	0,4	0,6	0,9	1,1	1,6	1,1	0,9	0,5	0,2
56/57	0,4	0,3	0,2	0,2	0,4	0,9	1,5	1,6	1,2	0,8	0,6	0,1
57/58	0,5	0,5	0,6	0,5	0,6	1,1	1,8	1,8	1,7	0,9	0,5	0,2
58/59	0,8	0,7	0,6	0,6	0,6	1,8	1,9	2,2	1,6	1,3	0,6	0,3
62/63	0,1	0,2	0,2	0,2	0,2	0,6	1,3	1,4	0,9	0,9	0,5	0,2
64/65	0,4	0,3	0,3	0,3	0,4	0,8	1,2	1,1	1,0	0,6	0,4	0,2
65/66	0,4	0,5	0,4	0,4	0,8	1,6	1,7	2,2	1,4	1,0	0,5	0,1
66/67	0,5	0,4	0,5	0,4	0,6	1,1	1,4	1,3	1,1	0,9	0,6	0,2
67/68	0,2	0,2	0,1	0,1	0,2	0,6	1,2	2,1	1,4	1,0	0,3	0,1
68/69	0,2	0,2	0,2	0,2	0,2	0,2	0,6	0,7	0,7	0,6	0,4	0,1
69/70	0,4	0,6	0,5	0,3	0,4	0,8	1,4	2,5	1,0	0,8	0,2	0,1
71/72	0,2	0,1	0,3	0,4	0,6	1,4	2,5	2,2	1,7	1,1	0,3	0,1
74/75	0,4	0,4	0,4	0,3	0,3	1,0	1,5	1,8	2,0	0,9	0,5	0,2
75/76	0,2	0,2	0,3	0,3	0,5	0,9	1,4	2,7	1,9	0,8	0,6	0,2
76/77	0,2	0,3	0,2	0,2	0,2	0,2	1,3	1,8	1,4	0,5	0,4	0,1
77/78	0,5	0,5	0,6	0,6	1,0	1,2	1,3	3,1	2,6	1,9	0,9	0,2
78/79	0,5	0,4	0,6	0,6	0,5	2,2	2,6	4,7	3,3	2,8	0,7	0,2
79/80	0,5	0,3	0,4	0,6	1,0	1,4	1,5	2,9		1,8	1,0	0,6
	-		-	-	•	•		, -	, -		-, -	

3.4. CALIDAD FISICO-QUIMICA DE LAS AGUAS.

Respecto de la calidad de aguas, el laboratorio hidrológico (DGA), realizó algunas mediciones cuyos parámetros y resultados promedios se consignan en las Tablas Nº 12 y 13.

De la observación de los resultados y de informa ción verbal obtenida del Ing. Sr. Raúl Merino respecto de los Análisis Químicos, en el caso de las muestras provenientes del Río Tinguiririca es posible observar un decaimiento de la conductividad específica durante la temporada de verano, fenómeno que probablemente se encuentre asociado al incremento de caudales de deshielo.

En el caso de las muestras N° 1 al 8, tomadas por el Ing. Sr. Gustavo Cruz M. de CONAF, provenientes del Río de Los Cipreses, área inmediata al norte de la sub-hoya San José, es posible observar que las muestras N° 2, 3 y 4 denominadas vertientes Agua de la Muerte y Agua de la Vida (tipos A y B) presentan un pH ácido, con presencia de arsénico en cantidades que no exceden la Norma Chilena Oficial (NCh 1333 - 1978), con similar contenido de Boro en todos los casos.

Especial atención se debe considerar para las muestras N° 2 y N° 4 respecto de la cantidad de Fierro presente por cuanto excede en veces nuestra norma. Respecto de la presencia de Cobre, esta es significativa solo en la muestra N° 3, el monto implica una contaminación base natural sin presencia de faenas de extracción minera.

Con los antecedentes expuestos mas otros que tienen relación con la calidad de las aguas de las Fuentes Termales de Chile, ubicadas en las zonas intermedias de la Cordillera de Los Andes, no fue posible encontrar alguna relación a priori con Procesos volcánicos e hidrotermales asociados a glaciares.

ANALISIS QUIMICO DE AGUAS

-37-

Observaciones								
	1970	1970	1971	1971	1971	1971	3.972	1972
N.º	5725	5223	5466	6583	6752	6007	6151	6243
Fecha	MAYO	ACOSTO 8	ENERO 29	MARZO 3			ABRIL 5	
Hora		14:45	13:15	13:45	13:15	13:30	14:30	16:30
рΗ	7,25	6,75	7,20	7,00	7,00	7,30	7,25	6,75
Conductiv. micromho	485	450	220	260	440	480	485	4,50
SAR	0,80	0,91	0,5	L 0,51	0,19	0,74	0,8	
% sodia	23	25	21	21	7	20	23	25
Clasif. USSLS	C 2 –S1	C2-S1	Cl-Sl	C2-S1	C2-S1	C2-S1	C2-S1	C2-S1
co; = mg /1	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
mg /1	42,1	47,0	26,8	26,8	25,6	51.9	43.9	51.2
cı — mg /1	32,0	30,9	13,9	16,0	24,1	41,9	19,5	16,7
so ₄ = mg / 1	127_3	141 8	62.5	77.8	137 4	149 0	126.9	89 4
Aniones meq / I	4,24	4,59	2,13	2,51	3,96	5,13	4,24	4,59
Cationes meg / I	4,66	4,55	2,19	2,32	3,70	5,24	4,66	4,55
c _o ++ mq / 1	47,5	45,9	25,9	27.1	53,5	59.2	54,1	43_3
Mg ++ Mg / 1	13,5	11,5	4,6	5,2	8,6	14,0	6,9	6,3
κ ⁺	5,1	. 5,9	1,96	1,96	2,74	3,13	3,13	1,56
Na ⁺ mcj /]	24,2	26,7	10,8	11,3	5,8	24,4	19,8	15,6
B ppm						1,05		
As ppm								
	Tabla	12 C	alidad d	ma Comit on a	3 . 3			

Tabla 12 Calidad química de las aguas Años 1970-1972 INFORME SOLICITADO POR LA OFICINA DE GLACIOLOGIA.

ESTACIONES	LAGUNA PIUQUENES.	AGUA DE LA MUERTE VERTIENTE.	R. C. PRESES ANTES R. EL ARRIERO. SECTOR ALTO L. C. PRESES.	AGUA DE LA VIDA. A VERTIENTE.	AGUR DE LA VIDA. B.	a. Norma Chilena de Agua Potable.: NCH-409 Of.70	DE RIEGO EFA (1975) U.S.A.
Νō	1 24 2 21	2 2 2 21	3	20 2 2/1	28.3.84		
Fecha	27.3 84 17°°	28.3.84 12°°	28.3.84 17°°	28.3.84 17 ³⁰	1730		
Hora pH	7,34	3 15	6.73	299	3,14	6,5-922	5,5 -9,0
Conductiv.	25	1,191	49	964	987	0,)=9,2	7,7,0
tº	0.10	0.77	0.15	0.23	0 / 2		
SAR	0,12	0,24	0,15	0,33	0,43		2.5
% sodio Clasif. USSLS.			C1-S1				35
co ₃ mg/lt	0,0	0,0	0,0	0,0	0,0		
HCO3 mg/lt	6,1	0,0	6,1	0,0	0,0		
Cl mg/lt	2,8	45,0	2,1	51,4	42,9	200	200
30 ₄ mg/lt	0,0	576,4	11,5	288,2	365,0	250	250
Ca ng/lt	4,2	109,6	6,4	61,1	102,2		
Mg mg/lt	0,0	22,4	0,0	9,0	10,2	30	
K mg/lt	0,4	4,7	1,2	2,3	3,5		
Nat mg/lt	0,9	10,4	1,4	10,4	17,0		
As Eg/lt	0,007	0,078	0,003	0,057	0,005	0,120	
3 mg/lt	1,82	2,50	2,32	2,00	2,00		0,75
Cu might	0,04	0,06	0,13	0,20	0,06	1,00	0,20
Fe mall	0,03	38,00	1,03	12,90	3,50	0,30	5,00

HOYA HIDROGRAFICA RIO. DE. LOS.....

-39-

REFERENCIA.....CIPRESES TABLA Nº13 ANALISIS QUIMICO DE AGUAS (Continuación)

ESTACIONES	AGUA DEL PATRON	R. CIPRESES BHJO EL TORNO.	R. CIPRESES MEDIO URRIOLA.	a. Norma Chilena de Agua Potable.: NCH-409 Of.70	b. NORMA INTERNACIONAL DE RIEGO EFA (1975) U.S.A.
Νδ	6	7	8		
Fecha	29.3,84	29.3.84	29.3.84		
Hora	830	1200	930		
рН	4,54	7,23	7,72	6,5-932	5,5 -9,0
Conductiv.	147	91	92		
t 9					
SAR	0,15	0,16	0,17		
% sodio	9	11	12		35
Clasif. USSLS.	C1-51	C1- S1	C1-S1		
co ₃ mg/lt	0,0	0,0	0,0		1
HCO3 mg/lt	3,0	17,7	11,6		
Cl mg/lt	4,2	4.2	4,2	200	200
SO ₄ mg/lt	56,7	40,3	32,7	250	250
t: Ca mg/lt	19,0	11,6	12,6	2,0 _	
ti Mg mg/lt	1,9	2,6	1,2	30	
K mg/lt	1,2	0,8	0,8		
Na+ mg/lt	2,5	2,3	2,3		
As mg/lt	0,004	0,005	0,004	0,120	
B mg/lt	1,82	2,32	3,00		0,75
a mys	0,01	0,02	0,33	1,00	0,20
Fe night	0,06	0,57	0,74	0,30	5,00
OBSERVA-	,			AND STERIO JER DPTO / HI LABORATORN MECCION DE	DROLOGIA HIDROLOGICO

4. GLACIOLOGIA

4.1 MARCO GEOLOGICO

El área geológica correspondiente al curso superior del río Tinguiririca, hacia las nacientes del río Las Damas (Subhoya F020), está representado en toda su extensión por la Fm. Río Las Damas de edad Jurásica superior (Kimmeridgiano), estimada alrededor de-140 . 106 años. Definida por Klohn, C. 1960, como un complejo de sedimentos clásticos de tamaños variables, representado por areniscas arcillosas y lutitas rojizas, en parte tobíferas con lentes de yeso y areniscas calcáreas con restos de ammonites, e intercalaciones de potentes series volcánicas, efusivas y piroclásticas, representadas por brechas y conglomerados de andesita con matriz arenosa y bancos de andesita con fenocristales de feldes pato, cuyo espesor, según el perfil estratigráfico levantado entre las localidades de Baños del Flaco y del Río Las Choicas en el Bor de Andino, fue estimado en 5.500 m. al oriente.

En el plano N° l se indica que hacia el oriente, la Fm. río Las Damas se apoya concordantemente sobre el miembro superior Santa Elena, perteneciente a la Fm. Nacientes del Teno, sin expresión en nuestra área de estudio. Hacia el poniente, también en concordancia, subyace a la Fm. Baños del Flaco, de edad Cretásica Inferior (Neocomiano), alrededor de-130 x 10^6 años.

La Fm. Baños del Flaco, corresponde a una secuencia de estratos marinos fosilíferos, compuestos principalmente de calizas, calizas arenosas, margas y areniscas calcáreas. Tiene buen desarrollo en el área de los Baños del Flaco, a unos 1.700 m. de altura. El conjunto de estos estratos se dispone concordantemente sobre brechas y conglomerados con clastos de andesita de la Fm. Río Damas, mediante una secuencia, en la cual alternan bancos de conglomerados y capas de calizas, que representan movimientos oscilatorios de transgresión o iniciación del último ciclo marino en el geosinclinal andino. El rumbo de la serie es Nº 8º y buza 30º al W. El conjunto de estos estratos se extienden desde la localidad denominada Paso del Fierro, ubicado en la divisoria de las cuen cas de los ríos Teno y Tinguiririca cruzando el área de los Baños del Flaco en sucesivas escamas tectónicas y en una extensión cerca na a los 10 Km. de afloramientos continuos.

Hacia el W del área y como límite superior o techo de la Fm. Baños del Flaco, se superpone, de manera concordante y en transición paulatina un conjunto sedimentario terrígeno, subaéreo y lagunar de origen continental denominado Fm. Collimapu, representada por lutitas y areniscas tobíferas rojas con intercalaciones de horizontes de yeso y calcáreos, además de conglomerados, lavas y bre-

chas andesíticas. Su edad, hasta el momento está restringida por relaciones estratigráficas al Cretásico medio a superior.

Esta Fm. Colimapu, se encuentra separada de la su prayacente Fm. Coya-Machalí por una discordancia orogénica, producto probablemente, derivado de la primera fase de plegamiento andino.

La Fm. Coya-Machalí (Fm.Cm= Fm. Abanico), está constituída por potentes series de depósitos continentales volcánicos, coladas de lavas, brechas y tobas en general de caracter andesítico con niveles ácidos de tipo riolítico e intercalaciones de bancos límnicos, areniscas y lutitas de considerable espesor. Este conjunto se presenta fuertemente plegado formando anticlinales apartados de poca longitud de onda con flancos que alcanzan hasta 60º de inclinación y cuya geometría acusa movimientos de cizalle o fallas estructurales notables sobre los depósitos sedimentarios más incompetentes. No se han encontrado fósiles guías que permitan una ubicación cronológica precisa de esta formación, aceptándose una edad Cretásica superior.

Hacia el noreste del área, en la zona divisoria de aguas de los ríos Portillo y San José, la Fm. Coya-Machalí se encuentra separada de los estratos de la Fm. Farellones por una discordancia angular que podría corresponder al plegamiento Larámico.

La Fm. Farellones, está representada por una serie volcánica horizontal, constituída por mantos de lavas andesíticas y rocas piroclásticas que alternan con sedimentos derivados de la descomposición de las rocas efusivas. Existen además sedimentos la gunares representados por areniscas, lutitas, tufitas y delgadas capas de calizas.

A nivel regional, el techo de la Fm. Farellones queda indefinido por cuanto ella termina en la actual superficie de erosión. Su relación también discordante bajo las coladas de la Fm. Cola de Zorro, de edad Mioceno, (-25 . 106 años) permita asignarle una edad Eoceno (-58 . 106 años) y posiblemente Oligoceno inferior (36 . 106 años)

En sentido restringido el área correspondiente a la subhoya del Río Azufre (F024) presenta un volcanismo post-miocé nico el cual se concentró en el Divortium Acuarium entre esta sub-hoya y la red del río Las Damas (F020), específicamente en la cordillera donde se ubican los volcanes Alto del Padre (3550 m), Fray Carlos (4050 m) y Tinguiririca (4300 m). Estos depósitos volcánicos corresponden a rocas piroclásticas, fluviales, de color pardo-grisã

ceo, con abundante obsidiana e intercalaciones de basaltos column $\underline{\mathtt{a}}$ res.

Klohn, C. (Op. cit.), en función de las características petrográficas y morfológicas de las estructoras volcánicas basales que se encuentran expuestas muy por encima del cauce fluvial del río Tinguiririca, como es el caso de las lavas separadas del volcán Cº Sordo Lucas (3535 m) por la incisión del Portezuelo Baule, estableció las series volcánicas "Antigua" y "Joven" que desde el punto de vista cronológico, se les asigna una edad glacial anterior y posterior al Pleistoceno, respectivamente (-4+1 - 106 años).

Charrier, R. y Lillo, F. (1973) estiman que esta actividad volcánica se desarrolló durante la fase extensiva o de relajamiento tectónico, con fallamiento normal, que comenzó a continuación de la última compresión andina (Fase Pontiana o Quechua). Según Carrier, R. y Vicente, J. 1970, la contemporaneidad de este volcanismo con un proceso tectónico de extensión sugiere una relación de causa y efecto, de tal modo que la desaparición de las fuerzas de compresión permitió el ascenso de magmas hasta la superficie, probablemente a lo largo de las profundas fallas normales.

4.2.1 ARCHIVO BASICO DE DATOS

•

El Archivo básico de los datos que constituyen el presente inventario tiene su génesis en la hoja standard de datos de la World Glaciar Inventory (WGI), y forman parte de él, los anteceden tes de 261 glaciares reconocidos en las Subhoyas FO20 Río Las Damas; F O21 Río Tinguiririca Alto; F O22 Río San José; F O23 Río Portillo y F O24 Río del Azufre, todos afluentes del Río Tinguiririca Troncal (F O2).

