CATASTRO E INSPECCIÓN PRELIMINAR DE EMBALSES REGIÓN DEL LIBERTADOR BERNARDO O’HIGGINS

INFORME FINAL
VOLUMEN 1: METODOLOGÍA
EMBALSES 1-25

REALIZADO POR:
ARRAU INGENIERÍA E.I.R.L
CONSULTORES EN INGENIERÍA HIDRÁULICA Y DE RIEGO

S.I.T. Nº 209

SANTIAGO, 2009
MINISTERIO DE OBRAS PÚBLICAS

Ministro de Obras Públicas
Ingeniero Civil Industrial Sr. Sergio Bitar H.

Director General de Aguas
Abogado Sr. Rodrigo Weisner L.

Jefe Unidad de Fiscalización
Biólogo Marino Sr. Francisco Riestra Miranda

Inspector Fiscal
Ingeniero Agrónomo Sr. Guillermo Sepúlveda R.

ARRAU INGENIERIA E.I.R.L

Jefe de Proyecto
Ingeniero Civil Sr. José Lagos R

Profesionales
Ingeniero en Medio Ambiente y Recursos Naturales Sr. Raimundo Barrios O. (Coordinador)
Ingeniero Civil Sr. Luis Arrau del C.
Ingeniero Civil Sr. Donaldo Astorga M.
Ingeniero Civil Sra. Milena Muñoz B.
Ingeniero Civil Sr. Felipe Espinoza C.

Técnicos
Ingeniero Rec. Nat. Renovables (E) Sr. Wilson Ureta P.
Técnico Sr Eduardo Sánchez S.
Técnico Sr Richard Carmona G.
PARTE A: ASPECTOS METODOLÓGICOS

1. INTRODUCCIÓN Y OBJETIVOS
 1.1 INTRODUCCIÓN
 1.2 OBJETIVOS DEL ESTUDIO
 1.3 DESCRIPCIÓN DE LA PRESTACIÓN DE SERVICIOS

2. ÁREA DE ESTUDIO

3. TRABAJOS DE TERRENO
 3.1 METODOLOGÍA
 3.2 FICHA DE CATASTRO DE EMBALSES
 3.2.1 Antecedentes Generales
 3.2.2 Ubicación de la Presa
 3.2.3 Uso o Destino del Embalse
 3.2.4 Tipo de Embalse
 3.2.5 Geometría de la Presa
 3.2.6 Estimación Capacidad Máxima del Embalse
 3.2.8 Características del Muro
 3.2.8 Características Obras Evacuador de Crecidas
 3.2.9 Características Obras de Entrega y Desagüe de Fondo
 3.2.10 Caracterización del Cauce y Uso del Suelo Aguas Abajo
 3.2.11 Monografía
 3.2.12 Observaciones

4. ESTUDIO DE CRECIDAS
 4.1 INTRODUCCIÓN
 4.2 PERÍODOS DE RETORNO SEGÚN TIPO DE OBRA
 4.3 CÁLCULO DE CRECIDAS
 4.3.1 Tiempo de Concentración
 4.3.2 Precipitaciones Máximas
 4.3.3 Caudales de Crecidas Mediante la Fórmula Racional Modificada
 4.3.4 Caudales de Crecidas Mediante la Relación de Verni y King Modificada
 4.3.5 Análisis Regional de Crecidas (Método DGA-AC)
 4.3.6 Estimación de Caudales de Deshielo Máximos Probables Método DGA
 4.4 ANÁLISIS DE CURVA NÚMERO
4.5 VALIDACIÓN DE CAUDALES
 4.5.1 Análisis de Frecuencia
 4.5.2 Cuencas Controladas
 4.5.3 Validación de Caudales en Embalses

5. ANÁLISIS DE LOS EMBALSES
 5.1 INTRODUCCIÓN
 5.2 ANCHO DEL CORONAMIENTO
 5.3 ANÁLISIS DE ESTABILIDAD DE LA PRESA
 5.3.1 Método de Bishop Simplificado
 5.3.2 Factores de Seguridad
 5.3.3 Condiciones de Análisis
 5.3.4 Aplicación con el Software SLOPE/W
 5.4 EVACUADOR DE CRECIDAS

6. SISMISIDAD
 6.1 SISMICIDAD EN LA ZONA DE CHILE CENTRAL
 6.2 COEFICIENTES SÍSMICOS ADOPTADOS

7. MÉTODO DE ANÁLISIS DE RIESGOS
 7.1 BASE METODOLÓGICA HAZOP
 7.2 ADAPTACIÓN DEL MÉTODO AL ANÁLISIS DE EMBALSES
 7.2.1 Eventos Desencadenantes
 7.2.2 Análisis de la Vulnerabilidad
 7.2.2.1 Eventos Sísmicos
 7.2.2.2 Eventos de Escorrentía
 7.2.2.3 Evento de Piping
 7.2.3 Efectos
 7.2.3.1 Magnitud del vaciamiento
 7.2.3.2 Criterio de Definición de Potencialidad de Ocurrencia de Efectos
 en el Valle

8. CONCLUSIONES

ANEXOS

ANEXO 3-1 VISITA ESPECIALISTA
ANEXO 5-1 CÁLCULO CAPACIDAD VERTEDERO

PLANOS

PLANO 1 CUENCAS APORTANTES A LOS EMBALSES
PARTE B: CATASTRO DE EMBALSES

1. EMBALSE LOS S spawns
2. EMBALSE LOS MAQUIS
3. EMBALSE PILA CITO
4. EMBALSE ROMERAL
5. EMBALSE PICARQUÍN
6. EMBALSE ESMERALDA
7. EMBALSE CHANCON
8. EMBALSE SAN ISIDRO
9. EMBALSE MILLAHUE
10. EMBALSE SAN HERNÁN (SAN JOSÉ LAS PATAGUAS)
11. EMBALSE IDAHUE
12. EMBALSE SAN VICENTE
13. EMBALSE COCAUQUEN O PAILIMO 1
14. EMBALSE PIEDRAS BLANCAS O PAILIMO 2
15. EMBALSE LA ROSA
16. EMBALSE ALCONES (EL SAUCE)
17. EMBALSE MALLERMO
18. EMBALSE AGUADILLA
19. EMBALSE LOS MAITENES
20. EMBALSE SAN GUILLERMO (SANTA MARTA)
21. EMBALSE POROTAL
22. EMBALSE YERBAS BUENAS (SANTA JULIA)
23. EMBALSE CARRIZAL
24. EMBALSE PIHUCHÉN
25. EMBALSE LA ESPERANZA
PARTE B: CATASTRO DE EMBALSES

26. EMBALSE TIERRUCA
27. EMBALSE GUIDO SOTO
28. EMBALSE LOS NOVIOS
29. EMBALSE ALTO COLORADO
30. EMBALSE PAÑILONCO
31. EMBALSE RINCONADA (LA MACARENA)
32. EMBALSE SANTA ISABEL
33. EMBALSE CONVENTO VIEJO
34. EMBALSE LOLOL
35. EMBALSE CULENCO
36. EMBALSE PATAGUILLA
37. EMBALSE LOS NEGROS
38. EMBALSE EL GUAIKO
39. EMBALSE EL HUIQUE
40. EMBALSE SANTA LUCIA (SANTA MARGARITA)
41. EMBALSE JAIME RAMIREZ
42. EMBALSE LA TROYA
43. EMBALSE NILAHUE
44. EMBALSE EL CARDONAL
45. EMBALSE LAGUNILLAS
46. EMBALSE LA GLORIA (LA CRUZ)
47. EMBALSE QUESERÍA
48. EMBALSE SALTO DE AGUA
49. EMBALSE CALLIHUE
50. EMBALSE PATAGUAS CERRO GUIABO
PARTE A: ASPECTOS METODOLÓGICOS
CAPÍTULO 1
INTRODUCCIÓN Y OBJETIVOS
1. **INTRODUCCIÓN Y OBJETIVOS**

1.1 **INTRODUCCIÓN**

De acuerdo con el Código de Aguas, a la Dirección General de Aguas le corresponde la facultad de fiscalización en diferentes campos de acción en el manejo de los recursos hídricos. En forma específica, el artículo 294 letra a) del Código de Aguas, establece que requerirán aprobación del Director General de Aguas, los embalses de capacidad superior a cincuenta mil metros cúbicos o cuyo muro tenga más de 5 metros de altura. (LIBRO TERCERO, TÍTULO I DE LA CONSTRUCCIÓN DE CIERTAS OBRAS HIDRÁULICAS).

Además, en ese mismo Código, en su artículo 307, se señala que la Dirección General de Aguas, inspeccionará las obras mayores, cuyo deterioro o eventual destrucción pueda afectar a terceros, pudiendo ordenar su reparación y estableciendo, mediante resoluciones fundadas, normas transitorias de operación de las obras mientras no se efectúen las su reparaciones necesarias.

En este contexto legal, el Ministerio de Obras Públicas, a través de la Dirección General de Aguas, está iniciando un proceso de verificación del estado de las obras de embalses que pudieran presentar condiciones de riesgo en los sectores cercanos a éstas.

Para dicho proceso de verificación, se requiere conocer en que situación se encuentran las obras denominadas como Embalses Mayores, de acuerdo con lo señalado en la letra a) del artículo 294 del Código de Aguas, incluyendo, además, embalses cuya altura o capacidad no cabe en esa definición, pero que podrían generar potencial peligro para asentamientos humanos.

Por lo anterior, se plantea la realización de este estudio de Catastro de Embalses, con la finalidad de generar una base de información actualizada, orientada a apoyar la toma de decisiones por parte de la Dirección General de Aguas.

Cabe destacar que el Ministerio de Obras Públicas ha definido como una labor prioritaria el tema de la seguridad de las obras de Infraestructura pública y privada, teniendo especial relevancia el alto grado de riesgo de obras hidráulicas, específicamente las relacionadas con embalses.

El alcance general que tiene el catastro de embalses, es la recolección de las características físicas de las obras e hidrografías de los cuerpos de agua artificiales, mediante la visita a terreno de profesionales expertos; la medición de algunas dimensiones típicas de dichas obras, y la obtención de información mediante la entrevista a sus propietarios y/o beneficiarios.

El presente trabajo, además de lo último señalado, se evaluó, con datos obtenidos directamente en terreno, riesgos asociados a cada embalse a través de la aplicación de ciertas metodologías conocidas para estos efectos.
1.2 OBJETIVOS DEL ESTUDIO

El Objetivo General de este estudio es realizar un catastro de los embalses orientado a prevenir que el deterioro o eventual destrucción de estas obras pueda afectar la seguridad de terceros, según lo indica el artículo 307 del Código de Aguas. Los Objetivos Específicos son los siguientes:

- Recopilación y análisis de antecedentes.
- Inspección en terreno del número de embalses ofertados.
- Evaluación del riesgo asociado a cada embalse.
- Generar información actualizada del estado de cada embalse, orientada a priorizar los casos de mayor riesgo y a la toma de decisiones.

1.3 DESCRIPCIÓN DE LA PRESTACIÓN DE SERVICIOS

En forma simplificada y resumida, la metodología de trabajo se resume en el esquema siguiente. En esta figura se pueden observar todos y cada uno de los elementos que componen el trabajo a desarrollar, tales como: recopilación de antecedentes, trabajos de terreno, estudios básicos, análisis de riesgo, sistema de evaluación, y resultados.
1.4 CONTENIDO DEL INFORME

El informe contiene dos volúmenes que se describen a continuación:

- **Volumen I:**
 - **Parte A:**
 - Informe Metodológico, donde se describen los Objetivos, Área de estudio, Trabajos de terreno, Estudio de Crecidas, Análisis de los Embalses, Sismicidad y Análisis de Riesgos.
 - Anexos
 - **Parte B:**
 - Embalses 1 – 20, se presenta una completa descripción de 20 Embalses Visitados.

- **Volumen II:**
 - **Parte B:** Embalses 21 - 50, se presenta una completa descripción de 30 Embalses Visitados.
CAPÍTULO 2
ÁREA DE ESTUDIO
2. ÁREA DE ESTUDIO

El área de estudio se encuentra en la VI Región del Libertador General Bernardo O’Higgins. Esta región se extiende entre los paralelos 33°51' y los 35°01' de latitud sur y desde el meridiano 70°02' de longitud oeste hasta el océano Pacífico. Su límite oeste es el océano Pacífico; el este es la frontera con Argentina en la Cordillera de los Andes; el norte, se enfrenta con la V Región de Valparaíso y con la Región Metropolitana de Santiago, y al sur, con la VII Región del Maule.

La superficie de esta región es de 16.387 km². Se encuentra dividida en tres provincias y treinta y tres comunas. La capital de esta región es Rancagua, que se encuentra en la Provincia de Cachapoal.

En el cuadro siguiente se consignan los datos principales de la VI Región.

CUADRO 2-1
CARACTERÍSTICAS PRINCIPALES DE LA VI REGIÓN

<table>
<thead>
<tr>
<th>PROVINCIA</th>
<th>SUPERFICIE (km²)</th>
<th>POBLACIÓN (hab.)</th>
<th>COMUNAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cachapoal</td>
<td>7.384</td>
<td>542.901</td>
<td>Las Cabras, Coltauco, Doñihue, Rancagua, Graneros, Mostazal, Codegua, Machali, Olivar, Requinoa, Rengo, Malloa, Quinta de Tilcoco, Coicó, San Vicente, Peumo y Pichidegua.</td>
</tr>
<tr>
<td>Colchagua</td>
<td>5.678</td>
<td>196.566</td>
<td>San Fernando, Chimbarongo, Placilla, Nancagua, Chépica, Santa Cruz, Palmilla, Peralillo, Lotol y Pumanque.</td>
</tr>
<tr>
<td>Cardenal Caro</td>
<td>3.324,8</td>
<td>41.160</td>
<td>Navidad, Litueche, La Estrella, Pichilemu, Marchihue y Paredones.</td>
</tr>
</tbody>
</table>

Los embalses que forman parte de este estudio presentan en el Cuadro 2-2 y su ubicación espacial en la Figura 2-1.

CUADRO 2-2
LISTADO EMBALSES PRIORIZADOS
REGIÓN DEL LIBERTADOR BERNARDO O’HIGGINS

<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
<th>PROVINCIA</th>
<th>COMUNA</th>
<th>COORDENADAS UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NORTE</td>
</tr>
<tr>
<td>1</td>
<td>Sapos</td>
<td>Cachapoal</td>
<td>Machali</td>
<td>6.230.229</td>
</tr>
<tr>
<td>2</td>
<td>Los Maquis</td>
<td>Cachapoal</td>
<td>Malloa</td>
<td>6.182.844</td>
</tr>
<tr>
<td>3</td>
<td>Pilacitío</td>
<td>Cachapoal</td>
<td>Mostazal</td>
<td>6.244.890</td>
</tr>
<tr>
<td>4</td>
<td>Romeral M1</td>
<td>Cachapoal</td>
<td>Mostazal</td>
<td>6.243.049</td>
</tr>
<tr>
<td>5</td>
<td>Pichuquín</td>
<td>Cachapoal</td>
<td>Mostazal</td>
<td>6.238.987</td>
</tr>
<tr>
<td>6</td>
<td>Esmeralda</td>
<td>Cachapoal</td>
<td>Quinta de Tilcoco</td>
<td>6.198.838</td>
</tr>
<tr>
<td>7</td>
<td>Chancón</td>
<td>Cachapoal</td>
<td>Rancagua</td>
<td>6.226.085</td>
</tr>
<tr>
<td>8</td>
<td>San Isidro</td>
<td>Cachapoal</td>
<td>Requinoa</td>
<td>6.199.203</td>
</tr>
<tr>
<td>9</td>
<td>Millahue</td>
<td>Cachapoal</td>
<td>San Vicente</td>
<td>6.175.352</td>
</tr>
<tr>
<td>10</td>
<td>San José de Las Pataguas</td>
<td>Cachapoal</td>
<td>San Vicente</td>
<td>6.176.741</td>
</tr>
<tr>
<td>11</td>
<td>Idahue</td>
<td>Cachapoal</td>
<td>San Vicente</td>
<td>6.182.993</td>
</tr>
<tr>
<td>12</td>
<td>San Vicente</td>
<td>Cardenal Caro</td>
<td>Litueche</td>
<td>6.224.151</td>
</tr>
</tbody>
</table>
CUADRO 2-2
LISTADO EMBALSES PRIORIZADOS
REGIÓN DEL LIBERTADOR BERNARDO O’HIGGINS

<table>
<thead>
<tr>
<th>Nº</th>
<th>NOMBRE EMBALSE</th>
<th>PROVINCIA</th>
<th>COMUNA</th>
<th>COORDENADAS UTM</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Piedras Blancas o Pailimo II</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.202.292</td>
</tr>
<tr>
<td>15</td>
<td>La Rosa</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.196.899</td>
</tr>
<tr>
<td>16</td>
<td>Alcones</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.191.839</td>
</tr>
<tr>
<td>17</td>
<td>Mallermo</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.197.160</td>
</tr>
<tr>
<td>18</td>
<td>Aguadilla</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.196.467</td>
</tr>
<tr>
<td>19</td>
<td>Los Maitenes</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.196.928</td>
</tr>
<tr>
<td>20</td>
<td>San Guillermo</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.194.250</td>
</tr>
<tr>
<td>21</td>
<td>Porotal</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.192.137</td>
</tr>
<tr>
<td>22</td>
<td>Yerbas Buenas</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.188.470</td>
</tr>
<tr>
<td>23</td>
<td>Carrizal</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.183.922</td>
</tr>
<tr>
<td>24</td>
<td>Pihuchén</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.183.235</td>
</tr>
<tr>
<td>25</td>
<td>La Esperanza</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.190.007</td>
</tr>
<tr>
<td>26</td>
<td>Tierruca</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.199.172</td>
</tr>
<tr>
<td>27</td>
<td>Guido Soto</td>
<td>Cardenal Caro</td>
<td>Marchigüe</td>
<td>6.182.397</td>
</tr>
<tr>
<td>29</td>
<td>Alto Colorado</td>
<td>Cardenal Caro</td>
<td>Pichilemu</td>
<td>6.198.892</td>
</tr>
<tr>
<td>30</td>
<td>Pañi Lonco</td>
<td>Cardenal Caro</td>
<td>Pichilemu</td>
<td>6.203.769</td>
</tr>
<tr>
<td>31</td>
<td>Rinconada</td>
<td>Colchagua</td>
<td>Chimbarongo</td>
<td>6.161.018</td>
</tr>
<tr>
<td>32</td>
<td>Santa Isabel</td>
<td>Colchagua</td>
<td>Chimbarongo</td>
<td>6.158.082</td>
</tr>
<tr>
<td>33</td>
<td>Convento Viejo I</td>
<td>Colchagua</td>
<td>Chimbarongo</td>
<td>6.151.323</td>
</tr>
<tr>
<td>34</td>
<td>Lolol</td>
<td>Colchagua</td>
<td>Lolol</td>
<td>6.151.651</td>
</tr>
<tr>
<td>35</td>
<td>Culeno</td>
<td>Colchagua</td>
<td>Lolol</td>
<td>6.146.761</td>
</tr>
<tr>
<td>36</td>
<td>Pataguilla</td>
<td>Colchagua</td>
<td>Lolol</td>
<td>6.141.301</td>
</tr>
<tr>
<td>37</td>
<td>Los Negros</td>
<td>Colchagua</td>
<td>Lolol</td>
<td>6.137.604</td>
</tr>
<tr>
<td>38</td>
<td>El Guáico</td>
<td>Colchagua</td>
<td>Palmilla</td>
<td>6.171.836</td>
</tr>
<tr>
<td>39</td>
<td>El Huique</td>
<td>Colchagua</td>
<td>Palmilla</td>
<td>6.172.368</td>
</tr>
<tr>
<td>40</td>
<td>Santa Lucía</td>
<td>Colchagua</td>
<td>Peralillo</td>
<td>6.187.356</td>
</tr>
<tr>
<td>41</td>
<td>Jaime Ramírez</td>
<td>Colchagua</td>
<td>Peralillo</td>
<td>6.173.801</td>
</tr>
<tr>
<td>42</td>
<td>La Troya</td>
<td>Colchagua</td>
<td>Peralillo</td>
<td>6.183.149</td>
</tr>
<tr>
<td>43</td>
<td>Nilahue</td>
<td>Colchagua</td>
<td>Pumanque</td>
<td>6.170.076</td>
</tr>
<tr>
<td>44</td>
<td>El Cardonal</td>
<td>Colchagua</td>
<td>Pumanque</td>
<td>6.165.299</td>
</tr>
<tr>
<td>45</td>
<td>Lagunilla</td>
<td>Colchagua</td>
<td>Pumanque</td>
<td>6.168.284</td>
</tr>
<tr>
<td>46</td>
<td>La Gloria</td>
<td>Colchagua</td>
<td>Pumanque</td>
<td>6.167.985</td>
</tr>
<tr>
<td>47</td>
<td>Quebrada</td>
<td>Colchagua</td>
<td>Pumanque</td>
<td>6.185.224</td>
</tr>
<tr>
<td>48</td>
<td>Salto de Agua</td>
<td>Colchagua</td>
<td>Santa Cruz</td>
<td>6.169.067</td>
</tr>
<tr>
<td>49</td>
<td>Callihue</td>
<td>Colchagua</td>
<td>Santa Cruz</td>
<td>6.163.630</td>
</tr>
<tr>
<td>50</td>
<td>Patagua Cerro Guirabo</td>
<td>Colchagua</td>
<td>Santa Cruz</td>
<td>6.157.462</td>
</tr>
</tbody>
</table>

NOTA: La ubicación en coordenadas UTM (datum WGS84) corresponde a la registrada en terreno en el centro de cada muro de embalse.
CAPÍTULO 3

TRABAJOS DE TERRENO
3. TRABAJOS DE TERRENO

3.1 METODOLOGÍA

La planificación del trabajo en terreno consideró la visita a cada sitio de embalse. Para ello se dispuso de equipos de trabajo a cargo de un Ingeniero de experiencia en diseños de presas.

El resumen metodológico se presenta a continuación:

- **Aspectos cartográficos**
 - Se confeccionó un plano de trabajo escala 1:500.000 de la VI Región, Datum WGS 84, con la ubicación de los 50 sitios de embalses a estudiar.
 - Se ubicaron en las cartas 1:50.000 del IGM cada uno de los embalses.
 - También se determinó la ubicación de los embalses en las imágenes satelitales de Google Earth.

- **Obtención de los datos característicos de cada embalse**
 En terreno se completaron las "FICHAS DE REGISTRO DE EMBALSES", las que contienen la información básica para identificar las obras. Estas fichas se encuentran disponibles para cada uno de los embalses en la parte B: Catastro de Embalses.

- **Mediciones**
 Con el fin de poder caracterizar algunos parámetros hidráulicos y definir la geometría del embalse fue necesario realizar algunas mediciones en terreno para el llenado de las planillas de catastro de embalses y la confección de los croquis de las obras.

Las medidas principales que fueron tomadas en terreno y el método para cada caso son las presentadas en el Cuadro 3.1-1.

CUADRO 3.1-1
MEDICIONES A EFECTUAR EN TERRENO

<table>
<thead>
<tr>
<th>MEDICIÓN</th>
<th>UNIDAD</th>
<th>MÉTODO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho de coronamiento</td>
<td>m</td>
<td>Huincha</td>
</tr>
<tr>
<td>Largo talud de aguas arriba</td>
<td>m</td>
<td>Huincha</td>
</tr>
<tr>
<td>Largo talud de aguas abajo</td>
<td>m</td>
<td>Huincha</td>
</tr>
<tr>
<td>Ancho de la obra de evacuación</td>
<td>m</td>
<td>Huincha</td>
</tr>
<tr>
<td>Desnivel en el muro de evacuación</td>
<td>m</td>
<td>Eclímetro con la ayuda de un jalón</td>
</tr>
<tr>
<td>Desnivel entre umbral vertiente y punto más bajo del muro</td>
<td>m</td>
<td>Eclímetro con la ayuda de un jalón</td>
</tr>
<tr>
<td>Angulo del talud de aguas arriba</td>
<td>°</td>
<td>Medición del ángulo desde el eclímetro apoyado sobre un jalón en la superficie del talud</td>
</tr>
<tr>
<td>Angulo del talud de aguas abajo</td>
<td>°</td>
<td>Medición del ángulo desde el eclímetro apoyado sobre un jalón en la superficie del talud</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins

➤ Croquis del muro, embalse y obras de evacuación

Se confeccionaron croquis de planta de las presas visitadas, con todos los detalles respecto de su operatividad. En particular se colocaron en las plantas, la forma del muro, la ubicación de sus obras de evacuación y datos respecto a fallas, filtraciones, etc.

Se incluyeron también fotografías satelitales Google Earth, las que permiten tener una visión en planta de la ubicación de cada embalse.

Conjuntamente con lo anterior, se confeccionaron croquis de la sección transversal del muro, en la cual se expusieron todos los detalles de formas y niveles relativos a éste.

También se incluyeron croquis de las obras de evacuación, en la cual se muestran los tipos de obras, dimensiones relativas y sus desniveles.

➤ Fotografías

Las fotografías fueron un complemento de la recolección de datos en terreno y permitieron al equipo evaluador completar su visión integral de la obra, con el fin de precisar los valores asignados.

Las fotografías fueron tomadas para todos los embalses por igual, de modo de facilitar la identificación y comparación entre las distintas obras.

La toma de fotografías se realizó desde distintos ángulos con el fin de poder caracterizar la obra completa. También se tomaron fotografías complementarias que permitieron tener una visión de los alrededores con el fin de poder apreciar otros tipos de influencia, especialmente en el sector de aguas arriba del embalse.

➤ Análisis del emplazamiento

Se analizaron en terreno el sitio en donde se emplaza el embalse, especialmente la estabilidad de las laderas de cerros, peligros potenciales de deslizamientos ante crecidas o sismos, situación de la zona de aguas abajo del embalse, etc.

➤ Selección de Embalses Críticos

A partir de los antecedentes recabados se determinó la existencia de 10 embalses para los cuales se realizó una segunda visita de mayor profundidad. Esta visita la realizó el Coordinador del Proyecto en conjunto con el especialista en presas Ingeniero Civil Donald Astorga M. El contenido de este informe específico se adjunta como Anexo 3-1, y su contenido fue incorporado en las fichas de embalse propiamente tales.
3.2 FICHA DE CATASTRO DE EMBALSES

3.2.1 Antecedentes Generales

Esta primera parte de la ficha tuvo como objetivo identificar el embalse con su nombre, el propietario al cual pertenece, el año de su construcción, la cuenca y subcuenca en la cual se ubica con su respectivo código de las Dirección General de Aguas y la identificación de la fuente del recurso que se almacena en el tranque. Los datos son los siguientes:

- Nombre de la presa
- Propietario
- Año de construcción
- Cuenca / Código DGA
- Subcuenca / Código DGA
- Fuente del recurso

Además de lo anterior, se identificó cada ficha con un código y la fecha de su realización.

3.2.2 Ubicación de la Presa

Contiene ubicación general, la región, provincia y comuna en donde se localiza la obra. Para su ubicación específica, se registró por medio de un GPS Navegador las coordenadas UTM y con altímetro de precisión la altura sobre el nivel medio del mar, ambas mediciones se realizaron lo más cercana al eje del cauce, inmediatamente aguas abajo del muro exterior del tranque. Los datos que se registraron fueron:

- Región
- Provincia
- Comuna
- Coordenadas UTM norte y este y Datum
- Altitud

3.2.3 Uso o Destino del Embalse

Se identificó el uso o destino que se da a la obra, en general se pueden identificar los siguientes usos:

- Riego
- Generación de energía
- Abastecimiento de agua potable / saneamiento
- Relaves
- Sedimentación
- Control de crecidas
- Recreación
- Otros usos
3.2.4 Tipo de Embalse

Desde el punto de vista de los materiales empleados en su construcción, las presas pueden construirse de materiales granulares e impermeables (arcillas), de enrocados, hormigón convencional, hormigón rodillado (RCC), etc.

Las presas de materiales granulares son aquellas construidas de materiales excavados o de deposición industrial. Se distinguen en presas de tierra homogénea y de material graduado, en donde los componentes básicos son el núcleo impermeable, espaldones de aguas arriba y aguas abajo, filtros, drenes.

Las presas de enrocados con pantalla impermeable en la cara de aguas arriba (CFRD). La pantalla más usada en una losa de hormigón.

Las presas de hormigón son presas construidas de hormigón armado o sin armar.

Las presas de RCC (Roll Compacted Concrete) son presas construidas con un hormigón de bajo contenido de cemento Portland y bajo contenido de agua, de modo que no presenta asentamiento y se compacta con rodillos vibratorios.

De acuerdo a lo anterior, se identificó el tipo de presa, según la siguiente clasificación:

- Presa de tierra homogénea
- Presa de material granular graduado
- Presa de enrocados (CFRD)
- Presa de hormigón (gravedad, contrafuerte, arco)
- Presa de RCC
- Otros tipos

3.2.5 Geometría de la Presa

En aquellos casos de cuerpos prismáticos interesa definir de la mejor manera posible la geometría del muro. Para ello se midieron con huincha la longitud y ancho del coronamiento y la revancha mínima en relación a la cota máxima de aguas conocida. Sobre el talud de aguas abajo, se realizaron mediciones del desarrollo, desde el borde del coronamiento hasta el eje del cauce en su punto más bajo. Con eclímetro se midió la inclinación del talud de aguas arriba y el talud de aguas abajo. En aquellos casos de cuerpos de paramentos verticales, se midió directamente la altura con huincha.

De esta manera con relaciones trigonométricas se pudo caracterizar la geometría completa de la estructura.

\[b = \text{ancho de coronamiento} \]
\[d = \text{desarrollo del talud} \]
\[Hi/Vi = \text{relación Horizontal/Vertical del talud interno} \]
\[He/Ve = \text{relación Horizontal/Vertical del talud externo} \]
Con hinchazón
- Longitud del coronamiento
- Ancho del coronamiento
- Desarrollo del talud aguas abajo
- Revancha mínima en relación a la cota máxima de aguas conocida
- Paramentos verticales

- Con ecuación
 - Ángulo talud de aguas abajo
 - Ángulo talud de aguas arriba

- Fotografías

3.2.6 Estimación Capacidad Máxima del Embalse

Para definir el tamaño del embalse, se requirió la siguiente información:

- Altura máxima del muro (definida por relaciones trigonométricas en caso de no poder medir directamente)
- Profundidad máxima de agua en sector del muro
- Área estimada o calculada de la poza
- Ancho máximo de la poza
- Largo de la poza
- Volumen declarado o proyectado

3.2.7 Características del Muro

Se determinaron las características de los materiales de construcción del muro con el fin de caracterizar el material en cuanto a su granulometría y su plasticidad. Para ello se extrajeron muestras representativas del material de la presa en una profundidad tal que no se vea influenciada por la capa vegetal actual o por carpetas de camino sobre el embalse. Estas muestras se guardaron en bolsas de polietileno transparente y se rotularon para su posterior inspección por los especialistas.

Se realizaron las siguientes actividades:

- Inspección visual
- Toma de muestra del suelo (preferentemente en el centro del muro)
- Identificación del punto de toma de muestra
- Toma de coordenadas y fotografías del punto muestreado
- Clasificación del material de construcción (clasificación según tabla adjunta)

Otros de los temas relacionados con la caracterización del muro tienen relación con el estado del muro y la calidad de construcción. Para ello se realizó un recorrido a lo largo de la presa, con el fin de definir y caracterizar cualquier aspecto relevante que permita formarse una opinión respecto a la compacidad del material constituyente, a la uniformidad de la geometría de construcción y a cualquier anomalía producida por causa de fuerzas externas o internas, tales como grietas, socavones, etc.

Se dio preferencia a visualizar lo siguiente:

- Regularidad de la geometría actual
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins

- Comapacidad del material estructural
- Uniformidad de los taludes
- Depresiones visibles y cuantificables a lo largo del coronamiento
- Grietas visibles y su ubicación
- Indicios de deslizamientos y ubicación
- Sectores que se presentan saturados y altura de saturación en relación al coronamiento
- Filtraciones visibles en talud de aguas abajo en el pie

3.2.8 Características Obras Evacuador de Crecidas

El vertedero es una estructura hidráulica destinada a permitir el pase, libre o controlado, del agua en los escorrimientos superficiales, el cual tiene por finalidad garantizar la seguridad de la estructura hidráulica, al no permitir la elevación del nivel, aguas arriba, por encima del nivel máximo.

Se definieron las características de la obra de evacuación de crecidas, su estructuración y material constructivo y su capacidad máxima de porteo. En el caso de no existir planos de diseño se dibujó en las fichas de catastro un croquis con las dimensiones medidas en terreno.

En las presas con vertederos controlados por compuertas se verificó el estado de la maniobrabilidad analizando los sistemas de accionamiento de éstas.

Los vertederos pueden ser clasificados de varias formas:

- Por su localización en relación a la estructura principal:
 - Vertederos frontales
 - Vertederos laterales
 - Vertederos de campana o tulipa; el cual se sitúa fuera de la presa y la descarga puede estar fuera del cauce aguas abajo
- Desde el punto de vista de los instrumentos para el control del caudal vertido:
 - Vertederos libres, sin control
 - Vertederos controlados por compuertas
- Desde el punto de vista de la pared donde se produce el vertimiento:
 - Vertedero de pared delgada
 - Vertedero de pared gruesa
 - Vertedero con perfil hidráulico
- Desde el punto de vista de la sección por la cual se da el vertimiento:
 - Rectangulares
 - Trapezoidales
 - Triangulares
 - Circulares

Los datos descritos en las fichas de catastro son:

- Tipo de vertedero
- Material constructivo
- Estado de conservación y operatividad
- Dimensiones relevantes (ancho, altura y carga máxima de operación)
3.2.9 Características Obras de Entrega y Desagüe de Fondo

La obra de entrega corresponde a la estructura que entrega las aguas a riego o directamente al cauce.

La obra de descarga de fondo o desagüe es una estructura hidráulica cuya función principal es permitir el vaciado del embalse para efectuar operaciones de mantenimiento en la presa y reducir el volumen de material sólido depositado en proximidad de la presa. Dado que el agua sale de la presa con una presión considerable, si el chorro no es controlado adecuadamente puede provocar erosiones localizadas peligrosas para la estabilidad de la presa misma.

Respecto a estos temas se determinó el tipo de estructura y su funcionamiento actual en los casos de ser ello posible.

3.2.10 Caracterización del Cauce y Uso del Suelo Aguas Abajo

Interesa caracterizar el valle aguas abajo de la presa, tanto desde el punto de vista del cauce de descarga, como del uso del suelo, cercanía de sitios habitados, densidad de población; y existencia y cercanía de infraestructura. El objetivo de estos datos fue analizar el potencial riesgo de las personas o instalaciones ante una falla o ruptura de la presa.

Se investigó también si en los márgenes del embalse existen terrenos con riesgo de inestabilidad que pudiesen provocar deslizamientos en las laderas al variar rápidamente el nivel del agua, con posibilidad de graves daños en los terrenos, vías de comunicación, viviendas o servicios situados fuera del embalse, así como la obstrucción de éste por la masa deslizada, o generación de ondas en el embalse.

Los datos requeridos fueron:

- Tipo de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce
- Distancia hacia centros poblados medidos por el cauce
- Distancia desde centros poblados perpendicular al cauce
- Densidad de población en las cercanías del tranque
- Distancia hacia zonas agrícolas
- Distancia hacia sectores con infraestructura vial u otra de importancia
- Área de riego servida por el tranque analizado

3.2.11 Monografía

Se contempló la confección de un croquis a mano alzada para cada tranque, en el que se muestra principalmente:

- Planta del muro (forma y dimensiones)
- Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes respecto a la horizontal.
- Croquis de la obra de evacuación y dimensiones.
3.2.12 Observaciones

Dentro de las fichas de catastro se agregaron observaciones respecto de cualquier otro dato de importancia en relación al tanque que no haya sido incluido en esta minuta, tales como: rutas de accesos principales y alternativas, nombre personas encargadas de su operación, accidentes ocurridos en la presa, reparaciones realizadas, etc.
CAPÍTULO 4

ESTUDIO DE CRECIDAS
4. ESTUDIO DE CRECIDAS

4.1 INTRODUCCIÓN

El objeto de esta sección es determinar los caudales de las crecidas afluentes en cada uno de los embalses para diferentes períodos de retorno. En este caso se han evaluado métodos indirectos, que basados en precipitaciones extremas permiten estimar las crecidas pluviales o caudales máximos en la cuenca.

Sobre la base de la cartografía existente (ver Plano 1, Cuencas Aportante a los Embalses), se determinaron algunas características de las cuencas, tales como: límites de la cuenca, área, longitud del cauce principal, altura media, pendiente media del cauce, etc., antecedentes necesarios para el estudio de las crecidas pluviales.

Para determinar los caudales de crecidas pluviales asociados a los períodos de retorno de 5, 10, 20, 25, 50 y 100 años se utilizaron tres métodos: Método de la fórmula Racional Modificada, Fórmula de Verni King Modificada y el Método DGA-AC. Para determinar los caudales de crecidas en períodos de deshielo asociados a los mismos períodos de retorno, se utilizó el método DGA-AC.

Para determinar las crecidas para períodos de retorno mayores a 100 años, se extrapolaron los caudales obtenidos a través de la función que mejor ajusta la curva de caudales hasta 100 años.

4.2 PERÍODOS DE RETORNO SEGÚN TIPO DE OBRA

Para efectos de este estudio se consideran tres categorías de embalses. Para analizar los caudales de crecidas de los embalses en función de la categoría de la obra, se consideran los siguientes períodos de retorno para definir el caudal de diseño.

CUADRO 4.2-1

<table>
<thead>
<tr>
<th>CATEGORÍA</th>
<th>DESCRIPCIÓN</th>
<th>PERÍODOS DE RETORNO T(años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Categoría A</td>
<td>Embalses Pequeños, de altura de muro máxima mayor a 5 m e inferior a 12 m, o bien de capacidad superior a 50.000 m3 e inferior a 1.500.000 m3.</td>
<td>250</td>
</tr>
<tr>
<td>Categoría B</td>
<td>Embalses Medianos, de altura de muro máxima mayor o igual a 12 m e inferior a 30 m, o bien de capacidad igual o superior a 1.500.000 m3 e inferior a 60.000.000 m3.</td>
<td>500</td>
</tr>
<tr>
<td>Categoría C</td>
<td>Embalses Grandes, de altura máxima de muro igual o superior a 30 m, o bien de capacidad igual o superior a 60.000.000 m3.</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Para embalses de altura de muro menor a 5 m, se usó crecida de diseño de T= 250 años.

De acuerdo con el Reglamento de Obras Mayores, el cual al día de hoy no está aprobado pero que se puede usar como una norma referencial.
4.3 CÁLCULO DE CRECIDAS

Para calcular el área aportante pluvial es necesario definir en primer lugar la ubicación de la línea de nieves, entendiendo que en este caso corresponde a la cota promedio durante eventos de tormentas, donde se produce la interfase lluvia-nieve.

Por otra parte, la línea de nieves que define el área nival de una cuenca, también presenta variaciones temporales durante el año hidrológico, por lo que se hace necesario definir una línea de nieves promedio.

En el estudio Manual de Cálculo de Crecidas y Caudales Mínimos en Cuencas Sin Información Fluviométrica. Dirección General de Aguas. Ministerio de Obras Públicas, 1995, se indica que las líneas de nieve promedio para la zona comprendida entre la RM y VII Región, son las que se indican en el cuadro siguiente:

CUADRO 4.3-1
LÍNEA DE NIEVES PROMEDIO (m.s.n.m)

<table>
<thead>
<tr>
<th>Latitud (°)</th>
<th>Peña-Vidal</th>
<th>Escobar-Vidal</th>
</tr>
</thead>
<tbody>
<tr>
<td>33,0</td>
<td>1.940</td>
<td>2.520</td>
</tr>
<tr>
<td>33,5</td>
<td>1.870</td>
<td>2.410</td>
</tr>
<tr>
<td>34,0</td>
<td>1.780</td>
<td>2.300</td>
</tr>
<tr>
<td>34,5</td>
<td>1.640</td>
<td>2.130</td>
</tr>
<tr>
<td>35,0</td>
<td>1.470</td>
<td>1.980</td>
</tr>
<tr>
<td>35,5</td>
<td>1.300</td>
<td>1.820</td>
</tr>
</tbody>
</table>

En lo referente a cálculo de crecidas, los valores obtenidos por Peña y Vidal están recomendados para definir área nival, por su parte los valores de Escobar y Vidal se utilizan para definir el área pluvial.

Al respecto en el presente informe se ha definido una cota de línea de nieve promedio de 1.640 m.s.n.m. A continuación se presentan las principales características de cada cuenca útiles para definir el tiempo de concentración de cada una y así continuar el estudio de crecidas.

CUADRO 4.3-2
PARÁMETROS CARACTERÍSTICOS DE LAS CUENCAS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Hg (m)</th>
<th>L (Km)</th>
<th>área (km²)</th>
<th>Pendiente del cauce (%)</th>
<th>H máximo (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapos</td>
<td>223,60</td>
<td>5,36</td>
<td>5,56</td>
<td>31,36</td>
<td>792,11</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>71,14</td>
<td>3,22</td>
<td>2,81</td>
<td>16,28</td>
<td>661,54</td>
</tr>
<tr>
<td>Pilacito</td>
<td>368,55</td>
<td>19,62</td>
<td>59,91</td>
<td>15,94</td>
<td>1112,98</td>
</tr>
<tr>
<td>Romeral</td>
<td>6,51</td>
<td>1,08</td>
<td>1,28</td>
<td>4,87</td>
<td>215,51</td>
</tr>
<tr>
<td>Picaquín</td>
<td>393,33</td>
<td>7,72</td>
<td>14,75</td>
<td>30,63</td>
<td>1875,42</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>16,35</td>
<td>3,86</td>
<td>2,07</td>
<td>1,03</td>
<td>33,85</td>
</tr>
<tr>
<td>Chancón</td>
<td>177,81</td>
<td>5,37</td>
<td>11,78</td>
<td>16,74</td>
<td>1137,10</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>Hg (m)</td>
<td>L (Km)</td>
<td>área (km²)</td>
<td>Pendiente del cauce (%)</td>
<td>H máx (m)</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>San Isidro</td>
<td>636,73</td>
<td>8,96</td>
<td>20,95</td>
<td>21,68</td>
<td>1351,73</td>
</tr>
<tr>
<td>Millahue</td>
<td>109,34</td>
<td>7,77</td>
<td>34,51</td>
<td>10,69</td>
<td>966,72</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>454,41</td>
<td>6,33</td>
<td>19,73</td>
<td>14,06</td>
<td>847,36</td>
</tr>
<tr>
<td>Idahue</td>
<td>31,85</td>
<td>6,25</td>
<td>16,46</td>
<td>11,29</td>
<td>584,63</td>
</tr>
<tr>
<td>San Vicente</td>
<td>28,20</td>
<td>5,78</td>
<td>8,73</td>
<td>6,62</td>
<td>83,08</td>
</tr>
<tr>
<td>Cocaquen o Pailimo 1</td>
<td>43,85</td>
<td>7,86</td>
<td>25,39</td>
<td>13,70</td>
<td>286,12</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>15,49</td>
<td>1,86</td>
<td>2,01</td>
<td>10,56</td>
<td>100,41</td>
</tr>
<tr>
<td>La Rosa</td>
<td>114,80</td>
<td>3,93</td>
<td>5,11</td>
<td>13,02</td>
<td>216,72</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>49,21</td>
<td>11,42</td>
<td>59,54</td>
<td>3,54</td>
<td>366,64</td>
</tr>
<tr>
<td>Mallermo</td>
<td>11,95</td>
<td>3,14</td>
<td>3,61</td>
<td>3,66</td>
<td>43,77</td>
</tr>
<tr>
<td>Aguedilla</td>
<td>24,12</td>
<td>5,37</td>
<td>7,15</td>
<td>2,70</td>
<td>76,01</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>39,66</td>
<td>1,65</td>
<td>1,83</td>
<td>7,52</td>
<td>222,31</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>6,25</td>
<td>1,40</td>
<td>0,78</td>
<td>3,96</td>
<td>26,26</td>
</tr>
<tr>
<td>Porotal</td>
<td>7,64</td>
<td>2,21</td>
<td>3,69</td>
<td>6,58</td>
<td>52,69</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>16,76</td>
<td>8,62</td>
<td>20,67</td>
<td>1,04</td>
<td>197,56</td>
</tr>
<tr>
<td>Carrizal</td>
<td>155,36</td>
<td>9,53</td>
<td>18,15</td>
<td>15,90</td>
<td>408,63</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>10,01</td>
<td>1,02</td>
<td>0,68</td>
<td>1,69</td>
<td>40,90</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>46,58</td>
<td>6,23</td>
<td>6,83</td>
<td>5,64</td>
<td>153,25</td>
</tr>
<tr>
<td>Tierruca</td>
<td>20,51</td>
<td>5,40</td>
<td>16,83</td>
<td>2,93</td>
<td>321,38</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>35,23</td>
<td>2,50</td>
<td>3,37</td>
<td>2,16</td>
<td>260,63</td>
</tr>
<tr>
<td>Los Novios</td>
<td>10,42</td>
<td>1,05</td>
<td>0,55</td>
<td>3,79</td>
<td>32,18</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>43,88</td>
<td>1,04</td>
<td>1,02</td>
<td>5,86</td>
<td>100,32</td>
</tr>
<tr>
<td>Pañilonco</td>
<td>98,27</td>
<td>5,95</td>
<td>12,06</td>
<td>10,40</td>
<td>182,31</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>15,56</td>
<td>2,44</td>
<td>2,11</td>
<td>1,35</td>
<td>46,19</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>47,65</td>
<td>8,17</td>
<td>5,90</td>
<td>1,27</td>
<td>107,44</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>78,30</td>
<td>39,78</td>
<td>636,92</td>
<td>7,80</td>
<td>1810,20</td>
</tr>
<tr>
<td>Loiálo</td>
<td>68,70</td>
<td>5,34</td>
<td>20,68</td>
<td>10,01</td>
<td>332,72</td>
</tr>
<tr>
<td>Culenco</td>
<td>17,52</td>
<td>4,34</td>
<td>4,33</td>
<td>4,93</td>
<td>425,35</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>74,02</td>
<td>3,05</td>
<td>5,78</td>
<td>14,91</td>
<td>322,58</td>
</tr>
<tr>
<td>Los Negros</td>
<td>307,47</td>
<td>2,32</td>
<td>4,89</td>
<td>18,92</td>
<td>601,42</td>
</tr>
<tr>
<td>El Guaico</td>
<td>268,80</td>
<td>1,56</td>
<td>1,32</td>
<td>15,75</td>
<td>387,43</td>
</tr>
<tr>
<td>El Huique</td>
<td>176,76</td>
<td>1,74</td>
<td>1,49</td>
<td>16,66</td>
<td>615,20</td>
</tr>
<tr>
<td>Santa Lucía (Santa Margarita)</td>
<td>13,10</td>
<td>0,85</td>
<td>0,35</td>
<td>1,92</td>
<td>18,71</td>
</tr>
<tr>
<td>Jaime Ramirez</td>
<td>248,68</td>
<td>2,50</td>
<td>3,05</td>
<td>20,27</td>
<td>651,70</td>
</tr>
<tr>
<td>La Troya</td>
<td>4,11</td>
<td>2,96</td>
<td>2,89</td>
<td>0,71</td>
<td>4,36</td>
</tr>
<tr>
<td>Nilahue</td>
<td>22,97</td>
<td>5,09</td>
<td>11,05</td>
<td>5,70</td>
<td>239,37</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>26,20</td>
<td>1,10</td>
<td>0,75</td>
<td>5,02</td>
<td>104,58</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>27,13</td>
<td>1,88</td>
<td>1,10</td>
<td>3,79</td>
<td>149,14</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>63,97</td>
<td>3,84</td>
<td>10,87</td>
<td>3,74</td>
<td>383,31</td>
</tr>
</tbody>
</table>
4.3.1 Tiempo de Concentración

Para estimar el tiempo de concentración \((tc) \) se puede utilizar la formula del California División of Highways and Public Works de EEUU y Giandotti, cuyas expresiones se señalan a continuación.

- **Fórmula de California**:

\[
tc = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385}
\]

- **Fórmula de Giandotti**:

\[
tc = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \quad (hrs); \quad \text{con} \quad \frac{L}{5.4} \leq tc \leq \frac{L}{3.6}
\]

- **Fórmula de Ventura - Heras**:

\[
tc = 0.05 \cdot \sqrt{\frac{A}{J}}
\]

- **Fórmula de Témez**:

\[
tc = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75}
\]

Donde:
- \(L \) = Longitud del cauce principal en km.
- \(H_{\text{máx}} \) = Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
- \(A \) = Área cuenca en km².
Luego de analizar los respectivos tiempos de concentración de las cuencas y considerando que la expresión de Giandotti y de California son las que entregan los valores más altos y ventura- veras los más bajos, es preferible tomar el lado seguro de las estimaciones y por lo tanto de acuerdo a las características de la zonas y a la experiencia del consultor, se han considerado tiempos de concentración aproximados a los arrojados por Temez.

CUADRO 4.3.1-1
ESTIMACIONES DE TIEMPO DE CONCENTRACIÓN DE LAS CUENCAS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>california</th>
<th>giandotti</th>
<th>ventura -heras</th>
<th>temez</th>
<th>Tc (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0,30</td>
<td>1,71</td>
<td>0,02</td>
<td>0,43</td>
<td>0,43</td>
</tr>
<tr>
<td>Pilacito</td>
<td>1,99</td>
<td>3,93</td>
<td>0,10</td>
<td>1,66</td>
<td>1,5</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,13</td>
<td>3,01</td>
<td>0,03</td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td>Pícarroñín</td>
<td>0,55</td>
<td>1,70</td>
<td>0,03</td>
<td>0,73</td>
<td>0,73</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>1,17</td>
<td>3,57</td>
<td>0,07</td>
<td>0,82</td>
<td>0,82</td>
</tr>
<tr>
<td>Chancón</td>
<td>0,44</td>
<td>2,04</td>
<td>0,04</td>
<td>0,62</td>
<td>0,5</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0,75</td>
<td>1,57</td>
<td>0,05</td>
<td>0,87</td>
<td>0,8</td>
</tr>
<tr>
<td>Millahué</td>
<td>0,72</td>
<td>4,20</td>
<td>0,09</td>
<td>0,90</td>
<td>0,90</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0,60</td>
<td>1,60</td>
<td>0,06</td>
<td>0,73</td>
<td>0,73</td>
</tr>
<tr>
<td>Ida hue</td>
<td>0,68</td>
<td>5,67</td>
<td>0,06</td>
<td>0,75</td>
<td>0,75</td>
</tr>
<tr>
<td>San Vicente</td>
<td>1,31</td>
<td>2,81</td>
<td>0,06</td>
<td>0,78</td>
<td>0,78</td>
</tr>
<tr>
<td>Cocaquén o Pailímo 1</td>
<td>1,17</td>
<td>6,03</td>
<td>0,07</td>
<td>0,86</td>
<td>0,86</td>
</tr>
<tr>
<td>Piedras Blancas o Pailímo 2</td>
<td>0,33</td>
<td>2,69</td>
<td>0,02</td>
<td>0,31</td>
<td>0,31</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,58</td>
<td>1,74</td>
<td>0,03</td>
<td>0,52</td>
<td>0,52</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>1,63</td>
<td>8,55</td>
<td>0,21</td>
<td>1,47</td>
<td>1,47</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0,83</td>
<td>4,45</td>
<td>0,05</td>
<td>0,56</td>
<td>0,56</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>1,25</td>
<td>4,77</td>
<td>0,08</td>
<td>0,88</td>
<td>0,88</td>
</tr>
<tr>
<td>Los Mañenes</td>
<td>0,21</td>
<td>1,56</td>
<td>0,02</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0,40</td>
<td>2,81</td>
<td>0,02</td>
<td>0,30</td>
<td>0,30</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,52</td>
<td>4,97</td>
<td>0,04</td>
<td>0,38</td>
<td>0,38</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>1,49</td>
<td>9,50</td>
<td>0,22</td>
<td>1,50</td>
<td>1,50</td>
</tr>
<tr>
<td>Carrizal</td>
<td>1,27</td>
<td>3,14</td>
<td>0,05</td>
<td>0,97</td>
<td>0,97</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0,23</td>
<td>1,91</td>
<td>0,03</td>
<td>0,28</td>
<td>0,28</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>1,13</td>
<td>3,63</td>
<td>0,06</td>
<td>0,86</td>
<td>0,86</td>
</tr>
<tr>
<td>Tierruca</td>
<td>0,72</td>
<td>6,76</td>
<td>0,12</td>
<td>0,87</td>
<td>0,87</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0,32</td>
<td>2,33</td>
<td>0,06</td>
<td>0,52</td>
<td>0,52</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0,26</td>
<td>1,76</td>
<td>0,02</td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0,17</td>
<td>1,06</td>
<td>0,02</td>
<td>0,22</td>
<td>0,22</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>california</td>
<td>glandotti</td>
<td>ventura -heras</td>
<td>temez</td>
<td>Tc (h)</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Pañilonco</td>
<td>1,00</td>
<td>2,88</td>
<td>0,05</td>
<td>0,74</td>
<td>0,74</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0,61</td>
<td>3,00</td>
<td>0,06</td>
<td>0,55</td>
<td>0,6</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>1,77</td>
<td>3,98</td>
<td>0,11</td>
<td>1,39</td>
<td>1,39</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>3,72</td>
<td>22,69</td>
<td>0,45</td>
<td>3,23</td>
<td>3,23</td>
</tr>
<tr>
<td>Lolol</td>
<td>0,70</td>
<td>3,95</td>
<td>0,07</td>
<td>0,68</td>
<td>0,68</td>
</tr>
<tr>
<td>Culenco</td>
<td>0,50</td>
<td>4,43</td>
<td>0,05</td>
<td>0,67</td>
<td>0,6</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0,37</td>
<td>2,06</td>
<td>0,3</td>
<td>0,42</td>
<td>0,42</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0,21</td>
<td>0,88</td>
<td>0,03</td>
<td>0,33</td>
<td>0,3</td>
</tr>
<tr>
<td>El Guaico</td>
<td>0,16</td>
<td>0,53</td>
<td>0,01</td>
<td>0,25</td>
<td>0,2</td>
</tr>
<tr>
<td>El Huique</td>
<td>0,15</td>
<td>0,70</td>
<td>0,01</td>
<td>0,27</td>
<td>0,2</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>0,25</td>
<td>1,26</td>
<td>0,02</td>
<td>0,23</td>
<td>0,23</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,23</td>
<td>0,85</td>
<td>0,02</td>
<td>0,34</td>
<td>0,34</td>
</tr>
<tr>
<td>La Troya</td>
<td>1,89</td>
<td>6,93</td>
<td>0,10</td>
<td>0,72</td>
<td>1,01</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0,76</td>
<td>5,46</td>
<td>0,07</td>
<td>0,73</td>
<td>0,73</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,18</td>
<td>1,25</td>
<td>0,02</td>
<td>0,24</td>
<td>0,24</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0,29</td>
<td>1,69</td>
<td>0,03</td>
<td>0,38</td>
<td>0,32</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0,45</td>
<td>2,96</td>
<td>0,09</td>
<td>0,64</td>
<td>0,64</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,21</td>
<td>1,23</td>
<td>0,02</td>
<td>0,29</td>
<td>0,29</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0,61</td>
<td>1,33</td>
<td>0,03</td>
<td>0,67</td>
<td>0,67</td>
</tr>
<tr>
<td>Callihué</td>
<td>0,58</td>
<td>3,88</td>
<td>0,04</td>
<td>0,58</td>
<td>0,58</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0,26</td>
<td>3,27</td>
<td>0,05</td>
<td>0,44</td>
<td>0,44</td>
</tr>
</tbody>
</table>

4.3.2 Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991", en la cual se señala la siguiente expresión para el cálculo de la precipitación en 24 h y período de retorno T años:

\[P_{24}^T = 1,1 \cdot CF_T \cdot P_{24}^{T=10} \]

Donde:

- \(P_{24}^T \): Precipitación en 24 h y período de retorno T años.
- \(CF_T \): Coeficiente de frecuencia de un período T años.
- \(P_{24}^{T=10} \): Precipitación máxima en 24 h y período de retorno 10 años, obtenida del plano de isoyetas.

Para determinar precipitaciones máximas de duraciones menores a 24 horas se emplea la siguiente expresión:

\[P_t^T = 1,1 \cdot CD_t \cdot CF_T \cdot P_{24}^{T=10} \]
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins

Donde:

- P^T_t: Precipitación máxima en t horas y período de retorno T años.
- CD_t: Coeficiente de Duración para t horas (entre 1 y 24 h).
- $CF^T_{T=10}$: Coeficiente de frecuencia de un período T años.
- $P_{24}^{T=10}$: Precipitación máxima en 24 h y período de retorno 10 años, obtenida del plano de isoyetas.

El coeficiente de frecuencia se obtuvo de la publicación de la DGA del año 1991 señalado anteriormente, que para la VI Región se divide en tres zonas homogéneas, las cuales se detallan a continuación.

CUADRO 4.3.2-1
COEFICIENTES DE FRECUENCIA SEGÚN ZONA HOMOGÉNEA VI REGIÓN

<table>
<thead>
<tr>
<th>Zona del estudio DGA</th>
<th>Nombre</th>
<th>Coeficiente de Frecuencia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$T = 2$</td>
</tr>
<tr>
<td>VI.1</td>
<td>Río Coya</td>
<td>0,639</td>
</tr>
<tr>
<td>VI.2</td>
<td>Río Cachapoal</td>
<td>0,644</td>
</tr>
<tr>
<td>VI.3</td>
<td>Estero Nilahue</td>
<td>0,613</td>
</tr>
</tbody>
</table>

Los coeficientes de duración que son representativos de la VI Región corresponden a las localidades de Rapel y San Fernando y cuyos valores se consignan en el siguiente cuadro.

CUADRO 4.3.2-2
COEFICIENTES DE DURACIÓN (CD)

<table>
<thead>
<tr>
<th>t (hr)</th>
<th>RAPEL</th>
<th>SAN FERNANDO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0,147</td>
<td>0,127</td>
</tr>
<tr>
<td>2</td>
<td>0,233</td>
<td>0,213</td>
</tr>
<tr>
<td>4</td>
<td>0,337</td>
<td>0,346</td>
</tr>
<tr>
<td>6</td>
<td>0,465</td>
<td>0,428</td>
</tr>
<tr>
<td>8</td>
<td>0,558</td>
<td>0,510</td>
</tr>
<tr>
<td>10</td>
<td>0,640</td>
<td>0,587</td>
</tr>
<tr>
<td>12</td>
<td>0,709</td>
<td>0,659</td>
</tr>
<tr>
<td>14</td>
<td>0,787</td>
<td>0,734</td>
</tr>
<tr>
<td>18</td>
<td>0,907</td>
<td>0,830</td>
</tr>
<tr>
<td>24</td>
<td>1,000</td>
<td>1,000</td>
</tr>
</tbody>
</table>

La intensidad de la precipitación corresponde a la razón entre la precipitación durante un determinado período y el periodo. Para su cálculo se utiliza la expresión siguiente:
\[i_t^T = \frac{P_t^T}{t} \]

Donde:
- \(P_t^T \): Precipitación máxima en \(t \) horas y período de retorno \(T \) años.
- \(t \): Período de tiempo de \(t \) h.

A partir de dicha información, se aplicaron fórmulas de precipitación—esorrentía para caudales máximos, tales como la Fórmula Racional o la Fórmula de Venni y King Modificada, y el Análisis Regional de Crecidas (Método DGA-AC).

4.3.3 Caudales de Crecidas Mediante la Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. Su aplicación es de amplio uso en cuencas urbanas y rurales pequeñas. La gran ventaja de este método es su simplicidad, lo que se traduce en que el resultado es fácilmente controlado en función de variables observables, lo que permite su uso como método de comparación. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_k^T \cdot Ap}{3,6} \]

Donde:
- \(Q(T) \): Caudal generado en la cuenca en \((m^3/s) \)
- \(C(T) \): Coeficiente de Esorrentía
- \(I_k^T \): Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(tc \) en \((mm/h) \)
- \(Ap \): Área pluvial de la cuenca tributaria \((km^2) \).

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.

Por otra parte, el coeficiente de esorrentía a utilizar dependerá del período de retorno \(T \) y de la ubicación geográfica. Estos coeficientes se obtienen del resultado de los análisis de frecuencia realizados con la información de 130 estaciones limnográficas ubicadas entre la III y la IX región de Chile.

Para la VI Región, la estimación de los coeficientes de esorrentía se presentan en el cuadro siguiente.
CUADRO 4.3.3-1
COEFICIENTES DE FÓRMULAS EMPÍRICAS C(T) / C(T=10)

<table>
<thead>
<tr>
<th>T años</th>
<th>C(T) / C(T=10) VI REGIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,63</td>
</tr>
<tr>
<td>5</td>
<td>0,85</td>
</tr>
<tr>
<td>10</td>
<td>1,00</td>
</tr>
<tr>
<td>20</td>
<td>1,15</td>
</tr>
<tr>
<td>25</td>
<td>1,20</td>
</tr>
<tr>
<td>50</td>
<td>1,33</td>
</tr>
<tr>
<td>100</td>
<td>1,55</td>
</tr>
</tbody>
</table>

De este modo, el caudal instantáneo máximo asociado a un período de retorno T está dado por:

\[Q(T) = \frac{C(T)}{C(T = 10)} \cdot C(10) \cdot \frac{P_{24}^T}{tc} \cdot \frac{Ap}{3,6} \]

4.3.4 Caudales de Crecidas Mediante la Relación de Verni y King Modificada

Esta fórmula corresponde a una versión modificada de la ecuación original, para tomar en cuenta que el coeficiente C = 0,00618 de dicha ecuación en la realidad depende del período de retorno y de las características de la zona donde se aplica. Su expresión es la siguiente:

\[Q(T) = C(T) \cdot 0,00618 (P_{24}^T)^{1,24} \cdot (Ap)^{0,88} \]

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

Donde:

\[
\begin{align*}
C(T) & \quad \text{Coeficiente empírico para diferentes periodos de retorno} \\
P_{24}^T & \quad \text{Precipitación máxima en 24 h y período de retorno T (años)} \\
Ap & \quad \text{Área pluvial (km²)}
\end{align*}
\]

El coeficiente empírico varía según la región del país. En este caso para la VI Región se tiene:
CUADRO 4.3.4-1
COEFICIENTES PARA FÓRMLA VERNI Y KING MODIFICADA -VI REGIÓN

<table>
<thead>
<tr>
<th>Período de Retorno (años)</th>
<th>C(T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,47</td>
</tr>
<tr>
<td>5</td>
<td>0,60</td>
</tr>
<tr>
<td>10</td>
<td>0,68</td>
</tr>
<tr>
<td>20</td>
<td>0,77</td>
</tr>
<tr>
<td>25</td>
<td>0,80</td>
</tr>
<tr>
<td>50</td>
<td>0,87</td>
</tr>
<tr>
<td>100</td>
<td>1,00</td>
</tr>
</tbody>
</table>

El factor de frecuencia C(T)/C(10), es el mismo que en el caso del método racional presentado en Cuadro 4.3.3-1.

Finalmente, la expresión de la fórmula de Verni-King Modificada, queda de la siguiente manera:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^{T})^{1.24} \cdot (Ap)^{0.88} \]

En la siguiente tabla se presentan las zonas asociadas a cada uno de los sitios de embalse a fin de definir los coeficientes de frecuencia y de duración, el hecho de que una zona sea referencia de un determinado punto no quiere decir que se encuentre dentro de ella, sino que es la zona más característica o cercana al punto de interés para efecto de la definición de los respectivos coeficientes. También en base a las isoyetas se estima la precipitación máxima en 24 h. De periodo de retorno 10 años.
A partir de las curvas señaladas precedentemente se extrapolan los coeficientes para períodos de retorno no indicados.
<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 hrs,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Los Maquis</td>
<td>San Fernando</td>
<td>0,088</td>
<td>83,7</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>3</td>
<td>Pilaiquito</td>
<td>Rapel</td>
<td>0,192</td>
<td>140</td>
<td>Coya</td>
</tr>
<tr>
<td>4</td>
<td>Romeral</td>
<td>Rapel</td>
<td>0,062</td>
<td>120</td>
<td>Coya</td>
</tr>
<tr>
<td>5</td>
<td>Picaquirén</td>
<td>Rapel</td>
<td>0,123</td>
<td>140</td>
<td>Coya</td>
</tr>
<tr>
<td>6</td>
<td>Esmeralda</td>
<td>San Fernando</td>
<td>0,120</td>
<td>80</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>7</td>
<td>Chancón</td>
<td>Rapel</td>
<td>0,097</td>
<td>100</td>
<td>Coya</td>
</tr>
<tr>
<td>8</td>
<td>San Isidro</td>
<td>San Fernando</td>
<td>0,119</td>
<td>120</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>9</td>
<td>Millahue</td>
<td>San Fernando</td>
<td>0,126</td>
<td>120</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>10</td>
<td>San Hernán (San José De Las Pataguas)</td>
<td>San Fernando</td>
<td>0,113</td>
<td>121,4</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>11</td>
<td>Idahue</td>
<td>San Fernando</td>
<td>0,115</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>12</td>
<td>San Vicente</td>
<td>Rapel</td>
<td>0,128</td>
<td>108,1</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>13</td>
<td>Cocaquén o Pailimo 1</td>
<td>Rapel</td>
<td>0,136</td>
<td>100</td>
<td>Nilahue</td>
</tr>
<tr>
<td>14</td>
<td>Piedras Blancas o Pailimo 2</td>
<td>Rapel</td>
<td>0,072</td>
<td>100</td>
<td>Nilahue</td>
</tr>
<tr>
<td>15</td>
<td>La Rosa</td>
<td>Rapel</td>
<td>0,099</td>
<td>80</td>
<td>Nilahue</td>
</tr>
<tr>
<td>16</td>
<td>Alcones (El Sauce)</td>
<td>Rapel</td>
<td>0,189</td>
<td>90</td>
<td>Nilahue</td>
</tr>
<tr>
<td>17</td>
<td>Mallermo</td>
<td>Rapel</td>
<td>0,103</td>
<td>77,1</td>
<td>Nilahue</td>
</tr>
<tr>
<td>18</td>
<td>Aguaadilla</td>
<td>Rapel</td>
<td>0,138</td>
<td>77,1</td>
<td>Nilahue</td>
</tr>
<tr>
<td>19</td>
<td>Los Maínes</td>
<td>Rapel</td>
<td>0,071</td>
<td>114</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>20</td>
<td>San Guillermo (Santa Marta)</td>
<td>Rapel</td>
<td>0,070</td>
<td>107,1</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>21</td>
<td>Porotal</td>
<td>Rapel</td>
<td>0,082</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>22</td>
<td>Yerbas Buenas (Santa Julia)</td>
<td>Rapel</td>
<td>0,192</td>
<td>122,5</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>23</td>
<td>Carrizal</td>
<td>Rapel</td>
<td>0,146</td>
<td>100</td>
<td>Nilahue</td>
</tr>
<tr>
<td>24</td>
<td>Pihuichén</td>
<td>Rapel</td>
<td>0,067</td>
<td>122,5</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>25</td>
<td>La Esperanza</td>
<td>Rapel</td>
<td>0,135</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>26</td>
<td>Tierra de</td>
<td>Rapel</td>
<td>0,137</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>27</td>
<td>Guido Soto</td>
<td>Rapel</td>
<td>0,099</td>
<td>122,5</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>28</td>
<td>Los Novios</td>
<td>Rapel</td>
<td>0,062</td>
<td>100</td>
<td>Nilahue</td>
</tr>
<tr>
<td>29</td>
<td>Alto Colorado</td>
<td>Rapel</td>
<td>0,059</td>
<td>102,8</td>
<td>Nilahue</td>
</tr>
<tr>
<td>30</td>
<td>Pañiloncino</td>
<td>Rapel</td>
<td>0,123</td>
<td>110</td>
<td>Nilahue</td>
</tr>
<tr>
<td>31</td>
<td>Rinconada (La Macarena)</td>
<td>San Fernando</td>
<td>0,102</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>32</td>
<td>Santa Isabel</td>
<td>San Fernando</td>
<td>0,160</td>
<td>100</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>33</td>
<td>Convento Viejo</td>
<td>San Fernando</td>
<td>0,253</td>
<td>112,6</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>34</td>
<td>Lolo</td>
<td>San Fernando</td>
<td>0,109</td>
<td>116,7</td>
<td>Nilahue</td>
</tr>
<tr>
<td>35</td>
<td>Culelo</td>
<td>San Fernando</td>
<td>0,102</td>
<td>115</td>
<td>Nilahue</td>
</tr>
<tr>
<td>36</td>
<td>Pataguilla</td>
<td>San Fernando</td>
<td>0,084</td>
<td>112,6</td>
<td>Nilahue</td>
</tr>
<tr>
<td>37</td>
<td>Los Negros</td>
<td>San Fernando</td>
<td>0,070</td>
<td>115</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins

<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 hrs, T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>38</td>
<td>El Guaico</td>
<td>San Fernando</td>
<td>0.056</td>
<td>120</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>39</td>
<td>El Huique</td>
<td>San Fernando</td>
<td>0.056</td>
<td>120</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>40</td>
<td>Santa Lucía (Santa Margarita)</td>
<td>Rapel</td>
<td>0.061</td>
<td>122,5</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>41</td>
<td>Jaime Ramírez</td>
<td>San Fernando</td>
<td>0.075</td>
<td>120</td>
<td>Nilahue</td>
</tr>
<tr>
<td>42</td>
<td>La Troya</td>
<td>San Fernando</td>
<td>0.150</td>
<td>107</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>43</td>
<td>Nilahue</td>
<td>San Fernando</td>
<td>0.113</td>
<td>104,6</td>
<td>Nilahue</td>
</tr>
<tr>
<td>44</td>
<td>El Cardonal</td>
<td>San Fernando</td>
<td>0.062</td>
<td>104,6</td>
<td>Nilahue</td>
</tr>
<tr>
<td>45</td>
<td>Lagunillas</td>
<td>San Fernando</td>
<td>0.072</td>
<td>104</td>
<td>Nilahue</td>
</tr>
<tr>
<td>46</td>
<td>La Gloria (La cruz)</td>
<td>San Fernando</td>
<td>0.105</td>
<td>104</td>
<td>Nilahue</td>
</tr>
<tr>
<td>47</td>
<td>Quesería</td>
<td>San Fernando</td>
<td>0.069</td>
<td>100</td>
<td>Nilahue</td>
</tr>
<tr>
<td>48</td>
<td>Salto De Agua</td>
<td>San Fernando</td>
<td>0.108</td>
<td>120</td>
<td>Nilahue</td>
</tr>
<tr>
<td>49</td>
<td>Cañihue</td>
<td>San Fernando</td>
<td>0.100</td>
<td>120</td>
<td>Nilahue</td>
</tr>
<tr>
<td>50</td>
<td>Pataguas Cerro Guirabo</td>
<td>San Fernando</td>
<td>0.086</td>
<td>123</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