4.2.2 EXTENSION AREAL DE LOS GLACIARES

Los glaciares de la hoya del Río Tinguiririca cubren un área de 106,5 km2, aproximadamente, de los cuales el 24,2 % se distribuye en el Río Las Damas; el 0,6 % en el Río Tinguiririca Alto; el 47,3 % en el Río San José; el 16,5 % en el Río Portillo y el 11,4 % en el Río del Azufre; el cual contiene el sector denominado La Molinana, el Río San Andrés y el Río de Los Hornos.

En la Tabla N° 14 se presentan, discretizados en función de sus áreas, los datos relativos a la totalidad de los glaciares reconocidos en cada subhoya, y cuyos grupos fueron ordenados y denominados según el siguiente criterio:

	RANG0	(la)	DENOMINACION
	0.0		3.0	muy pequeños
	3.1	-	10.0	pequeños
	10.1	_	100.0	medios
	100.1	-	400.0	grandes
	400.1	-	1.000.0	muy grandes
1	.000.1	_	3.000.0	superiores

De la misma Tabla Nº 14 se establece que del total numérico de glaciares reconocidos, el 49,0 % corresponde a glacia res muy pequeños; el 22,6 % a tamaños pequeños; el 21,1 % a tamaños medios; el 5,0 % los glaciares denominados grandes; el 1,9 % para aquellos registrados como muy grandes y finalmente el 0,4 % para los tamaños superiores.

En términos areales netos los glaciares correspondientes a cada uno de los rangos definidos cubren los siguientes porcentajes:

Los muy pequeños el 1,5 %; aquellos pequeños el 3.3 %; los de tamaño medio el 18,6 %, los glaciares grandes alcanzan el 24,5 %; los muy grandes 24,2 %; y aquellos denominados superiores, el 27,9 %.

Las subhoyas F020 y F022 correspondiente a los ríos Las Damas y San José respectivamente, en conjunto registran el 71,5 % del área total englaciada representando esta última el 7,7 % de la superficie total de la Hoya del Río Tinguiririca considerados en este estudio. Se reconocieron 19 glaciares, como mayores, por tener superficies superiores a 1 Km2, los cuales aún cuando representan el 7,3 % del total numérico de glaciares, alcanzaron en masa el 76,6% del hielo total inventariado y corresponden a los glaciares de las subhoyas que se indican:

Los glaciares de mayor extensión areal reconocidos en la hoya del río Tinguiririca pertenecen a las siguientes subh<u>o</u> yas:

- F 020 Río Las Damas, Glaciares Nº 36 y 40, con superficies de 440,8 y 483,9 Hå., denominados Palacios y Pincheira, respectivamente.
- F 022 Río San José, Glaciares Nº 22, 24 y 33, con superficies de 475,6; 2973,7 y 632,2 Hå, denominados Alto de los Arrieros, Universidad y Paso de Lágrimas, respectivamente.
- F 023 Río Portillo, Glaciar № 20 con una superficie de 547,6 Hã., denominado San Andrés.

El tamaño areal medio de los Glaciares es de 49,9 Hå., y correspon de al producto resultante de dividir el área total englaciada por el número de Glaciares reconocidos. En este sentido, la evaluación unitaria por subhoya desde la F020 a la F024 es de 48,6; 3,5; 143,9; 42,8; y 10,7 Hå., respectivamente y presentan una desviación estan dar general, equivalente a $^\pm$ 56 Hectáreas. Los datos indicados son deducibles de la Tabla Nº 14

De la totalidad de la superficie de hielo evaluada en la hoya el 97,0% corresponde a glaciares con superficies expues tas de hielo y/o nieve; el restante 3,0% son glaciares con superficies cubiertas por detritos de roca o bien se trata de glaciares de roca. Análogamente la relación porcentual entre las áreas de Ablación y Acumulación es del 47,8 y del 52,2%, respectivamente.

Las áreas cubiertas fueron determinadas con bastante exactitud sólo en el caso de los glaciares mayores. La Tabla Nº 15 indica los valores relativos a las áreas mencionadas.

Durante el presente estudio se estableció una diferencia del 23,4% en área, sobre un total de hielo restituído de 106,5 km², respecto de la evaluación establecida por Lliboutry,L. (Op. cit., pág,309 quién estimo en esta hoya una superficie de 81,5 km², los cuales derivan de la sectorización indicada en la Tabla 3.

	-	200	
_	л	-	
-	*	_	۰

			-45-		
SUBHOYA	RANGO DE AREAS	" DE GLACIARES	AREA ENGLACIADA	TAMASOS CLACTARES MEDIOS	AT CHIDA MARK
(CODIA)	(lla)	(n)	(lia)	(Ha)	ALTURA MEDIA
F 02C				()	(m.s.n.m.)
PIG DAMAS	0.0 - 3.0	23	28,13	+	
	3.1 - 10.0	9	48,71	1.2 + 0.6	3595 - 262
	10.1 - 100.0	13	486,79	5,4 ± 1,5	3669 + 220
	100.1 - 400.0	6	1090,33	37,4 + 25,0	3685 - 311
	400.1 - 1000.0	2		181,/ ± 43,9	3691 - 232
		2	924,71	462,4 = 30,5	3795 ± 69
	Valores Parciales	53	2578,67 Ha = 2	75,78 Fm2	3810
F C21					
RIO TINGUIR	I				
RIGA ALTO	0 - 3.0	11	15,63	1.4 ± 0.9	3430 - 103
	3.1 - 10.0	7	31,34	5,2 ± 1,8	3406 130
	10.1 - 100.0	1	18.70	18.7	3462
	Valores Parciales	19	65,67 Ha =	-	3428
					7-7-20
F 022					
SOL MAS OLS		12	18.00	1,5 0.8	3686 + 146
	3.1 - 10.0	8	43,58	6,1 1.4	4052 - 140
	10.1 - 190.0	3.0	527,79	52,8 ± 19.2	3413 1 467
	100.1 - 400.0	2	366,16	183,1 ± 43.9	3526 ± 150
	400.1 - 1000.0	2	1107,86	554,0 -110.8	3194 ± 406
	1000.1 - 3000.0	1	2973,70		3632
	Valores Parciales	35	503/.04 Ka =	50,37 Km2	3509
F 023					
RIO PORTILLO	0 - 3.0	19	27,06	1,42 0.8	3632 ± 778
	3.1 - 10.0	3	55,77	7,0 ± 2,0	3721 ± 664
	10.1 - 100.0	9	214,87	23,9 + 16.9	3167 ± 627
	100.1 - 400.0	4	908.61	227,1 +107.8	3826 ± 83
	400.1 - 1000,0	1	547,64	227,1	3653
	Valores Parciales	41	1753,95 Ha = 1	7 5/. V7	
		-	2733,73 Na - 1	7,54 Rin2	3685
F 024					
RIO DEL AZUF	RE 0.0 - 3.0	63	69,01	1.1 + 0.7	3643 ± 202
	3.1 - 10.0	27	169,76	6,3 ± 1,9	3643 + 244
	10.1 - 100.0	22	731,84	$33,3 \pm 18,6$	3648 ± 284
	160.1 - 4(0.0	1	239,89		3866
	Valores Parciales	113	1210,50 Ha - :	12,10 Km2	3680
	Valores Totales	261	10645,83 Ha -1	06.46 Km2	3630
				4 - a - a - a - a - a - a - a - a - a -	2020

TABLA N° 14 Distribución areal de glaciares en función de la altura, clasificados por subhoya.

SUB HOYAS						
TIPO DE AREA	(112)	TOTAL	EXPUESTA	CUBIERTA	AULACION	ACUMULACION
F 020	Sio Damas	2.578,67	2.466,76	111,91	1.217,26	1.361,41
021	Río Tinguiririca	65,67	65,67	-	17,43	98,24
022	Pío San José	5.037,04	5.037,04	-	2.503,95	2.533,09
023	Ríc Pertillo	1.753,95	1.583,23	170,72	805,98	947,97
0 24	Río del Azutre	1.210,50	1.172,28	3k,22	549,03	661,47
	Total (Ha)	10.645,83	10.324,98	320,95	5.093,65	5.552,18
	Total (%)	100	97,0	3,0	47.8	52,1

TABLA Nº 15 Areas totales, expuestas, cubiertas, de ablación, y de acumulación.

Marangunic, C. 1979, determinó un total de 421,9 km² de hielo y/o nieve, en su estudio del Inventario de Glaciares del río Maipo, valor que representa una diferencia del 6.0% en área respecto de la evaluación realizada por el mismo Lliboutry, y atribuye su causa mas bien a las diferentes fuentes de información que a variaciones glaciares, agregando que esta diferencia debiera ser mayor (aunque levemente), al mejorar el Inventario con nuevas foto grafías aéreas de las zonas con mala cobertura del vuelo Hycon.

4.2.3 COTAS DE GLACIARES

En general, la distribución espacial del hielo en altura en la hoya del Río Tinguiririca presenta un valor medio de 3630 metros sobre el nivel del mar (Tabla № 16), aún cuando las diferentes subhoyas desde FO20 a FO24, presentan valores de alturas medias de 3810; 3428; 3509; 3685 y 3630 m.s.n.m., respectivamente, con desviaciones estandard límites entre 69 y 778 metros.

La expresión de hielo a mas baja altura, se encuen - tra a la cota 2200 y corresponde al glaciar de roca Nº 41 de la subhoya F023 Río Portillo. La cota máxima englaciada se ubica a los 5020 m.s.n.m. y corresponde al Glaciar Universidad, clasificado con el Nº 24 de la subhoya F022 Río San José.

El promedio de las cotas máximas para la hoya del Río Tinguiririca es de 4631 - 16 metros, y tiene una validez sobre el 69.4% de la superficie total englaciada. Análogamente, el promedio de las cotas mínimas es de 2848 + 196, siendo su validez restringida al 34.1% de la superficie total englaciada.

Algunas otras consideraciones respecto a la distribución anual media en altura y su validez de extensión porcentual en superficie, se indica en la Tabla Nº 17.

4.2.4 ORIENTACION DE LOS GLACIARES

En la Tabla N^0l8yl9 , se indica la orientación de los glaciares por subhoya. La gran mayoría de los glaciares reconocidos muestran sus superficies orientados al SW y SE con un 43.3% y 23.0% respectivamente. En el mismo orden puede agregarse que sus orientaciones medias son $N^0l28+l6$ W y Nl40+l6 E, generando un área intermedia equivalente al 5%, ubicada al sur, presentando un rumbo medio igual a Nl79+lW. Este último valor es cası vital para aquellos orientados al NE, que alcanzan el 5,7%; el porcentaje disminuye al 0,4% en el caso de los agrupados al E. Aquellos glaciares orientados hacia el W alcanzan el 14,6%, distribuyéndose sólo el 1,1% hacia el Norte.

				(Ha)	AREAS GLAC		COTAS MED	
Subhoyas	Maxima	(%) #	Minima	(₽)	Māxima	Minima	Mixima :	11 aima
F 720	1902,0	73,3	1155,6	44,8	272±133	346+203	4387	2974
021	9,3	14,1	7,2	10,9	4.6+2.1	3.6+1.4	3632	3234
022	1601,3	71,5	1259,9	25,0	1200+1544	420+244	4865	2727
023	1456,9	83,1	1083,5	61,8	291+171	339+220	4466	-
024	417,7	34,5	122,6	10,1	83 +88	41+12	4331	2829 3044
TOTAL	7387,2	69,4	3628,8	34,1	370 <u>+</u> 480	230 <u>+</u> 136	4631+66	2848 <u>+</u> 196

TABLA N $^{\circ}$ 16 Valores de cotas medias máximas y mínimas por subhoya. (#) con respecto de la superficie englaciada total.

SUBHOYAS	AREA CONSIDERADA (Ha)	Δ AREA TOTAL (Na)	EXPRESION (%)	DE ACUMULACION (m.s.n.m.)	TE AULACION
F 020	2553,01	25.66	99.0	4007	2626
F 021	27,96	37.31	42.5	3521	3596
F 022	5027,89	9.15	99.8	3835	3484
F 023	1710,18	43.77	97.5	3861	3193
F 024	1098,64	111.86	90.8	3771	3440 3592
Total	10417,68	227.75	97.8	3877	3375

TABLA N $^{\circ}$ 17 Alturas medias de acumulación y ablación ponderadas en función de la superficie englaciada.

ORIENTA	CTON	**	17W	W	SW	S	SE	E) I I
L USC	AGUNULACION ABLACION	1	2	2	15 15	6	21 18	2 2	KE 4 7
F 021	ACUMULACION ACLACION	1	7 7	2	3 i	2	5	-	1 2
F 022	AGUMULACTON ABLACTON	1	3	4	15 15	5	2 2	1	5
F 023	ACUMULACION ABLACION	-	19 19	3 3	8	L _b L _b	7		-
£ 024	AGUMBLACION ABLACION	5 5	9	9 8	50 53	17 14	16 16	1	7 7
(n) TOTAL	ACUMULACION ABLACION	8	40 41	20 19	91 92	34 34	49	24	17
(%) TOTAL	ACUMULACION ABLACION	3.1 2.3	15.3 15.7	7.7 7.3	34.9 35.3	13.0	18.8 17.6	0.8	6.5 7.3

TABLA N° 18 Orientación de las áreas glaciares de acumulación y ablación(N° y %).

		53		K.	;=t :Z*	11.5	1	25 k
P	valor	N 65+12	N 35+37	N 4-+ 8	,	1	N 39+23	21.5
0~	ជ	9	2	2	1	2	1	15
	valor	8+48 N	1	1	,	T	1	0.4%
iel	a	гd	0	1	1	ı	•	r
	valor	N 138+20	N 140+ 3	11 145+22	N 142+24	91+0+1 K	ı	23.0%
S	ជ	23	н	c-	œ	73	1	09
es?	valor	N 175-3	•	1177+1	4-621 N	•	¥ 179±1	5.0%
	៨	П	0	4,	cı	9	1	13
MS	valor	61+121 N	N 129+14	N 126+18	N 1/10 +24	•	N 128+16	43.3%
	a	19	30	36	5	55	,	113
38	valor	t	N 91+2	N 90+3	X+06 N	1	K 50+3	86.9
	ជ	-1	æ	2	-\$	80	1	1.39
N.	valor	N 57+16	N 59+10	N 41+ 5	N 44-11	N 43+22	1	14.6%
	g	М	-7	ĸ	12	16	ι	200
ton de	valor	ı	1	N 5+3	ı	1	1. 5+3	1.1%
	н	ı	ı	Ħ	1	2	1	M
SUB HOYA		F 020	021	023	023	. 420		

Wabla No 3.5 Orientanión de los glaciares por Sub Boya.

TABLA Nº 19 Orientación de los glaciares por subhoya.

Análogamente, las áreas glaciares de orientación al SW tienen una distribución porcentual de las áreas de acumulación y de ablación equivalentes al 39,4% y del 35.3%, respectivamente.

Los glaciares orientados al SE presentan una distribución del 18.8% para la zona de acumulación y del 17.6% para la respectiva área de ablación. Ver tabla Nº18 , Orientación de las áreas glaciares.

4.2.5 TIPOS

Los tipos de glaciares mas relevantes en el área, desde el punto de vista numérico, corresponden a los Glaciaretes con un 43.3% siendo el segundo término mas representativo los ti-pos de montaña con el 41.7%. En este mismo sentido los glaciares de valle, que contienen la mayor masa, presentan el 11,9% en relación con las masas de hielo cubiertas que equivalen al 3.1%. En la Tabla $N^{\circ}20$ se indica la respectiva clasificación y número de glaciares por subhoya.

4.2.6 FORMAS

Las formas glaciares dominantes en el ârea corresponden a la asociación espacio-temporal de grupos y masas remanentes de hielo, y representan el 52% de los glaciares inventariados. Es te aspecto físico es propio de los glaciaretes del ârea en estudio, y según el punto anterior, revela una cierta consecuencia. En la Tabla N° 21 se indica la respectiva clasificación de formas glacia res por subhoya.

4.2.7 CARACTERISTICAS DEL FRENTE

La Tabla $N^{\circ}22$ indica que el 69% de los glaciares reconocidos presentan un frente convexo, aspecto reconocido como normal. En orden de importancia le sigue con un 12.6% los glaciares con frente de Pié de Monte.