CUADRO 4.3.4-3

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T= 2 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>5.21</td>
<td>1.14</td>
<td>4.48</td>
</tr>
<tr>
<td>Pilacito</td>
<td>0.47</td>
<td>Coya</td>
<td>0.639</td>
<td>18.85</td>
<td>31.52</td>
<td>98.30</td>
</tr>
<tr>
<td>Romeral</td>
<td>0.47</td>
<td>Coya</td>
<td>0.639</td>
<td>5.19</td>
<td>0.88</td>
<td>3.61</td>
</tr>
<tr>
<td>Picaquín</td>
<td>0.47</td>
<td>Coya</td>
<td>0.639</td>
<td>12.08</td>
<td>9.18</td>
<td>31.80</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>6.82</td>
<td>0.82</td>
<td>2.24</td>
</tr>
<tr>
<td>Chancón</td>
<td>0.47</td>
<td>Coya</td>
<td>0.639</td>
<td>6.81</td>
<td>4.97</td>
<td>20.97</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>10.10</td>
<td>10.43</td>
<td>34.52</td>
</tr>
<tr>
<td>Milahue</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>10.73</td>
<td>16.18</td>
<td>53.99</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>9.72</td>
<td>10.04</td>
<td>34.33</td>
</tr>
<tr>
<td>Idahue</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>7.33</td>
<td>5.90</td>
<td>20.92</td>
</tr>
<tr>
<td>San Vicente</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>9.81</td>
<td>4.24</td>
<td>14.26</td>
</tr>
<tr>
<td>Cocaquén o Pailimo 1</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.613</td>
<td>9.17</td>
<td>9.27</td>
<td>35.23</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.613</td>
<td>4.84</td>
<td>0.99</td>
<td>4.13</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.613</td>
<td>5.34</td>
<td>1.71</td>
<td>6.89</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.613</td>
<td>11.48</td>
<td>17.22</td>
<td>60.72</td>
</tr>
<tr>
<td>Maliermo</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.613</td>
<td>5.38</td>
<td>1.21</td>
<td>4.56</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.613</td>
<td>7.15</td>
<td>2.20</td>
<td>7.60</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.644</td>
<td>5.70</td>
<td>1.14</td>
<td>4.54</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>C escorrentía</td>
<td>Zona CF</td>
<td>CF</td>
<td>Pp (T, tc)</td>
<td>Q(T) V-K</td>
<td>Q(T) Racional</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>-----</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>5,34</td>
<td>0,50</td>
<td>1,82</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>5,23</td>
<td>1,58</td>
<td>6,59</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>16,62</td>
<td>10,57</td>
<td>29,92</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>9,85</td>
<td>6,90</td>
<td>24,10</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>5,83</td>
<td>0,52</td>
<td>1,87</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>8,62</td>
<td>2,72</td>
<td>8,99</td>
</tr>
<tr>
<td>Tierra Buena</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>8,71</td>
<td>6,02</td>
<td>22,01</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>8,57</td>
<td>2,14</td>
<td>7,31</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>4,17</td>
<td>0,32</td>
<td>1,24</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>4,06</td>
<td>0,56</td>
<td>2,42</td>
</tr>
<tr>
<td>Patagonia</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>9,15</td>
<td>5,42</td>
<td>19,53</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>6,48</td>
<td>0,97</td>
<td>2,98</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>11,34</td>
<td>2,73</td>
<td>6,29</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>20,14</td>
<td>194,51</td>
<td>518,07</td>
</tr>
<tr>
<td>Lolol</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>8,59</td>
<td>9,37</td>
<td>33,90</td>
</tr>
<tr>
<td>Culeno</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>7,89</td>
<td>2,32</td>
<td>7,42</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>6,35</td>
<td>2,92</td>
<td>11,49</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>5,42</td>
<td>2,59</td>
<td>11,54</td>
</tr>
<tr>
<td>El Guaco</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>4,78</td>
<td>0,91</td>
<td>4,11</td>
</tr>
<tr>
<td>El Huique</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>4,78</td>
<td>1,02</td>
<td>4,64</td>
</tr>
<tr>
<td>Santa Lucía (Santa Margarita)</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>5,26</td>
<td>0,29</td>
<td>1,03</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>6,05</td>
<td>1,80</td>
<td>7,09</td>
</tr>
<tr>
<td>La Troya</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>11,36</td>
<td>1,58</td>
<td>4,24</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>8,00</td>
<td>4,71</td>
<td>15,73</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>4,35</td>
<td>0,44</td>
<td>1,79</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>5,08</td>
<td>0,62</td>
<td>2,28</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>7,38</td>
<td>4,61</td>
<td>16,38</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>4,67</td>
<td>0,84</td>
<td>3,44</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>8,70</td>
<td>3,66</td>
<td>11,67</td>
</tr>
<tr>
<td>Calhuen</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,613</td>
<td>8,11</td>
<td>3,13</td>
<td>10,35</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>7,49</td>
<td>1,83</td>
<td>5,46</td>
</tr>
</tbody>
</table>
CUADRO 4.3.4-4
CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T = 5 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>6.95</td>
<td>1.63</td>
<td>7.63</td>
</tr>
<tr>
<td>Pilacito</td>
<td>0.6</td>
<td>Coya</td>
<td>0.857</td>
<td>25.29</td>
<td>45.36</td>
<td>168.31</td>
</tr>
<tr>
<td>Romeral</td>
<td>0.6</td>
<td>Coya</td>
<td>0.857</td>
<td>6.96</td>
<td>1.27</td>
<td>6.18</td>
</tr>
<tr>
<td>Picaquirín</td>
<td>0.6</td>
<td>Coya</td>
<td>0.857</td>
<td>16.20</td>
<td>13.22</td>
<td>54.45</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>9.10</td>
<td>1.17</td>
<td>3.82</td>
</tr>
<tr>
<td>Chancón</td>
<td>0.6</td>
<td>Coya</td>
<td>0.857</td>
<td>9.14</td>
<td>7.15</td>
<td>35.90</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>13.47</td>
<td>14.90</td>
<td>58.78</td>
</tr>
<tr>
<td>Milahue</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>14.31</td>
<td>23.13</td>
<td>91.94</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>12.96</td>
<td>14.35</td>
<td>58.46</td>
</tr>
<tr>
<td>Idahue</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>9.78</td>
<td>8.44</td>
<td>35.62</td>
</tr>
<tr>
<td>San Vicente</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>13.09</td>
<td>6.06</td>
<td>24.28</td>
</tr>
<tr>
<td>Cocauquén o Pallimo 1</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>12.64</td>
<td>13.80</td>
<td>61.99</td>
</tr>
<tr>
<td>Piedras Blancas o Pallimo 2</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>6.67</td>
<td>1.48</td>
<td>7.26</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>7.36</td>
<td>2.55</td>
<td>12.12</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>15.63</td>
<td>25.63</td>
<td>106.85</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>7.41</td>
<td>1.80</td>
<td>8.03</td>
</tr>
<tr>
<td>Aguaadilla</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>9.85</td>
<td>3.28</td>
<td>13.37</td>
</tr>
<tr>
<td>Los Maı́tenes</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>7.60</td>
<td>1.63</td>
<td>7.72</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>7.12</td>
<td>0.71</td>
<td>3.10</td>
</tr>
<tr>
<td>Porotal</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>6.98</td>
<td>2.26</td>
<td>11.22</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>22.17</td>
<td>15.11</td>
<td>50.94</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>13.58</td>
<td>10.27</td>
<td>42.41</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>7.77</td>
<td>0.75</td>
<td>3.18</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>11.50</td>
<td>3.89</td>
<td>15.30</td>
</tr>
<tr>
<td>Tierruca</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>11.61</td>
<td>8.60</td>
<td>37.49</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>11.44</td>
<td>3.06</td>
<td>12.44</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>5.74</td>
<td>0.47</td>
<td>2.18</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>5.60</td>
<td>0.84</td>
<td>4.27</td>
</tr>
<tr>
<td>Pañilanco</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>12.61</td>
<td>8.06</td>
<td>34.37</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>8.65</td>
<td>1.39</td>
<td>5.08</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>15.13</td>
<td>3.90</td>
<td>10.71</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0.6</td>
<td>Cachapoal</td>
<td>0.859</td>
<td>26.87</td>
<td>278.01</td>
<td>882.16</td>
</tr>
<tr>
<td>Lolol</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>11.84</td>
<td>13.95</td>
<td>59.65</td>
</tr>
<tr>
<td>Culemco</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>10.87</td>
<td>3.46</td>
<td>13.06</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0.6</td>
<td>Nilahue</td>
<td>0.845</td>
<td>8.75</td>
<td>4.35</td>
<td>20.21</td>
</tr>
</tbody>
</table>
Table 1

NOMBRE EMBALSE	**C escorrentía**	**Zona CF**	**CF**	**Pp (T, tc)**	**Q(T) V-K**	**Q(T) Racional**
Los Negros | 0,6 | Nilahue | 0,845 | 7,48 | 3,85 | 20,31
El Guaiaco | 0,6 | Cachapaoal | 0,859 | 6,37 | 1,31 | 6,99
El Huique | 0,6 | Cachapaoal | 0,859 | 6,37 | 1,45 | 7,90
Santa Lucia (Santa Margarita) | 0,6 | Cachapaoal | 0,859 | 7,01 | 0,42 | 1,75
Jaime Ramírez | 0,6 | Nilahue | 0,845 | 8,34 | 2,68 | 12,47
La Troya | 0,6 | Cachapaoal | 0,859 | 15,16 | 2,26 | 7,22
Nilahue | 0,6 | Nilahue | 0,845 | 11,02 | 7,02 | 27,67
El Cardonal | 0,6 | Nilahue | 0,845 | 5,99 | 0,66 | 3,14
Lagunillas | 0,6 | Nilahue | 0,845 | 7,00 | 0,92 | 4,02
La Gloria (La cruz) | 0,6 | Nilahue | 0,845 | 10,18 | 6,87 | 28,82
Quesería | 0,6 | Nilahue | 0,845 | 6,43 | 1,25 | 6,05
Salto De Agua | 0,6 | Nilahue | 0,845 | 11,99 | 5,45 | 20,54
Callihue | 0,6 | Nilahue | 0,845 | 11,17 | 4,65 | 18,22
Pataguas Cerro Guirabo | 0,6 | Cachapaoal | 0,859 | 10,00 | 2,33 | 9,29

Cuadro 4.3.4-5

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T = 10 AÑOS

NOMBRE EMBALSE	**C escorrentía**	**Zona CF**	**CF**	**Pp (T, tc)**	**Q(T) V-K**	**Q(T) Racional**
Los Maquis | 0,68 | Cachapaoal | 0,98 | 7,93 | 2,77 | 9,86
Pilacicito | 0,68 | Coya | 0,98 | 28,91 | 77,50 | 218,13
Romeral | 0,68 | Coya | 0,98 | 7,96 | 2,17 | 8,01
Picaquirín | 0,68 | Coya | 0,98 | 18,53 | 22,58 | 70,57
Esmeralda | 0,68 | Cachapaoal | 0,98 | 10,38 | 2,00 | 4,94
Chancón | 0,68 | Coya | 0,98 | 10,45 | 12,21 | 46,52
San Isidro | 0,68 | Cachapaoal | 0,98 | 15,37 | 25,39 | 76,00
Millahue | 0,68 | Cachapaoal | 0,98 | 16,33 | 39,40 | 118,88
San Hernán (San José De Las Pataguas) | 0,68 | Cachapaoal | 0,98 | 14,78 | 24,44 | 75,59
Idahue | 0,68 | Cachapaoal | 0,98 | 11,15 | 14,38 | 46,06
San Vicente | 0,68 | Cachapaoal | 0,98 | 14,93 | 10,32 | 31,39
Cocauquén o Pailimo 1 | 0,68 | Nilahue | 0,99 | 14,80 | 24,29 | 82,31
Piedras Blancas o Pailimo 2 | 0,68 | Nilahue | 0,99 | 7,81 | 2,61 | 9,64
La Rosa | 0,68 | Nilahue | 0,99 | 8,63 | 4,49 | 16,09
Alcones (El Sauce) | 0,68 | Nilahue | 0,99 | 18,54 | 45,14 | 141,87
Mallermo | 0,68 | Nilahue | 0,99 | 8,68 | 3,16 | 10,66
Aguadilla | 0,68 | Nilahue | 0,99 | 11,54 | 5,77 | 17,75
Los Maitenes | 0,68 | Cachapaoal | 0,98 | 8,67 | 2,78 | 9,99

Capítulo 4-16

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Cescoorrentia</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>8,12</td>
<td>1,22</td>
<td>4,00</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>7,96</td>
<td>3,85</td>
<td>14,50</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>25,29</td>
<td>25,75</td>
<td>65,86</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>15,91</td>
<td>18,08</td>
<td>56,32</td>
</tr>
<tr>
<td>Piluchén</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>8,87</td>
<td>1,27</td>
<td>4,11</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>13,12</td>
<td>6,63</td>
<td>19,78</td>
</tr>
<tr>
<td>Tierruca</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>13,25</td>
<td>14,66</td>
<td>48,47</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>13,05</td>
<td>5,21</td>
<td>16,09</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>6,73</td>
<td>0,83</td>
<td>2,90</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>6,56</td>
<td>1,48</td>
<td>5,67</td>
</tr>
<tr>
<td>Pañilanco</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>14,77</td>
<td>14,20</td>
<td>45,64</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>9,87</td>
<td>2,36</td>
<td>6,57</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>17,26</td>
<td>6,65</td>
<td>13,85</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>30,65</td>
<td>473,64</td>
<td>1140,61</td>
</tr>
<tr>
<td>Lolol</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>13,87</td>
<td>24,56</td>
<td>79,20</td>
</tr>
<tr>
<td>Culenco</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>12,74</td>
<td>6,09</td>
<td>17,34</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>10,25</td>
<td>7,66</td>
<td>26,84</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>8,76</td>
<td>6,78</td>
<td>26,97</td>
</tr>
<tr>
<td>El Guaco</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>7,27</td>
<td>2,22</td>
<td>9,04</td>
</tr>
<tr>
<td>El Huique</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>7,27</td>
<td>2,48</td>
<td>10,21</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>8,00</td>
<td>0,71</td>
<td>2,26</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>9,77</td>
<td>4,71</td>
<td>16,56</td>
</tr>
<tr>
<td>La Troya</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>17,29</td>
<td>3,85</td>
<td>9,34</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>12,91</td>
<td>12,35</td>
<td>36,74</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>7,02</td>
<td>1,15</td>
<td>4,17</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>8,20</td>
<td>1,61</td>
<td>5,33</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>11,93</td>
<td>12,09</td>
<td>38,27</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>7,53</td>
<td>2,20</td>
<td>8,04</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>14,05</td>
<td>9,60</td>
<td>27,27</td>
</tr>
<tr>
<td>Callihue</td>
<td>0,68</td>
<td>Nilahue</td>
<td>0,99</td>
<td>13,09</td>
<td>8,19</td>
<td>24,20</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>11,40</td>
<td>3,97</td>
<td>12,02</td>
</tr>
</tbody>
</table>
CUADRO 4.3.4-6
CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T= 15 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>8,58</td>
<td>3,29</td>
<td>11,49</td>
</tr>
<tr>
<td>Pilaiquito</td>
<td>0.73</td>
<td>Coya</td>
<td>1.06</td>
<td>31,35</td>
<td>92,24</td>
<td>254,62</td>
</tr>
<tr>
<td>Romeral</td>
<td>0.73</td>
<td>Coya</td>
<td>1.06</td>
<td>8,63</td>
<td>2,58</td>
<td>9,35</td>
</tr>
<tr>
<td>Picaquí</td>
<td>0.73</td>
<td>Coya</td>
<td>1.06</td>
<td>20,09</td>
<td>26,88</td>
<td>8,32</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>11,28</td>
<td>2,39</td>
<td>5,78</td>
</tr>
<tr>
<td>Chancón</td>
<td>0.73</td>
<td>Coya</td>
<td>1.06</td>
<td>11,33</td>
<td>14,53</td>
<td>54,30</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>16,69</td>
<td>30,29</td>
<td>88,86</td>
</tr>
<tr>
<td>Milahue</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>17,74</td>
<td>46,99</td>
<td>139,00</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>16,06</td>
<td>29,15</td>
<td>88,39</td>
</tr>
<tr>
<td>Idahue</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>12,11</td>
<td>17,15</td>
<td>53,86</td>
</tr>
<tr>
<td>San Vicente</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>16,22</td>
<td>12,31</td>
<td>36,70</td>
</tr>
<tr>
<td>Cocaquén o Pailimo 1</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>16,15</td>
<td>29,13</td>
<td>96,67</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>8,52</td>
<td>3,13</td>
<td>11,32</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>9,41</td>
<td>5,39</td>
<td>18,89</td>
</tr>
<tr>
<td>Alones (El Sauce)</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>20,23</td>
<td>54,13</td>
<td>166,62</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>9,47</td>
<td>3,79</td>
<td>12,52</td>
</tr>
<tr>
<td>Aguadailla</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>12,59</td>
<td>6,92</td>
<td>20,85</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>9,42</td>
<td>3,32</td>
<td>11,68</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>8,82</td>
<td>1,45</td>
<td>4,68</td>
</tr>
<tr>
<td>Porotal</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>8,65</td>
<td>4,59</td>
<td>16,96</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>27,47</td>
<td>30,71</td>
<td>77,02</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>17,35</td>
<td>21,69</td>
<td>66,14</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>9,63</td>
<td>1,52</td>
<td>4,81</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>14,25</td>
<td>7,91</td>
<td>23,13</td>
</tr>
<tr>
<td>Tierraica</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>14,39</td>
<td>17,48</td>
<td>56,67</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>14,17</td>
<td>6,22</td>
<td>18,81</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>7,34</td>
<td>1,00</td>
<td>3,40</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>7,16</td>
<td>1,77</td>
<td>6,65</td>
</tr>
<tr>
<td>Pañilongo</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.06</td>
<td>15,88</td>
<td>16,72</td>
<td>52,83</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>10,72</td>
<td>2,82</td>
<td>7,68</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>18,74</td>
<td>7,93</td>
<td>16,19</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.06</td>
<td>33,15</td>
<td>562,00</td>
<td>1328,14</td>
</tr>
<tr>
<td>Lolol</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>15,14</td>
<td>29,45</td>
<td>93,01</td>
</tr>
<tr>
<td>Culencito</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>13,87</td>
<td>7,28</td>
<td>20,34</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.08</td>
<td>11,16</td>
<td>9,17</td>
<td>31,47</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>C escorrentía</td>
<td>Zona CF</td>
<td>CF</td>
<td>Pp (T, tc)</td>
<td>Q(T) V-K</td>
<td>Q(T) Racional</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>----</td>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>9,54</td>
<td>8,12</td>
<td>31,63</td>
</tr>
<tr>
<td>El Guaioco</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,06</td>
<td>7,90</td>
<td>2,65</td>
<td>10,57</td>
</tr>
<tr>
<td>El Huique</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,06</td>
<td>7,90</td>
<td>2,95</td>
<td>11,94</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,06</td>
<td>8,65</td>
<td>0,84</td>
<td>2,63</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>10,66</td>
<td>5,65</td>
<td>19,44</td>
</tr>
<tr>
<td>La Troya</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,06</td>
<td>18,78</td>
<td>4,59</td>
<td>10,92</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>14,09</td>
<td>4,82</td>
<td>43,15</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>7,66</td>
<td>1,38</td>
<td>4,90</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>8,95</td>
<td>1,93</td>
<td>6,26</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>13,01</td>
<td>14,50</td>
<td>44,94</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>8,22</td>
<td>2,64</td>
<td>9,44</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>15,33</td>
<td>11,51</td>
<td>32,02</td>
</tr>
<tr>
<td>Calilhue</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,08</td>
<td>14,28</td>
<td>9,82</td>
<td>28,42</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,06</td>
<td>12,39</td>
<td>4,73</td>
<td>14,05</td>
</tr>
</tbody>
</table>

CUADRO 4.3.4-7
CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T=20 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>9,15</td>
<td>3,75</td>
<td>12,88</td>
</tr>
<tr>
<td>Pilacito</td>
<td>0,77</td>
<td>Coya</td>
<td>1,14</td>
<td>33,52</td>
<td>105,40</td>
<td>286,31</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,77</td>
<td>Coya</td>
<td>1,14</td>
<td>9,22</td>
<td>2,95</td>
<td>10,52</td>
</tr>
<tr>
<td>Picarquín</td>
<td>0,77</td>
<td>Coya</td>
<td>1,14</td>
<td>21,55</td>
<td>30,85</td>
<td>92,96</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>12,00</td>
<td>2,71</td>
<td>6,47</td>
</tr>
<tr>
<td>Chancón</td>
<td>0,77</td>
<td>Coya</td>
<td>1,14</td>
<td>12,11</td>
<td>16,60</td>
<td>61,06</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>17,77</td>
<td>34,42</td>
<td>99,49</td>
</tr>
<tr>
<td>Millahue</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>18,83</td>
<td>53,23</td>
<td>155,21</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>17,05</td>
<td>33,02</td>
<td>98,70</td>
</tr>
<tr>
<td>Idahue</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>12,86</td>
<td>19,42</td>
<td>60,14</td>
</tr>
<tr>
<td>San Vicente</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>17,22</td>
<td>13,95</td>
<td>40,98</td>
</tr>
<tr>
<td>Cocaquatén o Paillmo 1</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>17,20</td>
<td>33,12</td>
<td>108,27</td>
</tr>
<tr>
<td>Piedras Blancas o Paillmo 2</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>9,07</td>
<td>3,55</td>
<td>12,68</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>10,02</td>
<td>6,13</td>
<td>21,16</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>21,54</td>
<td>61,54</td>
<td>186,61</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>10,09</td>
<td>4,31</td>
<td>14,03</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>13,41</td>
<td>7,87</td>
<td>23,35</td>
</tr>
<tr>
<td>Los Maítenes</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>10,00</td>
<td>3,76</td>
<td>13,04</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>C escorrentía</td>
<td>Zona CF</td>
<td>CF</td>
<td>Pp (T, tc)</td>
<td>Q(T) V-K</td>
<td>Q (T) racional</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------</td>
<td>----------</td>
<td>----</td>
<td>------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>9,36</td>
<td>1,64</td>
<td>5,23</td>
</tr>
<tr>
<td>Porotal</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>9,16</td>
<td>5,20</td>
<td>18,94</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>29,17</td>
<td>34,79</td>
<td>86,00</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>18,48</td>
<td>24,66</td>
<td>74,08</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>10,23</td>
<td>1,72</td>
<td>5,37</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>15,13</td>
<td>8,96</td>
<td>25,83</td>
</tr>
<tr>
<td>Tierruca</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>15,28</td>
<td>19,80</td>
<td>63,28</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>15,04</td>
<td>7,04</td>
<td>21,01</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>7,82</td>
<td>1,14</td>
<td>3,81</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>7,62</td>
<td>2,02</td>
<td>7,45</td>
</tr>
<tr>
<td>Pañilonco</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>17,16</td>
<td>19,36</td>
<td>60,04</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>11,41</td>
<td>3,20</td>
<td>8,60</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>19,95</td>
<td>9,01</td>
<td>18,13</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>35,34</td>
<td>639,92</td>
<td>1489,26</td>
</tr>
<tr>
<td>Loloí</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>16,12</td>
<td>33,49</td>
<td>104,18</td>
</tr>
<tr>
<td>Culenco</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>14,79</td>
<td>8,30</td>
<td>22,81</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>11,90</td>
<td>10,44</td>
<td>35,30</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>10,18</td>
<td>9,25</td>
<td>35,48</td>
</tr>
<tr>
<td>El Guaico</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>8,40</td>
<td>3,02</td>
<td>11,83</td>
</tr>
<tr>
<td>El Huique</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>8,40</td>
<td>3,36</td>
<td>13,37</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>9,23</td>
<td>0,96</td>
<td>2,95</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>11,35</td>
<td>6,43</td>
<td>21,78</td>
</tr>
<tr>
<td>La Troya</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>19,99</td>
<td>5,22</td>
<td>12,23</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>15,00</td>
<td>16,85</td>
<td>48,33</td>
</tr>
<tr>
<td>El Cardenal</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>8,16</td>
<td>1,57</td>
<td>5,49</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>9,53</td>
<td>2,20</td>
<td>7,02</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>13,85</td>
<td>16,49</td>
<td>50,33</td>
</tr>
<tr>
<td>Quesería</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>8,75</td>
<td>3,01</td>
<td>10,57</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>16,32</td>
<td>13,09</td>
<td>35,87</td>
</tr>
<tr>
<td>Callihue</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,15</td>
<td>15,21</td>
<td>11,17</td>
<td>31,83</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>13,19</td>
<td>5,38</td>
<td>15,73</td>
</tr>
</tbody>
</table>
CUADRO 4.3.4-8
CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T=25 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q (T) racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>9,47</td>
<td>4,07</td>
<td>13,85</td>
</tr>
<tr>
<td>Pilacitico</td>
<td>0,8</td>
<td>Coya</td>
<td>1,16</td>
<td>34,22</td>
<td>112,39</td>
<td>303,75</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,8</td>
<td>Coya</td>
<td>1,16</td>
<td>9,42</td>
<td>3,15</td>
<td>11,16</td>
</tr>
<tr>
<td>Picarquín</td>
<td>0,8</td>
<td>Coya</td>
<td>1,16</td>
<td>21,93</td>
<td>32,75</td>
<td>98,27</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>12,39</td>
<td>2,93</td>
<td>6,94</td>
</tr>
<tr>
<td>Chancón</td>
<td>0,8</td>
<td>Coya</td>
<td>1,16</td>
<td>12,37</td>
<td>17,70</td>
<td>64,78</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>18,35</td>
<td>37,22</td>
<td>106,74</td>
</tr>
<tr>
<td>Milahue</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>19,50</td>
<td>57,74</td>
<td>166,97</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>17,65</td>
<td>35,82</td>
<td>106,17</td>
</tr>
<tr>
<td>Idahue</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>13,31</td>
<td>21,07</td>
<td>64,69</td>
</tr>
<tr>
<td>San Vicente</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>17,83</td>
<td>15,13</td>
<td>44,09</td>
</tr>
<tr>
<td>Cocaquén o Pailimo 1</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>17,79</td>
<td>35,91</td>
<td>116,40</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>9,39</td>
<td>3,85</td>
<td>13,63</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>10,37</td>
<td>6,64</td>
<td>22,75</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>22,29</td>
<td>66,71</td>
<td>200,63</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>10,44</td>
<td>4,67</td>
<td>15,08</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>13,88</td>
<td>8,53</td>
<td>25,11</td>
</tr>
<tr>
<td>Los Maítenes</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>10,35</td>
<td>4,08</td>
<td>14,03</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>9,69</td>
<td>1,78</td>
<td>5,62</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>9,51</td>
<td>5,65</td>
<td>20,37</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>30,20</td>
<td>37,74</td>
<td>92,51</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>19,12</td>
<td>26,73</td>
<td>79,64</td>
</tr>
<tr>
<td>Pihuichén</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>10,59</td>
<td>1,87</td>
<td>5,77</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>15,67</td>
<td>9,71</td>
<td>27,79</td>
</tr>
<tr>
<td>Tierruca</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>15,82</td>
<td>21,48</td>
<td>68,08</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>15,58</td>
<td>7,64</td>
<td>22,60</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>8,09</td>
<td>1,23</td>
<td>4,09</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>7,89</td>
<td>2,19</td>
<td>8,01</td>
</tr>
<tr>
<td>Pañilonco</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>17,76</td>
<td>20,98</td>
<td>64,55</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>11,78</td>
<td>3,46</td>
<td>9,22</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>20,60</td>
<td>9,74</td>
<td>19,45</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>36,59</td>
<td>694,16</td>
<td>1602,05</td>
</tr>
<tr>
<td>Lolol</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>16,68</td>
<td>36,30</td>
<td>112,00</td>
</tr>
<tr>
<td>Culenco</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>15,31</td>
<td>9,00</td>
<td>24,52</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>12,32</td>
<td>11,32</td>
<td>37,95</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>C escorrentía</td>
<td>Zona CF</td>
<td>CF</td>
<td>Pp (T, tc)</td>
<td>Q(T) V-K</td>
<td>Q (T) racional</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------</td>
<td>----</td>
<td>-----------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>10,53</td>
<td>10,02</td>
<td>38,14</td>
</tr>
<tr>
<td>El Guaiico</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>8,68</td>
<td>3,26</td>
<td>12,70</td>
</tr>
<tr>
<td>El Huíque</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>8,68</td>
<td>3,63</td>
<td>14,34</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>9,55</td>
<td>1,04</td>
<td>3,17</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>11,75</td>
<td>6,96</td>
<td>23,41</td>
</tr>
<tr>
<td>La Troya</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>20,65</td>
<td>5,65</td>
<td>13,12</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>15,52</td>
<td>18,26</td>
<td>51,96</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>8,44</td>
<td>1,71</td>
<td>5,90</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>9,86</td>
<td>2,38</td>
<td>7,54</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>14,34</td>
<td>17,87</td>
<td>54,11</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>9,06</td>
<td>3,26</td>
<td>11,37</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>16,89</td>
<td>14,18</td>
<td>38,56</td>
</tr>
<tr>
<td>Callihue</td>
<td>0,8</td>
<td>Nilahue</td>
<td>1,19</td>
<td>15,74</td>
<td>12,11</td>
<td>34,22</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0,8</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>13,62</td>
<td>5,82</td>
<td>16,88</td>
</tr>
</tbody>
</table>

CUADRO 4.3.4-9
CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING
T=50 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q (T) racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>10,61</td>
<td>5,09</td>
<td>16,87</td>
</tr>
<tr>
<td>Pilaicito</td>
<td>0,87</td>
<td>Coya</td>
<td>1,30</td>
<td>38,36</td>
<td>140,77</td>
<td>370,20</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,87</td>
<td>Coya</td>
<td>1,30</td>
<td>10,55</td>
<td>3,94</td>
<td>13,60</td>
</tr>
<tr>
<td>Picaquín</td>
<td>0,87</td>
<td>Coya</td>
<td>1,30</td>
<td>24,57</td>
<td>41,02</td>
<td>119,77</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>13,88</td>
<td>3,67</td>
<td>8,45</td>
</tr>
<tr>
<td>Chancón</td>
<td>0,87</td>
<td>Coya</td>
<td>1,30</td>
<td>13,86</td>
<td>22,17</td>
<td>78,95</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>20,54</td>
<td>46,56</td>
<td>129,97</td>
</tr>
<tr>
<td>Millahue</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>21,83</td>
<td>72,24</td>
<td>203,31</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>19,76</td>
<td>44,82</td>
<td>129,28</td>
</tr>
<tr>
<td>Idahue</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>14,91</td>
<td>26,36</td>
<td>78,77</td>
</tr>
<tr>
<td>San Vicente</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>19,96</td>
<td>18,93</td>
<td>53,68</td>
</tr>
<tr>
<td>Cocauquén o Pailino 1</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>20,19</td>
<td>45,66</td>
<td>143,61</td>
</tr>
<tr>
<td>Piedras Blancas o Pailino 2</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>10,65</td>
<td>4,90</td>
<td>16,82</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>11,76</td>
<td>8,44</td>
<td>28,07</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>25,29</td>
<td>84,83</td>
<td>247,52</td>
</tr>
<tr>
<td>Mallerme</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>11,84</td>
<td>5,94</td>
<td>18,60</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>15,74</td>
<td>10,85</td>
<td>30,97</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>11,59</td>
<td>5,10</td>
<td>17,08</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>C escorrentía</td>
<td>Zona CF</td>
<td>CF</td>
<td>Pp (T, tc)</td>
<td>Q(T) V-K</td>
<td>Q (T) racional</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>----</td>
<td>------------</td>
<td>----------</td>
<td>---------------</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>10,85</td>
<td>2,23</td>
<td>6,85</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>10,65</td>
<td>7,06</td>
<td>24,80</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>33,81</td>
<td>47,21</td>
<td>112,64</td>
</tr>
<tr>
<td>Carrizal</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>21,69</td>
<td>33,99</td>
<td>98,26</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>11,85</td>
<td>2,34</td>
<td>7,03</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>17,54</td>
<td>12,15</td>
<td>33,84</td>
</tr>
<tr>
<td>Tieruca</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>17,71</td>
<td>26,88</td>
<td>82,29</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>17,44</td>
<td>9,56</td>
<td>27,51</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>9,17</td>
<td>1,57</td>
<td>5,05</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>8,95</td>
<td>2,78</td>
<td>9,88</td>
</tr>
<tr>
<td>Pañilono</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>20,14</td>
<td>26,68</td>
<td>79,63</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>13,19</td>
<td>4,33</td>
<td>11,23</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>23,07</td>
<td>12,19</td>
<td>23,68</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>40,97</td>
<td>868,46</td>
<td>1950,70</td>
</tr>
<tr>
<td>Lolol</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>18,92</td>
<td>46,16</td>
<td>138,18</td>
</tr>
<tr>
<td>Culenco</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>17,37</td>
<td>11,44</td>
<td>30,26</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>13,98</td>
<td>14,39</td>
<td>46,82</td>
</tr>
<tr>
<td>Los Negros</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>11,94</td>
<td>12,75</td>
<td>47,06</td>
</tr>
<tr>
<td>El Guaco</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>9,72</td>
<td>4,08</td>
<td>15,46</td>
</tr>
<tr>
<td>El Huique</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>9,72</td>
<td>4,54</td>
<td>17,47</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>10,70</td>
<td>1,30</td>
<td>3,86</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>13,33</td>
<td>8,86</td>
<td>28,89</td>
</tr>
<tr>
<td>La Troya</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>23,12</td>
<td>7,06</td>
<td>15,97</td>
</tr>
<tr>
<td>Nilahue</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>17,61</td>
<td>23,22</td>
<td>64,10</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>9,57</td>
<td>2,17</td>
<td>7,28</td>
</tr>
<tr>
<td>Lagunaillas</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>11,19</td>
<td>3,03</td>
<td>9,31</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>16,26</td>
<td>22,72</td>
<td>66,76</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>10,27</td>
<td>4,14</td>
<td>14,02</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>19,16</td>
<td>18,04</td>
<td>47,57</td>
</tr>
<tr>
<td>Calihue</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,35</td>
<td>17,85</td>
<td>15,40</td>
<td>42,21</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>15,25</td>
<td>7,28</td>
<td>20,55</td>
</tr>
</tbody>
</table>
CUADRO 4.3.4-10
CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