4.2.8 PERFIL LONGITUDINAL

El 72% de los glaciares analizados presentan un perfil glaciar longitudinal liso, sin interrupciones. Con un 19.9% se reconocieron perfiles con características inciertas, según se indica en la Tabla $N^{\circ}23$

4.2.9 FUENTE DE ALIMENTACION

La fuente principal de alimentación de los glaciares proviene directamente de la precipitación sólida o nieve, según se desprende de la Tabla N° 24

TIPO DE GLACIARES	DE V	ALLE	DE M	ONTANA	GLAC	IARETE	CUB:	CERTS	TOTAL
	(n)	(%)	(n)	(8)	(n)	(8)	(n)	(8)	
SUBHCYA									
F020	14	26.4	20	37.7	19	35.9	-	-	53
F021	-	-	13	68.4	6	31.€	-	-	19
FC22	7	20.0	12	34.3	12	34.3	4	11.4	35
F023	4	9.8	14	34.1	20	48.8	3	7.3	41
F024	6	5.3	50	44.2	56	49.6	1	0.9	113
TOTAL	31	11.9	109	41.7	113	43.3	8	3.1	261

TABLA N° 20 Clasificación y número de glaciares por subhoyas. (Dígito 1)

FORMA	C.COM	FUESTA	C.COM	PUESTA	C.S	IMPLE	CIR	CO	NIC	HO	CR	ATER	PI.A	NCHON	GRU	PO.	DOMA	NENPE	
	(n)	(%)	(n)	(8)	(n)	(%)	(n)	(8)	(n)	(8)	(h)		(n)	(8)	(n)	(8)	(n)	(R)	TOTAL
SUBHOYA	1		1		1		1		1				1	(- /	1	, , ,	1	(6)	
F026	8	15.1	1	1.9	13	24.5	7	13.2	4	7.5	1	1.9	2	3,8	17	32.1	-	_	53
F621	-	-	-	-	8	42.1	2	10.5	3	15.8	_	_		-	6	31.6	-		
FC22	3	8.6	2	5.7	5	14.3	8	22.8	5	14.3	3	8.6	5	14.3	4	11.4			19 35
F023	3	7.3	1	2.4	3	7.3	8	19.5	13	31.7		_	5	12,2	4	9.8	4	9.8	41
F024	2	1.8	8	7.1	18	15.9	12	10.6	13	11.5	4	3,5	12	10.6		32.8		32.8	113
LATET	16	6.1	12	4.6	47	18.0	37	14.2	38	14.6	8	1.1	24	9.2		26.0		26.0	261

TABLA N° 21 Clasificación de formas glaciares por subhoyas. (Dígito 2)

CAPACT, RESTLOAS LAI FRENZE	(10 (11)	SHAL (3)		E DE ONTE (%)	EXI	PIE (%)		OBULC		PREULE M			TOTAL
Sub Hoja	()	10/	.1.7	(,c)	(n)	(,6)	(n)	(%)	(n)	(0,)	(r.)	(%)	
650	29	54.7	8	15.1	2	3.3	2.	3.8	1	1.9	11	20.7	93
051	12	63.1	1	5.3	-	-	**	-	E	31.6	_	-	19
022	25	71.4	2	5.7	-	-	1	2.9	2	5.7	5	14.3	35
023	29	70.7	5	12.2	7	17.1	-		-	-	-	_	41
024	85	75.2	17	15.0	2	1.8	2	1.8	3	2.7	4	3.5	113
TOTAL	180	69.0	33	12.6	11	4.2	5	1.9	12	4.6	20	7.7	261

TABLA N° 22 Características del frente glaciar por subhoyas. (Dígito 3)

PERFUL	INCI	ERTO	LTSO		COLG	ANTE	EN C	ASCADA	SALTO	DE HUELO	REGE	NERADO	
LONGITUDINAL	(n)	(%)	(n)	(%)	(n)	(%)	(n)	(%)	(n)	(火)	(n)	(%)	
SUB HOYA													
F 020	1	19	47	88.7	2	3.8	3	5.6	-	-	-	-	53
7 021	19	100	-	-	-	•	-	-	-	-	-	-	19
2 022	3	22.9	21	60.0	3	8.5	1	2.9	-		2	5.7	35
F 023	4	9.8	34	83.0	1	2.4	_	-	2	4.3	***	-	41
F 024	20	17.1	85	76.1	L.	3.5	1	0.9	-	-	2	1.8	113
TOTAL	52	19.9	188	72.0	10	3.8	5	1.9	2	0.8	4	1.6	261

TABLA N° 23 Clasificación de perfiles glaciares longitudinales. (Dígito 4)

			NTEVE		AVAL	NCHA	
	(n)	(%)	(n)	(%)	(n)	(%)	
F 020	-	-	53	100		_	53
F 021	-	-	19	100	-	_	19
F 055	2	5.7	31	88.6	2	5.7	35
F 023	7	17.1	29	70.7	5	12.2	41
F 024	10	8.9	93	82.2	10	8.9	113
TOTAL	19	7.3	225	86.2	17	6.5	261

TABLA N° 24 Fuente principal de alimentación de los glaciares. (Dígito 5)

	(1)		(2)		(3)											
TIPO DE MORRENAS Y/O COMBINACION	TEF	MINAL	ÞΕ	EMPUJE	LATEI MEDIA TERM			NACION. L + 2	COMBIN 2		1 + 2		POS.	RITOS IBLE- PE MO	INC	IERTO	
SUPHOYAS	n	(8)	n	(%)	(n)	(8)	(n)	(8)	(n)	(8)	EMPU (n)	JE (8)	RREI (n)	VICO	(- \	403	
F020	3	5.6	-	-	9	17.0	-	-	-	-	15	28.3		35.9	(n)	(%)	53
F021	-	-	-	-	12	63.2	-	-	1	1.9	-	_		_	7		
F922	-		-	-	17	48.6	-	-	_	_	5	14.3	1.0	29.6	3	8.5	
F024	_		_	_	3	7.3	1	2.4	-		5	12,2			-		
F024	5	4.4	1	0.9	21	18.6	,				.,	,			12		
1024	,	4.4	r	0.9		15.0	1	0.9	11	9.7	6	5.3	25	22.1	43	38.1	113
TOTAL	8	3.1	1	0.4	62	23.7	2	0.8	12	4.6	31	11.9	74	28.3	71	27.2	261

TABLA N° 25 Clasificación de las morrenas.

4.2.10 LINEA DE EQUILIBRIO (DE NIEVE)

La ubicación de la línea de un glaciar puede proporcionar importante información respecto de las condiciones meteorológicas y en particular aquella que guarda relación con las precipitaciones. En este caso, la aplicación del Principio del Uniformitarismo, permite imaginar y reconstruir los patrones existentes durante los períodos glaciales del cuaternario.

De acuerdo con los porcentajes de área de hielo reconocidos en esta hoya, de los cuales el mayor porcentaje lo representan cuerpos muy pequeños, es probable que no exista una línea de nieve que se ajuste a su definición estricta, por cuanto la línea de nieve indica la posición inferior del manto a medida que avanza el proceso de ablación (Fase transiente) hasta culminar con la posición mas alta al término de la estación de verano, donde se la define entonces como línea de neviza, Firnline o Firnlinie.

En este estudio se buscó una altura promedio de glaciares a la cual se le asignó la definición anterior. Así la línea de nieve se reconoció de manera indirecta al asimilarla por aproximación a la línea de equilibrio, la cual fue determinada por los rasgos morfológicos que distinguen diferencias entre las zonas de ablación y acumulación, cuyo borde separa flujos extensivos y compresivos.

Al aplicar los valores de alturas medias máximas y mínimas, ponderadas en función de su área y de la relación porcentual entre las áreas de acumulación y ablación, indicados en la Tabla Nº17, de obtiene un valor de 3626 m., que difiere en un 0.12 % con respecto de los mencionados anteriormente. En general estas alturas pueden correlacionarse con aquellas líneas de nieves obtenidas in sittu.

Aún cuando ambos métodos aplicados a unidades de año entregan resultados diferentes, sus promedios debieran llegar a resultados similares en varios años. Considerando que las varia ciones oscilatorias de los glaciares son provocadas por la ubica ción, la orientación, las pendientes, la forma de alimentación y la cobertura entre otros, variables que fueron analizadas, es posible reconocer algunas apreciaciones generales como;

Los promedios de las líneas de equilibrio son diferentes en cada área específica, por lo tanto es conveniente la subdivisión de las áreas al mínimo.

De la misma manera resulta conveniente una división discreta de los rumbos.

Las líneas de equilibrio están significativamente mas bajas en glaciares con exposición al S. En glaciares con exposición al NW significativamente mas alta que en el resto. Respecto a las otras exposiciones, estas no difieren mucho entre ellas.

Se observa un aumento en alturas de la linea de equilibrio desde el Oeste hacia el Este.

Según un lineal N-S, las líneas de equilibrio son mas altas o uniformes hacia el Norte que hacia el Sur. Este aparen te sentido tiene una lógica adicional por cuanto existe hacia el norte un levantamiento de la masa continental (fenómeno tectónico), y cuyo efecto produjo un mayor encajonamiento de los glaciares.

Es probable, que del análisis numérico detallado se obtengan otros resultados mas concretos, pero aún así tendrán validez algunos de los siguientes convencionalismos:

- a) Los glaciares con variaciones locales positivas se caracterizan por presentar una exposición desde el S hacia el SW; la presencia de glaciaretes o manchas de nieve en rocas altas y la posición de la línea de equilibrio en consecuencia con lo topografía superficial del glaciar.
- b) Los glaciares con variaciones negativas se caracterizan por presentar una exposición al N; presencia de pequeños glaciares a bajas alturas al pie de rocas; alimentación por avalanchas; la línea de equilibrio va en dirección de la pared de la roca de caja; Ubica ción al lado de la sombra provocada por las rocas altas del lado Sur.

4.3 ESTIMACION DEL ESPESOR DEL HIELO

Los datos relativos al espesor de glaciares, aún cuando ellos no fueron determinados in sittu, tienen su fundamento en apreciaciones empíricas derivadas de investigaciones que correlacionan el área del glaciar con su espesor o potencia del manto de hielo.

La evaluación del volumen de hielo en los glaciares, para los cuales no existen, o solo existen mediciones malas, puede ser determinada con el método de extrapolación de Bruckl (1973). Ella se establece de una relación entre un factor constante de gla ciares en analogía con A y un valor que caracteriza la fluidez. Es te último valor se puede, pero con elegancia, sacar de un mapa topográfico que represente la superficie del glaciar.

En la esperanza que la falta de evaluación particular se ajuste un poco a la realidad, en la tabla N°_{2} 26 , se indican los volúmenes totales de las regiones con abastecimiento de glaciares. Los criterios para el cálculo del espesor medio del hielo fueron:

Superficie_S_(Km2)

Espesor_medio_del_hielo_H_(m)

S < 0.5	TTS/WGI		5 m
0.5 - S 23	TTS/WGI	H=	5.2 + 15,4 VS
S > 20	Cavides,J.1979	H=	$5.2 + 15.4$ $45 \sqrt{5} - (\frac{5}{3.6})^2$
20 - 40	Cavides,J.1979	H=	170(S-20)·1,3

4.4 VOLUMEN DE HIELO Y EQUIVALENTE EN AGUA

Según Marangunic, C.(Op.cit.), la mayor incógnita en la estimación de volúmenes lo constituye la apreciación sobre la proporción del hielo y roca que contienen los glaciares de roca, a falta total de antecedentes se ha decidido estimar que sólo el 50% del volumen de los glaciares de roca está constituído por hielo.

De las consideraciones señaladas en la Tabla Nº26 y las que se fundamentaron en el punto anterior, se ha calculado en ll,3 $\rm Km^3$ el volumen de hielo almacenado en la hoya del Río Tinguirrica. Estimando la densidad media del hielo en 0,8 gr/cm³, resulta un equivalente en agua de 9,0 $\rm km^3$.

Del análisis por descomposición de los datos de caudales medidos en las estaciones hidrométricas, Tinguiririca antes junta Río del Azufre y Tinguiririca sobre junta Río del Azufre, se establece que los glaciares de las hoyas FO20 y FO21 aportan un caudal equivalente al 27 % del total de la hoya, compartiendo el 63 % restante entre las hoyas FO22, FO23 y FO24.

4.5 EVENTOS GLACIALES

Las trazas glaciares por devenir de procesos de acumu lación y fusión del hielo son frágiles y efímeras por cuanto se encuentran directamente expuestas a las causas exteriores de intemperismo, resultando en consecuencia dificil de predecir a partir de un volumen de material morrénico, el volumen del hielo original cuya arquitectura se sitúa en el campo de lo aparente y/o cualitativo.

Los fragmentos menores de roca al disponerse en el hie lo incrementan su presión de poros además de generar movimientos de traslación, rotación y decantación de materia producto de la desin tegración mecánica por efecto criogénico, cuyo proceso es la reducción volumétrica de la masa inicial por pérdidas de borde por efecto de choque tangencial, además de la descomposición propia de la materia por efecto del agua.

De acuerdo con las apreciaciones morfogenéticas mencio nadas, de manera global se puede establecer que en nuestro país, entre los paralelos 18º al 26º, las trazas glaciares parecen confusas y alteradas, especialmente, por cuanto la reiteración del fenómeno del Invierno Boliviano ha cubierto dicha área, aún cuando es eviden te que en cierta etapa del cuaternario hubo un período de intensas lluvias que favorecieron la formación de grandes lagos en altura, muchos de los cuales en el presente corresponden a extensos salares, producto del aumento de evaporación y la disminución de las precipitaciones.

ноуа	VOLUMEN DE HIELO (m3)	VOLUMEN (%)	EQUIVALENTE EN AGUA (m3) d=0.8 gr/cc
F020 R1o Damas	1830624500	16,22	964499600
F021 R 1 o Tinguiririo Alto	ea 6353500	0,06	5082800
F022 R 1 o San Jos é	7591773500	67,29	6073418800
F023 Río Portillo	1461287000	12,95	1169029600
F024 R1o del Azufre	392482400	3,48	313985900
TOTAL	11282,520,900	100	9026016700
TOTAL (Km ³)	11,28		9,02

TABLA N° 26 Volumen de hielo y equivalente en agua.

Manifestaciones de formas glaciares cubiertos de roca son frecuentes hacia la zona meridional del área, alcanzando probablemente notoriedad en las hoyas de los ríos Elqui, Limarí y Choapa en la 4 Región.

La zona central, entre los paralelos 27º al 35º, se presenta caracterizada por registros evidentes de erosión y depósitos glaciales. Aún cuando en la actualidad y a nivel regional se estima que aproximadamente el 50% del total del hielo depositado se dis tribuye en altura y en unidades aisladas que no superan los 0,8 Km² de extensión areal con formas mayores que no alcanzan a representar el 4% del total de hielo existente y no superar en forma individual los 30 Km² de extensión areal, los depósitos morrénicos asociados conocidos, proyectados de manera Paleoglaciológica, exeden en veces los volúmenes de los cauces fluviales, desbordando el hielo, con frecuencia las divisorias de aguas actuales, generando un plano continuo con pendientes cercanas al 3%. Este antecedente es deducible de manera pictográfica de las imágenes LANDSAT, tomadas en la hoya de los ríos Cachapoal y Tinguiririca. Aún cuando el retroceso de los glaciares en la actualidad es lento, las glaciaciones debieron ser catastróficas. Por analogía la acumulación del hie lo a nivel territorial fue una inundación "sólida" con sus derivadas ondas de choque.

Entre los paralelos 35° al 42° , los glaciares presentan ca racterísticas masivas y se encuentran dispuestos a menos altura, en terrenos con evidencias de intensos fenómenos volcánicos y represión de aguas, que formaron grandes lagos controlados a su vez, por la tectónica Regional.

Al Sur del paralelo 43 las evidencias de territorios englaciados son notables en extensión areal, observándose en muchos casos trazas glaciares en la roca de caja que constituyen los bordes de los canales patagónicos(Valdivia, P.1979).

En estricto, aún cuando el número de eventos glaciológicos permanece aún en la obscuridad, las observaciones de terreno realizadas en el área permiten afirmar que existieron períodos ritmicos de actividad volcánica que provocaron como reacción la fusión del manto de hielo. Apoyado en evidencias estratigráficas se pueden determinar un mínimo de cuatro planos o niveles base de coladas volcánicas y cada uno de ellos es puesto en evidencia ya sea en

- a) La estructura columnar de las lavas andesíticas-basálticas.
- b) Discordancia por depositación en planos de erosión, provocados por el escurrimiento de material fluidal en depresiones o paleocanales, sobre cuyo fondo se encuentran depósitos de material generado por actividad fluvio-glacial.

c) Flujos volcânicos sometidos a cambios súbitos de las condiciones termodinâmicas, como la variación de la tem peratura, cuyo gradiente fue probablemente alterado por las aguas de deshielo producto de la emisión de masa, y cuya traza visible se refleja en filetes de lava ascendentes que quedaron estáticos, siendo posible observar inequivocamente el sentido direccional del desplazamien to de la masa fluidal.

En lo que concierne a la última edad glacial reconocida en nuestro territorio y cuyos avances han sido restringidas a las zonas de la alta cordillera, es posible correlacionarla con la época Wisconsin-Würn que afecto al Hemisferio Norte de nuestro planeta, hace hasta 100.000 años atras.

Heusser, C. (1966) y Mercer, J. (1972), respecto de este último período glacial y su respectivo estadio Post-Glacial, establecieron mediante técnicas palinológicas y de Carbono 14, dataciones que involucran dos avances principales que se ubicarían alrededor de los 19.000 y 14.000 años atrás, respectivamente.

Caviedes, C. y Paskoff, R. (1975), piensan que estos avances fueron los responsables de la formación de la enorme morrena de Portillo que se ubica aproximadamente a los 2.800 m. de altura en el valle del Río Aconcagua.

Borde, J. (1966) estableció un dominio glacial similar para el valle del Río Maipo, en la localidad denominada Los Queltehues a una altura de 1.700 m., reconociendo el respectivo estadio Post-Glacial en el Area de Lo Valdés.

Hacia el Sur, en Valle del Río Cachapoal y bajo esta misma concepción, Santana, R. (1967), reconoció períodos de avance correlacionables con los anteriores en la localidad de El Manzanar ubicada a 1.200 m, de altura, estableciendo su respectivo Post-Glacial en el área de la Isla-Maitenes.

El autor le complace aceptar, por analogía con otras regio nes del país, la siguiente correlación entre los períodos eruptivos con emisión de masa y la interacción con masas de hielo y/o nieve.

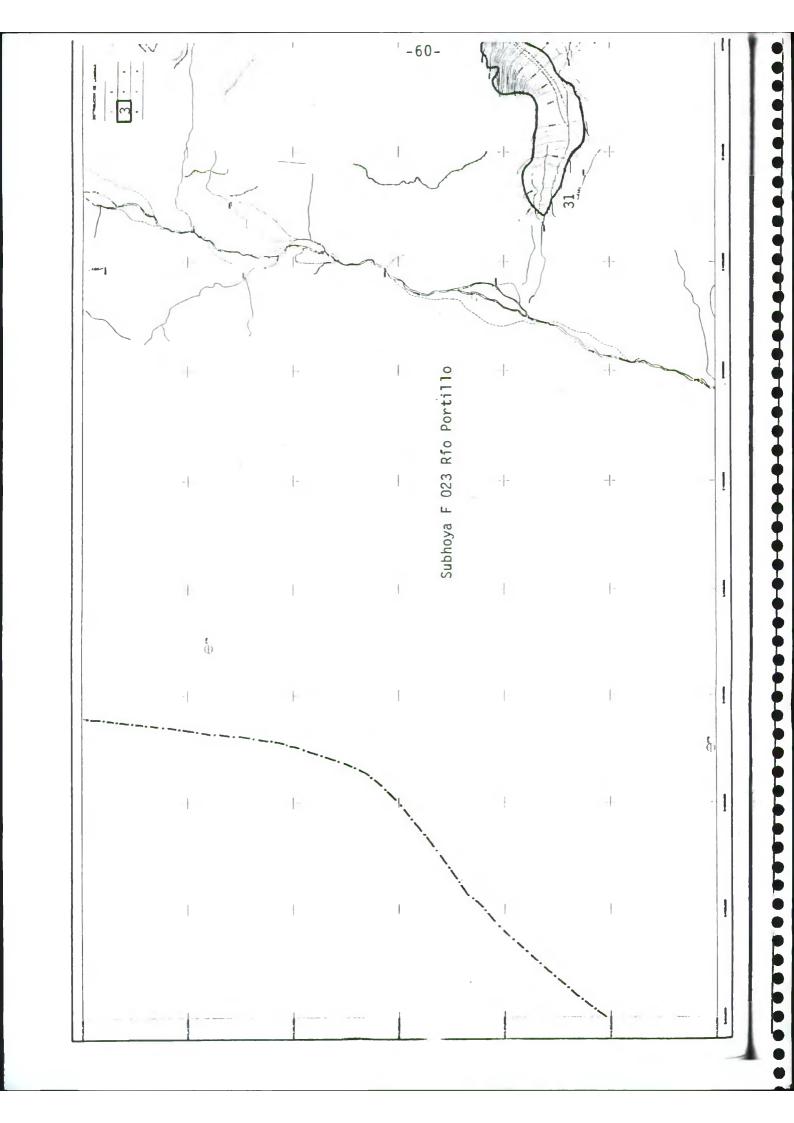
Erupción 0: entre 12.000 y 10.000 a. de J.C. Post Glacial inferior Erupción I: 6.700 a. de J.C.

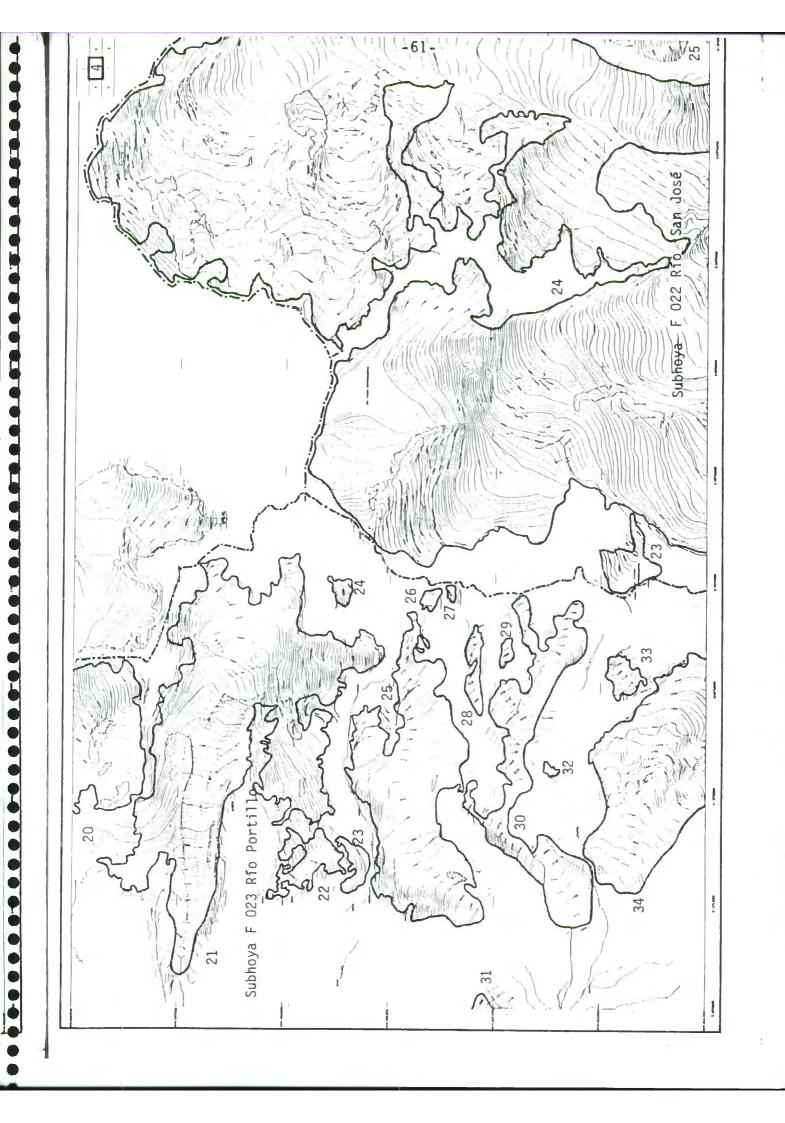
Erupción II: 2.300 a. de J.C.

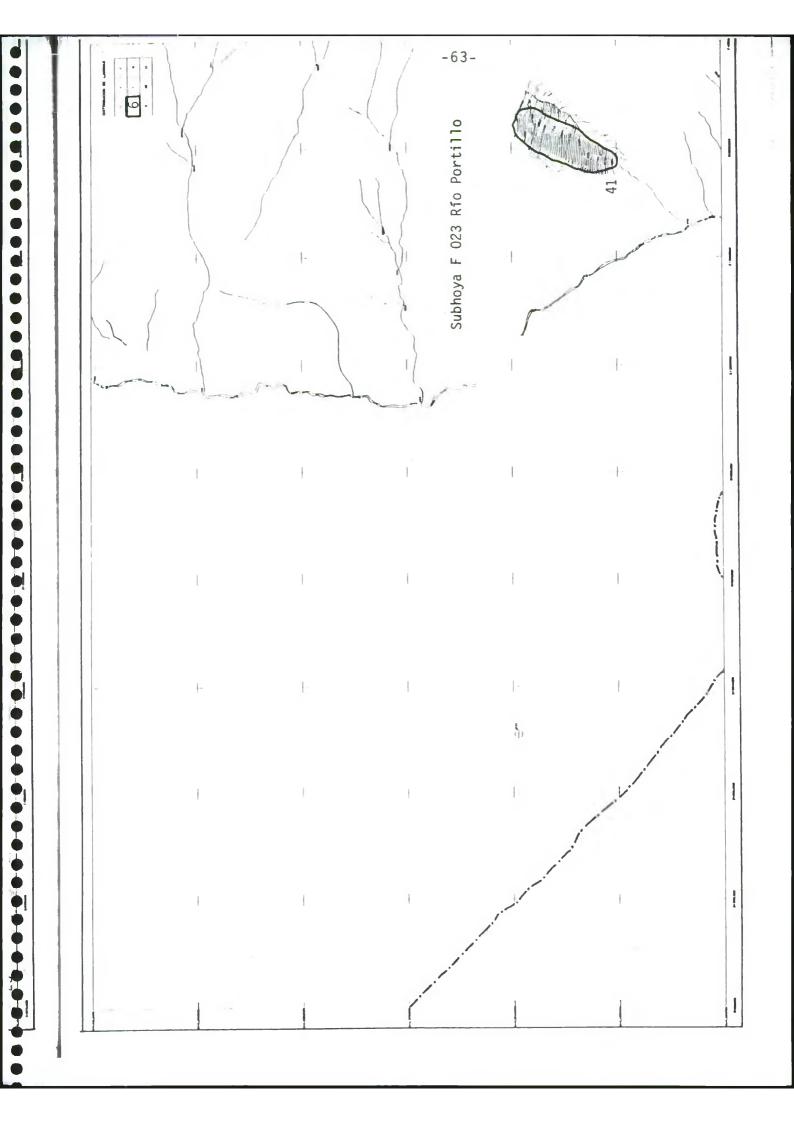
a -

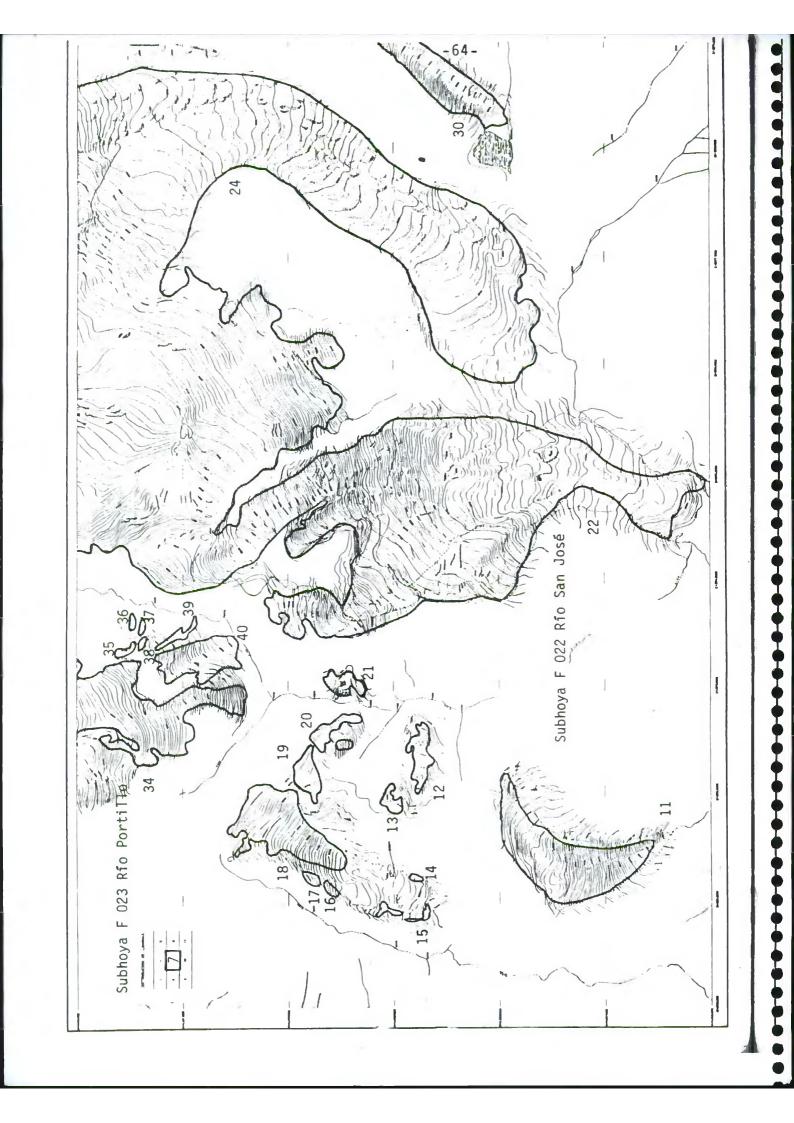
Erupción III : 1.000 a. de J.C., datado por Carbono 14, sobre estratificaciones de pastos y cenizas, excellente base para cronología glaciar.

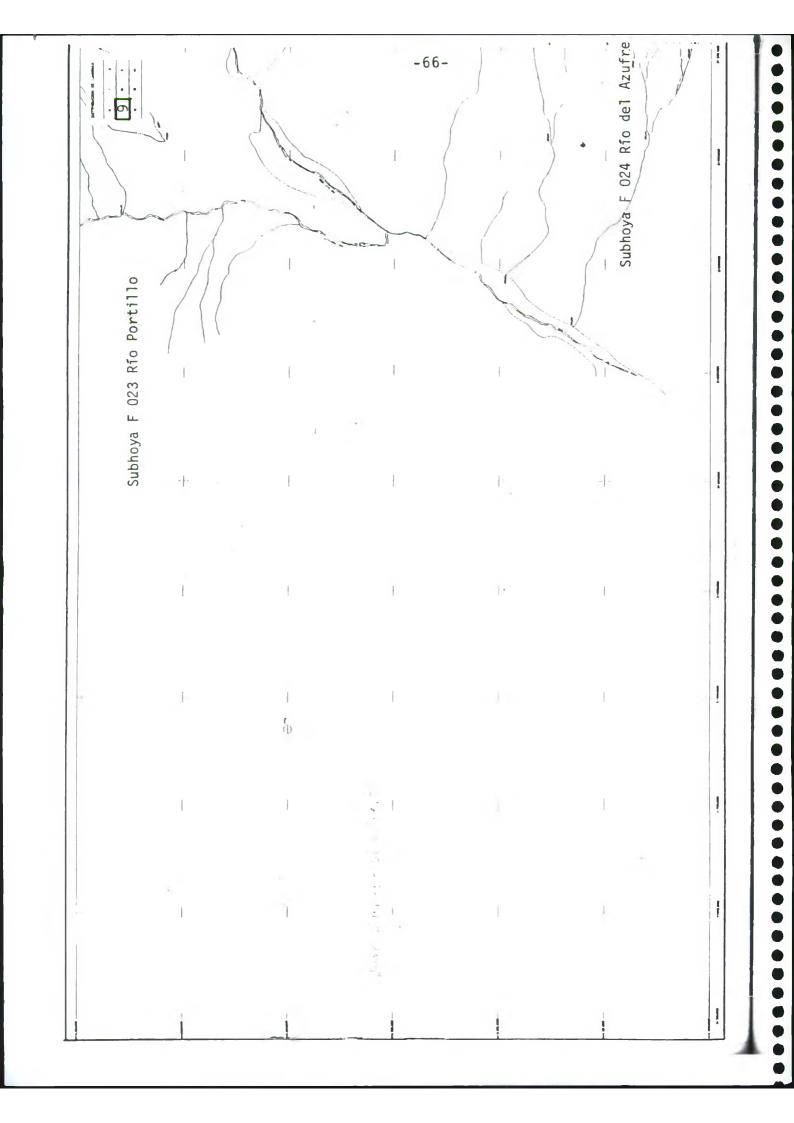
En lo particular, dentro de los productos glaciares las morrenas presentan evidencias de actividad hace menos de 100 años atras.