T=100 AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>11,74</td>
<td>6,63</td>
<td>21,46</td>
</tr>
<tr>
<td>Pilacito</td>
<td>1</td>
<td>Coya</td>
<td>1.44</td>
<td>42,49</td>
<td>183,68</td>
<td>471,34</td>
</tr>
<tr>
<td>Romeral</td>
<td>1</td>
<td>Coya</td>
<td>1.44</td>
<td>11,69</td>
<td>5,14</td>
<td>17,32</td>
</tr>
<tr>
<td>Picarquín</td>
<td>1</td>
<td>Coya</td>
<td>1.44</td>
<td>27,22</td>
<td>53,52</td>
<td>152,49</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>15,36</td>
<td>4,78</td>
<td>10,75</td>
</tr>
<tr>
<td>Chancón</td>
<td>1</td>
<td>Coya</td>
<td>1.44</td>
<td>15,36</td>
<td>28,93</td>
<td>100,53</td>
</tr>
<tr>
<td>San Isidro</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>22,74</td>
<td>60,70</td>
<td>165,36</td>
</tr>
<tr>
<td>Millahue</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>24,16</td>
<td>94,18</td>
<td>258,66</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>21,87</td>
<td>58,42</td>
<td>164,47</td>
</tr>
<tr>
<td>Idahue</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>16,50</td>
<td>34,36</td>
<td>100,22</td>
</tr>
<tr>
<td>San Vicente</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>22,09</td>
<td>24,67</td>
<td>68,30</td>
</tr>
<tr>
<td>Cocauquén o Pailimo 1</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>22,58</td>
<td>60,30</td>
<td>184,63</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>11,91</td>
<td>6,47</td>
<td>21,62</td>
</tr>
<tr>
<td>La Rosa</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>13,16</td>
<td>11,15</td>
<td>36,08</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>28,28</td>
<td>112,03</td>
<td>318,22</td>
</tr>
<tr>
<td>Mallermo</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>13,25</td>
<td>7,85</td>
<td>23,92</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>17,61</td>
<td>14,33</td>
<td>39,82</td>
</tr>
<tr>
<td>Los Malteses</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>12,83</td>
<td>6,65</td>
<td>21,73</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>12,01</td>
<td>2,91</td>
<td>8,71</td>
</tr>
<tr>
<td>Porotal</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>11,78</td>
<td>9,21</td>
<td>31,55</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>37,43</td>
<td>61,55</td>
<td>143,31</td>
</tr>
<tr>
<td>Carrizal</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>24,26</td>
<td>44,89</td>
<td>126,32</td>
</tr>
<tr>
<td>Pihuichén</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>13,12</td>
<td>3,04</td>
<td>8,94</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>19,42</td>
<td>15,84</td>
<td>43,05</td>
</tr>
<tr>
<td>Tierruca</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>19,60</td>
<td>35,04</td>
<td>105,46</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>19,31</td>
<td>12,46</td>
<td>35,00</td>
</tr>
<tr>
<td>Los Novios</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>10,26</td>
<td>2,07</td>
<td>6,49</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>10,01</td>
<td>3,67</td>
<td>12,71</td>
</tr>
<tr>
<td>Pañilenco</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>22,53</td>
<td>35,24</td>
<td>102,38</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>14,60</td>
<td>5,65</td>
<td>14,29</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>25,53</td>
<td>15,89</td>
<td>30,13</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>45,35</td>
<td>1132,17</td>
<td>2481,81</td>
</tr>
<tr>
<td>Lolol</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>21,16</td>
<td>60,96</td>
<td>177,65</td>
</tr>
<tr>
<td>Culeno</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>19,43</td>
<td>15,11</td>
<td>38,90</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>15,63</td>
<td>19,01</td>
<td>60,20</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>C escorrentia</td>
<td>Zona CF</td>
<td>CF</td>
<td>Pp (T, tc)</td>
<td>Q(T) V-K</td>
<td>Q(T) racional</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------</td>
<td>----</td>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Los Negros</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>13,36</td>
<td>16,83</td>
<td>60,50</td>
</tr>
<tr>
<td>El Guárico</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>10,75</td>
<td>5,32</td>
<td>19,67</td>
</tr>
<tr>
<td>El Huique</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>10,75</td>
<td>5,92</td>
<td>22,22</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>11,84</td>
<td>1,70</td>
<td>4,91</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>14,91</td>
<td>11,70</td>
<td>37,14</td>
</tr>
<tr>
<td>La Troya</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>25,59</td>
<td>9,21</td>
<td>20,32</td>
</tr>
<tr>
<td>Nilahue</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>19,69</td>
<td>30,67</td>
<td>82,42</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>10,71</td>
<td>2,86</td>
<td>9,36</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>12,51</td>
<td>4,00</td>
<td>11,96</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>18,19</td>
<td>30,01</td>
<td>85,83</td>
</tr>
<tr>
<td>Quesería</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>11,49</td>
<td>5,47</td>
<td>18,03</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>21,43</td>
<td>23,82</td>
<td>61,16</td>
</tr>
<tr>
<td>Callihue</td>
<td>1</td>
<td>Nilahue</td>
<td>1.51</td>
<td>19,97</td>
<td>20,34</td>
<td>54,27</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.45</td>
<td>16,87</td>
<td>9,48</td>
<td>26,15</td>
</tr>
</tbody>
</table>

4.3.5 Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

El procedimiento es el siguiente:

- Según la ubicación geográfica y las características de las cuencas en estudio, se determina la región hidrológicamente homogénea a la que ella pertenece, que en este caso corresponde a latitudes entre 32 y 35°, y la correspondiente fórmula para periodo el Pluvial es la siguiente.

\[
Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915}
\]

Donde:

- \(Q_{10}\) Caudal medio diario máximo con periodo de retorno de 10 años (m³/s)
- \(P_{24}^{T=10}\) Precipitación diaria máxima de periodo de retorno 10 años (mm)
- \(Ap\) Área Pluvial de la cuenca (km²)

Se obtienen la variable adimensional (QT/Q10) de acuerdo con la curva de frecuencia adimensional correspondiente a la región homogénea para aquel periodo de retorno de interés. Estos valores se encuentran en la página 3-62 del estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda. y sus valores se presentan en el Cuadro 4.3.2-2.
CUADRO 4.3.5-1
CURVA DE FRECUENCIA REGIONAL. CAUDALES MEDIOS MÁXIMOS DIARIOS

<table>
<thead>
<tr>
<th>T</th>
<th>Q(T) / Q(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1,00</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,10</td>
</tr>
</tbody>
</table>

- Se determina el caudal medio diario de período de retorno 10 años.
- Se obtienen el caudal medio diario asociado al período de retorno de interés multiplicando la razón Q_T/Q_{10} determinado anteriormente.

Para obtener el caudal instantáneo máximo, para un período de retorno T, se debe ubicar la zona homogénea a la cual pertenece la cuenca en análisis. En el caso, en la VI Región, la Zona Homogénea en Período de Deshielo corresponde a la “Wn” ya que se localiza entre la latitud mayor que 32°00’ sur y 38°00’ sur.

Por la falta de otros métodos de cálculo y debido a la pequeña extensión de algunas cuencas, para la obtención de resultados se consultó la frecuencia máxima Q(T)/Q(10).

- Finalmente la expresión queda de la siguiente forma:

\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

En donde Q (T), corresponde al caudal instantáneo máximo según el período de retorno T y \(\alpha \) toma el valor de 1,19.

CUADRO 4.3.5-2
CAUDALES MEDIOS MÁXIMOS DIARIOS (m³/s)

<table>
<thead>
<tr>
<th>Embalse / T (años)</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>0,23</td>
<td>0,85</td>
<td>1,14</td>
<td>1,31</td>
<td>1,48</td>
<td>1,59</td>
<td>1,97</td>
<td>2,40</td>
</tr>
<tr>
<td>Pilacito</td>
<td>22,34</td>
<td>44,95</td>
<td>60,74</td>
<td>69,51</td>
<td>78,36</td>
<td>84,43</td>
<td>104,48</td>
<td>127,56</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,39</td>
<td>1,41</td>
<td>1,90</td>
<td>2,18</td>
<td>2,45</td>
<td>2,64</td>
<td>3,27</td>
<td>3,99</td>
</tr>
<tr>
<td>Picaquín</td>
<td>6,20</td>
<td>15,15</td>
<td>20,48</td>
<td>23,43</td>
<td>26,41</td>
<td>28,46</td>
<td>35,22</td>
<td>43,00</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0,15</td>
<td>0,58</td>
<td>0,78</td>
<td>0,89</td>
<td>1,01</td>
<td>1,09</td>
<td>1,35</td>
<td>1,64</td>
</tr>
<tr>
<td>Chancón</td>
<td>1,59</td>
<td>4,47</td>
<td>6,04</td>
<td>6,92</td>
<td>7,80</td>
<td>8,40</td>
<td>10,39</td>
<td>12,69</td>
</tr>
</tbody>
</table>
Q medio diario máx (T), DGA-AC

<table>
<thead>
<tr>
<th>Ubicación</th>
<th>5,03</th>
<th>12,32</th>
<th>16,64</th>
<th>19,05</th>
<th>21,47</th>
<th>23,14</th>
<th>28,63</th>
<th>34,95</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Isidro</td>
<td>7,95</td>
<td>18,14</td>
<td>24,52</td>
<td>28,06</td>
<td>31,63</td>
<td>34,08</td>
<td>42,17</td>
<td>51,49</td>
</tr>
<tr>
<td>Millahue</td>
<td>4,96</td>
<td>12,19</td>
<td>16,47</td>
<td>18,85</td>
<td>21,25</td>
<td>22,90</td>
<td>28,34</td>
<td>34,60</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>1,50</td>
<td>4,18</td>
<td>5,65</td>
<td>6,46</td>
<td>7,28</td>
<td>7,85</td>
<td>9,71</td>
<td>11,86</td>
</tr>
<tr>
<td>San Vicente</td>
<td>1,58</td>
<td>4,51</td>
<td>6,10</td>
<td>6,98</td>
<td>7,87</td>
<td>8,48</td>
<td>10,49</td>
<td>12,81</td>
</tr>
<tr>
<td>Cocaquén o Paillimo 1</td>
<td>3,21</td>
<td>8,11</td>
<td>10,96</td>
<td>12,55</td>
<td>14,14</td>
<td>15,24</td>
<td>18,86</td>
<td>23,03</td>
</tr>
<tr>
<td>Piedras Blancas o Paillimo 2</td>
<td>0,32</td>
<td>1,13</td>
<td>1,53</td>
<td>1,75</td>
<td>1,98</td>
<td>2,13</td>
<td>2,63</td>
<td>3,22</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,34</td>
<td>1,17</td>
<td>1,58</td>
<td>1,81</td>
<td>2,04</td>
<td>2,19</td>
<td>2,72</td>
<td>3,32</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>4,88</td>
<td>11,33</td>
<td>15,31</td>
<td>17,52</td>
<td>19,75</td>
<td>21,28</td>
<td>26,34</td>
<td>32,16</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0,22</td>
<td>0,80</td>
<td>1,08</td>
<td>1,23</td>
<td>1,39</td>
<td>1,49</td>
<td>1,85</td>
<td>2,26</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0,41</td>
<td>1,35</td>
<td>1,83</td>
<td>2,09</td>
<td>2,36</td>
<td>2,54</td>
<td>3,14</td>
<td>3,84</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>0,45</td>
<td>1,58</td>
<td>2,14</td>
<td>2,45</td>
<td>2,76</td>
<td>2,97</td>
<td>3,68</td>
<td>4,49</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0,17</td>
<td>0,67</td>
<td>0,91</td>
<td>1,04</td>
<td>1,17</td>
<td>1,26</td>
<td>1,56</td>
<td>1,91</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,38</td>
<td>1,31</td>
<td>1,77</td>
<td>2,02</td>
<td>2,28</td>
<td>2,46</td>
<td>3,04</td>
<td>3,71</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>5,34</td>
<td>13,00</td>
<td>17,57</td>
<td>20,10</td>
<td>22,66</td>
<td>24,42</td>
<td>30,21</td>
<td>36,89</td>
</tr>
<tr>
<td>Carrizal</td>
<td>2,36</td>
<td>6,25</td>
<td>8,45</td>
<td>9,67</td>
<td>10,90</td>
<td>11,75</td>
<td>14,54</td>
<td>17,75</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0,23</td>
<td>0,92</td>
<td>1,24</td>
<td>1,42</td>
<td>1,60</td>
<td>1,72</td>
<td>2,13</td>
<td>2,60</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0,67</td>
<td>2,11</td>
<td>2,85</td>
<td>3,26</td>
<td>3,68</td>
<td>3,96</td>
<td>4,91</td>
<td>5,99</td>
</tr>
<tr>
<td>Tierra Lucana</td>
<td>1,53</td>
<td>4,25</td>
<td>5,74</td>
<td>6,57</td>
<td>7,41</td>
<td>7,98</td>
<td>9,88</td>
<td>12,06</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>1,01</td>
<td>3,18</td>
<td>4,29</td>
<td>4,91</td>
<td>5,54</td>
<td>5,97</td>
<td>7,39</td>
<td>9,02</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0,10</td>
<td>0,42</td>
<td>0,56</td>
<td>0,64</td>
<td>0,72</td>
<td>0,78</td>
<td>0,97</td>
<td>1,18</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0,19</td>
<td>0,73</td>
<td>0,98</td>
<td>1,12</td>
<td>1,27</td>
<td>1,37</td>
<td>1,69</td>
<td>2,06</td>
</tr>
<tr>
<td>Pañilanco</td>
<td>2,25</td>
<td>6,12</td>
<td>8,27</td>
<td>9,47</td>
<td>10,67</td>
<td>11,50</td>
<td>14,23</td>
<td>17,37</td>
</tr>
<tr>
<td>Rincónada (La Macarena)</td>
<td>0,23</td>
<td>0,85</td>
<td>1,15</td>
<td>1,31</td>
<td>1,48</td>
<td>1,60</td>
<td>1,98</td>
<td>2,41</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>0,85</td>
<td>2,62</td>
<td>3,54</td>
<td>4,05</td>
<td>4,56</td>
<td>4,91</td>
<td>6,08</td>
<td>7,42</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>92,02</td>
<td>143,01</td>
<td>193,26</td>
<td>221,16</td>
<td>249,31</td>
<td>268,64</td>
<td>332,41</td>
<td>405,85</td>
</tr>
<tr>
<td>Loiöl</td>
<td>4,52</td>
<td>11,18</td>
<td>15,11</td>
<td>17,29</td>
<td>19,49</td>
<td>21,00</td>
<td>25,99</td>
<td>31,73</td>
</tr>
<tr>
<td>Cuienco</td>
<td>1,03</td>
<td>3,17</td>
<td>4,29</td>
<td>4,91</td>
<td>5,53</td>
<td>5,96</td>
<td>7,37</td>
<td>9,00</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>1,25</td>
<td>3,72</td>
<td>5,03</td>
<td>5,76</td>
<td>6,49</td>
<td>6,99</td>
<td>8,65</td>
<td>10,57</td>
</tr>
<tr>
<td>Los Negros</td>
<td>1,15</td>
<td>3,49</td>
<td>4,72</td>
<td>5,40</td>
<td>6,08</td>
<td>6,56</td>
<td>8,11</td>
<td>9,90</td>
</tr>
<tr>
<td>El Guaico</td>
<td>0,40</td>
<td>1,44</td>
<td>1,94</td>
<td>2,23</td>
<td>2,51</td>
<td>2,79</td>
<td>3,34</td>
<td>4,08</td>
</tr>
<tr>
<td>El Huículo</td>
<td>0,45</td>
<td>1,58</td>
<td>2,14</td>
<td>2,45</td>
<td>2,76</td>
<td>2,97</td>
<td>3,68</td>
<td>4,49</td>
</tr>
<tr>
<td>Santa Lucía (Santa Margarita)</td>
<td>0,13</td>
<td>0,55</td>
<td>0,74</td>
<td>0,85</td>
<td>0,96</td>
<td>1,03</td>
<td>1,28</td>
<td>1,56</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>0,86</td>
<td>2,76</td>
<td>3,73</td>
<td>4,27</td>
<td>4,81</td>
<td>5,18</td>
<td>6,41</td>
<td>7,83</td>
</tr>
<tr>
<td>La Troya</td>
<td>0,55</td>
<td>1,85</td>
<td>2,50</td>
<td>2,87</td>
<td>3,23</td>
<td>3,48</td>
<td>4,31</td>
<td>5,26</td>
</tr>
<tr>
<td>Nilahue</td>
<td>1,75</td>
<td>4,89</td>
<td>6,61</td>
<td>7,57</td>
<td>8,53</td>
<td>9,19</td>
<td>11,37</td>
<td>13,89</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>0,15</td>
<td>0,60</td>
<td>0,82</td>
<td>0,94</td>
<td>1,05</td>
<td>1,14</td>
<td>1,41</td>
<td>1,72</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0,21</td>
<td>0,80</td>
<td>1,09</td>
<td>1,24</td>
<td>1,40</td>
<td>1,51</td>
<td>1,87</td>
<td>2,28</td>
</tr>
<tr>
<td>La Gloria (La Cruz)</td>
<td>1,69</td>
<td>4,75</td>
<td>6,41</td>
<td>7,34</td>
<td>8,27</td>
<td>8,91</td>
<td>11,03</td>
<td>13,47</td>
</tr>
<tr>
<td>Quesería</td>
<td>0,26</td>
<td>0,98</td>
<td>1,32</td>
<td>1,51</td>
<td>1,70</td>
<td>1,84</td>
<td>2,27</td>
<td>2,77</td>
</tr>
<tr>
<td>Embalse / T (años)</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>-------------------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>0.28</td>
<td>1.01</td>
<td>1.36</td>
<td>1.56</td>
<td>1.76</td>
<td>1.89</td>
<td>2.34</td>
<td>2.86</td>
</tr>
<tr>
<td>Pilaicito</td>
<td>26.59</td>
<td>53.49</td>
<td>72.28</td>
<td>82.72</td>
<td>93.25</td>
<td>100.47</td>
<td>124.33</td>
<td>151.79</td>
</tr>
<tr>
<td>Romeral</td>
<td>0.46</td>
<td>1.68</td>
<td>2.26</td>
<td>2.59</td>
<td>2.92</td>
<td>3.15</td>
<td>3.89</td>
<td>4.75</td>
</tr>
<tr>
<td>Picaquín</td>
<td>7.38</td>
<td>18.03</td>
<td>24.37</td>
<td>27.88</td>
<td>31.43</td>
<td>33.87</td>
<td>41.91</td>
<td>51.17</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0.18</td>
<td>0.69</td>
<td>0.93</td>
<td>1.07</td>
<td>1.20</td>
<td>1.29</td>
<td>1.60</td>
<td>1.95</td>
</tr>
<tr>
<td>Chancón</td>
<td>1.89</td>
<td>5.32</td>
<td>7.19</td>
<td>8.23</td>
<td>9.28</td>
<td>10.00</td>
<td>12.37</td>
<td>15.10</td>
</tr>
<tr>
<td>San Isidro</td>
<td>5.99</td>
<td>14.66</td>
<td>19.81</td>
<td>22.67</td>
<td>25.55</td>
<td>27.53</td>
<td>34.07</td>
<td>41.60</td>
</tr>
<tr>
<td>Millahue</td>
<td>9.46</td>
<td>21.59</td>
<td>29.18</td>
<td>33.39</td>
<td>37.64</td>
<td>40.56</td>
<td>50.19</td>
<td>61.27</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>5.90</td>
<td>14.51</td>
<td>19.60</td>
<td>22.43</td>
<td>25.29</td>
<td>27.25</td>
<td>33.72</td>
<td>41.17</td>
</tr>
<tr>
<td>Idahue</td>
<td>1.79</td>
<td>4.97</td>
<td>6.72</td>
<td>7.69</td>
<td>8.67</td>
<td>9.34</td>
<td>11.56</td>
<td>14.11</td>
</tr>
<tr>
<td>San Vicente</td>
<td>1.88</td>
<td>5.37</td>
<td>7.26</td>
<td>8.30</td>
<td>9.36</td>
<td>10.09</td>
<td>12.48</td>
<td>15.24</td>
</tr>
<tr>
<td>Cocauquén o Pailim 1</td>
<td>3.82</td>
<td>9.66</td>
<td>13.05</td>
<td>14.93</td>
<td>16.83</td>
<td>18.14</td>
<td>22.44</td>
<td>27.40</td>
</tr>
<tr>
<td>Piedras Blancas o Pailim 2</td>
<td>0.37</td>
<td>1.35</td>
<td>1.82</td>
<td>2.09</td>
<td>2.35</td>
<td>2.53</td>
<td>3.13</td>
<td>3.83</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0.41</td>
<td>1.39</td>
<td>1.88</td>
<td>2.15</td>
<td>2.42</td>
<td>2.61</td>
<td>3.23</td>
<td>3.95</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>5.80</td>
<td>13.48</td>
<td>18.22</td>
<td>20.85</td>
<td>23.51</td>
<td>25.33</td>
<td>31.34</td>
<td>38.27</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0.26</td>
<td>0.95</td>
<td>1.28</td>
<td>1.46</td>
<td>1.65</td>
<td>1.78</td>
<td>2.20</td>
<td>2.69</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0.49</td>
<td>1.61</td>
<td>2.18</td>
<td>2.49</td>
<td>2.81</td>
<td>3.02</td>
<td>3.74</td>
<td>4.57</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>0.54</td>
<td>1.88</td>
<td>2.54</td>
<td>2.91</td>
<td>3.28</td>
<td>3.53</td>
<td>4.37</td>
<td>5.34</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0.20</td>
<td>0.80</td>
<td>1.08</td>
<td>1.24</td>
<td>1.39</td>
<td>1.50</td>
<td>1.86</td>
<td>2.27</td>
</tr>
<tr>
<td>Porotal</td>
<td>0.46</td>
<td>1.56</td>
<td>2.10</td>
<td>2.41</td>
<td>2.71</td>
<td>2.92</td>
<td>3.62</td>
<td>4.42</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>6.35</td>
<td>15.47</td>
<td>20.90</td>
<td>23.92</td>
<td>26.96</td>
<td>29.05</td>
<td>35.95</td>
<td>43.90</td>
</tr>
<tr>
<td>Carrizal</td>
<td>2.81</td>
<td>7.44</td>
<td>10.06</td>
<td>11.51</td>
<td>12.97</td>
<td>13.98</td>
<td>17.30</td>
<td>21.12</td>
</tr>
<tr>
<td>Pihuencén</td>
<td>0.28</td>
<td>1.09</td>
<td>1.48</td>
<td>1.69</td>
<td>1.90</td>
<td>2.05</td>
<td>2.54</td>
<td>3.10</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0.80</td>
<td>2.51</td>
<td>3.39</td>
<td>3.88</td>
<td>4.38</td>
<td>4.72</td>
<td>5.84</td>
<td>7.13</td>
</tr>
<tr>
<td>Tierraica</td>
<td>1.83</td>
<td>5.06</td>
<td>6.83</td>
<td>7.82</td>
<td>8.82</td>
<td>9.50</td>
<td>11.76</td>
<td>14.35</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>1.21</td>
<td>3.78</td>
<td>5.11</td>
<td>5.85</td>
<td>6.59</td>
<td>7.10</td>
<td>8.79</td>
<td>10.73</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0.11</td>
<td>0.49</td>
<td>0.67</td>
<td>0.76</td>
<td>0.86</td>
<td>0.93</td>
<td>1.15</td>
<td>1.40</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0.22</td>
<td>0.87</td>
<td>1.17</td>
<td>1.34</td>
<td>1.51</td>
<td>1.63</td>
<td>2.01</td>
<td>2.46</td>
</tr>
<tr>
<td>Pauilonco</td>
<td>2.68</td>
<td>7.28</td>
<td>9.84</td>
<td>11.27</td>
<td>12.70</td>
<td>13.68</td>
<td>16.93</td>
<td>20.67</td>
</tr>
<tr>
<td>Rincondona (La Macarena)</td>
<td>0.27</td>
<td>1.01</td>
<td>1.37</td>
<td>1.56</td>
<td>1.76</td>
<td>1.90</td>
<td>2.35</td>
<td>2.87</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>1.01</td>
<td>3.11</td>
<td>4.21</td>
<td>4.81</td>
<td>5.43</td>
<td>5.85</td>
<td>7.24</td>
<td>8.84</td>
</tr>
</tbody>
</table>
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins

<table>
<thead>
<tr>
<th>Q medio instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convento Viejo</td>
</tr>
<tr>
<td>Lolol</td>
</tr>
<tr>
<td>Cilenco</td>
</tr>
<tr>
<td>Pataguilla</td>
</tr>
<tr>
<td>Los Negros</td>
</tr>
<tr>
<td>El Guaco</td>
</tr>
<tr>
<td>El Huíque</td>
</tr>
<tr>
<td>Santa Lucía (Santa Margarita)</td>
</tr>
<tr>
<td>Jaime Ramirez</td>
</tr>
<tr>
<td>La Troya</td>
</tr>
<tr>
<td>Nilahue</td>
</tr>
<tr>
<td>El Cardonal</td>
</tr>
<tr>
<td>Lagunillas</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
</tr>
<tr>
<td>Quesería</td>
</tr>
<tr>
<td>Salto de Agua</td>
</tr>
<tr>
<td>Calihue</td>
</tr>
<tr>
<td>Pataguillas Cerro Guíbaro</td>
</tr>
</tbody>
</table>

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobreestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CUADRO 4.3.5-4
CAUDALES MÁXIMOS INSTANTÁNEOS (m³/s)

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>1,14</td>
<td>1,63</td>
<td>2,77</td>
<td>3,29</td>
<td>3,75</td>
<td>4,07</td>
<td>5,09</td>
<td>6,63</td>
<td>7,146</td>
<td>8,444</td>
<td>9,425</td>
</tr>
<tr>
<td>Pilascito</td>
<td>31,52</td>
<td>45,36</td>
<td>77,50</td>
<td>92,24</td>
<td>105,40</td>
<td>112,39</td>
<td>140,77</td>
<td>183,68</td>
<td>199,60</td>
<td>235,84</td>
<td>263,25</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,88</td>
<td>1,27</td>
<td>2,17</td>
<td>2,58</td>
<td>2,95</td>
<td>3,15</td>
<td>3,94</td>
<td>5,14</td>
<td>5,61</td>
<td>6,62</td>
<td>7,39</td>
</tr>
<tr>
<td>Picarquín</td>
<td>9,18</td>
<td>13,22</td>
<td>22,58</td>
<td>26,88</td>
<td>30,85</td>
<td>32,75</td>
<td>41,02</td>
<td>53,52</td>
<td>57,73</td>
<td>68,19</td>
<td>76,10</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0,82</td>
<td>1,17</td>
<td>2,00</td>
<td>2,39</td>
<td>2,71</td>
<td>2,93</td>
<td>3,67</td>
<td>4,78</td>
<td>5,11</td>
<td>6,03</td>
<td>6,73</td>
</tr>
<tr>
<td>Chancón</td>
<td>4,97</td>
<td>7,15</td>
<td>12,21</td>
<td>14,53</td>
<td>16,60</td>
<td>17,70</td>
<td>22,17</td>
<td>28,93</td>
<td>31,44</td>
<td>37,14</td>
<td>41,46</td>
</tr>
<tr>
<td>San Isidro</td>
<td>10,43</td>
<td>14,90</td>
<td>25,39</td>
<td>30,29</td>
<td>34,42</td>
<td>37,22</td>
<td>46,56</td>
<td>60,70</td>
<td>65,82</td>
<td>77,71</td>
<td>86,70</td>
</tr>
<tr>
<td>Milahue</td>
<td>16,18</td>
<td>23,13</td>
<td>39,40</td>
<td>46,99</td>
<td>53,23</td>
<td>57,74</td>
<td>72,24</td>
<td>94,18</td>
<td>101,52</td>
<td>119,95</td>
<td>133,89</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>10,04</td>
<td>14,35</td>
<td>24,44</td>
<td>29,15</td>
<td>33,02</td>
<td>35,82</td>
<td>44,82</td>
<td>58,42</td>
<td>62,95</td>
<td>74,38</td>
<td>83,02</td>
</tr>
<tr>
<td>Idahue</td>
<td>5,90</td>
<td>8,44</td>
<td>14,38</td>
<td>17,15</td>
<td>19,42</td>
<td>21,07</td>
<td>26,36</td>
<td>34,36</td>
<td>37,04</td>
<td>43,76</td>
<td>48,85</td>
</tr>
<tr>
<td>San Vicente</td>
<td>4,24</td>
<td>6,06</td>
<td>10,32</td>
<td>12,31</td>
<td>13,95</td>
<td>15,13</td>
<td>18,93</td>
<td>24,67</td>
<td>28,59</td>
<td>31,42</td>
<td>35,07</td>
</tr>
<tr>
<td>Cocaquí en o Palermo 1</td>
<td>9,27</td>
<td>13,80</td>
<td>24,29</td>
<td>28,61</td>
<td>33,12</td>
<td>35,91</td>
<td>45,66</td>
<td>60,30</td>
<td>64,66</td>
<td>76,67</td>
<td>85,75</td>
</tr>
<tr>
<td>Piedras Blancas o Palermo 2</td>
<td>0,99</td>
<td>1,48</td>
<td>2,61</td>
<td>3,07</td>
<td>3,55</td>
<td>3,85</td>
<td>4,90</td>
<td>6,47</td>
<td>6,94</td>
<td>8,23</td>
<td>9,20</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>2</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>500</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Rosa</td>
<td>1.71</td>
<td>2.55</td>
<td>4.49</td>
<td>5.29</td>
<td>6.13</td>
<td>6.64</td>
<td>8.44</td>
<td>11.15</td>
<td>11.96</td>
<td>14.18</td>
<td>15.86</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>17.22</td>
<td>25.63</td>
<td>45.14</td>
<td>53.16</td>
<td>61.54</td>
<td>66.71</td>
<td>84.83</td>
<td>112.03</td>
<td>120.20</td>
<td>142.51</td>
<td>159.39</td>
</tr>
<tr>
<td>Mallermo</td>
<td>1.21</td>
<td>1.80</td>
<td>3.16</td>
<td>3.72</td>
<td>4.31</td>
<td>4.67</td>
<td>5.94</td>
<td>7.85</td>
<td>8.42</td>
<td>9.98</td>
<td>11.16</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>2.20</td>
<td>3.28</td>
<td>5.77</td>
<td>6.80</td>
<td>7.87</td>
<td>8.53</td>
<td>10.85</td>
<td>14.33</td>
<td>15.37</td>
<td>18.22</td>
<td>20.38</td>
</tr>
<tr>
<td>Los Maítones</td>
<td>1.14</td>
<td>1.63</td>
<td>2.78</td>
<td>3.32</td>
<td>3.76</td>
<td>4.08</td>
<td>5.10</td>
<td>6.65</td>
<td>7.17</td>
<td>8.47</td>
<td>9.45</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>0.50</td>
<td>0.71</td>
<td>1.22</td>
<td>1.45</td>
<td>1.64</td>
<td>1.76</td>
<td>2.23</td>
<td>2.91</td>
<td>3.13</td>
<td>3.70</td>
<td>4.13</td>
</tr>
<tr>
<td>Porotal</td>
<td>1.58</td>
<td>2.26</td>
<td>3.85</td>
<td>4.59</td>
<td>5.20</td>
<td>5.65</td>
<td>7.06</td>
<td>9.21</td>
<td>9.93</td>
<td>11.73</td>
<td>13.09</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>10.57</td>
<td>15.11</td>
<td>25.75</td>
<td>30.71</td>
<td>34.79</td>
<td>37.74</td>
<td>47.21</td>
<td>61.55</td>
<td>66.33</td>
<td>78.37</td>
<td>87.48</td>
</tr>
<tr>
<td>Carrizal</td>
<td>6.90</td>
<td>10.27</td>
<td>18.08</td>
<td>21.30</td>
<td>24.66</td>
<td>26.73</td>
<td>33.99</td>
<td>44.89</td>
<td>48.16</td>
<td>57.10</td>
<td>63.86</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0.52</td>
<td>0.75</td>
<td>1.27</td>
<td>1.52</td>
<td>1.72</td>
<td>1.87</td>
<td>2.34</td>
<td>3.04</td>
<td>3.28</td>
<td>3.88</td>
<td>4.33</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>2.72</td>
<td>3.89</td>
<td>6.63</td>
<td>7.91</td>
<td>8.96</td>
<td>9.71</td>
<td>12.15</td>
<td>15.84</td>
<td>17.08</td>
<td>20.16</td>
<td>22.52</td>
</tr>
<tr>
<td>Tierruca</td>
<td>6.02</td>
<td>8.60</td>
<td>14.66</td>
<td>17.48</td>
<td>19.80</td>
<td>21.48</td>
<td>26.88</td>
<td>35.04</td>
<td>37.77</td>
<td>44.62</td>
<td>49.81</td>
</tr>
<tr>
<td>Guaidal</td>
<td>2.14</td>
<td>3.06</td>
<td>5.21</td>
<td>6.22</td>
<td>7.04</td>
<td>7.64</td>
<td>9.66</td>
<td>12.46</td>
<td>13.43</td>
<td>15.87</td>
<td>17.71</td>
</tr>
<tr>
<td>Los Novios</td>
<td>0.32</td>
<td>0.47</td>
<td>0.83</td>
<td>0.98</td>
<td>1.14</td>
<td>1.23</td>
<td>1.57</td>
<td>2.07</td>
<td>2.22</td>
<td>2.63</td>
<td>2.95</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>0.56</td>
<td>0.84</td>
<td>1.48</td>
<td>1.74</td>
<td>2.02</td>
<td>2.19</td>
<td>2.78</td>
<td>3.67</td>
<td>3.94</td>
<td>4.67</td>
<td>5.22</td>
</tr>
<tr>
<td>Pañónico</td>
<td>5.42</td>
<td>8.06</td>
<td>14.20</td>
<td>16.72</td>
<td>19.36</td>
<td>20.98</td>
<td>26.68</td>
<td>35.24</td>
<td>37.81</td>
<td>44.82</td>
<td>50.13</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>0.97</td>
<td>1.39</td>
<td>2.36</td>
<td>2.82</td>
<td>3.20</td>
<td>3.46</td>
<td>4.33</td>
<td>5.65</td>
<td>6.04</td>
<td>7.13</td>
<td>7.95</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>2.73</td>
<td>3.90</td>
<td>6.65</td>
<td>7.93</td>
<td>9.01</td>
<td>9.74</td>
<td>12.19</td>
<td>15.89</td>
<td>16.98</td>
<td>20.05</td>
<td>22.37</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>194.51</td>
<td>278.01</td>
<td>473.64</td>
<td>562.00</td>
<td>639.92</td>
<td>694.16</td>
<td>868.46</td>
<td>1132.17</td>
<td>1219.75</td>
<td>1441.22</td>
<td>1608.75</td>
</tr>
<tr>
<td>Loxol</td>
<td>9.37</td>
<td>13.95</td>
<td>24.56</td>
<td>29.45</td>
<td>33.49</td>
<td>36.30</td>
<td>46.16</td>
<td>60.96</td>
<td>65.42</td>
<td>77.56</td>
<td>86.73</td>
</tr>
<tr>
<td>Culeasco</td>
<td>2.32</td>
<td>3.46</td>
<td>6.09</td>
<td>7.28</td>
<td>8.30</td>
<td>9.00</td>
<td>11.44</td>
<td>15.11</td>
<td>16.18</td>
<td>19.18</td>
<td>21.44</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>2.92</td>
<td>4.35</td>
<td>7.66</td>
<td>9.17</td>
<td>10.44</td>
<td>11.32</td>
<td>14.39</td>
<td>19.01</td>
<td>20.41</td>
<td>24.19</td>
<td>27.05</td>
</tr>
<tr>
<td>Los Negros</td>
<td>2.59</td>
<td>3.85</td>
<td>6.78</td>
<td>8.12</td>
<td>9.25</td>
<td>10.02</td>
<td>12.75</td>
<td>16.83</td>
<td>18.03</td>
<td>21.36</td>
<td>23.89</td>
</tr>
<tr>
<td>El Quisco</td>
<td>0.91</td>
<td>1.31</td>
<td>2.22</td>
<td>2.65</td>
<td>3.02</td>
<td>3.26</td>
<td>4.08</td>
<td>5.32</td>
<td>5.68</td>
<td>6.71</td>
<td>7.48</td>
</tr>
<tr>
<td>El Higue</td>
<td>1.02</td>
<td>1.45</td>
<td>2.48</td>
<td>2.95</td>
<td>3.36</td>
<td>3.63</td>
<td>4.54</td>
<td>5.92</td>
<td>6.33</td>
<td>7.47</td>
<td>8.34</td>
</tr>
<tr>
<td>Santa Lucia (Santa Marga)</td>
<td>0.29</td>
<td>0.42</td>
<td>0.71</td>
<td>0.96</td>
<td>1.04</td>
<td>1.30</td>
<td>1.70</td>
<td>1.83</td>
<td>2.16</td>
<td>2.42</td>
<td>2.42</td>
</tr>
<tr>
<td>Jaime Ramirez</td>
<td>1.80</td>
<td>2.68</td>
<td>4.71</td>
<td>5.65</td>
<td>6.43</td>
<td>6.96</td>
<td>8.86</td>
<td>11.70</td>
<td>12.56</td>
<td>14.89</td>
<td>16.65</td>
</tr>
<tr>
<td>La Troya</td>
<td>1.58</td>
<td>2.26</td>
<td>3.85</td>
<td>4.59</td>
<td>5.22</td>
<td>5.65</td>
<td>7.06</td>
<td>9.21</td>
<td>9.84</td>
<td>11.62</td>
<td>12.96</td>
</tr>
<tr>
<td>Nilhue</td>
<td>4.71</td>
<td>7.02</td>
<td>12.35</td>
<td>14.82</td>
<td>16.85</td>
<td>18.26</td>
<td>23.22</td>
<td>30.67</td>
<td>32.93</td>
<td>39.04</td>
<td>43.66</td>
</tr>
<tr>
<td>El Cardenal</td>
<td>0.44</td>
<td>0.66</td>
<td>1.15</td>
<td>1.38</td>
<td>1.57</td>
<td>1.71</td>
<td>2.17</td>
<td>2.86</td>
<td>3.07</td>
<td>3.64</td>
<td>4.07</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>0.62</td>
<td>0.92</td>
<td>1.61</td>
<td>1.93</td>
<td>2.20</td>
<td>2.38</td>
<td>3.03</td>
<td>4.00</td>
<td>4.29</td>
<td>5.08</td>
<td>5.68</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>4.61</td>
<td>6.87</td>
<td>12.09</td>
<td>14.50</td>
<td>16.49</td>
<td>17.87</td>
<td>22.72</td>
<td>30.01</td>
<td>32.15</td>
<td>38.10</td>
<td>42.60</td>
</tr>
<tr>
<td>Queseria</td>
<td>0.84</td>
<td>1.25</td>
<td>2.20</td>
<td>2.64</td>
<td>3.01</td>
<td>3.26</td>
<td>4.14</td>
<td>5.47</td>
<td>5.87</td>
<td>6.96</td>
<td>7.78</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>3.65</td>
<td>5.45</td>
<td>9.60</td>
<td>11.51</td>
<td>13.09</td>
<td>14.18</td>
<td>18.04</td>
<td>23.82</td>
<td>25.58</td>
<td>30.32</td>
<td>33.91</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>1.63</td>
<td>2.33</td>
<td>3.97</td>
<td>4.73</td>
<td>5.38</td>
<td>5.82</td>
<td>7.28</td>
<td>9.48</td>
<td>10.14</td>
<td>11.97</td>
<td>13.36</td>
</tr>
</tbody>
</table>
4.3.6 Estimación de Caudales de Deshielo Máximos Probables Método DGA

El método denominado DGA-AC para crecidas de deshielo, corresponde a un análisis regional de crecidas del período de deshielo, desarrollado en base a los análisis de frecuencias efectuado a las series de excedencia para el período nival de caudales medios diarios máximos y caudales instantáneos máximos, correspondientes a 234 estaciones de control existente en el país.