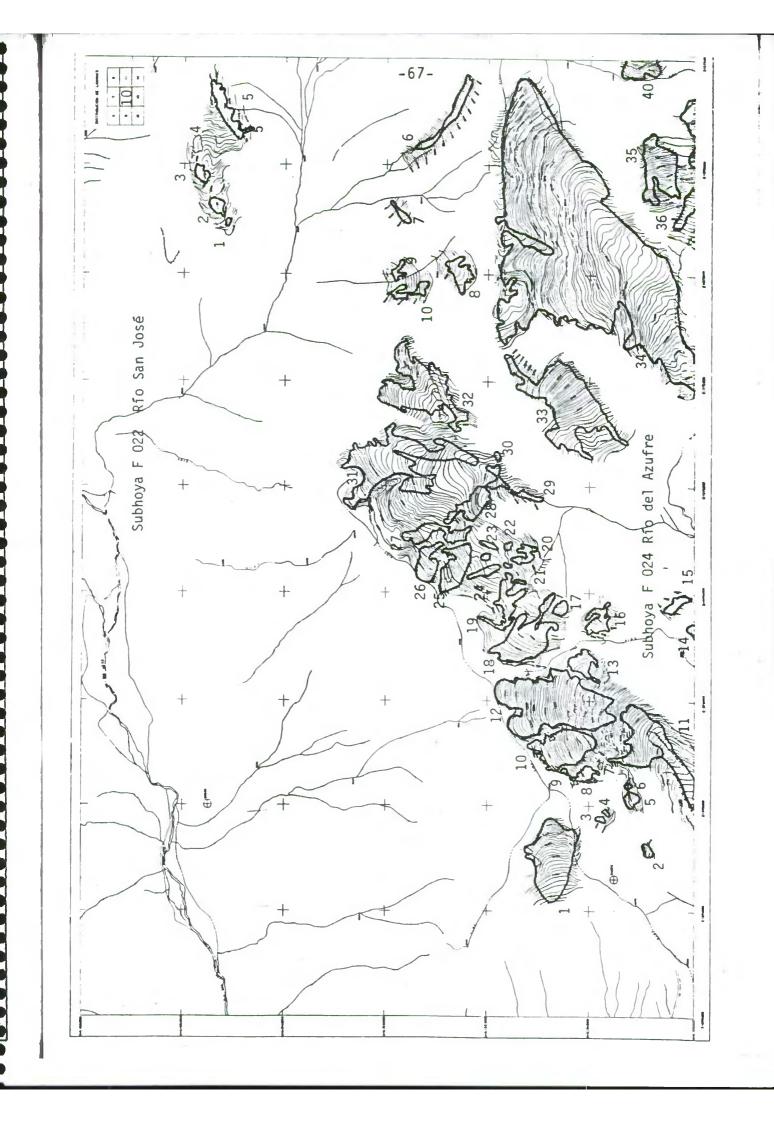


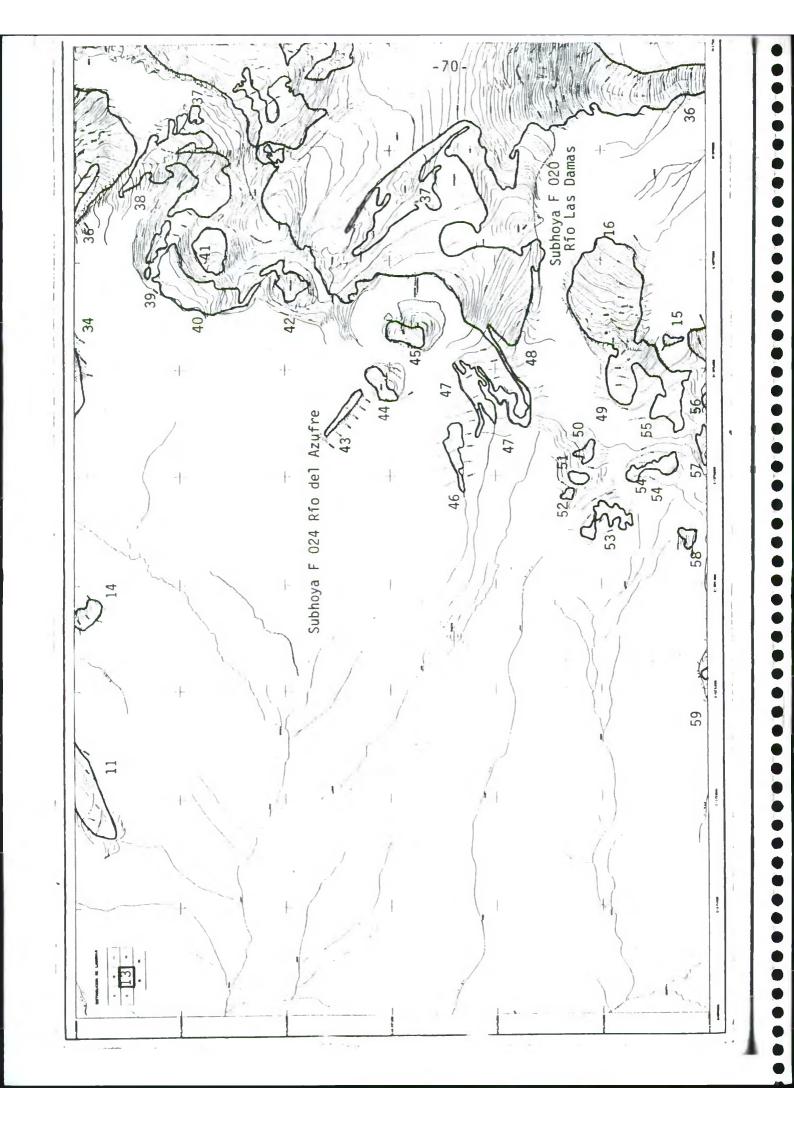


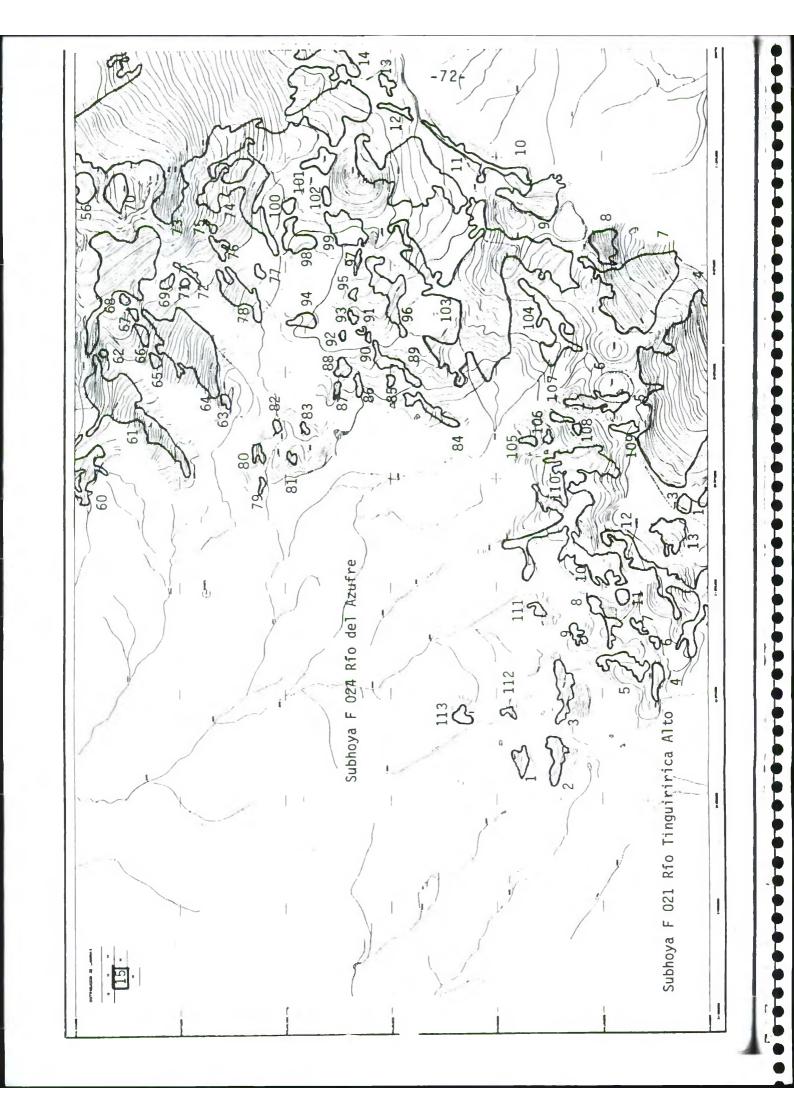

APENDICE

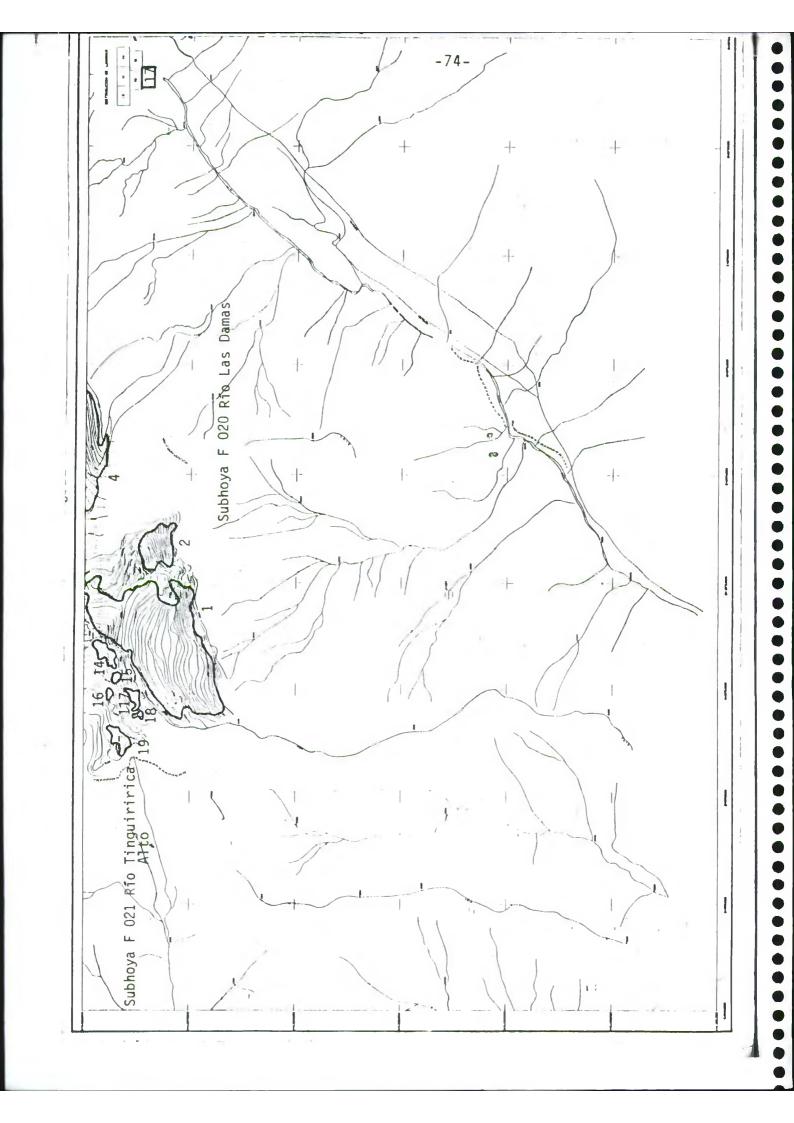

1


17 LAMINAS









SUBHOYA : DAMAS

- L	###### ###############################		000000 44404	000000	ម្រ ម្
ESP (E)	# 10 # 10 # 10 # 10 # 10 # 10 # 10 # 10	ં લ	C1 0	CI	
DM	トューナナ	のヤエン8	00 - 1 00 00 - 1	± C C C C	+ ±
CLASTF	612110 640310 640110 515110 664110	640110 515110 641110 630110	645110 780110 780110 515310 640110	645110 780110 780110 780110	631110 650110
ABLA	3369 3369 3311 3453	3247 3380 3443	2548 4845	3801	3553
AS(m) ACUM	3524 3468 3429 3429	3407 3432 3477	3563	+0533	3633
ALTURAS(m Med acum	3464 3419 3584 3366 3474	3455 3334 3408 3463 3435	3500 3484 3467 3686 4041	3910 3405 3343 3457 3604	3524 3624
Z A	លលល មកកាកាល		សកាកាកាល សភល	0000Z	SE
	3 1 1 1 2		$\begin{array}{c} 0.20\\ 0.07\\$	00000	00
LAR(m)ORI ×100 AC	122.0 33.4 11.00 53.6	46640 4666	6,4 0.5 18.0 1.9	001137	1.3
(На) АВША	55,68 6.79 42,35 3.22	21.07 2.57 4.81	7.03	22.72	2,08
AREA CH TOTAL	89,80 13,33 1,87 79,72 5,78	1,41 38,10 6,34 13,00 6,75	35,21 1,51 1,61 232,34 1,10	52,32 1,33 1,36 0,72	4,77
COORDENADAS UTM	N6137350E372450 N6137400E373300 N6138220E372750 H N6138300E373850 N6139100E373700	N6139100E374100 N6138700E374800 N6139050E375200 N6139650E375600	1 N6141000E375850 2 N6141000E376450 3 N6141000E376680 4 N6143300E376400 5 N614350E376260	\$ N&145000E376650 7 N&142570E379630 8 N&143050E379420 9 N&143080E379650 0 N&143370E380110	L N6144100E379450 2 N6144550E379120
1 1	HUWFE	37-89-D		0 A B B A C C C C C C C C C C C C C C C C	
IDENTIF	F020/ F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/	F020/ F020/
			ADE	NIP	

APENDICE LISTADO 2

SUBHOYA : DAMAS

<u>}-</u>	****	# # # # # #	###9#	៤៤ ២០៤៤	Ø →
ESP (m)	מממממ	លលលលល	0 1 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٥ تا تا
MO	0-00 00 00 00	${\bf x} {\bf x} {\bf x} {\bf x} {\bf x} {\bf x}$	ノコクトト	7777	± ∞
CLASIF	650110 780110 780110 780110	780110 780110 780110 770110	631110 631110 651110 611110	515110 631010 515310 515110	530110 530110
ABLA	3623	3512	3571 3908 3750 3502 4111	3772 4040 3388 3798 3728	3798 4154
ACUM	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3565	3737 3948 3917 4080	4214 4318 4225 4202	4076 4226
ALTURAS(m) MED ACUM	3658 3607 3350 3245 3350	33999 3427 3425 3545 3628	3646 3928 3839 3844 4151	4023 4212 3746 4031 3843	3913 4193
ZM	M M M W B	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00202 111111111111111111111111111111111	шшошз	ms Sm
DOUR AC	8 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	00000 10111111111111111111111111111111	00 0Z	0 0 0 0 0 0 0	3 3 3
LAR(m) ×100	H H C C C H H C C C C C C C C C C C C C	0 H H C H	500 4 50 0 4 6 5 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5	1.7 8.0 20.0 8.0	15.0 3.6
(Ha) ABLA	1.61		17.80 1.70 5.00 180.89	88,10 11,23 273,05 84,97 23,48	85,11
AREA (TOTAL	2,46 0,81 1,51 0,66	0.86 0.90 0.77 4.76	33,66 3,60 11,06 440,80	203,43 27,93 483,91 200,84 38,52	145,08
COORDENADAS UTM	N6144550E379650 N6144770E379760 N6144600E380370 N614450E380670	N6144880E380300 N6145050E380350 N6145000E380430 N6145460E380320 N6145550E380150	N6145750E379800 N6145750E379150 N6146150E379550 N6147000E378400 N6146750E377200	N6148500E379000 N6149800E379200 N6151500E380500 N6150500E382300 N6149700E383200	N6148900E384900 N6147850E384700
<u>L</u>	となる。これのこれを	22 32 32 32	20 00 00 00 00 00 00 00 00 00 00 00 00 0	1 # t d 3	で 土 士
IDENTIF	F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/	F020/ F020/