La curva de frecuencia regional nival se incluye en el cuadro siguiente.

CUADRO 4.3.6-1
CURVA DE FRECUENCIA REGIONAL ZONA HOMOGENEA NIVAL "WN"
CUENCAS VI REGIÓN

<table>
<thead>
<tr>
<th>T</th>
<th>Q(T)/Q(10)</th>
<th>β</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>media</td>
<td>máx.</td>
</tr>
<tr>
<td>2</td>
<td>0.65</td>
<td>0.77</td>
</tr>
<tr>
<td>5</td>
<td>0.87</td>
<td>0.92</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>20</td>
<td>1.12</td>
<td>1.15</td>
</tr>
<tr>
<td>25</td>
<td>1.16</td>
<td>1.20</td>
</tr>
<tr>
<td>50</td>
<td>1.27</td>
<td>1.35</td>
</tr>
<tr>
<td>75</td>
<td>1.33</td>
<td>1.43</td>
</tr>
<tr>
<td>100</td>
<td>1.36</td>
<td>1.47</td>
</tr>
</tbody>
</table>

Para estimar el valor del caudal medio diario asociado al período de retorno 10 años se utiliza la siguiente ecuación:

\[Q_{10} = 1.81 \cdot 10^{-4} \cdot An \cdot (Lat - 26,2)^{3.392} \]

Donde:

\(Q_{10} \) Caudal medio diario con período de retorno 10 años (m³/s)
\(An \) Área Nival de la cuenca (km²)
\(Lat \) Latitud media de la cuenca, en grados (°)

Por la falta de otros métodos de cálculo y debido a la pequeña extensión de algunas cuencas, para la obtención de resultados se consultó la frecuencia máxima \(Q(T)/Q(10) \).

Finalmente la expresión queda de la siguiente forma:

\[Q(T) = \beta \cdot \frac{Q(T)_{max}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \).

Según se indicó con anterioridad, los dos embalses que presentan influencia de área nival y por lo tanto crecidas de deshielo en el período octubre – marzo, son Pilaicito y San Isidro, para los
cual es el cual se calculan dichas crecidas de deshielo, según la metodología indicada precedentemente.

CUADRO 4.3.6-2
CARACTERÍSTICAS GEOGRÁFICAS Y Q (10 AÑOS)

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Área nival (km²)</th>
<th>Latitud media (ºC)</th>
<th>Q(10) (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Sapos</td>
<td>5,56</td>
<td>34,1</td>
<td>1,09</td>
</tr>
<tr>
<td>Pilaicito</td>
<td>117,018</td>
<td>36</td>
<td>48,77</td>
</tr>
<tr>
<td>Picarquín</td>
<td>5,80</td>
<td>35,5</td>
<td>2,02</td>
</tr>
<tr>
<td>San Isidro</td>
<td>1,04</td>
<td>34,5</td>
<td>0,25</td>
</tr>
<tr>
<td>Convento viejo</td>
<td>5,38</td>
<td>31</td>
<td>0,20</td>
</tr>
</tbody>
</table>

CUADRO 4.3.6-3
CAUDAL MEDIO DIARIO MÁXIMO (m³/s)

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Los Sapos</th>
<th>Pilaicito</th>
<th>Picarquín</th>
<th>San Isidro</th>
<th>Convento Viejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,84</td>
<td>37,41</td>
<td>1,55</td>
<td>0,19</td>
<td>0,15</td>
</tr>
<tr>
<td>5</td>
<td>1,12</td>
<td>50,07</td>
<td>2,08</td>
<td>0,25</td>
<td>0,20</td>
</tr>
<tr>
<td>10</td>
<td>1,29</td>
<td>57,55</td>
<td>2,39</td>
<td>0,29</td>
<td>0,24</td>
</tr>
<tr>
<td>15</td>
<td>1,42</td>
<td>63,31</td>
<td>2,63</td>
<td>0,32</td>
<td>0,26</td>
</tr>
<tr>
<td>20</td>
<td>1,44</td>
<td>64,46</td>
<td>2,67</td>
<td>0,33</td>
<td>0,26</td>
</tr>
<tr>
<td>25</td>
<td>1,49</td>
<td>66,76</td>
<td>2,77</td>
<td>0,34</td>
<td>0,27</td>
</tr>
<tr>
<td>50</td>
<td>1,64</td>
<td>73,09</td>
<td>3,03</td>
<td>0,37</td>
<td>0,30</td>
</tr>
<tr>
<td>75</td>
<td>1,71</td>
<td>76,54</td>
<td>3,18</td>
<td>0,39</td>
<td>0,31</td>
</tr>
<tr>
<td>100</td>
<td>1,75</td>
<td>78,27</td>
<td>3,25</td>
<td>0,40</td>
<td>0,32</td>
</tr>
</tbody>
</table>

CUADRO 4.3.6-4
CAUDAL INSTANTÁNEO MÁXIMO (m³/s)

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Los Sapos</th>
<th>Pilaicito</th>
<th>Picarquín</th>
<th>San Isidro</th>
<th>Convento Viejo</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,99</td>
<td>44,31</td>
<td>1,84</td>
<td>0,22</td>
<td>0,18</td>
</tr>
<tr>
<td>5</td>
<td>1,19</td>
<td>52,95</td>
<td>2,20</td>
<td>0,27</td>
<td>0,22</td>
</tr>
<tr>
<td>10</td>
<td>1,29</td>
<td>57,55</td>
<td>2,39</td>
<td>0,29</td>
<td>0,24</td>
</tr>
<tr>
<td>15</td>
<td>1,42</td>
<td>63,54</td>
<td>2,64</td>
<td>0,32</td>
<td>0,26</td>
</tr>
<tr>
<td>20</td>
<td>1,48</td>
<td>66,18</td>
<td>2,75</td>
<td>0,33</td>
<td>0,27</td>
</tr>
<tr>
<td>25</td>
<td>1,55</td>
<td>69,06</td>
<td>2,87</td>
<td>0,35</td>
<td>0,28</td>
</tr>
<tr>
<td>50</td>
<td>1,74</td>
<td>77,69</td>
<td>3,22</td>
<td>0,39</td>
<td>0,32</td>
</tr>
<tr>
<td>75</td>
<td>1,84</td>
<td>82,30</td>
<td>3,42</td>
<td>0,42</td>
<td>0,34</td>
</tr>
<tr>
<td>100</td>
<td>1,89</td>
<td>84,60</td>
<td>3,51</td>
<td>0,43</td>
<td>0,35</td>
</tr>
</tbody>
</table>
4.4 ANÁLISIS DE CURVA NÚMERO

El Método de la Curva Número permite estimar el escurrimiento directo o precipitación efectiva asociada a una tormenta a partir de tres variables: la precipitación total, la humedad de los suelos al inicio de la tormenta y el complejo hidrológico suelo-vegetación.

Para estimar el valor de la curva número y el monto de precipitación efectiva, se utilizaron las expresiones que se detallan a continuación.

En esta primera ecuación, se representa la envolvente superior de una serie de curvas que representan una relación entre la curva número y la latitud del lugar.

\[
CN = 292 + 737 \cdot \log_0 (Lat - 25) \quad \text{(Envolvente superior)}
\]

\[
CN = 119 + 737 \cdot \log_0 (Lat - 25) \quad \text{(Envolvente media superior)}
\]

A partir de estas curvas es posible obtener el valor de la Curva Número representativa de cada cuenca en función de su latitud del centro de gravedad de la cuenca.

La derivación de las relaciones supone válida la siguiente proporción:

\[
\frac{(P - Q - Ia)}{S} = \frac{Q}{(P - Ia)}
\]

Donde:
P Precipitación total de la tormenta
Q escurriente directa derivada de la tormenta
S Retención potencial máxima en el suelo (mm).
Ia Abstracción inicial bajo lo cual no hay escurrimiento

La relación anterior considera que son iguales las razones entre las retenciones reales y potenciales \(\frac{(P - Q - Ia)}{S} \) y los escurrimientos reales y potenciales \(\frac{Q}{(P - Ia)} \).

\[
Q = \frac{(P - Ia)^2}{(P - Ia + S)}
\]

Se definió\(^2\) la abstracción inicial como Ia=0,2S. Con este valor la relación que permite modelar el escurrimiento superficial en función de P es:

\[
Q = \frac{(P - 0,2 \cdot S)^2}{(P + 0,8 \cdot S)}
\]

\(^2\) Datos obtenidos en diferentes cuencas en Estados Unidos.
Para el uso del método, se asocia a cada curva Q-P un número entre el 0 y el 100, en el que 100 corresponde a la curva Q=P, siendo la relación que liga el número de la curva con el valor de S:

\[CN = \frac{25,400}{254 + S}, \quad S \text{ en (mm)} \]

Luego, despejando el valor de S de las ecuaciones anteriores se relaciona la escorrentía directa con la precipitación total y la curva número.

Para el cálculo de S se considera la curva media superior.

CUADRO 4.4-1

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Latitud</th>
<th>Superior</th>
<th>Media superior</th>
<th>S (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sapos</td>
<td>37</td>
<td>109</td>
<td>91</td>
<td>23.8</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>33</td>
<td>96</td>
<td>78</td>
<td>69.7</td>
</tr>
<tr>
<td>Pilacito</td>
<td>36</td>
<td>107</td>
<td>89</td>
<td>32.5</td>
</tr>
<tr>
<td>Romeral</td>
<td>35</td>
<td>103</td>
<td>85</td>
<td>45.5</td>
</tr>
<tr>
<td>Picaquíin</td>
<td>36</td>
<td>105</td>
<td>87</td>
<td>37.4</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>33</td>
<td>96</td>
<td>78</td>
<td>69.7</td>
</tr>
<tr>
<td>Chancón</td>
<td>33</td>
<td>97</td>
<td>79</td>
<td>68.4</td>
</tr>
<tr>
<td>San Isidro</td>
<td>35</td>
<td>102</td>
<td>84</td>
<td>48.5</td>
</tr>
<tr>
<td>Millahue</td>
<td>29</td>
<td>74</td>
<td>56</td>
<td>197.4</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>30</td>
<td>83</td>
<td>65</td>
<td>138.8</td>
</tr>
<tr>
<td>Idahue</td>
<td>30</td>
<td>80</td>
<td>62</td>
<td>155.0</td>
</tr>
<tr>
<td>San Vicente</td>
<td>26</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Cocaquén o Pailimo 1</td>
<td>24</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>La Rosa</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>24,5</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Mallermo</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>26,5</td>
<td>43</td>
<td>25</td>
<td>767.0</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>26</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Porotal</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>1862.7</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>26</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Carrizal</td>
<td>25</td>
<td>30</td>
<td>12</td>
<td>1862.7</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>26,5</td>
<td>43</td>
<td>25</td>
<td>767.0</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>27</td>
<td>52</td>
<td>34</td>
<td>491.2</td>
</tr>
<tr>
<td>Tierraüca</td>
<td>27</td>
<td>52</td>
<td>34</td>
<td>491.2</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>26</td>
<td>30</td>
<td>12</td>
<td>1880.5</td>
</tr>
<tr>
<td>Los Novios</td>
<td>23</td>
<td>30</td>
<td>12</td>
<td>1862.7</td>
</tr>
</tbody>
</table>
EMBALSE | **Latitud** | **Superior** | **Media superior** | **S (mm)**
--- | --- | --- | --- | ---
Alto Colorado | 23 | 30 | 12 | 1862,7
Paríllonco | 23 | 30 | 12 | 1862,7
Rinconada (La Macarena) | 32 | 92 | 74 | 88,4
Santa Isabel | 32 | 92 | 74 | 88,9
Convento Viejo | 33 | 96 | 78 | 69,7
Lolol | 27 | 52 | 34 | 491,2
Culenco | 25 | 40 | 20 | 1016,0
Pataaguilla | 26 | 40 | 20 | 1016,0
Los Negros | 26 | 40 | 20 | 1016,0
El Guárico | 29 | 73 | 55 | 94,7
El Huique | 29 | 73 | 55 | 93,9
Santa Lucía (Santa Margarita) | 27 | 52 | 34 | 233,7
Jaime Ramírez | 27 | 52 | 34 | 233,7
La Troya | 28 | 59 | 41 | 174,8
Nilahue | 25 | 30 | 12 | 592,7
El Cardonal | 25 | 30 | 12 | 592,7
Lagunillas | 26 | 22 | 4 | 925,5
La Gloria (La cruz) | 26 | 23 | 5 | 882,1
Quesería | 25,5 | 8 | -10 | 3038,7
Salto De Agua | 27,5 | 59 | 41 | 174,8
Callihue | 27,5 | 59 | 41 | 174,8
Pataguas Cerro Guirabo | 29 | 70 | 52 | 108,9

4.5 VALIDACIÓN DE CAUDALES

En base a información de caudales extremos en cuencas presentes en la región, dadas por la ubicación de ciertas estaciones fluvioográficas, se pretende de alguna manera validar la extrapolación de los caudales máximos instantáneos generados para 200, 500 y 1000 años, de las expresiones comúnmente usadas como Verni King, Racional, DGA-AC.

Para ello se le realiza un análisis frecuencial a la información de interés, con el fin de buscar la distribución de mejor ajuste, basado en la teoría que se expone a continuación.

4.5.1 Análisis de Frecuencia

Se realiza un análisis de frecuencia de los caudales máximos instantáneos en la s estaciones expuestas, se considera las distribuciones utilizadas comúnmente en ámbitos hidrológicos.

- Distribución normal.
- Distribución gumbel.
- Distribución Pearson III.
- Distribución Log-normal.
- Distribución Log-Pearson III.
- Distribución gamma.
Los parámetros de comparación para determinar si una determinada distribución se ajusta de mejor manera a los datos, son, el coeficiente de regresión \(r^2 \) y el test estadístico \(\chi^2 \), de ésta manera se precisa si la variable aleatoria precipitación (Pp), de la cual se posee una muestra finita, cumple o no con una cierta distribución de frecuencia.

En consecuencia, el método consiste en comparar el valor de la variable \(\chi^2 \) obtenida a partir de la muestra con el valor \(\chi^2_{0,4} \) para un cierto nivel de confianza elegido.

Si \(\chi^2 < \chi^2_{0,4} \) Se acepta la hipótesis de que los datos tienen la distribución elegida.

Si \(\chi^2 > \chi^2_{0,4} \) Se rechaza la hipótesis, ya que es muy poco probable que correspondiendo los datos a la distribución elegida, resulta un valor tan alto de la variable \(\chi^2 \).

Si al probar distintas distribuciones resulta que dos o más de ellas pueden ser aceptadas, se elige como más probable aquella distribución que dé el mínimo valor para la variable \(\chi^2 \).

Se trabaja con un nivel de confianza al 95\% (\(A = 0.05 \)) y se escoge aquella distribución que posea el menor valor de: \(\chi^2 / \chi^2_{0,4} \), idealmente este valor debe ser menor a 1.

4.5.2 Cuencas Controladas

Las siguientes cuencas, son la base para analizar los caudales que entregan para períodos de retorno de 200, 500 y 1000 años en términos de magnitud. Posteriormente la información entregada por dichas cuencas debe ser traspuesta a la cuenca de interés considerando que sean de características hidrológicas comunes.

En el cuadro siguiente se presentan las características y resultados del análisis para las cuencas base.
CUADRO 4.5.2-1
INFORMACIÓN CUENCAS BASE

<table>
<thead>
<tr>
<th>N°</th>
<th>Estación</th>
<th>UTM NORTE</th>
<th>UTM ESTE</th>
<th>Distribución de Probabilidad</th>
<th>T Retorno (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Río Cachapoal 5 Km Aguas debajo de junta catedral</td>
<td>6.198.518</td>
<td>373.401</td>
<td>Log-normal</td>
<td>885,8, 1070,2, 1222</td>
</tr>
<tr>
<td>2</td>
<td>Río Pangal en Pangal</td>
<td>6.209.605</td>
<td>377.708</td>
<td>Log-normal</td>
<td>330,6, 384,3, 427</td>
</tr>
<tr>
<td>3</td>
<td>Río Cachapoal en Pte Termas de Cauquenes</td>
<td>NO CUENTA CON ESTADÍSTICA SUFICIENTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Río Claro en hacienda Las Nieves</td>
<td>6.181.890</td>
<td>343.650</td>
<td>Gumbel</td>
<td>575,5, 665, 732,6</td>
</tr>
<tr>
<td>5</td>
<td>Río Claro en Tunca</td>
<td>6.193.405</td>
<td>306.945</td>
<td>Peerson</td>
<td>1072,9, 1188,6, 1272,7</td>
</tr>
<tr>
<td>6</td>
<td>Estero Zamorano en Puente El Niche</td>
<td>6.187.850</td>
<td>300.777</td>
<td>Normal</td>
<td>1645,2, 1774,4, 1865,1</td>
</tr>
<tr>
<td>7</td>
<td>Río Cachapoal en Puente Arqueado</td>
<td>NO CUENTA CON ESTADÍSTICA SUFICIENTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Río Claro en El Valle</td>
<td>6.160.046</td>
<td>328.337</td>
<td>Gumbel</td>
<td>778,9, 888, 9705</td>
</tr>
<tr>
<td>9</td>
<td>Río Tinguiririca bajo Los Briones</td>
<td>6.151.036</td>
<td>332.828</td>
<td>Log-normal</td>
<td>1724, 2110,5, 2432,1</td>
</tr>
<tr>
<td>10</td>
<td>Canal Teno en Km 13465</td>
<td>NO CUENTA CON ESTADÍSTICA SUFICIENTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Río Tinguiririca en Los Olmos</td>
<td>NO CUENTA CON ESTADÍSTICA SUFICIENTE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Estero Nilahue en santa Teresa</td>
<td>6.171.041</td>
<td>243.965</td>
<td>Peerson</td>
<td>1708,1, 1916,6, 2070,5</td>
</tr>
<tr>
<td>13</td>
<td>Río Claro en Los Queñes</td>
<td>6.125.585</td>
<td>334.865</td>
<td>Peerson</td>
<td>748,6, 813,4, 859,9</td>
</tr>
<tr>
<td>14</td>
<td>Río Teno bajo Quebrada Infiernillo</td>
<td>6.120.683</td>
<td>350.846</td>
<td>Normal</td>
<td>401,3, 428,3, 447,4</td>
</tr>
<tr>
<td>15</td>
<td>Río Teno después de junta con Claro</td>
<td>6.125.812</td>
<td>333.846</td>
<td>Log-Peerson</td>
<td>1747,2, 1978,9, 2146,9</td>
</tr>
<tr>
<td>16</td>
<td>Río Mataquito en Licantén</td>
<td>6.124.535</td>
<td>772.948</td>
<td>Gumbel</td>
<td>7568,8, 8686,4, 9531</td>
</tr>
</tbody>
</table>

4.5.3 Validación de Caudales en Embalses

De acuerdo a la ubicación y características hidrológicas de cada cuenca, se busca aquella cuenca "base" a partir de la cual sea posible validar el caudal de crecida para los embalses, el que fue encontrado por medio de la extrapolación de las expresiones típicamente conocidas, se realizan las transposiciones pertinentes, encontrando que existe sobrestimación, ante lo cual se privilegia la seguridad. Consiguientemente, se presenta un cuadro comparativo de los caudales, destacando que en términos de magnitudes los caudales se consideran validados.
FIGURA 4.5.3-1

Correlación de Caudales

CUADRO 4.5.3-1
CAUDAL MÁXIMO INSTANTÁNEO- COMPARACIÓN

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDAL MÁXIMO INSTANTÁNEO, CRECIDAS PLUVIALES</th>
<th>Q estimado en base a cuencas base (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T (años)</td>
<td>200</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>7,146</td>
<td>8,444</td>
</tr>
<tr>
<td>Pilacito</td>
<td>199,60</td>
<td>235,84</td>
</tr>
<tr>
<td>Romeral</td>
<td>5,61</td>
<td>6,62</td>
</tr>
<tr>
<td>Picalarán</td>
<td>57,73</td>
<td>68,19</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>5,11</td>
<td>6,03</td>
</tr>
<tr>
<td>Chancón</td>
<td>31,44</td>
<td>37,14</td>
</tr>
<tr>
<td>San Isidro</td>
<td>65,82</td>
<td>77,71</td>
</tr>
<tr>
<td>Millahue</td>
<td>101,52</td>
<td>119,95</td>
</tr>
<tr>
<td>San Hermán (San José De Las Pataguas)</td>
<td>62,95</td>
<td>74,38</td>
</tr>
<tr>
<td>Idahue</td>
<td>37,04</td>
<td>43,76</td>
</tr>
<tr>
<td>San Vicente</td>
<td>26,59</td>
<td>31,42</td>
</tr>
<tr>
<td>Cocauquén o Pallmo 1</td>
<td>64,66</td>
<td>76,67</td>
</tr>
<tr>
<td>Piedras Blancas o Pallmo 2</td>
<td>6,94</td>
<td>8,23</td>
</tr>
<tr>
<td>La Rosa</td>
<td>11,96</td>
<td>14,18</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>120,20</td>
<td>142,51</td>
</tr>
<tr>
<td>Mallermo</td>
<td>8,42</td>
<td>9,98</td>
</tr>
<tr>
<td>CAUDAL MÁXIMO INSTANTÁNEO, CRECIDAS PLUVIALES</td>
<td>Q estimado en base a cuencas base (m³/s)</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
<td></td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>T (años)</td>
<td>200</td>
</tr>
<tr>
<td>Águadilla</td>
<td>15,37</td>
<td>18,22</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>7,17</td>
<td>8,47</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>3,13</td>
<td>3,70</td>
</tr>
<tr>
<td>Porotal</td>
<td>9,93</td>
<td>11,73</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa Julia)</td>
<td>66,33</td>
<td>78,37</td>
</tr>
<tr>
<td>Carrizal</td>
<td>48,16</td>
<td>57,10</td>
</tr>
<tr>
<td>Piluchén</td>
<td>3,28</td>
<td>3,88</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>17,08</td>
<td>20,18</td>
</tr>
<tr>
<td>Tierruca</td>
<td>37,77</td>
<td>44,62</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>13,43</td>
<td>15,87</td>
</tr>
<tr>
<td>Los Novios</td>
<td>2,22</td>
<td>2,63</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>3,94</td>
<td>4,67</td>
</tr>
<tr>
<td>Pañilonco</td>
<td>37,81</td>
<td>44,82</td>
</tr>
<tr>
<td>Rincónada (La Macarena)</td>
<td>6,04</td>
<td>7,13</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>16,98</td>
<td>20,05</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>1219,75</td>
<td>1441,22</td>
</tr>
<tr>
<td>Lolol</td>
<td>65,42</td>
<td>77,56</td>
</tr>
<tr>
<td>Culenco</td>
<td>16,18</td>
<td>19,18</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>20,41</td>
<td>24,19</td>
</tr>
<tr>
<td>Los Negros</td>
<td>18,03</td>
<td>21,36</td>
</tr>
<tr>
<td>El Guaico</td>
<td>5,68</td>
<td>6,71</td>
</tr>
<tr>
<td>El Huique</td>
<td>6,33</td>
<td>7,47</td>
</tr>
<tr>
<td>Santa Lucia (Santa Margarita)</td>
<td>1,83</td>
<td>2,16</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>12,56</td>
<td>14,89</td>
</tr>
<tr>
<td>La Troya</td>
<td>9,84</td>
<td>11,62</td>
</tr>
<tr>
<td>Nilahue</td>
<td>32,93</td>
<td>39,04</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>3,07</td>
<td>3,64</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>4,29</td>
<td>5,08</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>32,15</td>
<td>38,10</td>
</tr>
<tr>
<td>Quesería</td>
<td>5,87</td>
<td>6,96</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>25,58</td>
<td>30,32</td>
</tr>
<tr>
<td>Callihuie</td>
<td>21,84</td>
<td>25,89</td>
</tr>
<tr>
<td>Pataguas Cerro Guirabo</td>
<td>10,14</td>
<td>11,97</td>
</tr>
</tbody>
</table>
Incluye 1 plano.
CAPÍTULO 5
ANÁLISIS DE EMBALSES
5. ANÁLISIS DE LOS EMBALSES

5.1 INTRODUCCIÓN

Sobre la base de la geometría general del muro y de la estimación de los parámetros del suelo constituyente del muro (en el caso de muro de tierra), tales como la cohesión, el ángulo de fricción interna, la densidad, etc., se aplicó un programa de computación de cálculo simplificado de estabilidad de taludes para las condiciones de estabilidad con embalse viejo, para embalse vacío y combinaciones de sismos.

5.2 ANCHO DEL CORONAMIENTO

El ancho de la presa en el coronamiento se estimó con la fórmula siguiente del Bureau of Reclamation que aparece en el libro "Diseño de Presas Pequeñas":

\[W = \frac{Z}{5} + 10 \]

Donde:
- \(w \) = ancho del coronamiento, en pies
- \(Z \) = altura de la presa, en pies

5.3 ANÁLISIS DE ESTABILIDAD DE LA PRESA

El método de equilibrio límite en el análisis de estabilidad de taludes que se basa en la resistencia al deslizamiento de un talud, tomando en cuenta ciertas hipótesis en relación al mecanismo de falla, condiciones de equilibrio, nivel freático, resistencia cortante, etc.

Existen varios métodos para el análisis de estabilidad de taludes; el método utilizado en el estudio para el análisis de estabilidad de los taludes de los embalses es el de equilibrio límite propuesto por Bishop. El método de equilibrio límite supone que en el caso de una superficie de falla las fuerzas actuantes y resistentes son iguales a lo largo de la superficie de falla, esta condición equivale a un factor de seguridad de 1.0. Los parámetros de resistencia cortante de los materiales utilizados en el análisis de estabilidad se han definido de acuerdo al tipo de material de las presas.

5.3.1 Método de Bishop Simplificado

El método de Bishop Simplificado es muy utilizado en la práctica de la ingeniería porque proporciona valores del factor de seguridad por el método de equilibrio límite muy cercanos a aquellos que proporcionan los métodos más rigurosos que satisfacen completamente las condiciones de equilibrio de fuerzas y momentos. El método de Bishop considera un problema de deformación plana en donde la superficie de falla es circular, dividiendo la masa del suelo comprendida en la superficie de falla en una cantidad limitada de dovelas verticales en las que los valores de cohesión, fricción y presión de poros permanecen constantes. En este método el factor de seguridad está definido como:
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins

\[
FS = \sum \frac{(b + W_i - u_i, b) \tan \phi}{\sum W_i \sin \alpha} \cdot \frac{1}{m_\alpha} \cdot \cos \alpha_i \left[1 + \left(\frac{\tan \alpha_i \cdot \tan \phi}{FS} \right) \right]
\]

Donde:
- FS: Factor de seguridad
- c: Cohesión del suelo
- \(\phi \): Ángulo de fricción interna
- b: Ancho de la dovela
- W_i: Peso total de la dovela
- U_i: Presión de poros
- \(\alpha_i \): Ángulo de la base de la dovela con la horizontal

Esta ecuación no lineal se resuelve por iteraciones hasta alcanzar la convergencia en el cálculo del factor de seguridad estático.

El método de evaluación más usado en el análisis sísmico de taludes es el cálculo del mínimo factor de seguridad contra el deslizamiento cuando una fuerza estática y horizontal de alguna magnitud es incluida en el análisis. El análisis es tratado como un problema estático en el que el talud se comporta como cuerpo rígido fijado a su cimentación, experimentando una aceleración uniforme e igual a la aceleración superficial del terreno. La fuerza horizontal es expresada como el producto de un coeficiente sísmico K, y el peso W, de una potencial masa deslizante. Si el factor de seguridad se aproxima a la unidad, la sección es considerada insegura, aunque no hay un límite reconocido para el valor del mínimo factor de seguridad.

Entre los diversos métodos pseudo-estáticos de equilibrio límite que existen, se tiene al Método de Bishop, el cual es uno de los más usados en el análisis de estabilidad de taludes. Este método tiene como base las siguientes hipótesis:

- El mecanismo de falla es circular
- La fuerza de corte entre dovelas es nula
- La fuerza normal actúa en el punto medio de la base de la dovela
- Para cada dovela se satisface el equilibrio de fuerzas verticales, pero no así el equilibrio de fuerzas horizontales, ni el equilibrio de momentos.
- Para la masa total deslizante se satisface el equilibrio de fuerzas verticales y de momentos, más no el equilibrio de fuerzas horizontales.

5.3.2 Factores de Seguridad

Para el caso de taludes naturales el US Corps of Engineers propone que los factores de seguridad mínimos requeridos para considerar un talud estable serán similares a las presas de tierra. En el Cuadro 5.3-1 se presentan los factores de seguridad mínimos para las diferentes condiciones de análisis.
CUADRO 5.3-1
FACTORES DE SEGURIDAD MÍNIMOS PARA EL ANÁLISIS DE ESTABILIDAD DE PRESAS DE TIERRA (US CORPS OF ENGINEERS)

<table>
<thead>
<tr>
<th>CONDICIÓN</th>
<th>TALUD AGUAS ARRIBA</th>
<th>TALUD AGUASABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td>I) Al final de la construcción para presas de más de 15 m.</td>
<td>1,3</td>
<td>1,3</td>
</tr>
<tr>
<td>II) Infiltración Constante</td>
<td>-</td>
<td>1,5</td>
</tr>
<tr>
<td>III) Desembarce Rápido</td>
<td>1,5</td>
<td>-</td>
</tr>
<tr>
<td>IV) Sismo</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>V) Post Sismo</td>
<td>1,1<FS<1,2</td>
<td></td>
</tr>
</tbody>
</table>

5.3.3 Condiciones de Análisis

Se analizará tanto el talud aguas arriba como el talud aguas abajo, según lo siguiente:

Talud Aguas Arriba

El estudio de estabilidad considera los siguientes estados de carga:

- Estático: Con Agua
 - Sin Agua
 - Vaciado Rápido

- Sísmico: Con agua
 - Sin Agua

Talud Aguas Abajo

El estudio de estabilidad considera los siguientes casos:

- Estático Sin Agua
- Sísmico Sin agua

- **Condiciones Estáticas**

En este caso se supone que la estructura sólo estará sometida a la acción de las fuerzas debidas a su peso propio, carga aplicada y a las condiciones de infiltración, las cuales generan condiciones de presión de poros que influyen en la estabilidad de la estructura.

- **Condiciones Sísmicas**

En este análisis se considera que la estructura estará sometida además del peso propio a la acción de la fuerza horizontal que es proporcional al peso de la estructura. El coeficiente sísmico considerado será aquel que se propone en el análisis sísmico.
5.3.4 Aplicación con el Software SLOPE/W

El programa SLOPE/W utiliza el método de equilibrio límite para calcular el factor de seguridad de taludes de tierra y roca. El programa opera en ambiente Microsoft Windows.

El programa tiene la capacidad de modelar tipos heterogéneos de suelo, estratigrafía y geometría de superficie de fallas complejas y condiciones variables de la presión de poros utilizando una gran selección de modelos de suelo. Los análisis pueden realizarse con parámetros determinísticos o probabilísticos.

Adicionalmente, se pueden utilizar los esfuerzos calculados mediante un análisis de elementos finitos en el cálculo de equilibrio límite para los análisis más completos de estabilidad de taludes disponibles. La combinación de estas características del programa le permiten ser utilizados en cualquier problema de estabilidad de taludes.

Este programa fue utilizado principalmente con el método de Bishop en falla circular, tanto en condiciones estáticas como pseudo-estáticas para el análisis restrospectivo (back análisis), los taludes existentes antes del sismo y los taludes con las medidas de estabilización propuestas.

5.4 EVACUADOR DE CRECIDAS O VERTEDERO

Estas obras están destinadas a captar los caudales de crecida que llegan al embalse y conducirlas hasta un cauce en forma segura.

La magnitud y el tipo de obras que se consideren dependen de las condiciones topográficas, geológicas, caudal de diseño, emplazamiento de la presa, existencia de quebradas y distancia al cauce receptor, entre otras. Por lo que cada sitio tiene un análisis propio.

Estas obras se verificaron para evacuar el caudal de diseño, asociados al evento de período de retorno compatible con la magnitud del embalse, es decir, si se trata de obras pequeñas, medianas o mayores.

Se analizaron varios tipos de vertederos: entre los cuales se tiene a vertederos de tipo Lateral y Frontal, Morning Glory, canales en tierra y revestidos, tuberías, etc.

A continuación se indican los procedimientos de cálculo para los más importantes.

Entre los vertederos laterales y frontales, se aprecia que la diferencia principal radica en que el primero descarga en un canal colector, cuyo flujo es espacialmente variado y que al final posee un vertedero de pequeña magnitud para controlar el flujo y asegurar régimen subcrítico hacia aguas arriba, en tanto el segundo descarga directamente al rápido de descarga.

En la eventualidad de requerirse un canal colector al pie del vertedero frontal (para conducir las aguas hasta una quebrada, por ejemplo), éste tendrá flujo constante. Por lo que las expresiones que la rigen son distintas al canal colector del vertedero lateral.
En ambos casos sin embargo, se debe verificar que el nivel de agua del canal colector no influya sobre el vertedero.

FIGURA 5.4-1
ESQUEMA GENERAL DEL VERTEDERO LATERAL

ESQUEMA GENERAL DEL VERTEDERO FRONTAL

En la siguiente figura se indican las variables relacionadas con el flujo sobre un vertedero tipo y la ecuación de gasto que relaciona el caudal y altura sobre su cresta.
FIGURA 5.4-2
FLUJO SOBRE VERTEDERO

Donde:

\[Q \] Caudal de entrada o verter (m\(^3\)/s)
\[H_e \] Altura de energía sobre umbral del vertedero (m)
\[H_d \] Altura de agua sobre umbral del vertedero (m)
\[h \] Altura del vertedero (m)
\[H_a \] Altura de velocidad de acercamiento (m)
\[v \] Velocidad aguas arriba del vertedero o de acercamiento (m/s)
\[\Omega \] Área mojada o sección de escurrimiento (m\(^2\))
\[L \] Longitud del vertedero (m)
\[C \] Coeficiente de gasto (m\(^{0.5}\)/s)
\[m \] Coeficiente de gasto adimensional
\[Z_s \] Cota de la superficie libre (msnm)
\[Z_r \] Cota de Coronamiento del Umbral del Vertedero (msnm)

Donde las relaciones empíricas y teóricas son las siguientes:

\[Q = C \cdot L \cdot H_e^{\frac{3}{2}} \] (Ecuación de Gasto) \hspace{1cm} (1)
\[C = m \cdot \sqrt{2 \cdot g} = 4.427 \cdot m \] \hspace{1cm} (2)
\[H_a = \frac{v^2}{2 \cdot g} = H_e - H_d \] \hspace{1cm} (3)
\[v = \frac{Q}{\Omega} \] \hspace{1cm} (4)
\[\Omega = C_d \cdot h \cdot L \] (Sección rectangular) \hspace{1cm} (5)

De las ecuaciones anteriores, se obtiene:
\[He - Hd = \frac{He^3 \cdot C^2}{2 \cdot g \cdot (hd + h^3)} \] \hspace{1cm} (6)

Se desarrolla finalmente para obtener el siguiente polinomio de la variable Hd:

\[Hd^3 + Hd^2 \cdot C \cdot h - He \cdot Hd \cdot C^2 - 2 \cdot h \cdot He \cdot \frac{He^3 \cdot C^2}{2 \cdot g} - He \cdot h^2 = 0 \] \hspace{1cm} (7)

A partir de las ecuaciones (1) y (7) se realizan iteraciones para determinar la altura de agua sobre el umbral (Hd), para lo cual se utiliza el ábaco del Gráfico 1.

Se considera un ancho (L) y altura de vertedero (h) preliminar. Estos se verifican con los resultados del proceso, tal que la altura de agua sobre el umbral y la velocidad de acercamiento no sean excesivas. Esto depende de la ubicación y forma del vertedero, la cercanía a la presa y el tipo de presa.

Para iniciar la iteración con la cual se determina el valor del coeficiente de gasto (C o m), se considera un valor de inicio \(m = 0.45 \) (C = 1.992). Con ello se resuelve la ecuación (1), entregando el valor de la altura de energía sobre el umbral (He) y posteriormente la altura de agua sobre el umbral (Hd) a partir de la ecuación (7).

Se determinan los valores de las relaciones He/Hd y h/Hd, con los que se introduce al Gráfico 1, y se determina el valor de C'/Cd', con Cd' = 4.03. C' corresponde al coeficiente de gasto dimensional en pie\(^{0.6}\)/s. La conversión a unidades SI, es la siguiente: \(C = 0.5521 \cdot C' \).

Con el nuevo valor de C, se vuelven a determinar las alturas He y Hd, además de las respectivas relaciones para el Gráfico 1. Este proceso se repite hasta encontrar el valor del coeficiente de gasto asociado al caudal de diseño (Q).

A partir de los caudales asociados a períodos de retorno 10 a 500 años, se genera la Curva de Descarga del vertedero, para lo cual se utiliza el procedimiento antes descrito. Se determina para cada caudal, el coeficiente de gasto y altura de agua correspondiente.
Para vertedero de pared delgada

\[Q = m \cdot l \cdot h \cdot \sqrt{2 \cdot g \cdot h} \]

- \(l \) = longitud del vertedero, a la distancia entre las paredes verticales o inclinadas que lo limitan sobre el umbral.
- \(h \) = Carga del vertedero medida sobre el plano horizontal que pasa sobre el umbral.
- \(m \) = coeficiente de gasto

\[m = \left[0,405 + \frac{0,003}{h} \right] \cdot \left[1 + 0,55 \frac{h^2}{(h+a)^2} \right] \]

- \(a \) = altura de la barrera
Para vertedero de pared gruesa

\[Q = m \cdot l \cdot h \cdot \sqrt{2 \cdot g \cdot h} \]

- \(l \) = longitud del vertedero, a la distancia entre las paredes verticales o inclinadas que lo limitan sobre el umbral.
- \(h \) = Carga del vertedero medida sobre el plano horizontal que pasa sobre el umbral.
- \(m \) = coeficiente de gasto

En este caso, vierten por sobre una parte del muro. Se considera de pared gruesa aquellos en que el espesor es al menos cinco veces la altura crítica. El espesor es el ancho del muro.

\[n = \text{espesor relativo de la barrera} \quad n = 1,5 \cdot \frac{e}{h} \]

\(a \) = altura de la barrera

<table>
<thead>
<tr>
<th>(\frac{h}{a+h})</th>
<th>(3,5)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
<th>(13,5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,00</td>
<td>0,379</td>
<td>0,377</td>
<td>0,376</td>
<td>0,375</td>
<td>0,373</td>
<td>0,371</td>
<td>0,370</td>
<td>0,366</td>
</tr>
<tr>
<td>0,05</td>
<td>0,379</td>
<td>0,377</td>
<td>0,376</td>
<td>0,375</td>
<td>0,373</td>
<td>0,371</td>
<td>0,370</td>
<td>0,366</td>
</tr>
<tr>
<td>0,10</td>
<td>0,379</td>
<td>0,378</td>
<td>0,377</td>
<td>0,376</td>
<td>0,374</td>
<td>0,372</td>
<td>0,371</td>
<td>0,367</td>
</tr>
<tr>
<td>0,20</td>
<td>0,385</td>
<td>0,381</td>
<td>0,380</td>
<td>0,379</td>
<td>0,377</td>
<td>0,375</td>
<td>0,374</td>
<td>0,370</td>
</tr>
<tr>
<td>0,30</td>
<td>0,388</td>
<td>0,386</td>
<td>0,385</td>
<td>0,383</td>
<td>0,382</td>
<td>0,380</td>
<td>0,379</td>
<td>0,375</td>
</tr>
<tr>
<td>0,40</td>
<td>0,395</td>
<td>0,393</td>
<td>0,392</td>
<td>0,390</td>
<td>0,388</td>
<td>0,387</td>
<td>0,385</td>
<td>0,381</td>
</tr>
<tr>
<td>0,50</td>
<td>0,404</td>
<td>0,402</td>
<td>0,400</td>
<td>0,399</td>
<td>0,397</td>
<td>0,395</td>
<td>0,394</td>
<td>0,390</td>
</tr>
<tr>
<td>0,60</td>
<td>0,415</td>
<td>0,412</td>
<td>0,411</td>
<td>0,410</td>
<td>0,408</td>
<td>0,406</td>
<td>0,405</td>
<td>0,404</td>
</tr>
<tr>
<td>0,70</td>
<td>0,428</td>
<td>0,425</td>
<td>0,423</td>
<td>0,422</td>
<td>0,420</td>
<td>0,418</td>
<td>0,417</td>
<td>0,412</td>
</tr>
<tr>
<td>0,80</td>
<td>0,443</td>
<td>0,440</td>
<td>0,439</td>
<td>0,437</td>
<td>0,435</td>
<td>0,433</td>
<td>0,431</td>
<td>0,426</td>
</tr>
<tr>
<td>0,90</td>
<td>0,459</td>
<td>0,457</td>
<td>0,455</td>
<td>0,454</td>
<td>0,451</td>
<td>0,449</td>
<td>0,448</td>
<td>0,443</td>
</tr>
<tr>
<td>1,00</td>
<td>0,478</td>
<td>0,476</td>
<td>0,474</td>
<td>0,472</td>
<td>0,470</td>
<td>0,468</td>
<td>0,466</td>
<td>0,460</td>
</tr>
</tbody>
</table>
CAPÍTULO 6

SISMICIDAD
6. SISMICIDAD

6.1 SISMICIDAD EN LA ZONA DE CHILE CENTRAL

En Chile, los grandes terremotos son ocasionados por la liberación abrupta y repentina de la energía de deformación acumulada lentamente a causa del continuo desplazamiento de la placa de Nazca respecto a la placa Sudamericana con una velocidad media de 9 cm/año.

La zona de Chile Central se encuentra constantemente afectada por sismos originados principalmente en tres zonas sismogénicas.

a) Zona de acoplamiento de la subducción de la placa de Nazca bajo la placa Sudamericana, entre la fosa y la costa, donde se producen sismos tipo falla inversa de bajo ángulo (thrust).

b) Zona ubicada bajo el valle central a más de 50 km de profundidad, donde se generan sismos por el fracturamiento o ruptura de callamiento extensional en el interior de la placa que subducta.

c) Zona cordillerana, al interior de la placa Sudamericana, donde se producen sismos superficiales (<20 km), asociados a la compresión que da origen a la deformación de la Cordillera de Los Andes.

Tanto por el alto número de eventos como por las magnitudes que alcanza, la zona de la costa es considerada la zona sismogénica que se traduce en mayor peligro sísmico. Los registros históricos señalan que la zona central del país ha sido afectada por una serie de terremotos destructivos durante los últimos siglos con epicentros costa afuera frente a Valparaíso-Algarrobo: 1575, 1647, 1730, 1822, 1906 y 1985 (Comte et al., 1986; Barrientos y Kausel, 1993). Esta secuencia presenta una recurrencia extremadamente regular con retornos medios de 82 ± 6 años. Con la excepción del terremoto de 1730, los tsunamis o maremotos que los acompañaron fueron relativamente pequeños.

En el cuadro siguiente se presentan sismos importantes y/o destructivos (1570 - Mayo 2005) con una magnitud Ms mayor o igual a 7.0. En la última columna del cuadro se han identificado aquellos de las regiones Metropolitana, VI y VII Región.

Se puede observar que en la VI Región han ocurrido 2 sismos importantes mayores de 8 grados de magnitud, el último de los cuales ocurrió en el año 1985.

CUADRO 6.1-1
SISMOS IMPORTANTES Y/O DESTRUCTIVOS (1570 - Mayo 2005)
(Magnitud Ms mayor o igual a 7.0)

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Hora</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Ms</th>
<th>Prof (km)</th>
<th>Mw</th>
<th>Efec. Sec</th>
<th>REGIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>08-02-1570</td>
<td>09:00</td>
<td>-36,800</td>
<td>-73,000</td>
<td>8,3</td>
<td>-</td>
<td>-</td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>17-03-1575</td>
<td>10:00</td>
<td>-33,400</td>
<td>-70,600</td>
<td>7,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>RM</td>
</tr>
<tr>
<td>16-12-1575</td>
<td>14:30</td>
<td>-39,800</td>
<td>-73,200</td>
<td>8,5</td>
<td>-</td>
<td>-</td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>24-11-1804</td>
<td>12:30</td>
<td>-18,500</td>
<td>-70,400</td>
<td>8,5</td>
<td>30</td>
<td>-</td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>16-09-1815</td>
<td>23:30</td>
<td>-18,500</td>
<td>-70,350</td>
<td>8,8</td>
<td>-</td>
<td>-</td>
<td>TM</td>
<td></td>
</tr>
<tr>
<td>13-05-1847</td>
<td>22:30</td>
<td>-35,000</td>
<td>-72,000</td>
<td>8,5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>VII</td>
</tr>
<tr>
<td>15-03-1657</td>
<td>19:30</td>
<td>-36,830</td>
<td>-73,030</td>
<td>8,0</td>
<td>-</td>
<td>-</td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>10-03-1681</td>
<td>-</td>
<td>-18,500</td>
<td>-70,350</td>
<td>7,3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12-07-1887</td>
<td>02:00</td>
<td>-32,750</td>
<td>-70,730</td>
<td>7,3</td>
<td>-</td>
<td>-</td>
<td>TD</td>
<td>RM</td>
</tr>
<tr>
<td>08-07-1730</td>
<td>04:45</td>
<td>-33,050</td>
<td>-71,630</td>
<td>8,7</td>
<td>-</td>
<td>-</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>24-12-1737</td>
<td>-</td>
<td>-39,800</td>
<td>-73,200</td>
<td>7,7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

CUADRO 6.1-1
SISMOS IMPORTANTES Y/O DESTRUCTIVOS (1570 - Mayo 2005)
(Magnitud Ms mayor o igual a 7,0)

<table>
<thead>
<tr>
<th>Fecha</th>
<th>Hora</th>
<th>Latitud</th>
<th>Longitud</th>
<th>Ms</th>
<th>Prof (km)</th>
<th>Mw</th>
<th>Efec. Sec</th>
<th>REGION</th>
</tr>
</thead>
<tbody>
<tr>
<td>29-01-1950</td>
<td>20:56</td>
<td>-53,500</td>
<td>-71,500</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>09-12-1950</td>
<td>17:38</td>
<td>-23,500</td>
<td>-67,600</td>
<td>8.3</td>
<td>100</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>06-05-1953</td>
<td>13:16</td>
<td>-36,500</td>
<td>-72,600</td>
<td>7.6</td>
<td>60</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>06-12-1953</td>
<td>22:05</td>
<td>-22,100</td>
<td>-68,700</td>
<td>7.4</td>
<td>128</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>08-02-1954</td>
<td>-</td>
<td>-29,000</td>
<td>-71</td>
<td>7.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T</td>
</tr>
<tr>
<td>19-04-1955</td>
<td>16:24</td>
<td>-30,000</td>
<td>-72,000</td>
<td>7.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>08-01-1956</td>
<td>16:54</td>
<td>-19,000</td>
<td>-70,000</td>
<td>7.1</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17-12-1956</td>
<td>22:31</td>
<td>-25,500</td>
<td>-68,500</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>29-07-1957</td>
<td>13:15</td>
<td>-23,500</td>
<td>-71,500</td>
<td>7.0</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13-06-1959</td>
<td>20:12</td>
<td>-20,420</td>
<td>-69,000</td>
<td>7.5</td>
<td>83</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21-05-1960</td>
<td>06:02</td>
<td>-37,500</td>
<td>-73,500</td>
<td>7.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22-05-1960</td>
<td>06:32</td>
<td>-37,500</td>
<td>-73,000</td>
<td>7.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>22-05-1960</td>
<td>15:11</td>
<td>-39,500</td>
<td>-74,500</td>
<td>8.5</td>
<td>-</td>
<td>9.5</td>
<td>TD</td>
<td></td>
</tr>
<tr>
<td>19-06-1960</td>
<td>22:01</td>
<td>-38,000</td>
<td>-73,500</td>
<td>7.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>01-11-1960</td>
<td>04:45</td>
<td>-38,500</td>
<td>-75,100</td>
<td>7.4</td>
<td>55</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13-07-1961</td>
<td>17:19</td>
<td>-41,700</td>
<td>-75,200</td>
<td>7.0</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14-02-1962</td>
<td>02:36</td>
<td>-37,800</td>
<td>-72,500</td>
<td>7.3</td>
<td>45</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>03-08-1962</td>
<td>04:56</td>
<td>-23,300</td>
<td>-68,100</td>
<td>7.1</td>
<td>107</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>23-02-1965</td>
<td>18:11</td>
<td>-25,670</td>
<td>-70,630</td>
<td>7.0</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28-03-1965</td>
<td>12:33</td>
<td>-32,418</td>
<td>-71,100</td>
<td>7.4</td>
<td>68</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>28-12-1966</td>
<td>04:18</td>
<td>-25,510</td>
<td>-70,740</td>
<td>7.8</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13-03-1967</td>
<td>12:06</td>
<td>-40,120</td>
<td>-74,680</td>
<td>7.3</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>21-12-1967</td>
<td>22:25</td>
<td>-21,800</td>
<td>-70,00</td>
<td>7.5</td>
<td>33</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>17-06-1971</td>
<td>17:00</td>
<td>-25,402</td>
<td>-69,058</td>
<td>7.0</td>
<td>76</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>08-07-1971</td>
<td>23:03</td>
<td>-32,511</td>
<td>-71,207</td>
<td>7.5</td>
<td>40</td>
<td>-</td>
<td>TM</td>
<td></td>
</tr>
<tr>
<td>18-08-1974</td>
<td>06:44</td>
<td>-38,453</td>
<td>-73,431</td>
<td>7.1</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>10-05-1975</td>
<td>10:27</td>
<td>-38,183</td>
<td>-73,232</td>
<td>7.7</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>29-11-1976</td>
<td>21:40</td>
<td>-20,520</td>
<td>-68,919</td>
<td>7.3</td>
<td>82</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>03-08-1979</td>
<td>14:11</td>
<td>-26,516</td>
<td>-70,664</td>
<td>7.0</td>
<td>49</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16-10-1981</td>
<td>00:25</td>
<td>-33,134</td>
<td>-73,074</td>
<td>7.5</td>
<td>33</td>
<td>-</td>
<td>RM</td>
<td></td>
</tr>
<tr>
<td>04-10-1983</td>
<td>14:52</td>
<td>-26,535</td>
<td>-70,563</td>
<td>7.3</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>03-03-1985</td>
<td>19:46</td>
<td>-33,240</td>
<td>-71,850</td>
<td>7.8</td>
<td>33</td>
<td>8.0</td>
<td>T</td>
<td>RM</td>
</tr>
<tr>
<td>08-04-1985</td>
<td>21:56</td>
<td>-34,131</td>
<td>-71,618</td>
<td>7.5</td>
<td>37</td>
<td>-</td>
<td>VI</td>
<td></td>
</tr>
<tr>
<td>05-03-1987</td>
<td>06:17</td>
<td>-24,388</td>
<td>-70,161</td>
<td>7.3</td>
<td>62</td>
<td>-</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>08-06-1987</td>
<td>11:48</td>
<td>-19,000</td>
<td>-70,000</td>
<td>7.1</td>
<td>42</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>30-07-1995</td>
<td>01:11</td>
<td>-23,360</td>
<td>-70,310</td>
<td>7.3</td>
<td>47</td>
<td>8.0</td>
<td>T</td>
<td></td>
</tr>
<tr>
<td>13-06-2005</td>
<td>18:44</td>
<td>-19,695</td>
<td>-69,125</td>
<td>7.8</td>
<td>108</td>
<td>7.8</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

6.2 COEFICIENTES SÍSMICOS ADOPTADOS

Para efectos de la simulación pseudo-estática y post sismo, se asumirá lo dispuesto en la zonificación sísmica de la NCh 433 Of. 96, para los emplazamientos de los embalses.

El valor que se adoptó para la aceleración efectiva, será de 0.4g. Para los valores del coeficiente sísmico Kh, se adoptó el criterio de Saragoni, donde se incluyen las características de sismos en nuestro país. Así:

\[
Kh = \frac{0.3 \cdot a_{\text{max}}}{g}, \text{ para } a_{\text{max}} \leq 6.6 \text{ m/s}^2
\] \hspace{1cm} (1)
\[Kh = 0.22 \left(\frac{a_{\text{max}}}{g} \right)^{0.33}, \text{ para } a_{\text{max}} > 6.6 \text{ m/s}^2 \] (2)

El camino más simple para incluir los efectos del sismo es considerar que las fuerzas inducidas por éste son incorporadas como fuerzas horizontales en el análisis. La magnitud de la fuerza horizontal \(F_h \) es tomada igual al peso de la masa que desliza, multiplicada por un coeficiente \(k_h \) que "representa" al sismo, transformándolo en un problema seudoestático. Aunque en la realidad el sismo impone fuerzas horizontales y verticales, diversos autores recomiendan no incluir estas últimas en el análisis.

Habitualmente, el criterio más común es adoptar un coeficiente sísmico vertical, \(k_v \) nulo puesto que en la práctica, éste tiene una escasa influencia sobre los factores de seguridad calculados. Esto se ve reflejado en los estudios efectuados por Saragoni (1993). "Análisis del Riesgo Sísmico para la Reconstrucción del Puerto de Valparaíso". Sextas Jornadas Chilenas de Sismología e Ingeniería Sísmica, Vol. 2. Santiago, Chile.

El coeficiente sísmico \(k_h \) es un valor empírico que depende entre otros factores, de la aceleración horizontal máxima de campo libre, las características del sismo (magnitud, profundidad, contenido de frecuencias, etc.), dimensiones de la obra (volumen potencial masa deslizante y condiciones de borde), existencia de poblados, instalaciones y equipos que puedan verse afectados.

En consideración que el valor de \(Ao \) (aceleración efectiva) entregado por la NCh 433 Of. 96 es de 0,4 g, para la zonificaciones III, se realizaron los cálculos en base a un estimado máximo, de 0,5 g.

\[K_h = 0.3 \times 0.5 \text{ g} \]

\[K_h = 0.15 \text{ m/s}^2 \]

El valor de coeficiente sísmico, \(K_h = 0.15 \text{ m/s}^2 \) corresponde y cumple con el Primer criterio, a decir, \(a_{\text{max}} \leq 6.6 \text{ m/s}^2 \).

De acuerdo a lo señalado anteriormente, en el cuadro siguiente se incluye los parámetros sísmicos utilizados para cada uno de los embales del estudio.

CUADRO 6.2-1

PARÁMETROS SÍSMICOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>COMUNA</th>
<th>COORDENADAS UTM</th>
<th>ZONA SÍSMICA</th>
<th>ACCELERACION EFECTIVA (Ao)</th>
<th>ACCELERACION Max. Estim. (Ao)</th>
<th>(k_h) m/s²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Sapos</td>
<td>Machalí</td>
<td>6.230.229</td>
<td>367.337</td>
<td>2</td>
<td>0,3g</td>
<td>0,3g</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>Malloa</td>
<td>6.182.844</td>
<td>331.555</td>
<td>2</td>
<td>0,3g</td>
<td>0,3g</td>
</tr>
<tr>
<td>Pilcanito</td>
<td>Mostazal</td>
<td>6.244.890</td>
<td>349.185</td>
<td>2</td>
<td>0,3g</td>
<td>0,3g</td>
</tr>
<tr>
<td>Romeral</td>
<td>Mostazal</td>
<td>6.243.049</td>
<td>347.347</td>
<td>2</td>
<td>0,3g</td>
<td>0,3g</td>
</tr>
<tr>
<td>Picaquirín</td>
<td>Mostazal</td>
<td>6.238.987</td>
<td>350.614</td>
<td>2</td>
<td>0,3g</td>
<td>0,3g</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>Quinta de Tilcoco</td>
<td>6.198.838</td>
<td>325.306</td>
<td>2</td>
<td>0,3g</td>
<td>0,3g</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.

Consultores en Ingeniería Hidráulica y de Riesgo
<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>COMUNA</th>
<th>COORDENADAS UTM</th>
<th>ZONA SISMICA</th>
<th>ACCELERACION EFECTIVA (Ao)</th>
<th>ACCELERACION Max. Estim. (Ao)</th>
<th>K<sub>a</sub> m/s<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chancón</td>
<td>Rancagua</td>
<td>6.226.085</td>
<td>330.426</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>San Isidro</td>
<td>Requinoa</td>
<td>6.199.203</td>
<td>341.608</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Millahue</td>
<td>San Vicente</td>
<td>6.175.352</td>
<td>295.370</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>San Hernán (San José De Las Pataguas)</td>
<td>San Vicente</td>
<td>6.176.741</td>
<td>301.185</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Idahue</td>
<td>Sn Vicente</td>
<td>6.182.993</td>
<td>296.002</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>San Vicente</td>
<td>Litueche</td>
<td>6.224.151</td>
<td>246.263</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Cochaquirén o Paillín 1</td>
<td>Marchigüe</td>
<td>6.202.442</td>
<td>241.686</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Piedras Blancas o Paillín 2</td>
<td>Marchigüe</td>
<td>6.202.292</td>
<td>245.859</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>La Rosa</td>
<td>Marchigüe</td>
<td>6.196.899</td>
<td>246.563</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Alcones (El Sauce)</td>
<td>Marchigüe</td>
<td>6.191.839</td>
<td>246.460</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Mallínamo</td>
<td>Marchigüe</td>
<td>6.197.160</td>
<td>251.383</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>Marchigüe</td>
<td>6.196.467</td>
<td>255.791</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Los Maitens</td>
<td>Marchigüe</td>
<td>6.196.928</td>
<td>263.510</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>San Guillermo (Santa Marta)</td>
<td>Marchigüe</td>
<td>6.194.250</td>
<td>259.764</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Porotol</td>
<td>Marchigüe</td>
<td>6.192.137</td>
<td>252.772</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Yerbas Buenas (Santa María)</td>
<td>Marchigüe</td>
<td>6.188.470</td>
<td>254.996</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Carrizal</td>
<td>Marchigüe</td>
<td>6.183.922</td>
<td>247.530</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Phuchén</td>
<td>Marchigüe</td>
<td>6.183.235</td>
<td>259.332</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>Marchigüe</td>
<td>6.200.007</td>
<td>266.241</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Tierruca</td>
<td>Marchigüe</td>
<td>6.199.172</td>
<td>266.942</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Guido Soto</td>
<td>Marchigüe</td>
<td>6.182.397</td>
<td>257.311</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Los Noivos</td>
<td>Pichilemu</td>
<td>6.210.881</td>
<td>229.965</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Alto Colorado</td>
<td>Pichilemu</td>
<td>6.198.892</td>
<td>235.339</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Pañihoco</td>
<td>Pichilemu</td>
<td>6.203.769</td>
<td>231.006</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Rinconada (La Macarena)</td>
<td>Chimbarongo</td>
<td>6.161.018</td>
<td>323.696</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Santa Isabel</td>
<td>Chimbarongo</td>
<td>6.158.082</td>
<td>320.599</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Convento Viejo I</td>
<td>Chimbarongo</td>
<td>6.151.323</td>
<td>305.494</td>
<td>2</td>
<td>0.3g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Lolol</td>
<td>Lolol</td>
<td>6.151.651</td>
<td>268.929</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Culeanco</td>
<td>Lolol</td>
<td>6.146.761</td>
<td>253.163</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Pataguilla</td>
<td>Lolol</td>
<td>6.141.301</td>
<td>257.202</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Los Negros</td>
<td>Lolol</td>
<td>6.137.604</td>
<td>252.592</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>El Guaique</td>
<td>Palmira</td>
<td>6.171.836</td>
<td>287.841</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>El Huque</td>
<td>Palmira</td>
<td>6.172.368</td>
<td>288.543</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Santa Lucía (Santa Margarita)</td>
<td>Peralillo</td>
<td>6.187.356</td>
<td>256.233</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Jaime Ramírez</td>
<td>Peralillo</td>
<td>6.173.601</td>
<td>265.684</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>La Tropa</td>
<td>Peralillo</td>
<td>6.183.149</td>
<td>272.515</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Niahue</td>
<td>Pumanque</td>
<td>6.170.076</td>
<td>250.295</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>El Cardonal</td>
<td>Pumanque</td>
<td>6.165.269</td>
<td>247.709</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>Lagunillas</td>
<td>Pumanque</td>
<td>6.168.284</td>
<td>257.536</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>La Gloria (La cruz)</td>
<td>Pumanque</td>
<td>6.167.985</td>
<td>256.132</td>
<td>3</td>
<td>0.4g</td>
<td>0.3g</td>
</tr>
<tr>
<td>NOMBRE EMBALSE</td>
<td>COMUNA</td>
<td>COORDENADAS UTM</td>
<td>ZONA SÍSMICA</td>
<td>ACCELERACION EFECTIVA (Ao)</td>
<td>ACCELERACION Max. Estim. (Ao)</td>
<td>Kp m/s²</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>-------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Quesería</td>
<td>Pumanque</td>
<td>6.185.224</td>
<td>244.283</td>
<td>0,4g</td>
<td>0,3g</td>
<td>0,12</td>
</tr>
<tr>
<td>Salto De Agua</td>
<td>Santa Cruz</td>
<td>6.169.067</td>
<td>275.273</td>
<td>0,4g</td>
<td>0,3g</td>
<td>0,12</td>
</tr>
<tr>
<td>Callihue</td>
<td>Santa Cruz</td>
<td>6.163.630</td>
<td>273.174</td>
<td>0,4g</td>
<td>0,3g</td>
<td>0,12</td>
</tr>
<tr>
<td>Patagua Cerro Guirabo</td>
<td>Santa Cruz</td>
<td>6.157.462</td>
<td>283.298</td>
<td>0,4g</td>
<td>0,3g</td>
<td>0,12</td>
</tr>
</tbody>
</table>
CAPÍTULO 7
ANÁLISIS DE RIESGOS
DE LOS EMBALSES
7. ANÁLISIS DE RIESGOS DE LOS EMBALSES

7.1 BASE METODOLÓGICA HAZOP

El método de evaluación HAZOP, es un planteamiento probabilístico de análisis de la relación causa-afecto en un sistema. El primer paso corresponde a la identificación del sistema, de modo de establecer la estructura central del mismo, la cual fue la parte afectada y la causante a la vez. En términos simples se pueden identificar los siguientes pasos:

a) Identificar el objeto de análisis, es decir, aquella obra o sistema que pueda ser afectada por agentes externos y que a su vez, una falla parcial o total produzca efectos sobre otras partes del sistema que depende de la estructura analizada.

b) Identificar aquellos fenómenos o agentes que pueden ocasionar daños o alteraciones a la estructura.

c) Identificar los efectos potenciales que tendría en el resto del sistema la falla o alteración de la estructura.

La formulación general del método está definida por la relación:

\[R = p \cdot V \cdot E \]

En que:

- \(R \) = Riesgo total del sistema frente a un evento dado y para una causa determinada.
- \(p \) = Probabilidad de que se produzca el evento identificado como desencadenante de una falla, o alteración en la estructura principal.
- \(V \) = Vulnerabilidad de la obra principal ante la ocurrencia del evento desencadenante representada por la probabilidad "\(p \)".
- \(E \) = Potencialidad de que ante la falla o alteración de la obra por el evento de probabilidad "\(p \)" se produzca el efecto identificado o que se desea analizar.

7.2 ADAPTACIÓN DEL MÉTODO AL ANÁLISIS DE EMBALSES

La metodología que se indica a continuación fue desarrollada en el "Estudio de Catastro e Inspección Preliminar de Embalses, Quinta Región", desarrollado por R.E.G. Ingenieros Consultores Ltda. en el año 1994 para la Dirección general de Aguas.

El método se centra en el análisis del riesgo de falla de los embalses, con consecuencia de daños hacia aguas abajo, a las personas, obras de infraestructura y las zonas agrícolas, por lo tanto, las obras fueron analizadas desde el punto de vista de su vulnerabilidad.
7.2.1 Eventos Desencadenantes

Los eventos desencadenantes para una posible falla de los embalses tienen relación con los sismos, las crecidas pluviales y el fenómeno de piping bajo la estructura. En consecuencia, los eventos a analizar son los siguientes:

- Sismos de placa de gran magnitud y baja frecuencia, y de mediana magnitud y alta frecuencia de ocurrencia.
- Sismos cordilleranos de gran magnitud y baja frecuencia, y de mediana magnitud y alta frecuencia de ocurrencia.
- Crecidas pluviales para periodos de retorno de 10, 100 y 10.000 años.
- Crecida nival en los casos que corresponda.
- Piping o sifonamiento

Como resultado de lo anterior, el análisis se realizó considerando la acción de cuatro diferentes eventos sísmicos, cuatro eventos de escorrentía superficial, y un evento de piping, los cuales pueden producir una falla violenta en el muro y la generación de una onda en crecida hacia aguas abajo.

Las fallas potenciales que se analizaron son aquellas que pueden producir un vaciamiento, es decir:

- En el caso sísmico son aquellas que producen un deslizamiento del talud de aguas abajo que pueden involucrar en forma inmediata o posterior tal vaciamiento.
- En el caso de escorrentía, son aquellas que producen o se acercan a un sobrerasamiento del muro, llegando a la rotura completa durante el proceso erosivo.
- En el caso del piping, es aquel que produzca el arrastre del suelo de modo de producir el colapso instantáneo del muro.

Los efectos en el valle son el daño producido por la crecida estimada, ya sea por impacto de la onda o por inundación. El efecto fue evaluado en función de la posición del punto de análisis en relación al tranque.