INVENIANT UL GLACIARES , HOYA RIO TINGUIRIREA

SUBHOYA : DAMAS

Total Control	3 3 10 3 3	主主印土
a e	ង សសសាសស	e N N ⊕ N
	~ @ ~ ± ~	0010
ABLA CLASIF	535118 653210 535110 530110	780110 780110 523110 535110
ABLA	300 300 300 300 300 300 300 300 300 300	4071 3485 3847
ALTURAS(m) MED ACUM A	3964 3965 3710 3909 4030	4088 3088 3088 3088 3088
	3922 3927 3541 4000	41078 4138 3380
T A A	3 3 3 3 3 3 0 0 0 0 0	3333
20	33333	3 3 3 3 6 2 6 6
LARCM)ORIEN ×100 AC AB	# # 40 k W	+ 9 6 + N
Ha) ABLA	3,71 1,29 57,26 2,86	0 14.6 23.27 20.27
AREA (Ha) TOTAL ABU	113,933 114,033 14,93	1.03 0.26 43.57
COORDENADAS UTM	F020/ 45 N6147800E384350 F020/ 46 N6147700E383900 F020/ 47 N6146150E384150 F020/ 48 N6145400E383900 F020/ 49 N6145450E384150	50 N6145400E384330 51 N6145180E384530 52 N6144450E383350 53 N6143650E383500
To the second of	40000 4444 4444	
	F020/ F020/ F020/ F020/	F020/ F020/ F020/ F020/

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

SUBHOYA : TINGUIRIRA ALTO

INVENTARIO DE GLACTARES . HOYA RIO TINGUIRIREA

SUBHOYA : PORTILLO

	######	* * * * * *	0 ± ± ± ±		47
(ESP	លល ល លល	លល់ល់ល	4 000000	N NO N N	9 0 0
0		± ω ± ω ω	# # # # #	± ± ± ± ∞	<u>~</u>
CLASIF	760110 760110 760110 740210	650110 750110 540110 670010	9511100 640120 650120 780010	780010 780010 531110 640110	770010 525310
ABLA	3863	4.066 3800 3881 3630	2552 4152	3705 3901 4065	4180 2585
AS CA	3921	4313 3837 3906 3711	420 420 420 44	3893 3984 4156	4261 3414
ALTUR,	3630 3697 3813 3851 3891	4199 3822 3885 3645 3668	2807 4187 3944 3503	3534 3654 3793 3940 4100	4217 2907
A B B	33303 000	3222	0 0 H3H00	ហ ភ ភ ភ ភ ភ	BE
ORI	33303	34432	33W00	000	SE
LAR(m) ×100	0 4 4 0 4	044220 04500	19.0 1.0 1.0	1 33	33.0
(Ma) ABLA	2.06	2,36 0,49 2,42 1,44	32,28	22.11 3.61 4.14	4.03 291,51
AREA (1 TOTAL	0.17 1.67 1.48 4.46	5.10 1.08 4.38 1.13	72.01 8.00 2.67 0.45	2,28 2,32 41,53 7,46	7.10 475.60
COORDENADAS UTM	N6154580E377500 N6154700E377600 N6154850E377900 N6154600E378200	S N1615350E378500 7 N6152850E377550 8 N615250E377000 9 N6152900E377000 0 N6152600E376850	N6157 N6158 N6159 N6158 N6158	5 N6159150E370900 7 N6159750E371200 8 N6160000E371750 9 N6159800E372150 0 N6159700E372550	L N6159500E373000 2 N6159150E374600
<u> -</u>	in temp=	88 4 8 4 9 8 4 9 8 9 9 9 9 9 9 9 9 9 9 9		20 0	227
IDENTIF	F 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	T 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	F022 F022 F022 F022	F0227 F0227 F0227 F0227	F022/ F022/

SUBHOYA ; PORTILLO

Terrore	100	士的	in	主	±	m	÷	÷	ç	י כנו	-
8 (e)	2000	200	0.6	2.0	9	2.0	2.0	0 ±	1.20	0 % T	Ð
O M	~	÷	~	İ	⇉	⇉	立	-	~	r- (D
CLASIF	4021	670110 535110			10	930100	0.1	630110	1511	923110	4011
) ABLA	the pu	33337	3.0	3371	3323	2774	3248	3095	58	3518	7
ACUM ACUM	01 -	3358		10	∞	3198	∞		7-i	3748	N .
ALTURAS(m MED ACUM	-1 NO	3281 3428	04	3415	3409	3008	3320	31.65	3481	3632	\$00t
N S N	Ш 3	3 co	ns.	3 00	300	MS.	S	တ	300	3	3
D C C C	四四四	元 3	3 6	35	<u>3</u>	300	Ш O	S	™	3 3	3
LAR(m)ORIEN ×100 AC AB	10 40 10 40 10 40	0.0	19.0	1.0.0	10.01		9	0	-		-
(На) , ЯВБА	8,14 1506,76	34.04	-	21.16	42,37	20,21	24,331	±9 · 9%	247.19	j N	70.7
AREA (TOTAL	2973,70	43.90	-	41.39	00 mm m	44,78	th6 16th	26.00	632.26		1.3
COORDENADAS UTM	M6162800E374000 M6160000E378000	N6162800E379200 N6163550E379800		N6162600E381700		N6159000E379000	N6159500E379800	N6159000E381000		N6158300E393000	461.06800E384000
IDENTIF	F022/ 23 F022/ 24	F022/ 25 F022/ 26	F022/ 27	F022/ 28	_	F022/ 30	F022/ 31	F022/ 32	\		F U Z Z / SU

SUBHOYA : SAN JOSE

-	*****	3 3 3 3 3 5			
2 /5	១១១១១១		១៩៩៩៩ សសសសស		- 6
0 0 0	C4	ଷାଂଷ୍ଟ୍ରି		0	120
- O K	\$ 30 50 50 50	00000	$\circ\circ\circ\circ\circ\circ$	≠±∞∞≻	1
CLASIF	951100 780120 780120 780120	770010 770010 641410 640110	770010 770010 790100 790100	6411110 650120 650110 640110 512210	512110
ABLA	2674	3045 3178 3174 3074	3277	2973 3303 3429	3530
MED ACUM	2730	3224 3223 3145 3145	3329	3115 3383 3867	2952
	2703 2930 3004 3000 3049	3104 3208 3208 34098	3060 3299 2594 2792 2878	3043 32928 3295 3346 3653	87.78
E	00 00 00 00 11 11 11 11 11 11 11 11 11 11 11 11 11	0 Z 0 0 Z	33033	03333 200	3: ;
S S	0000000	9 Z 3 3 Z 3 Z 3 Z	33033 00200	03333 200	3
×100 AC AB	3000W	V 0 0 4 0 V		0 + t 0 0 0 + t 0 0 0 0 0 0 0 0 0 0 0 0	30.0
	4.65	11.39 3.43 5.51 6.23		10.63 3.79 267.86	153,00
	10 1.833 1.933 1.70	24,38 6,87 12,62 11,52 6,77	0.77 4.28 1.21 0.48	20,92 2,39 3,04 8,30 547,64	360.52
	N6170450E366800 N6170600E366150 N6170750E366000 N6170850E366150	N6171600E366400 N6171700E366950 N6172000E367550 N6172000E367900 N61720850E367900	N6171800E368200 N6172150E368550 N6170200E369100 N6170450E366800	N6171700E369800 N6170750E370100 N6171400E370700 N6171400E370700 N6171000E372000	N6167000E372000
	HOMES	108878		20000	- C C C C C C C C C C C C C C C C C C C
	F023/ F023/ F023/ F023/	F023/ F023/ F023/ F023/ F023/	F023/ F023/ F023/ F023/	F023/ F023/ F023/ F023/	F023/

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

SUBHOYA : SAN JOSE

\vdash	± ± 0 ± ±	されてられ	tttat	<u>ភេ្ឋ</u> ភ្
ESP (B)	& មាលមាលជា	4.6 4.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	0 000000	00000 N N
<u>D</u>	∞∞-∞∞	00±00	96999	9 to 10
CLASIF	640112 640110 532110 640110	650110 750110 652110 912100 770110	750110 522410 750110 750110	750110 751110 631110
ABLA	4463 3744 4723	4410 4488 3326 2466	4203 3463 4339	4258 4404 4428 2408
RAS(m) ACUM	4534 4158 4751	4689 4560 4265 2707	4337 3999 4375	4529 4529 4575 2654
ALTURAS(m Med acum	3836 4504 3950 4732 4816	4554 4524 3802 2567 3735	4267 3780 4197 4398 4363	4272 4468 4510 2528
E E	33333	33333	33333	3333 2222
CCMOORIE	33333	33333 22202	33333	3333 2222
	00000	000 a	ononn	NC00
₩ × ×	04 04 04 04 04 04 04 04 04 04 04 04 04 0	00 1 ± 00 0	4 K K H H	10 7 37
(Ha) ABLA	1,58 90,32 1,36	4.81 1.24 53.88 38.49	4,48 105,26	0,60 1,24 10,08 14,66
AREA (TOTAL	8,28 3,80 180,18 2,59	9.07 2.46 109.37 65.95	8,40 258,54 1,15 0,64	1.17 2.44 21.64 27.84
COORDENADAS UTM	N6165300E371350 N6165450E373850 N6164800E372000 N6164650E373800	N6164200E373000 N6163900E373300 N6163800E372500 N6163500E369500	N6162800E373100 N6162000E372500 N6161500E373350 N6161500E373500	N6161390E373400 N6161000E373500 N6160800E373250 N6157500E369000
<u> </u>	200000 20000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MAMMW 400 TEM	4 + 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
IDENTIF	F023/ F023/ F023/ F023/	F023/ F023/ F023/ F023/	F023/ F023/ F023/ F023/	F023/ F023/ F023/

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

-	4444	+++	せいせかせ	* * * * * *	= =
ESP (m)	e e e e e e e e e e e e e e e e e e e	១០៧៣០០ N	000 000 000	ស្រួលស្រួ	מופ
MO	\$ \$ \$ \$ \$ \$ \$ \$	00000	~ © ~ G ~	100000	0.0
CLASIF	911100 730120 780210 780210 780210	780210 780010 681510 760010 631110	625120 621320 670110 650120	631110 740020 530010 530010 780010	780010
ABLA	3411	3518 3505	2908 3432 3471 3329 3329	3500 3513 3486 3340	
ALTURAS(m) MED ACUM	3535	3594	3075 3693 3504 3387 3384	3549 3501 3575 3389	
ALTUR	3471 3198 3501 3498 3262	3253 3413 3558 3662 3574	2982 3566 3501 3364 3349	3534 3430 3563 3563 3368	3457
AE	S S S S S S S S S S S S S S S S S S S	30 X 30	3033 <u>4</u> 02000	30000 100000000000000000000000000000000	ж Ш Ш
OREI AC F	3033E	30 0 3 0 30 0 3 0	្រំ ខេត្ត	00000 1111111100	3 W
LAR(m) ×100	40 0.70 0.88 1.88	00 00 00 00 00 00 00 00 00 00 00 00 00	10000 0000 00000	H 20 5 H 30 5 H 30 4 4 55 53 H	7.0
(Ha) ABLA	13.19	1,00	25.55 22.72 2.00 2.92 1.00	2,87 8,02 3,56 1,04	e 49
AREA C TOTAL	25,29 0,88 0,36 0,23 1,56	0.27 0.31 1.87 0.18	48.98 46.32 4.29 5.37	3.90 1.38 16.94 6.84	0.23
COORDENADAS UTH	N6151300E371650 N6150400E371550 N6150900E371870 N6150820E371950 N6150600E372050	N6150600E372200 N6150870E372370 N6151100E372300 N6151250E372550	N6150500E372650 N6151450E373000 N6151050E373350 N6149800E373700 N6150150E373900	N6150900E373750 N6151300E373700 N6151600E373600 N6151800E373900 N6151620E374370	N6151800E374250 N6151800E374430
<u> </u>	日のまれる	100070	- 0 M ± M	200000000000000000000000000000000000000	- N
IDENTIF	F024/ F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/ F024/	F 0 24 / F 0 24 / F 0 24 / F 0 24 / F 0 24 /	F024/ F024/

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

:		****	いの中では	* * * * * *	<i>3 3</i>
(E)	សសលលេស	NN NN NN	0000 M	0	n n
O X	のかせるの	77±00	めんのとサ	00000	9.0
CLASIF	780010 780010 631010 631010	650120 790000 770010 625110	641110 615110 640010 631110	670110 660010 790110 660110 670110	790100 660010
ABLA	3491 3535 3641 3530	3334 3205 3483 3615	3466 3676 3878 3818	3930 3989 3977	3692
AS(m) ACUM	3510 3620 3707 3598	3451 3224 3615 3606	2688 4049 4049 7004	4107 4024 4057	3782
ALTURAS MED ACL	3506 34.73 35.77 36.74 35.88	32382 3218 3420 3553	3560 3854 3939 3928 4143	4026 4011 3975 4060	3744 3952
	о сос В В В В В В В В В В В В В В В В В В В	33W33	33333 000XX	33033 20 Z	3 <u>W</u>
ORI		00200 00200	33333 0000Z	33033 20	3 10
LAR(m) ×100	OMONO RMthm	NV 00 0	31.5 31.5 10.0	0 0 4 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0	υ ∺ ⊃ Ν
(Ha) ARLA	1.01 4.53 2.60 3.09	4.83 0.78 18.30 14.05	21.25 125.40 6.84 26.34	20.07 2.05 19.95	1.36
AREA () TOTAL	1,61 1,10 8,87 5,18 6,46	8,41 1,46 0,37 36,36 28,91	36,97 239,89 13,73 49,10 1,42	43.95 3.69 0.24 10.06 32.38	2.77
COORDENADAS UTM	N6151950E374230 N6152000E374400 N6152250E374250 N6152600E374230 N6152600E374530	N6152050E374920 N6151650E374920 N6151900E375280 N6153000E375300 N6152650E375900	N6151250E375850 N6151000E377000 N6150300E378000 N6149750E378000 N6148850E378350	N6149100E378050 N6149200E377250 N6149300E376900 N6148700E377100 N6148600E376650	N6147380E375650 N6147100E375850
<u>:</u>	76 U F W	888 888 888 888 888 888 888 888 888 88	MANNEW MANNEN	ごじら より ヤガヤ ない	10 ± 11 ±
IDENTIF	F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/	F024/ F024/

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

•••••••••••••••••

-	ಕಕಕ ು ಕ	series and with and and	and the same win		± ±
88 € €	1) ÷	200000	ខួលសល់ស	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$0 E
2	0.0.0.0.0.0	9 9 9 9 9	10 - 10 0 A	010000	नों स
CLASTI	660010 770118 770110 671110	680110 680110 680110 642110 530110	631110 640110 660100 670110	640110 530510 770110 770120 533110	780110
ABLA	4122 3589 3804 3976 4006	3529 3690	39 22	3373 3336 3400	
AS(m)	4178 3711 3711 4143 4133	3573	4076	3427 3534 3494	
ALTURAS(m) NEO ACUM	441000 3000 4000 4000 4000 4000	37.67 37.20 36.89 35.42 36.96	330 330 330 330 330 330 330 330 330 330	3405 3464 3366 3306 3445	5.52
28	33333	3 2 3 6 6	323W3	33000	333
2 4 5 5	33333	3 2 3 3 3 3	32343	330U3 00 00	3 3
LAR(m) ×100	W 6 7 6 7	04484 04484	0 H N N 0 0 C	10.0 10.0 10.0 10.0 10.0 10.0	크린
(Ma) ABLA	22.75 22.43 6.163	2 d d d d d d d d d d d d d d d d d d d	10.57	3,69	
AREA (TOTAL	6,41 6,34 8,39 59,34 11,14	2,24 1,77 0,90 6,20 5,60	17,93 5,00 2,68 2,18 0.53	6.89 27.25 0.44 1.19 28.28	
COORDENADAS UTM	N6146850E376300 N6146400E375350 N6146210E375850 N6146000E377000 N6144800E376000	N6145150E375200 N6145200E374950 N6145300E374830 N6144900E374650 N6144500E375100	N6144500E375000 N6144050E375750 N6144050E375300 N6144200E374430 N6144000E373250	N6143850E373100 N6143650E373750 N6143730E374180 N6142550E373750 N6143000E374400	N6143250E374120 N6143350E374370
<u></u>	90400 4444			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 vo
TIDENTIF	F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/ F024/	F 0 2 4 7 F 0 2 4 7 F 0 2 4 7 F 0 2 4 7	F024/ F024/

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

INVENTARIO DE GLACIARES . HOYA RIO TINGUIRIRICA

-	#####	* * * * * *	######################################	1111
#8# (E)	មានមាន	លលលលល	6 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	00 00 00 00 00 00 00 00 00 00 00 00 00
0	= 0 0 0 0 0	±00±±=	±> ±> ± ±00000	± = ∞∞∞
CLASIF	650110 780110 780110 780110	630110 780110 651110 650110	634110 740110 630110 770110 521110 780110 780110	650110 624110 744110 790110
ABLA	3372	3428	33399	3376
ALTURAS(m) MED ACUM	5377	3470	3467	3E13
ALTUR	88378 8418 8418 8418 8438	3470 3470 3434 3480 3480	3504 3516 3516 3516 3518 3318 3318 3411	34.72 34.09 3282 2991 2977
	0 0 0 30303	Z 0 3 3 3 0 0 0	3323W 322W3	<u> </u>
	30203	20233 0000	33233 322W3	
99	Nebtu	10 4 C H M	សម្រល់ម្នា បានប្រែស	ಬರನµ ⊣
LAR(m) ×100	54504		MHMHM HHONO	CO HHH
(На) АВЬА	M M		43.95	12.67
AREA (TOTAL	0000 1000 1000 1000 1000 1000 1000 100	2.61 0.56 10.11 0.67	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2,10 31,41 1,21 0,76
COORDENADAS UTM	N6141000E374100 N6141220E374330 N6141270E374370 N6141470E374360 N6141350E374520	N6141850E374500 N6141370E374750 N6141000E374700 N6141330E375050 N6141850E375230	N6141400E375350 N6142000E375550 N6141600E375500 N6141600E375500 N6139450E374500 N6139700E373350 N6139700E373350 N6139700E373350 N6139700E373350	N6138750E373450 N6139300E372670 N6139900E370850 N6140300E370780
<u>L</u>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	999999 99999	99 100 100 100 100 100 100 100 100 100 1	0.0 H 0.0 H T T T 0.0
IDENTIF	F024/ F024/ F024/ F024/ F024/	F024/ F024/ F024/ F024/	F024/100 F024/100 F024/101 F024/103 F024/104 F024/105 F024/105	F024/109 F024/110 F024/111 F024/113

Identificación/ Número del Maciar Numbre	BC1111111111	3
Latitud	49 11	<
Longitud		3
Coordenadas		د
Número de Hoyas Hidrográficas		-
Número de Países	Para I	
Escala del Mapa Topográfico		·
: Año	li s	+
Fotografías Usadas : Tipo	72 73	2
: Año	74	3
Número de Tarjetas Perforadas)
Tarjeta Número		-
	79 00	2
Superficie : Total (expresada en hectárea : Exactitud	S) (*)	(*)
: Total en Territorio Nacional	. ma	
: Expuesta	(*)	c
	(*)	5
Superficie de Ablación	(*)	4
Ancho Medio (expresado en metros x	100) (+)	5
Largo Medio	(+) Billia	2
Largo Máximo : Total	(+) 523)
: Expuesto	(+) 23 1 1 1 2	
: Area de Ablación	(+)	·
Orientación : Area de Acumulación	Fally	2
; Area de Ablación	1.71	3
Tarjeta Número	1,12 E	j
Altura Glaciar Māxima (m.s.n.m.)		í o
Altura Glaciar Media (m.s.n.m.)	والمرابع المرابع المرا	<u>.</u>
Altura Glaciar Inferior : Total (m.s.n.m.)	المناب ال	4
: Expuesta (m.s.n.m.		1984
Altura Media de Acumulación (m.s.n.m.)	12 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	5 0.
Altura Media de Ablación	27 1 1 1	
Clasificación	BALLLI	Jd:
Período de Actividad de la lengua	22 1 1 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 2 1 1 2	Va
Grenas	الم المراسلة	4
înea de Nieve del Glaciar Total : Altura (m	snm)	confitable : Valdivia, P.
: Exactitud	a/mes/año)	ing.
: Fecha (dfa	a/mes/año)	. \$
sperior neuro (m)		Th.
exactitud		
arjeta Número	3	-1)

Altura (a)	Atea (HA)	-89-	Altura (m) Acea (Há)
2000-2050			4000-4050
2050-2160	THE COME AND THE COMMENT OF THE COME AND THE		4050-4100
2100-2150			4100-4150
2150 -2200	mentemente e minimo en coloni de la gilla mentementalia-del catalogia de la cela di materiaria del		4150-4200
2200-2250	The second section and section the second section of the second section of the section of the second section of the section of t		4200-4250
2250-2300			4250-4300
2300-2350			4300-4350
2350-2400			4350-4400
2400-2450			4400-4450
2450-2500			4450-4500
2500-2550			4500-4550
2550~2600			4550-4600
2600-2650			4600-4650
2550-2700	er til reference om grave state dette er jameljan vara grav varagenska senskale er grav E		4650-4700
2700-2750			4700-4750
2750-2600			4750-4800
2300-2850		-	4800-4850
2850-2900			4850-4900
2900-2950			4900-4950
2950-3000			4950-5000
3000-3050			5000-5050
3050-3100			5050~5100
3100-3150			5100-5150
3150-3200			5150-5200
3200-3250			5200-5250
3250-3300			5250-5300
3300-3350			5300-5350
3350-3400	+		5350 - 5400 -
3400-3450		ĺ	5400~5450
3450-3500			5450-5500
3500-3550			5500-5550
3550-3600			3550-5600
3500-3650	`		5600-5650
3650-3700			5650-5700
3700-3750			5700-5750
3750-3800			5750-5800
3800-3850			5300-5850
3850-3900		Ì	5850-5900
3900-3950			5900-5950
3950-4000			5900-6000

DISTRIBUCION AREAL ENTRE CURVAS DE NIVEL COM AUTIMETRIA CADA SO METROS.

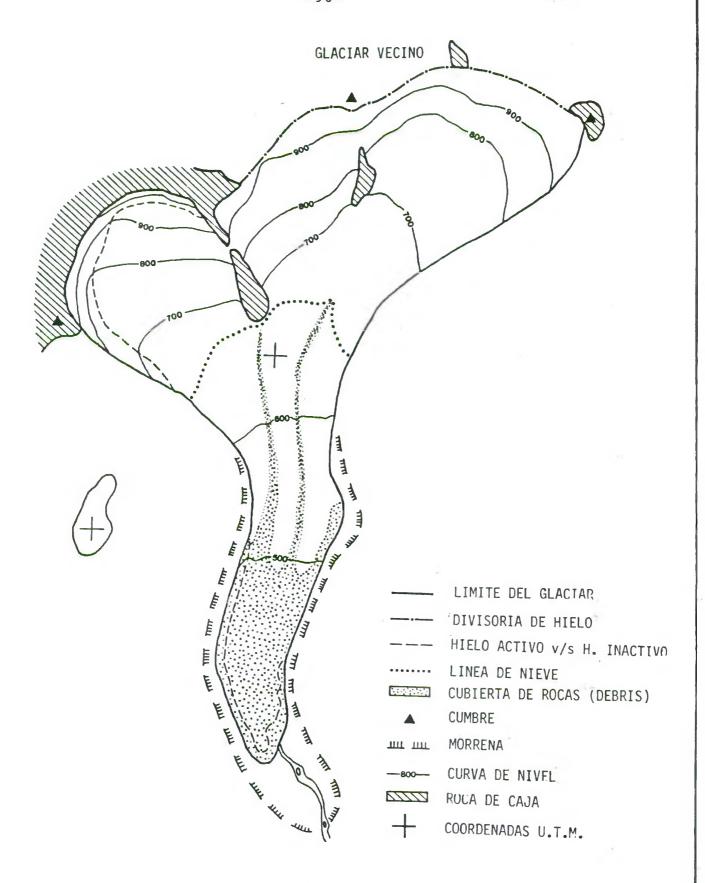
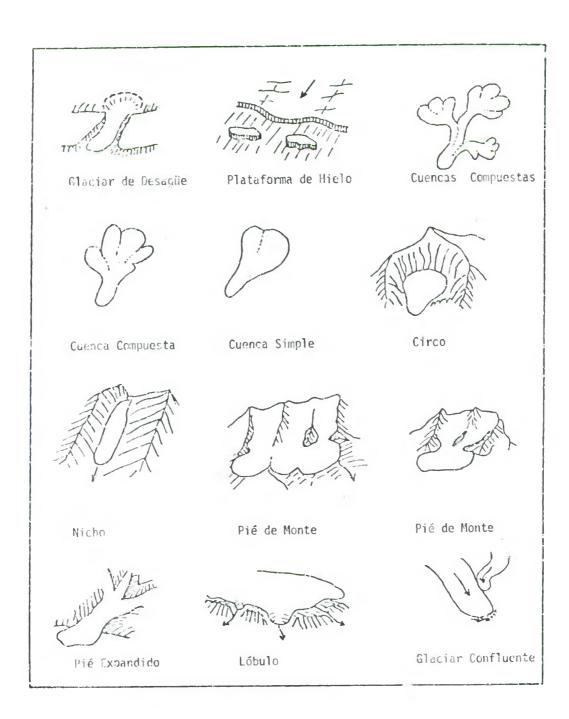



DIAGRAMA DE DELINEACION DEL AREA GLACIAR

Tipos diferentes en la Clasificación de Glaciares (UNESCO)

CLASIFICACION Y DESCRIPCION DE GLACIARES

	DIGITO 1 Clasificación Primaria	DIGITO 2 Forma	DIGITO 3 Características del Frente	DIGITO 4 Perfil Longitudinal	DIGITO 5 Fuente Principal de alimentación	DIGITO 6 Actividad de La Lengua
0	Incierto o misceláneo	Incierto o misceláneo	Normal o misceláneo	Incierto o misceláneo	Incierto o misceláneo	Incierto
-	Sábana de hielo continental	Cuencas compuestas	Pié de monte	Liso	Nieve y/o nieve en deriva	Retroceso marcado
2	Campo de hielo	Cuenca	Pié expandido	Colgante	Avalancha de hielo y/o nieve	Retroceso leve
6	Casquete de hielo	Cuenca simple	Lébulo	En cascada	Hielo superimpuesto	Estacionario
7	Glaciar de desague	Circo	Desprendente	Salto de hielo		Avance leve
2	Glaciar de valle	Nicho	Confluente	Regenerado		Avance marcado
9	Glaciar de montaña	Cráter				Posible surgiente
7	Glaciarete y campo de nieve	Planchón				Surgiente conocida
∞	Plataforma de hielo	Grupo				Oscilante
6	Glaciar de roca	Remanente				

RIMMERO DE LA TRADETA FINANCIA DE L'ATRADETA FOTOGRAFIAS EMPLEADAS: AND TESTOGRAFIAS EMPLEADAS: TIPO MAPA TOPOGRAFICO EMPLEADO: AND MAPA TOPOGRAFICO EMPLEADO: ESCALA R. MAPA TOPOGRAFICO EMPLEADO: EMPLEADO: ESCALA R.		- 61	r) I	7 4, 4	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
FOTOGRAFIAS EMPLEADAS: ANO STATEMENT OF COMPLEADAS: TIPO MAPA TOPOGRAFICO EMPLEADO: ARO MAPA TOPOGRAFICO EMPLEADO: ARO MAPA TOPOGRAFICO EMPLEADO: ESSALA MAPA TOPOGRAFICO EMPLEADO: ARO MAPA TOP	[]		-		INTERO DE LA TARJETA
TOTOGRAFIAS EMPLEADAS: TIPO TOTOGRAFIAS EMPLEADAS: TIPO MAPA TOPOGRAFICO EMPLEADO: ARO MAPA TOPOGRAFICO EMPLEADO: ESCALA NUMERO DE ESTADOS INDEPENDIENTES NUMERO DE ESTADOS INDEPENDIENTES NUMERO DE ESTADOS INDEPENDIENTES COURLE MADAS COURLE MADAS LONGUITUD LONGUITUD LATITUD LATITUD LATITUD LONGUITUD LATITUD LONGUITUD LONGUI					
MAPA TOPESPAFICO EMPLEADO: ASO S. MAPA TOPESPAFICO EMPLEADO: ESCALA S. NUMERO DE ESTADOS INDEPENDIENTES S. NUMERO DE ESTADOS INDEPENDIENTES S. NUMERO DE ESTADOS INDEPENDIENTES S. COUNTIENCAS DE DRENAJE S. COUNTIENCAS	7.				FOTOGRAFIAS EMPLEADAS: ANO
AMMSRE DEL GLACIAR MOMBRE	7.4			70	FOTOGRAFIAS EMPLEADAS: TIPO
S NUMERO DE ESTADOS INDEPENDIENTES S NUMERO DE CUENCAS DE DRENAJE S MI S CUCRIDENAGAS. S CUCRIDENAGAS. S CUCRIDENAGAS. S CONSTITUD S CUENCAS DE CUENC		+		: 1	MAPA TOPEGRAFICO EMPLEADO: AÑO
NUMERO DE ESTADOS INDEPENDIENTES MUMERO DE CUENCAS DE DRENAJE MUMERO DE CUENCAS DE DRENAJE GUENTED GUENCAS DE DRENAJE LONGUITUD GUENCAS GU	12		-		MAPA TOPLARAFICO EMPLEADO: ESCALA
NOMBRE DEL GLACIAR DENTIFICACION/NUMERO DEL GLACIAR	á		1-1-		
S M	9				NUMERO DE ESTADOS INDEPENDIENTES
5	3		1	1 13	NUMERO DE CUENCAS DE DRENAJE
2	1 1		1	N	
3 GOURDENADAS 3 3 5 5 5 5 5 5 5 5	1		1		
COURDENAPAS S COURDENAPAS S S COURDENAPAS S S S S S S C C C NOMBRE DEL GLACIAR S S S S S S S S S S S S S					
DONGUITUD LONGUITUD LATITUD A LATITUD A NOMBRE DEL GLACIAR A LONGUITUD A LATITUD A LATITUD A A B B B B B B B B B B B					
S CONGULTUD S S S S S S S S S S S S S S S S S S S	1 1		1 -1.		COURDEN 40AS
S LONGUITUD S S S S S S S S S S S S S S S S S S S	3				i i i i i i i i i i i i i i i i i i i
LONGUITUD LONGUITUD LATITUD	5	-		- 1	
ELONGOTIOD CONTROL TO CONTROL	55				
S S S S S S S S S S S S S S S S S S S	8				I ONGLITTUD
TATITUD A LATITUD A A A B A A B A A B A A B A B A B A B	9				E0/(301103)
TATITUD A LATITUD A A A B A A B A A B A A B A B A B A B			1 - 1		
LATITUD LATITUD A A B A B B A B B B A B B	62				
LATITUD LATITUD A A B A B A B A B A B A B B	2	1	1		
LATITUD Compared to the compa		ann rahasa	-		
NOMBRE DEL GLACIAR NOMBRE DEL GLACIAR E I I I I I I I I I I I I	1 1				
S OF STATE O					LATITUD
NOMBRE DEL GLACIAR NOMBRE DEL GLACIAR E I I I I I I I I I I I I			-111		
NOMBRE DEL GLACIAR R S IDENTIFICACION/NUMERO DEL GLACIAR					
NOMBRE DEL GLACIAR				_ N	
NOMBRE DEL GLACIAR NOMBRE DEL GLACIAR DEL	100			+ -	
NOMBRE DEL GLACIAR R T T T T T T T T T T T T	13		1-		
TIDENTIFICACION/NUMERO DEL GIACIAR	3				
E P P P P P P P P P P P P P P P P P P P	8	- 1-			NOMBRE DEL GLACIAR
IDENTIFICACION/NUMERO DEL GLACIAR	3				
E P P P P P P P P P P P P P P P P P P P	E,				
IDENTIFICACION/NUMERO DEL GLACIAR	12				
E IDENTIFICACION/NUMERO DEL GLACIAR	7	-		- 1	
DENTIFICACION/NUMERO DEL GLACIAR	12		1	3	
IDENTIFICACION/NUMERO DEL GLACIAR					
IDENTIFICACION/NUMERO DEL GLACIAR					
DENTIFICACION/NOMERO DEL GLACIAR					
		-		- i	IDENTIFICACION/NOMERO DEL GLACIAR , I
	•	-		-	
	7				