El riesgo total se calcula como una matriz, ya que es el producto de la probabilidad de ocurrencia del evento desencadenado por la vulnerabilidad del embalse y por la probabilidad de que el daño analizado ocurra. Este producto se efectúa para cada evento y para cada efecto.

7.2.2 Análisis de la Vulnerabilidad

La vulnerabilidad de cada embalse fue analizada en forma específica para cada evento desencadenante.

Con el fin de asignar las probabilidades de ocurrencia o de falla a cada una de las partes del sistema analizado, se han establecido criterios de aplicación que ligan la falla con el porcentaje de daño estimado.
En lo que se refiere a los eventos desencadenantes, cada uno tiene su período de retorno propio, de acuerdo al criterio de selección y por lo tanto, su probabilidad de ocurrencia.

Para el análisis de vulnerabilidad en tanto, se han establecido dos criterios de evaluación, que corresponden a los casos de falla sísmica o por falta de capacidad de evacuación.

7.2.2.1 Eventos Sísmicos

Se determinó para cada embalse de acuerdo a su ubicación, la aceleración máxima resultante para cada uno de los sismos seleccionados. Con la aceleración, los parámetros resistentes de la estructura y la forma del muro, se realizó un estudio de estabilidad, el cual permite indicar la existencia de fallas, su ubicación y la curva de factor de seguridad para los diferentes planos de deslizamientos.

El análisis de estabilidad de un muro puede tener tres resultados posibles, estos son: que el muro no falle, que el muro falle en un punto tal que no involucre vaciamiento y que el muro falle bajo la cota de aguas máximas.

Evidentemente, el primer caso como el último, son claros y sólo corresponde en cada uno asignar la probabilidad extrema. El segundo caso en tanto, corresponde a una situación muy frecuente y sobre la cual debe hacerse distinción, ya que es muy diferente si la falla ocurre superficialmente en el talud de aguas abajo, o si ésta ocurre en el talud de aguas arriba, sobre la línea de aguas. En cada uno de estos casos intermedios, existe también una probabilidad de falla, ya sea por piping a través de una grieta, por desestabilización progresiva o por falla sucesiva para aceleraciones menores a medida que el sismo se desarrolla.

Para la falla extrema en tanto, debe tenerse en consideración que los métodos de análisis no cuentan con la precisión e información necesaria para ofrecer una conclusión terminante, y que la estimación de la magnitud media del evento desencadenante deja una incertidumbre o una variabilidad que debe ser considerada. En concordancia a lo expuesto, se propuso el criterio que se incluye en el cuadro siguiente.

CUADRO 7.2.1
RIESGO DE VACIAMIENTO EN FUNCIÓN DE LA TRAZA DE LA FALLA

<table>
<thead>
<tr>
<th>VACIAMIENTO EN FUNCIÓN DE LA TRAZA DE LA FALLA</th>
<th>RIESGO “p”</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
</tr>
</tbody>
</table>

(*) Para la consideración de nivel de aguas máximas, se tomó la capacidad máxima efectiva dada por el nivel de las obras de evacuación actualmente en servicio.
7.2.2.2 Eventos de Escorrentía

Se determinó para cada embalse, de acuerdo a los datos recolectados en terreno, la capacidad máxima de las obras de evacuación con todas las condicionantes que sea pertinente considerar. La capacidad de evacuación se considera en términos nominales en relación a la capacidad de diseño de la obra, es decir, dentro de los rangos operacionales normales. A continuación se estima la capacidad de evacuación en condiciones extremas, esto es, cuando el nivel de agua está a punto de verter por sobre el coronamiento, sobrepasando el muro.

La vulnerabilidad en cada caso se estima en función de la relación entre el caudal afluentes y el caudal evacuado, sin considerar el efecto regulador del embalse, dado que se asume embalse lleno. Al asumir embalse lleno, se supone que ya no hay efecto de regulación, pues el agua que llegue en forma adicional disminuye el factor de seguridad del embalse, al ocupar el volumen dado por la revancha considerada para la obra. Por lo general, el volumen dado por la revancha de las obras es de poca cuantía, además al asumir esta consideración, se elimina cualquier error de subestimar la seguridad del embalse.

El criterio de asignación de vulnerabilidad para falla por sobrepasamiento de la capacidad de evacuación que se expone a continuación, pretende cuantificar la probabilidad de falla de las obras de evacuación de una presa, que pueda llevar a una falla por vaciamiento, ante la ocurrencia de una crecida determinada.

La falla por vaciamiento se producirá en este caso, por “overtopping”, es decir, el flujo del agua por encima del muro de presa y deterioro progresivo del sistema de descarga.

En estos casos, el análisis de la falla de las obras de evacuación será necesariamente más subjetivo que el caso de la falla sísmica del muro, dado que no se puede hacer un análisis específico estructural para cuantificar la misma. Por otra parte, deberá tenerse en consideración la calidad y estado de la obra, y la estabilidad frente a erosiones del rápido y canal de descarga.

En cuanto al caudal desencadenante de la falla, independientemente del tipo de obra, debe considerarse que la misma operará en condiciones seguras sólo hasta una cierta proporción de su capacidad máxima, dado que en general e históricamente, los evacuadores de crecidas presentan problemas estructurales u operacionales al alcanzar sus capacidades máximas. Así también, debe señalarse que existirá un rango de excedencia de la capacidad en que la obra aún tendrá posibilidad de operar.

Conforme a lo expuesto, se propuso un esquema de cálculo de la probabilidad de falla de la presa para este evento, basados en una obra de evacuación ideal, bien calculada y estructurada, y con un canal o rápido de descarga adecuado.
CUADRO 7.2-2
PROBABILIDAD DE FALLA EN FUNCIÓN DE LA RELACIÓN CAUDAL AFLUENTE Y
CAPACIDAD DE EVACUACIÓN DEL EMBALSE

<table>
<thead>
<tr>
<th>RELACIÓN CAUDAL AFLUENTE – CAPACIDAD DE EVACUACIÓN</th>
<th>RIESGO “p”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal afluente inferior al 100% de la capacidad nominal máxima de evacuación de la obra</td>
<td>0,05</td>
</tr>
<tr>
<td>Caudal afluente mayor que el 100% de la capacidad máxima nominal y menor que la capacidad máxima al borde libre</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Caudal afluente sobre el 100% de la capacidad máxima al borde libre</td>
<td>0,95</td>
</tr>
</tbody>
</table>

Para los casos reales en que alguna de estas condiciones se vulnера, se proponen coeficientes de minoración, según se indica en el cuadro siguiente.

CUADRO 7.2-3
COEFICIENTES DE CONFIABILIDAD APLICABLES A LA CAPACIDAD DE LA OBRA

<table>
<thead>
<tr>
<th>DESCRIPCIÓN</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad de Construcción</td>
<td></td>
</tr>
<tr>
<td>Obra de hormigón armado</td>
<td>1,0</td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
</tr>
<tr>
<td>Estado de Conservación</td>
<td></td>
</tr>
<tr>
<td>Obra en óptimo estado</td>
<td>1,0</td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
</tr>
<tr>
<td>Calidad del Canal de Descarga</td>
<td></td>
</tr>
<tr>
<td>Canal revestido en hormigón</td>
<td>1,0</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
</tr>
</tbody>
</table>

7.2.2.3 Evento de Piping

Se determinará para cada embalse el tiempo de estabilización del flujo bajo la presa. Para ello se supuso una velocidad del flujo que permite calcular el tiempo que demora una partícula en recorrer una línea de flujo del suelo por debajo del muro. A continuación, dependiendo del tiempo de estabilización del flujo y de la antigüedad de la presa, se determina la probabilidad de ocurrencia del evento.

La vulnerabilidad se determina dependiendo del estado de saturación o filtración en que se encuentra el muro. Además, se considera si el material del muro es cohesivo o no y si tiene sistema de drenaje.

El criterio de asignación de vulnerabilidad que se presenta a continuación, pretende cuantificar la probabilidad de falla por piping, dependiendo del estado actual del embalse.

La tabulación de probabilidades dependerá de si existe humedad al pie del muro o bajo él, y si existen filtraciones. Además, considera la existencia o no de un sistema de drenaje o si el material del muro es cohesivo. Luego se ha propuesto el siguiente criterio.
CUADRO 7.2-4
RIESGO DE PIPING SEGÚN SITUACIÓN DEL MURO

<table>
<thead>
<tr>
<th>SITUACIÓN DEL MURO</th>
<th>RIESGO "p"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Por otra parte, la probabilidad de ocurrencia del fenómeno se define usando los datos del Cuadro 7.2-5. En este caso, se tiene que la probabilidad de ocurrencia del fenómeno disminuye con el paso del tiempo.

CUADRO 7.2-5
PROBABILIDAD DE OCURRENCIA DE PIPING SEGÚN SITUACIÓN DEL MURO

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
</tr>
</tbody>
</table>

Debe hacerse notar que el piping es sólo problemático en los primeros años de la obra, por lo que en términos prácticos no se considerará como condicionante para el cálculo de riesgo de la falla.

Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales (1/3 L_h).

\[L' = \frac{1}{3} \cdot L_h + L_v \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C \cdot h \]
Lh = Longitud horizontal en la base del tranque o embalse.
Lv = Longitud vertical en la base del tranque o embalse.
C' = Coeficiente de filtración que depende del tipo de material del embalse
h = Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba

7.2.3 Efectos

7.2.3.1 Magnitud del vaciamiento

Conforme a la información disponible en la literatura y al conocimiento de falla en presas, se ha asumido que el muro se destruye formando un canalón cuyo ancho es 1,5 veces la altura de escurrimiento (Curso Internacional de Presas y Embalses, CEDEX, MOPU, España - 1978). En este canalón se calcula la crecida suponiendo altura crítica. El ancho de inundación promedio se asume para este mismo caudal, suponiendo que el valle próximo tiene una forma similar al sector en que está construido el tranque y que la altura de escurrimiento es normal.

La capacidad natural máxima de conducción del cauce aguas abajo se ha supuesto igual a la crecida centenaria, de acuerdo a la experiencia.

Los posibles efectos hacia aguas abajo dependen de la distancia en relación al cauce a que se encuentra el punto de análisis, la relación entre el caudal de vaciamiento y la capacidad del cauce y de la rama del cauce en que se encuentra dicho punto.

A continuación resumen las hipótesis adoptadas.

- La falla alcanza un ancho de 1,5 veces la altura del agua.
- En la garganta se produce altura crítica (2/3 altura de embalse)
- La diferencia entre la altura crítica y la altura por aguas abajo es de 1,5
- El tiempo de vaciamiento es 2V/Q máx. Donde: V = Volumen embalsado, en m³ y Q máx.= Caudal máximo de vertedero, en m³/s.

Para caracterizar la onda de vaciamiento sobre la base de las hipótesis anteriores sus parámetros principales son los siguientes:

- Altura inicial = H = Altura del Muro, en m
- Volumen de agua en vaciamiento = V = Volumen embalsado, m³
- Ancho medio de inundación = \(\frac{Lc \cdot hind}{H} \)

Lc = Largo del coronamiento, en m;
hind = Altura de inundación, en m.

\[h_{ind} = (2)^{5/3} \cdot \frac{Qn \cdot H}{\sqrt{i \cdot Lc}} \]

Donde:
- \(Q \) = Caudal máximo de diseño vertedero, en m³/s
- \(n \) = Coeficiente de rugosidad del cauce ("Manning")
- \(i \) = Pendiente longitudinal media del cauce, en tanto por uno.

7.2.3.2 Criterio de Definición de Potencialidad de Ocurrencia de Efectos en el Valle

El objetivo del presente capítulo es estimar los riesgos asociados a una falla por vaciamiento de un embalse ante la ocurrencia de un fenómeno desencadenante, que logre efectivamente producir un daño estructural serio al muro de la presa. Esta probabilidad de daño no se encuentra asociada al evento desencadenante mismo, ya que se pretende evaluar sólo los daños posibles ante la ocurrencia del vaciamiento. El hecho de si se producirá o no el evento o si se dañará o no el tranque, tiene sus probabilidades de ocurrencia propias y la seguridad final se evalúa como el producto de ellas.

La estimación de eventuales daños corresponde a la forma en que la onda de crecida se propagaría en forma teórica. Sin embargo, tal determinación requiere de un análisis específico caso a caso, dependiendo de las características propias de cada valle y de cómo se incorpora el cauce en estudio a otros cauces más importantes aguas abajo.

Como criterio general se estima el caudal de vaciamiento y del ancho de la zona inundada, en base a recomendaciones generales de la literatura, según lo indicado en el numeral precedente. Se estimará también, el caudal centenario del cauce en estudio, asumiendo que corresponda a máxima capacidad aceptada por éste sin daños importantes. Para estimar la probabilidad de daño específico se hará un análisis particular de cada cauce, de acuerdo a planos del IGM a escala 1:50.000, complementado con la información de terreno.

La presente proposición de riesgos asociados se basa en los criterios señalados, otorgando probabilidades de daño conforme a las siguientes pautas.

- **Según la Cercanía a la Faja probable de Inundación,**

| Dentro de la faja de inundación | 0.50 a 1.0 |
| Fuera de la faja de inundación | 0.05 a 0.5 |

- **Según la Cercanía al Punto de Vaciamiento.**

Dentro del cauce secundario en que se encuentra el embalse	0.8 a 1.0
En el cauce que recibe al anterior, sin ser un cauce importante	0.5 a 0.8
En un cauce mayor.	0.05 a 0.5

La probabilidad de falla es el mayor valor entre el Factor 1 y el Factor 2.
Es importante conocer en cada caso una estimación del caudal centenario de modo de analizar el monto da la crecida por vaciamiento en comparación a esta capacidad.

El análisis debe hacerse en forma independiente para los asentamientos de personas, infraestructura agrícola u otra obra.
CAPÍTULO 8
CONCLUSIONES
8. CONCLUSIONES

Del catastro efectuado se concluye que es posible clasificar los embalses estudiados en 4 grandes grupos:

- **16 Embalses (incluye muros analizados por separado) en uso y en buen estado:**

<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Sapos (Todos los Muros)</td>
</tr>
<tr>
<td>3</td>
<td>Pilaiicto</td>
</tr>
<tr>
<td>7</td>
<td>Chancón</td>
</tr>
<tr>
<td>22</td>
<td>Yerbas Buenas (Santa Julia) (sólo Muro 2)</td>
</tr>
<tr>
<td>25</td>
<td>La Esperanza</td>
</tr>
<tr>
<td>33</td>
<td>Convento Viejo I</td>
</tr>
<tr>
<td>34</td>
<td>Lolol</td>
</tr>
<tr>
<td>35</td>
<td>Culenco</td>
</tr>
<tr>
<td>37</td>
<td>Los Negros</td>
</tr>
<tr>
<td>38</td>
<td>El Guaico</td>
</tr>
<tr>
<td>39</td>
<td>El Huique</td>
</tr>
<tr>
<td>40</td>
<td>Santa Margarita (Santa Lucia)</td>
</tr>
<tr>
<td>44</td>
<td>El Cardonal</td>
</tr>
<tr>
<td>49</td>
<td>Callihue</td>
</tr>
</tbody>
</table>

- **38 Embalses (incluye muros analizados por separado) en uso y en regular estado:**

<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Los Maquis</td>
</tr>
<tr>
<td>4</td>
<td>Romeral (ambos muros)</td>
</tr>
<tr>
<td>8</td>
<td>San Isidro</td>
</tr>
<tr>
<td>10</td>
<td>San José de Las Pataguas</td>
</tr>
<tr>
<td>12</td>
<td>San Vicente</td>
</tr>
<tr>
<td>13</td>
<td>Cocauquén o Pailimo 1</td>
</tr>
<tr>
<td>14</td>
<td>Piedras Blancas o Pailimo 2 (ambos muros)</td>
</tr>
<tr>
<td>15</td>
<td>La Rosa</td>
</tr>
<tr>
<td>16</td>
<td>Alcones</td>
</tr>
<tr>
<td>17</td>
<td>Mallermo</td>
</tr>
<tr>
<td>18</td>
<td>Aguadilla</td>
</tr>
<tr>
<td>21</td>
<td>Porotal</td>
</tr>
<tr>
<td>Nº</td>
<td>NOMBRE EMBALSE</td>
</tr>
<tr>
<td>----</td>
<td>---</td>
</tr>
<tr>
<td>22</td>
<td>Yerbas Buena (Santa Julia) (Muro 1)</td>
</tr>
<tr>
<td>23</td>
<td>Carrizal</td>
</tr>
<tr>
<td>24</td>
<td>Pihuchén</td>
</tr>
<tr>
<td>26</td>
<td>Tierruca</td>
</tr>
<tr>
<td>27</td>
<td>Guido Soto (todos los muros)</td>
</tr>
<tr>
<td>28</td>
<td>Los Novios</td>
</tr>
<tr>
<td>29</td>
<td>Alto Colorado</td>
</tr>
<tr>
<td>30</td>
<td>Pañilonco</td>
</tr>
<tr>
<td>31</td>
<td>Rinconada (La Macarena)</td>
</tr>
<tr>
<td>32</td>
<td>Santa Isabel</td>
</tr>
<tr>
<td>36</td>
<td>Pataguilla</td>
</tr>
<tr>
<td>41</td>
<td>Jaime Ramírez</td>
</tr>
<tr>
<td>43</td>
<td>Nilahue</td>
</tr>
<tr>
<td>45</td>
<td>Lagunilla</td>
</tr>
<tr>
<td>46</td>
<td>La Gloria (La Cruz)</td>
</tr>
<tr>
<td>47</td>
<td>Quesería</td>
</tr>
<tr>
<td>48</td>
<td>Salto De Agua (todos los muros)</td>
</tr>
<tr>
<td>50</td>
<td>Patagua Cerro Guirabo (todos los muros)</td>
</tr>
</tbody>
</table>

- 8 Embalses (incluye muros analizados por separado) en uso y en mal estado:

<table>
<thead>
<tr>
<th>Nº</th>
<th>NOMBRE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Picarquín</td>
</tr>
<tr>
<td>6</td>
<td>Esmeralda</td>
</tr>
<tr>
<td>9</td>
<td>Millahue</td>
</tr>
<tr>
<td>11</td>
<td>Idahue (todos los muros)</td>
</tr>
<tr>
<td>19</td>
<td>Los Maitenes (muro 2)</td>
</tr>
<tr>
<td>20</td>
<td>San Guillermo</td>
</tr>
<tr>
<td>42</td>
<td>La Troya</td>
</tr>
</tbody>
</table>

- 3 Embalses (incluye muros analizados por separado) fuera de uso y en mal estado:

<table>
<thead>
<tr>
<th>Nº</th>
<th>NOMBRE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Los Maitenes</td>
</tr>
</tbody>
</table>
Respecto a la situación de riesgo, se tiene que:

- **29 Embalses (o muros) con Riesgo Sísmico**

<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Sapos (muros 1 y 3)</td>
</tr>
<tr>
<td>2</td>
<td>Los Maquis</td>
</tr>
<tr>
<td>3</td>
<td>Pilaicito</td>
</tr>
<tr>
<td>5</td>
<td>Picarquín</td>
</tr>
<tr>
<td>9</td>
<td>Millahue</td>
</tr>
<tr>
<td>10</td>
<td>San José de Las Pataguas</td>
</tr>
<tr>
<td>11</td>
<td>Idahue (todos los muros)</td>
</tr>
<tr>
<td>13</td>
<td>Cocaluquén o Pailim 1</td>
</tr>
<tr>
<td>14</td>
<td>Piedras Blancas o Pailim 2 (todos los muros)</td>
</tr>
<tr>
<td>16</td>
<td>Alones</td>
</tr>
<tr>
<td>18</td>
<td>Aguadilla</td>
</tr>
<tr>
<td>19</td>
<td>Los Maitenes (muro 2)</td>
</tr>
<tr>
<td>20</td>
<td>San Guillermo</td>
</tr>
<tr>
<td>24</td>
<td>Pihuchén</td>
</tr>
<tr>
<td>25</td>
<td>La Esperanza</td>
</tr>
<tr>
<td>26</td>
<td>Tierruca</td>
</tr>
<tr>
<td>29</td>
<td>Alto Colorado</td>
</tr>
<tr>
<td>31</td>
<td>Rinconada (La Macarena)</td>
</tr>
<tr>
<td>34</td>
<td>Lolol</td>
</tr>
<tr>
<td>36</td>
<td>Pataguilla</td>
</tr>
<tr>
<td>37</td>
<td>Los Negros</td>
</tr>
<tr>
<td>40</td>
<td>Santa Margarita (Santa Lucía)</td>
</tr>
<tr>
<td>41</td>
<td>Jaime Ramirez</td>
</tr>
<tr>
<td>45</td>
<td>Lagunilla</td>
</tr>
<tr>
<td>47</td>
<td>Quesería</td>
</tr>
</tbody>
</table>

- **36 Embalses (o muros) con Riesgo por Escorrentía**

<table>
<thead>
<tr>
<th>N°</th>
<th>NOMBRE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Sapos (muro 2)</td>
</tr>
<tr>
<td>4</td>
<td>Romeral (ambos muros)</td>
</tr>
<tr>
<td>6</td>
<td>Esmeralda</td>
</tr>
<tr>
<td>Nº</td>
<td>NOMBRE EMBALSE</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>Chancón</td>
</tr>
<tr>
<td>8</td>
<td>San Isidro</td>
</tr>
<tr>
<td>12</td>
<td>San Vicente</td>
</tr>
<tr>
<td>15</td>
<td>La Rosa</td>
</tr>
<tr>
<td>17</td>
<td>Mallermo</td>
</tr>
<tr>
<td>19</td>
<td>Los Maitenes (muros 1 y 3)</td>
</tr>
<tr>
<td>21</td>
<td>Porotal</td>
</tr>
<tr>
<td>22</td>
<td>Yerbas Buenas (Santa Julia) (ambos muros)</td>
</tr>
<tr>
<td>23</td>
<td>Carrizal</td>
</tr>
<tr>
<td>27</td>
<td>Guido Soto (todos los muros)</td>
</tr>
<tr>
<td>28</td>
<td>Los Novios</td>
</tr>
<tr>
<td>30</td>
<td>Pañilonco</td>
</tr>
<tr>
<td>32</td>
<td>Santa Isabel</td>
</tr>
<tr>
<td>33</td>
<td>Convento Viejo</td>
</tr>
<tr>
<td>35</td>
<td>Culenco</td>
</tr>
<tr>
<td>38</td>
<td>El Guaico</td>
</tr>
<tr>
<td>39</td>
<td>El Huique</td>
</tr>
<tr>
<td>42</td>
<td>La Troya</td>
</tr>
<tr>
<td>43</td>
<td>Nilahue</td>
</tr>
<tr>
<td>44</td>
<td>El Cardonal</td>
</tr>
<tr>
<td>46</td>
<td>La Gloria (La Cruz)</td>
</tr>
<tr>
<td>48</td>
<td>Salto De Agua (todos los muros)</td>
</tr>
<tr>
<td>49</td>
<td>Callihue</td>
</tr>
<tr>
<td>50</td>
<td>Patagua Cerro Guirabo (todos los muros)</td>
</tr>
</tbody>
</table>

Un resumen de los principales análisis del diagnóstico efectuado se incluye en el Cuadro 8-1.
<table>
<thead>
<tr>
<th>NO</th>
<th>NOMBRE EMBALSE</th>
<th>AÑO CONSTRUCCIÓN</th>
<th>USO</th>
<th>EMBALSE</th>
<th>CON AGUA ESTÁTICA</th>
<th>CON AGUA SÚMULA</th>
<th>BACÍCOS SECTO</th>
<th>SECCION SÓMBO</th>
<th>G. VODETERE</th>
<th>VALOR L (M³)</th>
<th>CUMPLIDO DE REGULACIO</th>
<th>ESTADO EMBALSE</th>
<th>RIESGO (MAPO)</th>
<th>% ANUAL</th>
<th>TIPO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Alagas M</td>
<td>1962</td>
<td>SI</td>
<td>1,650 1,272 1,939 2,675 1,272 1,939 2,675 1,272 1,939 2,675 0.04 0.04 0.04 0.04</td>
<td>BUENO</td>
<td>BUENO</td>
<td>19.27%</td>
<td>68.58%</td>
<td>96.58%</td>
<td>98.27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Los Alagas M</td>
<td>1962</td>
<td>SI</td>
<td>2,458 1,939 1,439 1,939 2,675 1,272 1,939 2,675 1,272 1,939 2,675 0.04 0.04 0.04 0.04</td>
<td>BUENO</td>
<td>BUENO</td>
<td>19.27%</td>
<td>68.58%</td>
<td>96.58%</td>
<td>98.27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Los Alagas M</td>
<td>1962</td>
<td>SI</td>
<td>2,119 1,762 1,309 1,762 2,675 1,272 1,939 2,675 1,272 1,939 2,675 0.04 0.04 0.04 0.04</td>
<td>BUENO</td>
<td>BUENO</td>
<td>19.27%</td>
<td>68.58%</td>
<td>96.58%</td>
<td>98.27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Los Alagas M</td>
<td>1962</td>
<td>SI</td>
<td>1,661 1,103 1,140 1,103 1,499 1,103 1,103 1,499 1,103 1,103 1,499 0.04 0.04 0.04 0.04</td>
<td>BUENO</td>
<td>BUENO</td>
<td>19.27%</td>
<td>68.58%</td>
<td>96.58%</td>
<td>98.27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Peralta</td>
<td>1963</td>
<td>SI</td>
<td>1,985 1,758 1,409 1,758 2,507 1,274 1,939 2,507 1,274 1,939 2,507 0.04 0.04 0.04 0.04</td>
<td>BUENO</td>
<td>BUENO</td>
<td>19.27%</td>
<td>68.58%</td>
<td>96.58%</td>
<td>98.27%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTA: *EN ESTE EMBALSE NO SE MEJORAN LOS TALUDES*
ANEXOS
ANEXO 3 - 1
VISITA ESPECIALISTA SELECCIÓN DE EMBALSES CRÍTICOS
INFORME DE VISITA A PRESAS
EN LA VI REGION

1. INTRODUCCION

El presente informe se refiere a la visita a presas ubicadas en la VI Región realizada por el que suscribe durante los días 1, 2, 3 y 9 de diciembre de 2009, en compañía del ingeniero Sr. Raimundo Barrios Olmos, de la empresa consultora Arrau Ingeniería E.I.R.L., con la finalidad de observar el estado actual de las obras y emitir una opinión relativa a su seguridad.

Las presas y/o embalses visitados fueron los siguientes:

- Embalse Lolol
- Presa San José de las Pataguas
- Embalse Millahue
- Embalse Tierruca
- Presa El Sauce (Ex – Alcones)
- Embalse Pailimo N°1 (ó Cocauquén N°1)
- Embalse San Vicente
- Embalse Convento Viejo
- Embalse Carrizal

Durante la visita se obtuvieron fotografías de las presas, las que se adjuntan en el Anexo.

2. OBSERVACIONES DE TERRENO PARA CADA PRESA

Las observaciones que se presentan a continuación sólo tienen relación con los aspectos de seguridad de los embalses visitados, con el fin de poder evaluar preliminarmente el riesgo de una ruptura del muro y si existen las condiciones en cada una de las obras para poder distinguir señales tempranas de mecanismos de ruptura catastrófica.
2.1 Embalse Lolol

Este embalse es muy antiguo según se pudo observar en terreno. Existe una inscripción bajo una estatua de San Isidro ubicada en uno de los extremos de la presa, que indica al parecer el año 1901 y la sigla “DC de OP”. El muro de presa se ubica en una angostura de roca con muy difícil acceso entremedio de los cerros de la cordillera de la costa. El camino es estrecho y peligroso, se debe realizar en vehículo con doble tracción y obligatoriamente con el cuidador del embalse para evitar tomar caminos equivocados. Desde la casa del cuidador hasta la presa, el viaje demora aproximadamente 1 hora en vehículo.

El talud de aguas arriba tiene una inclinación de 20° con respecto a la horizontal y el de aguas abajo es de 30°. El coronamiento tiene un ancho medio de 5 m aproximadamente. El talud de aguas arriba está cubierto completamente (excepto un tramo corto cerca del vertedero) con un enrocado regular (ordenado) y no se aprecian a simple vista hundimientos ni irregularidades notorias. Se nota claramente hasta que nivel llega el agua en el talud de aguas arriba cuando en embalse se encuentra completamente lleno. La revancha se estima en alrededor de 2.5 m para el nivel máximo de aguas. En el talud de aguas arriba, sobre la línea de aguas máximas y hasta el coronamiento, se observa en general vegetación de baja altura (pastizal) con escasos matorrales.

Se pudo observar un limnómetro en el interior del lago que al momento de la visita marcaba un nivel de agua de 16.2 m. Se estima que la presa tiene una altura máxima del orden de 20 m.

El vertedero frontal se ubica en el estribo izquierdo de la presa y está excavado en roca algo fracturada y poco meteorizada. Al parecer la longitud del vertedero fue ampliada en algún momento, ya que se observan señales del antiguo vertedero que era muy pequeño (tipo canal) que tenía el umbral unos 2 m más abajo que el actual. El umbral del vertedero y el tramo inicial del canal del vertedero están construidos en albañilería de piedra. El resto del canal está excavado en roca con paredes muy irregulares por el método de excavación utilizado (no por erosión del agua). El vertedero entrega a un cauce natural.

Existe un túnel de entrega en la parte alta de la presa, hacia el estribo izquierdo, cuya salida al pie del talud de aguas abajo se observa en buen estado. Cerca del vertedero se ubica la caseta circular desde donde se maneja la entrega del agua mediante 2 válvulas.
El talud de aguas abajo se encuentra completamente cubierto con vegetación arbustiva y con árboles de gran altura, que impiden observar el desarrollo del talud y la ubicación de su pié.

No se observan grietas en el coronamiento de la presa ni filtraciones a través del suelo de fundación ni de la presa, tampoco se observan sectores saturados en el muro de presa. Respecto a las riberas del embalse no se observaron situaciones riesgosas evidentes.

Resumen embalse Lolol:

Se estima que este embalse tiene un riesgo bajo de falla estática y sísmica, principalmente considerando su antigüedad, la inclinación de sus taludes y el estado actual de conservación. Al parecer la angostura entera presenta roca de buena calidad (granito) casi superficialmente. No obstante lo anterior, como medida de seguridad preventiva, se recomienda un roce total de la vegetación mediana y de altura que cubre el talud de aguas abajo, y una mantención regular del camino de acceso al embalse, con señalización de caminos en los puntos que corresponda.

2.2 Presa San José de las Pataguas

El acceso al sitio de esta presa no se puede realizar en vehículo debido a que existe un canal que atraviesa el camino, con un puente hechizo de troncos, que es muy peligroso atravesar, por lo que se debe caminar aproximadamente 800 m hasta alcanzar el muro de presa.

Esta presa presenta un perfil irregular en el talud de aguas arriba. En una altura de aproximadamente 2.5 m desde el coronamiento hacia aguas arriba, el talud tiene una inclinación muy irregular debido a la erosión que a causado el oleaje del embalse y a falta de mantención. Esta inclinación se estima entre 45 y 50° con respecto a la horizontal. A partir de los 2.5 m hacia abajo, el talud de aguas arriba tiene una inclinación de 22° aproximadamente. La parte mas tendida del talud de aguas arriba se observa parcialmente cubierta por una capa de grava de cantos redondeados de tamaño máximo 10°.

El ancho del coronamiento es de aproximadamente 4 m en promedio. El talud de aguas abajo tiene una inclinación de 29° aproximadamente. Existe un sector que fue reparado en el talud de aguas abajo después del sismo del 3 de marzo.
de 1985, agregando una berma de unos 2 m de ancho ubicada unos 3 m por debajo del coronamiento en la zona mas alta de la presa. La altura máxima de la presa es de aproximadamente 7,8 m.
Tanto en el coronamiento como en el talud de aguas abajo existe gran cantidad de vegetación tipo zarzamora y espinos que impiden recorrer el muro completamente y la observación de irregularidades. Cercano al estribo derecho se observa una zona con enrocado regular sobre el talud de aguas abajo.

El vertedero frontal se ubica en el estribo derecho sobre roca. Actualmente el canal de evacuación del vertedero se encuentra muy destruido debido a las crecidas que han pasado en años anteriores. Se realizó una reparación con gaviones que fue completamente destrozada por una de las crecidas. Al final del canal del vertedero se observa que existe una gran fosa muy profunda que ha sido excavada por las aguas del vertedero.

El umbral del vertedero se observa en buen estado así como también la torre de entrega de agua. En el canal del vertedero existe un muro de hormigón armado hacia el costado del embalse que se observa que filtra por fisuras.

No se observaron grietas ni fisuras en el muro de presa. Tampoco se observan zonas húmedas y/o pantanosas en el pie del talud de aguas abajo, aunque se observa abundante vegetación de mediana altura desde la presa hacia aguas abajo. Las riberas del embalse se observan estables y sin indicios de deslizamientos. Aguas abajo del embalse existen terrenos de cultivo y casas aisladas con moradores.

Resumen Presa San José de las Pataguas (San Hernán):

Se estima que esta presa tiene un riesgo mediano de falla estática y un riesgo alto de falla sísmica para la situación de embalse lleno. Se recomienda realizar un roce de todos los arbustos del muro de presa y hasta unos 50 m aguas abajo del pie del talud, para poder observar adecuadamente si existen irregularidades en el muro y filtraciones aguas debajo de la presa. Además se debe reperfilar el talud de aguas arriba a un talud de 22° homogéneo aproximadamente y reponer el enrocado de protección donde sea necesario. Es conveniente aumentar el ancho del coronamiento a 5 m y verificar que exista una revancha de por lo menos 2 m, entre la cota de coronamiento y el nivel de umbral de vertedero. Reparar fisuras del muro del canal del vertedero y reforzar la parte final de dicho canal. Mejorar el puente sobre canal en el camino de acceso al embalse.
2.3 Embalse Millahue

El acceso al embalse Millahue se realiza por un camino de tierra en buen estado, atravesando por una servidumbre que ha producido conflicto con los regantes. Prácticamente se puede llegar en vehículo hasta el pie de la presa.

El muro de presa se encuentra cubierto por vegetación de mediana altura en el talud de aguas abajo. El coronamiento se encuentra prácticamente libre de vegetación. También se observa vegetación entre el coronamiento y el nivel de aguas máximas en el talud de aguas arriba.

La altura máxima de la presa se estima en 9,0 m aproximadamente. El talud de aguas arriba tiene una inclinación de 37° y se encuentra cubierto con una capa de bolones y grava de cantos redondeados. El talud de aguas abajo tiene una inclinación de 30° aproximadamente. La longitud de la presa se estima en unos 800 m aproximadamente. El vertedero se ubica en el estribo derecho. La torre de entrega de agua se ubica cercana al centro de la presa y se accede a ella por un puente de madera. La profundidad máxima de agua es de 9 m. El ancho del coronamiento es de aproximadamente 6,8 m. Según la persona encargada del embalse, el muro tiene un núcleo de arcilla.

Esta presa fue reparada en la mitad superior después del sismo del 3 de marzo de 1985.

El vertedero es frontal y de gran longitud, corresponde a una barrera de hormigón armado de baja altura sobre la que sobresalen perfiles metálicos que se utilizan para colocar tablones y, de esta manera, acumular mayor cantidad de agua en el embalse. El vertedero entrega a un canal excavado en suelo cementado que se observa en buen estado, con poca erosión y con abundante vegetación de mediana altura. Existe un revestimiento en la pared del canal para evitar la erosión, ubicado inmediatamente después del umbral del vertedero.