- 4 0 4 0 0	NG 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
3 1 - 1 - 1 - 1 -	
70	ORIENTACION DEL AREA DE AVLACION
0	SOUTH ACTION ACTION
	ORIENTACION DEL AREA DE ACUMULACION
2	
2	LARGO MAXIMO DEL AREA DE ABLACION
B	3
\$ 5	0
3	
	LARGO MAXIMO EXPUESTO
29	
83	LARGO MAXIMO TOTAL
	9 0
6	LARGO PROMEDIO
05	9,
42	9
9	ANCHO MEDIO
3	3
9	AREA DE AGLACION
200	
	9
	AREA DE SUPERFICIE EXPUESTA
3	2
9	9
2	12
97	AREA DE SUPERFICIE: TOTAL EN EL ESTADO
S	AREA DE SUPERFICIE: PRECISION
2	AREA OF SUPERITORE. PRECISCOT
20	0.0
	COLA DE CHOERENTE TOTAL
	CREA DE SUPERFICIE TOTAL
	5
3	9
00	
0	IDENTIFICACION/NUMERO DEL GLACIAR

- 4 0 4 0	NUMERO DE LA TARJETA PROFUNDIDAS MEDIA: PRECISION
Z	PROFUSDIDAS MEDIA
20	LINEA DE NIEVES: FECHA
0.2 0.4	LINEA DE NIEVES: PRECISION 3 LINEA DE NIEVES: ALTITUD 3
0.9	MORRENAS 3
250	PERIODO DE EVALUACION DE ACTIVIDAD DE LA LENGUA 3
05, 8:	CLASIFICACION
7 / J	ALTITUD MEDIA AREA DE ABLACION
120	ALTITUD MEDIA AREA DE ACUMULACION
	ALTITUD MINIMA DEL GLACIAR: EXPUESTO 3
£	ALTITUD MINIMA DEL GLACIAK: TOTAL
20	ALTITUD MEDIA DEL GLACIAR
2	ALTITUD MAXIMA DEL GLACIAR
D	IDENTIFICACION/NUMERO DEL GLACIAR
2	

•••••••••

• • • •

5	-	N	:7		-	5	2		~		آ ا ا		7	0.		-	Z AR	1E		1.0		115	- 4	2	1.1	100		5	30	1	54	22	44	23		1		20
071	-			-		11		-		-	i	_	-		1	-			1	_	+			1	_		-			1	-					-		-
3						_		-		1			1	_		-			1					-			-			-						1		30
74	j		_		1			1		-	- 1	_	-			-			1			-	_	-			-		-	-	!	_	-	-			1	
				-	-		_	1					1			1	_		1	-	1	-				_	1			1			-	_		1	_!	20
7.	_		_		- 1	-	_	1		t	- 1		-	_	-	-			-		-			-+-		1	İ			+						1		70
22			~ ~					1	_	-		-	1		-	1	_		-		†				_	-		_		+-			1	_		-		6.9
0.3		-		-	i			-					1			-	_	-	+		1	a stander		+			+			+			+			-		
C. re	4			-			_	1			-		1	_		1		-	+		1-			1			-		_	+			1	_		+		99
F. 8				-	-		_	-		+	_	-	-			-		-	-		-	-		+		-				+	-	-	-			-		164
~ 0				-	1			1	_				4	_	-		_	-	1		-	_		-		-				+	_	_	-		_	-	-	6.3
03								-		-		-	1	_		-	_	-	Ť	_	-	_	_		_	-	-			-	_		1			T	-	109
3	_			-		-				L		-	1		-	1		-			-	_				-	-			-	_					1	-	200
1			1	1		-				-					-		_		+		-		-	-			-			+			+			-		100
				-	-		-			1-		-	8		-				-		+		1	- 1		-	-			-		1			-	-		7
20				1		-	1	1		1			-	_					1	_	i				_		-	_		1		1	-	_	-	-		6.0
600		_	-	F		-	-			-	_		-		F	1	_	-			.		1	-	_	-	1		-	-		1	1	_		+	- 1	6.0
1		_		1-		1		-	_	1		-			1				1		1		1			1	1	_		1	_	1	1	_				
2			-	-	1			- 1	IN	D	C	A(10	ON		SL	PE	RF	I	10	E	C	ON	TE	EN.	EDA	1	EN	A	LT	UF	A	-		-	-	-	7
46		-	-	1	-	1	-	-		+	_	+	-		+	-		-	-		-		-		-	-			-	-		1	-		1-	1		
:				i	1					-	_		- 1	-	i	_	-	-	-	-	-				-		-			İ		1			1	-		
2		-	-	-		1		-		-				-	F		_	F	-				1	-		-		_	-			1	-		-	+		
3			-	1	-	-		-		T	_	İ			-			-	-		1	_				-	-					-	-	_		-		-
0 .		1	-	+-	i	-	1-			-	-	1			+-			-	-	_	1								-	-	_	-	- !	-	-	-		
545		-	Ţ	:	-	1	1				_	1-			+		_	-	-		İ		1.			-	-		-			-			-			-
70		-		-	- 1	4	1			+	_	İ			+			-				-	-	_	-	L	-		-			1			1	+	-	1.
13.2		-	+	-	-	1	1		_	+		1	-		1			1				_	1-			1	- 1		-	- 1		1	-	_	-	-		Ī
30			-	-	- [1	-			1	_	1-	_		1	-	-	-			1		-			+-	-		Ť.			1			L			
26			1			-		_		1	_				+	_		-		_	1	_	I'	_	1	1			-			i		_	-	- 1		
			1	- 4	1	-	-			-	_	-	_	_	1	_	-	-	-		-		+	-	-	-		1	+-	-		1	-	_		+	_	1
9			1	1	- 1 3	L	L	_	-	-	_	†			1-				_		-1	_	1	_	1	1			1	- 7	_	1	_		1	-	_	
24	_		L			3	-	_		+		1			İ		-	1-	_	-	-		-	-		-			1.			-			-	-		1
173		-	-	- -					-	1	-				+	-	_	+	-	-	-		1	_		İ			-	_	_	-	-		- -			
0.5		-		i	- !	-	-	_	-	-	_	-	_	-	-			1			-		+		1	1			+		-	-	-		-	-	_	L
13		-	-	-	- 1		-	_	-	-		-		-	+		-	-	_	-	-+	_	1		-	-	_		+		_	-		!	-	-		-
.0		-	-		-		4	_	M	JA.	E	10	T	TO	AL	-	DE	T	AR	JE	E	A:	1	(1	NO	ic	AC	ilo	N)	-		-			-		_	
14		-	-		- 1	:	54		-	. į		-	_	1				-	-	-	_ 1		-			+	_	1	1		-	-1-				-		
11.		F	-	-		2	+	_	-	-	_	-	_		-		-	-	-	-	-		-	-	1	-		-	-		-	i		-	+-		_	-
	-	+	Ĺ	-	!	1	+-		-	-		-	_		-		-			-	1	-	+	-	1	-			-	-		i		-				
10	1	-	1	1	- 1		1	_	-	-	_	+		1	+	_	i	1	_	1				_	,	1	_	1	-	-	1	1	_	-	-	-		1
10			1			1	_	_	i . r	nŕ	14	TT	ET	ici	10	10	NI	MH	MI	:01	1	ni	-1	1.	11/	11	1	2 -			-	+	_			-	-	Ť
			-	-	_	-	-	_	1	DE	N.	TI	FI	C.	4C	[0	N/	NIT	ME	R	0	DI	EL.		L/	CI	7	R -	+		-	++-+	-		-	-	_	-
2			+	-			-	_	1	DE	M.	TI	FI	C/	AC	[[N/	MIT	ME	P	0	DI		(:	L/	CI	7	R	+		-	+++-		-			_	-

BIBLIOGRAFIA

- ARRETZ, A. 1984. Aprovechamiento hidroeléctrico en los ríos Tinguiririca y Azufre DGA. en preparación DGA/MOP.
- BENITEZ, A. 1980. Clasificación de cuencas hidrográficas de Chile. Dirección General de Aguas. MOP. Santiago.
- BRUGGEN, J. 1929. Texto de Geología. Tomo 1. Imprenta "El Globo" Santiago, Chile.
- CAVIEDES, J. 1979. Inventario de glaciares en la Hoya del Río Cachapoal y predicción de la escorrentía del deshielo. Andes Centrales: Universidad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología, Santiago Chile.
- CAVIEDES, C. y PASKOFF, R. 1975. Quatermary Glaciations in the Andes of North Central; Chile. Jovrnal of Glaciology, Vol. 14 N $^\circ$ 70.

- CHARRIER, R. y LILLO, F. 1973. Geología Regional y Geoquímica del drenaje de las Provincias de O'Higgins y Colchagua. Instituto de Investigación de Recursos Naturales, Santiago, Chile.
- CHARRIER, R. 1981. Mesozoic and Cenozoic Stratigraphy of the Central Argentirian Chilean Andes (32°-35° S) And Chronology of their tectonic Evolution. Zbl. Geol. Paleont. Teil 1. Stultgart, Ock.
- COMISION NACIONAL DE RIEGO 1978. Estudio de Prefactibilidad. Hoya del Río Rapel. Agroipla, Engineening-science. Abril, Santiago Chile.
- CORTE, A. y ESPIZUA, L. 1981. Inventario de Glaciares de la Cuenca del Río Mendoza. Instituto Argentino de Nivología y Glaciología (Ianigla), Mendoza. Rp. Argentina.
- GARCIA, F. 197 Una nueva idea sobre la causa de los glaciares. Boletín de la Universidad de Chile. Pag. 30.

- GROEBER, P. 1951. La Alta Cordillera entre las latitudes 34º y 29º 30. Separada.
- HAYS, J. IMBRIE, J. Y SHACKLELON, N. 1976. Variations in the Earths Orbit: Pacemacker of the Ice Ages. Science Volume 194. Dec.
- KLOHN, C. 1960. Geología de la Cordillera de los Andes de Chile Central. Instituto de Investigaciones Geológicas. Boletín Nº 8. Santiago.
- LLIBOUTRY, L. 1956. Nieves y Glaciares de Chile. Fundamentos de Glaciología. Ediciones de la Universidad de Chile, Santiago de Chile, 1956.
- MARANGUNIC, C. 1979. Inventario de Glaciares. Hoya del Río Maipo. DGA/MOP. Chile.
- MEIR, M. y ROOTS, E. 1982. Los glaciares como recurso hídrico. La naturaleza y sus recursos. Vol. XVIII Nº 3 JUL. SEP.
- MULLER, F.; CAFLISCH, T. Y MULLER, G., 1976. Firnund eis der Schweizer Alpen. Gletcher Inventar. Swiss Federal Institute of Technology. Publ. Nr.57 Zurich.
- MULLER, F. 1977. Fluctuations of glacier 1970-1975 (vol. III)
 P SFG/IVGG-FAGS/ICSU. Department. of. Geográphy. Swiss Federal Institute of Technology
 (ETH) Zurich Unesco: ISBN 92-3-101462-5
- MULLER, F. 1980. Glacier and their fluctuations. Nature and resources Vol XVI N° 2. April-June.
- PEDRAZA, A. Y RAUH, R. 1984. Análisis y Evaluación de Terreno.
 Universidad de Santiago. Facultad de Ingeniería. Departamento de Geomensura Santiago Chi.
 le.
- POST, A. RICHARDSON, D.; WENDELL, T. Y ROSSELOT, F. 1971. Inventory of glaciers in the North Cascades, Washing ton. Geological Survey. Professional paper Nº

705-A. Library of Congress. Catalog-card N° 75-610936. Washington, USA.

PUIG, A y VALDIVIA, P. 1977. Estudio geomorfológico y glaciológico en la Zona de la Laguna Negra. Alta Cordillera del Area Metropolitana. Universi dad de Chile. Facultad de Ciencias Físicas y Matemáticas. Departamento de Geología. Santiago. Chile.

RISOPATRON, L. 1903. La Cordillera de los Andes entre las latitudes 30º 40' y 35ºS. Santiago Chile. Ed. Cervantes.

THOM, R. 1980.

La Estabilite estructurale et morphogenese.
Paris, France.

TORRES Y MARTINEZ, LTDA.1970. Recuperaciones Río Tinguiririca-Esteros Chimbarongo y Las Toscas. Dirección de Riego. Julio.

SCHERLER, K. 1983.

Guidelines for preliminary glacier inventories. Departament of Geography Swiss Federal Institute of Technology. (ETH)-Zentrum. CH-8092 Zurich, Swiss.

•

•

VALDIVIA, P. 1979. The North Patagonian Icefield. Swiss Federal Institute of Technology ETH-Zentrum, Zurich. Swiss.

VALDIVIA, P. 1984. Cartografía Computacional, Aplicaciones al Inventario de Glaciares Departamento de Hidrología, D.G.A. en preparación.

YOUNG, G. 1976.

An Approach to Glacier Mass-Balance Analysis Utilizing Terrain Characterization.
Scientific Series Nº60 Inland Waters Directorate Water Resources Branch, Ottawa, Canada.

Nómina del Personal del Sub-Dpto. de Estudios Hidrológicos

1 Ingenieros Civiles

Humberto Peña T.

Jefe Sub-Departamento

Reggina Cabrera G. Fernando Escobar C. Alejandro Grilli D-F Brahim Nazarala G.

2 Ingenieros Civiles Químicos

Raúl Merino B.

3 Geólogos

Augusto Schultz G. Pedro Valdivia H.

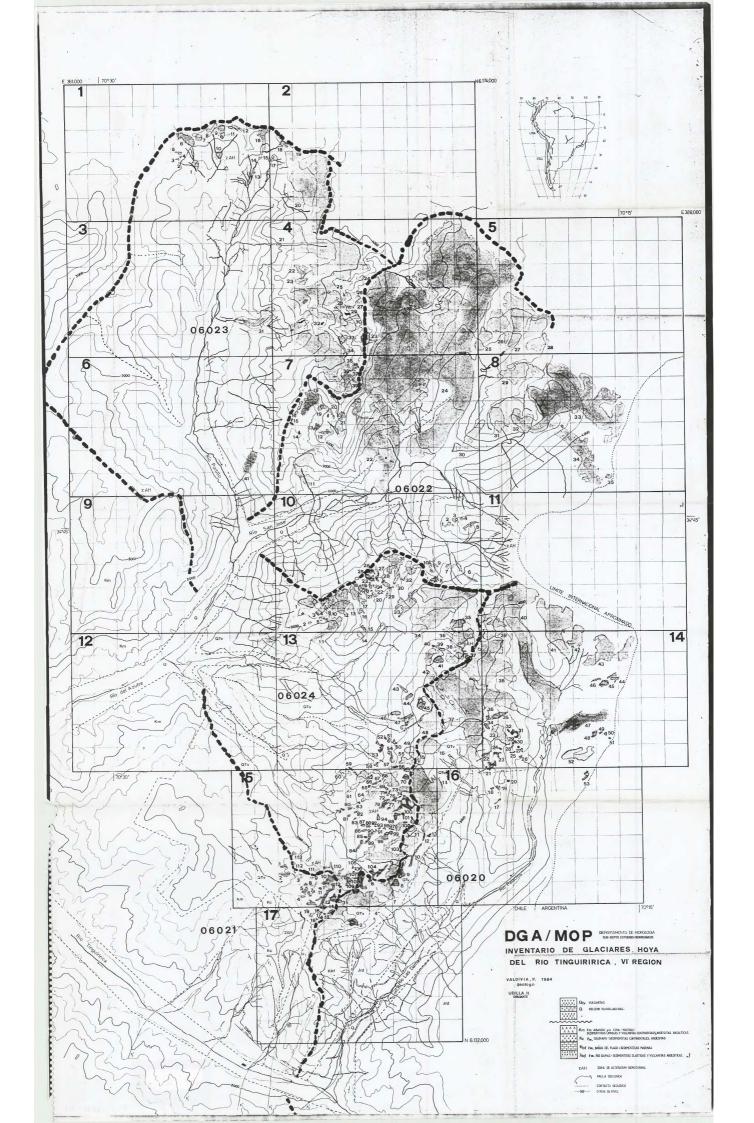
4 Ingenieros Ejecución Meteorología

Fernando Vidal J.

5 Geógrafos

Carlos Garin O.

6 Dibujante


Humberto Ubilla H.

7 Secretaria

Ida Jaque V.

DEPARTAMENTO DE HIDROLOGIA

MORANDE 59, Piso 8, Santiago-CHILE