No se observaron grietas ni fisuras en el muro de presa. Tampoco se observaron filtraciones al pie de la presa, aunque sí se observa abundante vegetación. Las laderas del embalse se observan estables y sin signos de deslizamientos. Según el cuidador del embalse, una empresa está cortando árboles en los terrenos del borde del lago, y a los regantes le preocupa que se produzca erosión de los cerros y embauicamiento del embalse.

Resumen de Embalse Millahue:
Este embalse tiene un riesgo bajo de falla estática y un riesgo mediano de falla sísmica, debido principalmente a la inclinación del talud de aguas abajo y al peralte que se realiza con tablones en el vertedero, lo que disminuye la revancha normal. Se recomienda tender el talud de aguas abajo a una inclinación no superior a 33°. Además se recomienda retirar toda la vegetación de mediana altura en ambos taludes hasta una distancia de 50 m desde el pie de la presa. Eliminar los perfiles metálicos que se pusieron en el umbral del vertedero y revisar la revancha efectiva que tiene la presa.

2.4 Embalse Tierrauc

El acceso al embalse Tierrauc se realiza por un camino de tierra en buen estado que atraviesa terreno plantados con viñas. Se puede llegar hasta el coronamiento de la presa con vehículo.

El ancho de coronamiento de la presa es de 4.5 m en promedio. El talud de aguas arriba tiene una inclinación de 39° y el de aguas debajo de 30°. La altura máxima de la presa es del orden de 7,0 m. El talud de aguas arriba se encuentra parcialmente protegido por bolones y restos de demoliciones de hormigón, se observa erosionado por el oleaje del lago. El área del embalse es afectada regularmente por vientos fuertes considerando que no existen cerros cercanos al borde del lago. Ambos taludes están cubiertos por vegetación de mediana altura que impide ver con claridad cualquier irregularidad del muro. Cercanas al estribo izquierdo se observaron 2 grietas longitudinales en el eje del coronamiento del muro, de aproximadamente 30 y 40 m de longitud, y de 5 cm de abertura máxima. Los bordes de estas grietas no presentan desnivel entre sí o muy leve descenso del borde hacia el lago. Según el administrador del predio, el muro de presa tiene un dentellón de impermeabilización en la fundación y el suelo de fundación corresponde a una tosca impermeable. El muro fue construido en el año 1992.

El talud de aguas abajo sólo se encuentra protegido por vegetación y no se observa erosionado. En este mismo talud se observan unas empalizadas de más de 1 m de altura, ubicadas regularmente, rodeadas con una malla plástica, que corresponden a restos de un intento de colocar plantas florales en dicho talud.

El vertedero es frontal y se encuentra ubicado cortando el muro de presa en dos
partes, pero mas cercano del estribo derecho. Es una estructura de hormigón armado con un fosfo disipador de energía inmediatamente aguas abajo del umbral. Ambos costados están protegidos con un muro de hormigón armado. El canal rectangular de evacuación del vertedero se extiende una corta longitud con revestimiento completo hasta una altura de aproximadamente 1 m. A continuación se observa un canal excavado en tosa dura que no presenta erosiones de importancia. En el umbral del vertedero existen perfiles metálicos insertados en el hormigón que se utilizan para colocar tablones para aumentar la capacidad de almacenamiento del embalse, pero que disminuye peligrosamente la revancha de seguridad. Se estima que esta revancha disminuye a no mas de 50 cm cuando se utilizan los tablones.

Aguas debajo de la presa existen plantaciones de viña, galpones, las oficinas de ingreso al predio y casas aisladas con moradores.

No existen cerros cercanos al borde del lago, se ubica en una zona muy despejada donde no existen riesgos de deslizamiento de laderas. No se observaron zonas húmedas ni filtraciones de agua al pie de la presa.

Resumen de Embalse Tierruca:

Este embalse tiene un riesgo mediano para el caso estático y un riesgo alto para el caso sísmico, principalmente por la fuerte inclinación del talud de aguas arriba, su marcada erosión por oleaje, la baja revancha de seguridad para el nivel de aguas máximas del lago y las grietas longitudinales observadas en el coronamiento. Se recomienda eliminar los perfiles del vertedero que peraltan el nivel máximo del lago, aumentar la cota de coronamiento en al menos 50 cm, reperforar el talud de aguas arriba a una inclinación no superior a 33° y reponer la protección contra la erosión por oleaje en la superficie del talud de aguas arriba donde sea necesario. Además se debe tapar las grietas del coronamiento con arcilla para evitar la penetración de aguas lluvias en ellas.

2.5 Presa El Sauce (Ex – Alcones)

El acceso a este embalse se realiza por un camino de tierra en regular estado a partir de un portón con llave ubicado en el antiguo camino a Pichilemu. Se puede llegar con vehículo hasta el coronamiento.
Es un embalse muy antiguo cuyo muro de presa se encuentra cubierto por árboles de gran altura y vegetación de todo tipo. El coronamiento se encuentra despejado lo que permite recorrerlo casi en su totalidad.

La altura máxima del muro de presa se estima en 27,2 m y longitudinalmente tiene una forma levemente curva. El vertedero es del tipo "morning glory" con su umbral en la cota 25. Se observa que esta estructura fue peraltada, así como también el muro de presa y la obra de toma.

El talud de aguas arriba tiene una inclinación de 25° y el de aguas debajo de 33° aproximadamente. El ancho de coronamiento del muro es de 8 m aproximadamente. Se observa roca en ambos estribos de la presa. La revancha de seguridad es de aproximadamente 2 m.

El talud de aguas arriba no tiene protección contra la erosión por oleaje. Se observa un quiebre en el plano del talud de aguas arriba, en la parte superior por debajo del coronamiento, que puede ser efecto de la erosión por oleaje o bien indicación del peralte del muro.

La obra de toma es una estructura circular de hormigón armado a la cual se accede mediante un puente de hormigón armado con sus barandas en mal estado. Este puente está construido sobre otro puente más antiguo. Desde la obra de toma se operan 2 válvulas de entrega.

Las orillas del lago son de pendiente suave, por lo que no se observa riesgos de deslizamientos en masa. Debido a la espesa vegetación que cubre el talud de aguas abajo, no se pudo observar si existen zonas húmedas al pie o filtraciones desde el embalse. La persona a cargo del embalse señaló que no existen filtraciones y que la presa no ha tenido nunca problemas de ningún tipo.

Resumen de Presa El Sauce (Ex – Alcones):

Se estima que el riesgo de falla estático y sísmico de este embalse es bajo, considerando la inclinación de los taludes, el generoso ancho de coronamiento y la revancha de seguridad que tiene. Este embalse se llena sólo con aguas lluvias y se estima recomendable realizar una verificación de la capacidad de evacuación del vertedero y del estado de su túnel de evacuación. Se recomienda realizar un roce de la vegetación en ambos taludes y colocar una capa de enrocado de protección contra la erosión en el talud de aguas arriba.
2.6 Embalse Pailimo N°1 (ó Cocauquén N°1)

El acceso a este embalse se realiza por un desvío pavimentado del camino a Pichilemu, en el sector de Alcones. Se llega en vehículo hasta la misma presa y se puede recorrer en toda su longitud.

El muro de presa tiene una altura máxima de 12,6 m aproximadamente. La inclinación del talud de aguas arriba es de 25° y el de aguas abajo de 35°. El ancho de coronamiento es de aproximadamente 4.2 m. Se observa oleaje en el embalse provocado por viento moderado. El talud de aguas arriba tiene protección con enrocado, en donde se observa un hundimiento en la parte central de la presa. El talud de aguas abajo presenta gran cantidad de vegetación de mediana altura y árboles aislados. La parte superior del talud de aguas arriba también se observa con vegetación.

El vertedero de seguridad se ubica en el estribo derecho en roca tipo conglomerado. Tiene perfiles metálicos y tablones para aumentar la capacidad del embalse. El canal de evacuación del vertedero está excavado en el conglomerado, sin revestimiento, y se observa con erosión mediana.

El embalse tenía una pequeña filtración en el talud de aguas abajo, cercana al estribo izquierdo, justo encima de la tubería de entrega. Se efectuó una reparación que consistió en la colocación de un geotéxtil cubierto con enrocado.

Cercana al estribo izquierdo se observa una gran cárcava de erosión en el pie del talud de aguas abajo, provocada por aguas lluvias que provienen de la ladera izquierda de la angostura.

En ambos estribos de la presa se observa roca. La orilla del lago presenta un talud suave sin riesgo de deslizamientos en masa. Aguas abajo de la presa existe un pequeño poblado.

Resumen de Embalse Pailimo N°1 (ó Cocauquén N°1):

Este embalse se estima que tiene un riesgo de falla estático mediano a bajo y un riesgo sísmico mediano a alto. Lo anterior es considerando el peralte que se realiza al embalse al colocar tablones en el umbral del vertedero, lo que disminuye la revancha de seguridad, y por que existe un pequeño poblado aguas abajo. Se recomienda eliminar las estructuras de peralte del vertedero,
encauzar las aguas lluvias en la ladera izquierda de la presa de manera que no sigan erosionando el pie de la presa y realizar un roce de la vegetación en ambos taludes.

2.7 Embalse San Vicente

El acceso al embalse San Vicente se realiza a través de un camino de tierra por el interior de un predio con plantación de flores, en regular estado. Se puede llegar en vehículo hasta casi el pie de la presa.

La altura máxima de la presa es de 9,0 m aproximadamente. El ancho de coronamiento es de 3 m. La inclinación del talud de aguas arriba es de 40° y el de aguas abajo de 30°. Esta presa fue construida hace unos 15 años. Al momento de la visita el embalse se encontraba prácticamente en lleno en su capacidad máxima, faltando sólo 30 cm para comenzar a verter.

El vertedero frontal se ubica en el estribo derecho sobre roca de buena calidad. Presenta un corto tramo de mampostería de piedra. Se observa una pequeña filtración desde la barrera de umbral. No se observan estructuras de peralte del umbral del vertedero. Hacia el costado de la presa en el canal de aproximación del vertedero se observa un muro de gaviones. El vertedero entrega a un cauce natural.

En el talud de aguas arriba no se observa enrocare de protección, pero si se observan algunos neumáticos que protegen contra el oleaje. La presa se encuentra cubierta con vegetación tipo pastizal de baja altura con algunos árboles medianos aislados. El estribo derecho presenta roca a la vista y el estribo izquierdo es de arcilla arenosa.

En el coronamiento se observaron dos grietas longitudinales de 4 y 5 m de longitud aproximadamente y de 1 cm de abertura. No se observan filtraciones del muro ni de la fundación. Las orillas del embalse tienen una pendiente suave, cubierta con vegetación, sin riesgo de deslizamientos en masa. No existen poblados aguas abajo del embalse, sólo la casa del administrador del predio. El embalse tiene 2 entregas de agua operativas. Aguas abajo de la presa no se observa zonas muy húmedas ni pantanosas.
Resumen de Embalse San Vicente:

Este embalse tiene un riesgo de falla estático y sísmico bajo. Se recomienda rellenar las grietas que se observaron en el coronamiento con arcilla, para evitar el ingreso de aguas lluvias. Cuando el embalse se encuentre medio vacío se debe verificar el estado del talud de aguas arriba y si existe algún enrocamiento de protección contra el oleaje. Se recomienda mantener la vegetación controlada en el muro de presa.

2.8 Embalse Convento Viejo

El acceso a este embalse se realiza desde el pueblo de Chimbarongo por camino pavimentado a Chépica.

La presa tiene un ancho de coronamiento de 40 m y una altura máxima de 32 m. Tiene un núcleo central de arcilla con filtro de arena en ambos costados. Debajo del núcleo de arcilla existe una pared moldeada que alcanza hasta la roca. El talud de aguas arriba está protegido con enrocamientos y el de aguas abajo con empedrado fluvial (cantos redondeados). Ambos taludes de la presa se aprecian estables. Ambos estratos de la presa corresponden a roca fracturada. Al momento de la visita el nivel de agua en el embalse se encontraba en la cota 267,8 m.

El vertedero está ubicado en un portezuelo lateral al norte de la presa. Es una barrera de hormigón con compuertas de sector. Tiene un desagüe de media altura por donde actualmente se deja pasar el agua de otros regantes. En el muro del vertedero existe cercana al costado derecho una pequeña filtración de agua que es canalizada y aforada.

Tiene instalado varios pares de piezómetros tipo Casagrande que alcanzan hasta la cota de coronamiento. Alrededor de los monolitos de hormigón que sostienen los tubos piezométricos el relleno de la presa ha sufrido asentamientos notorios variable entre 15 y 30 cm aproximadamente. También se observa hundida la cuneta del camino y la barrera de contención. En cada par de piezómetros, uno alcanza con su cabeza hasta la roca y el otro hasta la parte inferior del núcleo. El relleno alrededor de los piezómetros se compactó con equipo liviano para no dañarlos, lo que explicaría el descenso adicional al normal de la presa.
Cercano al estribo derecho de la presa, en donde la pared moldeada tiene su menor altura, el piezómetro ubicado en roca mide un nivel de agua superior al del ubicado en el núcleo de arcilla, con lo que se tiene un gradiente hidráulico hacia arriba, lo cual no es preocupante porque el muro de presa tiene todavía una altura apreciable en este sector. No se observan filtraciones en el pie ni en el talud de aguas abajo, en la sección donde se ubican los piezómetros en cuestión. Mediciones posteriores indican que la diferencia entre ambos piezómetros ha disminuido, y en consecuencia también el gradiente hidráulico.

Preliminarmente, la explicación de los niveles piezométricos medidos es la siguiente: la roca basal está algo agrietada y permite filtraciones a través de ella, como la pared moldeada es de poca altura en este sector, el agua que proviene del lago no encuentra mucha dificultad en recorrer el trayecto hasta la roca, rodear la pared moldeada a través de la roca algo permeable y volver hacia arriba donde se encuentra el núcleo arcilloso y saturarlo. El piezómetro en la roca, donde todavía no se ha producido toda la pérdida de carga, muestra un nivel superior al del núcleo en donde se ha producido la pérdida de carga completa. Por otra parte, el filtro de arena ubicado aguas abajo del núcleo, ha permitido captar el agua que saturar el núcleo y la ha conducido al dren basal en donde se ha escurrido por la grava arenosa del valle, sin emerger al pie de la presa.

Resumen para Embalse Convento Viejo:

Esta es una presa que se terminó de construir hace muy poco tiempo, con controles e inspección permanentes. Se estima que tiene un riesgo de falla bajo tanto estática como sísmicamente, sobre todo considerando el generoso ancho de coronamiento. Se recomienda continuar con las mediciones diarias de los piezómetros y observar si aparecen afloramientos de agua o signos de humedad en el talud de aguas abajo o al pié. También se recomienda restablecer el nivel del relleno alrededor de los monolitos de los piezómetros, para evitar que se acumule aguas lluvias en las depresiones que pudieran filtrar hacia el interior y falsear las lecturas piezométricas.

2.9 Embalse Carrizal

El acceso a este embalse se realiza por un camino de tierra en regular estado por el interior de un predio agrícola. La presa es muy antigua, según el
administrador del predio, fue construida usando carros Decauville, y por esta razón el coronamiento tiene una pendiente que sube desde el estribo izquierdo hacia el estribo derecho, aumentando gradualmente la revancha de seguridad. La revancha mínima en el estribo izquierdo es de 2 m y aumenta gradualmente hasta 3.5 m aproximadamente.

La presa tiene un ancho de coronamiento variable desde 4 m hasta 8 m aproximadamente. La inclinación del talud de aguas arriba es de 25° y el de aguas abajo es de 30°. El talud de aguas arriba presenta un quiebre como a los 3 m por debajo del coronamiento, este último tramo de talud es algo más empinado (40° aprox.), probablemente se trata de un peralte reciente de la presa. El muro de presa tiene una ligera curvatura longitudinalmente. La altura máxima del muro de presa se estima en 15 m. Ambos taludes se encuentran cubiertos con vegetación arbustiva de mediana altura. El talud de aguas arriba tiene una delgada capa de enrocados de pequeño tamaño, que casi ha desaparecido.

No se observan filtraciones ni humedad en el pie de la presa. Las orillas del embalse se observan con suave pendiente sin riesgo de deslizamientos en masa. No se observan fisuras ni grietas en el muro de presa.

El vertedero es de tipo frontal y se ubica en el estribo izquierdo. Es de hormigón y albañilería de ladrillo. Da la impresión que el vertedero fue peraltado ya que se observa albañilería sobre hormigón. Se aprecia poco resistente y angosto, dejando dudas que soporte adecuadamente una crecida grande. Sobre el vertedero existe un puente de madera construido recientemente.

Resumen del Embalse Carrizal:

Este embalse presenta un riesgo de falla estático y sísmico bajo. No obstante lo anterior se recomienda reperfilar el talud de aguas arriba y reponer el enrocado de protección. Además se debe realizar un roce de la vegetación en ambos taludes y hasta 50 m del pie de la presa. Verificar la capacidad del vertedero y resistencia del umbral de albañilería.

3. CONCLUSIONES
De acuerdo con lo descrito en el acápite anterior, preliminarmente hemos asignado los siguientes riesgos a los embalses visitados:

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Riesgo estático</th>
<th>Riesgo sísmico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lolol</td>
<td>Bajo</td>
<td>Bajo</td>
</tr>
<tr>
<td>San José de las Pataguas</td>
<td>Mediano</td>
<td>Alto</td>
</tr>
<tr>
<td>Millahue</td>
<td>Bajo</td>
<td>Mediano</td>
</tr>
<tr>
<td>Tierruca</td>
<td>Mediano</td>
<td>Alto</td>
</tr>
<tr>
<td>El Sauce</td>
<td>Bajo</td>
<td>Bajo</td>
</tr>
<tr>
<td>Pailimo</td>
<td>Mediano a bajo</td>
<td>Mediano a alto</td>
</tr>
<tr>
<td>San Vicente</td>
<td>Bajo</td>
<td>Bajo</td>
</tr>
<tr>
<td>Convento Viejo</td>
<td>Bajo (*)</td>
<td>Bajo</td>
</tr>
<tr>
<td>Carrizal</td>
<td>Bajo</td>
<td>Bajo</td>
</tr>
</tbody>
</table>

(*) Se debe analizar la piezometría cercana al estribo derecho.

Santiago, diciembre de 2009

Donaldo Astorga Macload
Ingeniero Civil
Geofun Ltda.
ANEXO 5 - 1

PLANILLAS DE CÁLCULO CAPACIDAD
VERTEDERO
Caudal sobre el vertedero

\[Q = m \cdot l \cdot h \cdot \sqrt{2 \cdot g \cdot h} \]

\(l \) = Longitud del vertedero, a la distancia entre las paredes verticales o inclinadas que lo limitan sobre el umbral.

\(h \) = Carga del vertedero medida sobre el plano horizontal que pasa sobre el umbral.

\(m \) = Coeficiente de gasto.

Para pared gruesa:

En este caso, vierten por sobre una parte del muro. Se considera de pared gruesa aquellos en que el espesor es al menos cinco veces la altura crítica. El espesor es el ancho del muro.

\[n = \text{Espesor relativo de la barrera} \quad n = 1,5 \cdot \frac{e}{h} \]

\(a \) = Altura de la barrera.
\(\frac{h}{a+h} \)	\(\text{Espesores relativos de umbral } n = \)							
0,00	0,379	0,377	0,376	0,375	0,373	0,371	0,370	0,366
0,05	0,379	0,377	0,376	0,375	0,373	0,371	0,370	0,366
0,10	0,379	0,378	0,377	0,376	0,374	0,372	0,371	0,367
0,20	0,385	0,381	0,380	0,379	0,377	0,375	0,374	0,370
0,30	0,388	0,386	0,385	0,383	0,382	0,380	0,379	0,375
0,40	0,395	0,393	0,392	0,390	0,388	0,387	0,385	0,381
0,50	0,404	0,402	0,400	0,399	0,397	0,395	0,394	0,390
0,60	0,415	0,412	0,411	0,410	0,408	0,406	0,405	0,400
0,70	0,428	0,425	0,423	0,422	0,420	0,418	0,417	0,412
0,80	0,443	0,440	0,439	0,437	0,435	0,433	0,431	0,426
0,90	0,459	0,457	0,455	0,454	0,451	0,449	0,448	0,443
1,00	0,478	0,476	0,474	0,472	0,470	0,468	0,466	0,460

Caudal sobre el vertedero

\[
Q = m \cdot l \cdot h \cdot \sqrt{2 \cdot g \cdot h}
\]

\(l \) = Longitud del vertedero, a la distancia entre las paredes verticales o inclinadas que lo limitan sobre el umbral.

\(h \) = Carga del vertedero medida sobre el plano horizontal que pasa sobre el umbral.

\(m \) = Coeficiente de gasto

Para pared delgada

\[
m = \left[0,405 + \frac{0,003}{h} \right] \cdot \left[1 + 0,55 \frac{h^2}{(h+a)^3} \right]
\]

\(a \) = Altura de la barrera
Vertederos curvos tipo *Morning Glory*

\[Q = K \cdot h^{1.42} \]

Ecuación de gasto:

En el cuadro siguiente se tienen coeficientes \(K \) en función del diámetro. Para diámetros mayores se interpoló con la relación del gráfico adjunto.
<table>
<thead>
<tr>
<th>N°</th>
<th>EMBALSE</th>
<th>PERÍODO DE RETORNO</th>
<th>C vertedero (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Los Sauces</td>
<td>13.3</td>
<td>0.8</td>
</tr>
<tr>
<td>2</td>
<td>Los Maquis</td>
<td>3.7</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>Placito</td>
<td>105.4</td>
<td>0.7</td>
</tr>
<tr>
<td>4</td>
<td>La Florida</td>
<td>3.0</td>
<td>1.4</td>
</tr>
<tr>
<td>5</td>
<td>Picuqui</td>
<td>30.8</td>
<td>0.4</td>
</tr>
<tr>
<td>6</td>
<td>Esmeralda</td>
<td>2.7</td>
<td>0.4</td>
</tr>
<tr>
<td>7</td>
<td>Chacraón</td>
<td>16.6</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>San Isidro</td>
<td>34.4</td>
<td>0.3</td>
</tr>
<tr>
<td>9</td>
<td>Milahuas</td>
<td>53.0</td>
<td>0.4</td>
</tr>
<tr>
<td>10</td>
<td>San Bernardo (San José de la Patagoga)</td>
<td>53.0</td>
<td>0.4</td>
</tr>
<tr>
<td>11</td>
<td>Isshue</td>
<td>19.6</td>
<td>1.9</td>
</tr>
<tr>
<td>12</td>
<td>San Vicente</td>
<td>13.9</td>
<td>2.0</td>
</tr>
<tr>
<td>13</td>
<td>Colquey a Palermo 1</td>
<td>33.1</td>
<td>0.4</td>
</tr>
<tr>
<td>14</td>
<td>Piedras Blancas a Palermo 2</td>
<td>3.6</td>
<td>0.4</td>
</tr>
<tr>
<td>15</td>
<td>La Rosa</td>
<td>6.1</td>
<td>0.3</td>
</tr>
<tr>
<td>16</td>
<td>Alcones (El Sauce)</td>
<td>61.5</td>
<td>0.4</td>
</tr>
<tr>
<td>17</td>
<td>Maillero</td>
<td>4.3</td>
<td>0.4</td>
</tr>
<tr>
<td>18</td>
<td>Aquelcura</td>
<td>7.9</td>
<td>0.3</td>
</tr>
<tr>
<td>19</td>
<td>Los Mailleres</td>
<td>3.8</td>
<td>0.3</td>
</tr>
<tr>
<td>20</td>
<td>San Guillermo (Santa Marta)</td>
<td>1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>21</td>
<td>Portal</td>
<td>5.2</td>
<td>0.3</td>
</tr>
<tr>
<td>22</td>
<td>Yerbas Buenas (Santa Júlia)</td>
<td>34.8</td>
<td>0.3</td>
</tr>
<tr>
<td>23</td>
<td>Carral</td>
<td>24.7</td>
<td>0.3</td>
</tr>
<tr>
<td>24</td>
<td>Phuchén</td>
<td>1.7</td>
<td>0.3</td>
</tr>
<tr>
<td>25</td>
<td>La Esperanza</td>
<td>9.0</td>
<td>0.3</td>
</tr>
<tr>
<td>26</td>
<td>Tierra</td>
<td>15.8</td>
<td>0.3</td>
</tr>
<tr>
<td>27</td>
<td>Guadalupe</td>
<td>7.0</td>
<td>0.3</td>
</tr>
<tr>
<td>28</td>
<td>Los Naves</td>
<td>1.1</td>
<td>0.3</td>
</tr>
<tr>
<td>29</td>
<td>Alto Colorado</td>
<td>2.5</td>
<td>0.3</td>
</tr>
<tr>
<td>30</td>
<td>Patallón</td>
<td>10.4</td>
<td>0.3</td>
</tr>
<tr>
<td>31</td>
<td>Santa María (La Macarena)</td>
<td>3.2</td>
<td>0.3</td>
</tr>
<tr>
<td>32</td>
<td>Santa Isabel</td>
<td>9.0</td>
<td>0.3</td>
</tr>
<tr>
<td>33</td>
<td>Convento Viejo 1</td>
<td>639.8</td>
<td>0.3</td>
</tr>
<tr>
<td>34</td>
<td>Lloró</td>
<td>23.9</td>
<td>0.3</td>
</tr>
<tr>
<td>35</td>
<td>Cuénto</td>
<td>8.3</td>
<td>0.3</td>
</tr>
<tr>
<td>36</td>
<td>Pataguilla</td>
<td>10.4</td>
<td>0.3</td>
</tr>
<tr>
<td>37</td>
<td>Los Negros</td>
<td>5.2</td>
<td>0.3</td>
</tr>
<tr>
<td>38</td>
<td>El Quemado</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>39</td>
<td>El Huéque</td>
<td>3.4</td>
<td>0.3</td>
</tr>
<tr>
<td>40</td>
<td>Santa Lucía (Santa Margarita)</td>
<td>1.5</td>
<td>0.3</td>
</tr>
<tr>
<td>41</td>
<td>Jaime Ramírez</td>
<td>6.4</td>
<td>0.3</td>
</tr>
<tr>
<td>42</td>
<td>La Troya</td>
<td>5.5</td>
<td>0.3</td>
</tr>
<tr>
<td>43</td>
<td>Inahue</td>
<td>16.8</td>
<td>0.3</td>
</tr>
<tr>
<td>44</td>
<td>El Cardonal</td>
<td>1.6</td>
<td>0.3</td>
</tr>
<tr>
<td>45</td>
<td>Lagunillas</td>
<td>2.2</td>
<td>0.3</td>
</tr>
<tr>
<td>46</td>
<td>La Gloria (La cruz)</td>
<td>16.0</td>
<td>0.3</td>
</tr>
<tr>
<td>47</td>
<td>Quebrada</td>
<td>3.0</td>
<td>0.3</td>
</tr>
<tr>
<td>48</td>
<td>Saltos De Agua</td>
<td>13.1</td>
<td>0.3</td>
</tr>
<tr>
<td>49</td>
<td>Cotileño</td>
<td>11.2</td>
<td>0.3</td>
</tr>
<tr>
<td>50</td>
<td>Pataguas Cerro Guirado</td>
<td>5.4</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº</th>
<th>EMBALSE</th>
<th>PERÍODO DE RETORNO</th>
<th>C vertedero (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Frontal, marco hormigón y tableros</td>
<td>11.4</td>
<td>0.0</td>
</tr>
<tr>
<td>2</td>
<td>Frontal en tierra</td>
<td>17.1</td>
<td>0.0</td>
</tr>
<tr>
<td>3</td>
<td>Canal en tierra</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>4</td>
<td>Frontal en hormigón</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>5</td>
<td>Curso</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>6</td>
<td>Frontal en tierra</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>7</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>8</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>9</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>10</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>11</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>12</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>13</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>14</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>15</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>16</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>17</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>18</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>19</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>20</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>21</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>22</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>23</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>24</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>25</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>26</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>27</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>28</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>29</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>30</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>31</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>32</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>33</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>34</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>35</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>36</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>37</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>38</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>39</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>40</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>41</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>42</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>43</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>44</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>45</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>46</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>47</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>48</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>49</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>50</td>
<td>Pared delgada</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego

5-1 - 5
PARTE B: CATASTRO DE EMBALSES
EMBALSE LOS SAPOS
PARTE B: CATASTRO DE EMBALSES

1. EMBALSE LOS SAPOS
 1.1 Ubicación
 1.2 Características Generales
 1.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 1.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 1.5 Determinación de Filtraciones
 1.6 Verificación del Oleaje
 1.7 Análisis de Riesgo (Hazop)
 1.8 Álbum Fotográfico y Fichas de Catastro
1. **EMBALSE LOS SAPOS**

1.1 **Ubicación**

El embalse Los Sapos se ubica en la comuna de Machalí, provincia de Cachapoal, en las coordenadas UTM 6.230.229 Norte y 367.337 Este, Datum WGS 84. Se localiza en la cuenca de Rapel, subcuenca del Río Coya-Cachapoal y la fuente corresponde al estero Sapos.

Acceso desde Ruta 5 sur, hasta Rancagua, continuar por Ruta del Cobre, hasta empalme con ruta H-25, luego por esta última hasta las instalaciones de la Mina El Teniente de Codelco Chile en Colon Alto, por caminos interiores subir hasta Centro Invernal Chapa Verde.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 1.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE SAPOS

Fuente: Carta IGM
1.2 Características Generales

El **embalse** corresponde a un tranque de tierra perteneciente a CODELCO, División El Teniente, el uso y destino del embalse es de abastecimiento de agua potable e industrial y fue construido en el año 1962.

El **tipo de presa** es de tierra homogénea de una capacidad máxima de 6,0 hm³. La presa está conformada por tres cuerpos de muro, apoyados en terreno natural rocoso, con una altura máxima del muro de 24,0 m y una longitud de coronamiento de 785 m y ancho promedio del coronamiento de 7,1 m y borde libre de 1,8 m. El talud de aguas arriba está cubierto casi completamente con la geomembrana y el de aguas abajo no tiene revestimientos y está limpio de vegetación. A simple vista, no se observan hundimientos ni irregularidades notorias, así como tampoco deslizamientos ni grietas.

Los taludes de los muros son:

<table>
<thead>
<tr>
<th></th>
<th>MURO 1</th>
<th>MURO 2</th>
<th>MURO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud Aguas Arriba H:V</td>
<td>2,75:1</td>
<td>2,75:1</td>
<td>2,75:1</td>
</tr>
<tr>
<td>Talud Aguas Abajo H:V</td>
<td>1,88:1</td>
<td>1,73:1</td>
<td>1,73:1</td>
</tr>
</tbody>
</table>

El **evacuador de crecidas** corresponde a un vertedero frontal, ubicado en el estribo izquierdo de la presa y excavado en tierra. Dispone de una carga máxima de 2,7 m, que le otorga una revancha bastante apropiada, pero tiene una obra de control de acceso con muros guía para la colocación de tablones para peraltar el umbral, que en la medida que no sean bien utilizados pueden significar un riesgo de que las aguas sobrepasen el muro durante una crecida. El vertedero entrega al cauce natural de la quebrada. Las principales medidas son: Ancho de 5,0 m, largo 3,0 m. Se encuentra en buen estado de conservación y operación.

Las **obras de entrega** se ubican aproximadamente al centro de la presa y consisten en un pique de captación con entrega a tuberías gravitacionalmente. También se dispone de una tubería elevada a la cual se entrega por elevación mecánica. Esta tubería se desarrolla a lo largo del puente de acceso al pique. Las principales medidas de la estructura circular de hormigón armado es de 19,0 m de altura, desde de la cual el agua es conducida por bombas por una canería de HDPE de 100 mm en su comienzo y 200 mm hasta la entrega. La obra se encuentra en buen estado y operativa, no se observan problemas.

Dadas sus características, y suponiendo que la geomembrana ha quedado bien construida, el riesgo de falla se considera mínimo. Se recomienda eso sí, mantener un estricto y contínuo control de los niveles piezométricos, graficándolos y evaluando su comportamiento en el tiempo, vs. la cota del lago.

Con respecto a las filtraciones y sus controles, se pudo observar en la visita que se mezclan con deshielos del sector, por lo que su medición queda bastante alterada y probablemente su control sea errático. Se recomienda en todo caso, aprovechar los desniveles existentes para instalar en diversos puntos de control, vertederos triangulares de aforo, que a la vez pueden servir para observar los sólidos atrapados en el fondo y evaluar también su comportamiento en el tiempo.
Se considera asimismo, que los profesionales a cargo de la operación y del mantenimiento de la obra, se encuentran bastante capacitados para desarrollar las labores de control pertinentes. En resumen, se recomienda:

- Control permanente del nivel del lago y de la piezometría por parte de profesionales idóneos.
- Construcción de aforadores que permitan controlar también los sólidos a lo largo del tiempo.
- No peraltar el umbral del vertedero con tablones durante la época de crecidas.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 1.2-1
IMAGEN SATELITAL EMBALSE SAPOS
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Los Sapos

Vista panorámica Embalse Los Sapos
1.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Los Sapos tiene como fuente al estero Los Sapos, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – esorrentía.

La cuenca en estudio tiene una superficie de 5,56 km2. En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 1.3-1
CUENCA EMBALSE SADOS

![Mapa de cuenca con simbología]

Simbología
- Fuente
- Ubicación Embalse
- Cuenca Aportante

Área Cuenca: 566,02 Ha
CUADRO 1.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>Total</th>
<th>556,0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>0,0</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
<td>15,300,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
<td>0,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
<td>3,029,0</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
<td>2,236,9</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
<td>792,1</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
<td>25,1</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
<td>31,4</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
<td>5,36</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
<td>2,68</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
<td>368,324</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6,231,920</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>2,460,5</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
<td>369,766</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6,231,015</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>2,628</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

- Crecidas de deshielo

El método denominado DGA-AC para crecidas de deshielo, corresponde a un análisis regional de crecidas del período de deshielo, desarrollado en base a los análisis de frecuencias efectuado a las series de excedencia para el periodo nival de caudales medios diarios máximos y caudales instantáneos máximos, correspondientes a 234 estaciones de control existente en el país.

Para estimar el valor del caudal medio diario asociado al período de retorno 10 años se utiliza la siguiente ecuación:

\[Q_{10} = 1,81 \cdot 10^{-4} \cdot An \cdot (Lat - 26,2)^{3,392} \]

Donde:

- \(Q_{10} \) Caudal medio diario con período de retorno 10 años (m\(^3\)/s)
- \(An \) Área Nival de la cuenca (km\(^2\))
- \(Lat \) Latitud media de la cuenca, en grados (°)
Por la falta de otros métodos de cálculo y debido a la pequeña extensión de algunas cuencas, para la obtención de resultados se consultó la frecuencia máxima \(Q(T)/Q(10) \) que también se utiliza para caracterizar cuencas pluviales.

Finalmente la expresión queda de la siguiente forma:

\[
Q(T) = \beta \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10
\]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el periodo de retorno \(T \), y el coeficiente \(\beta \) es igual a 1,18.

CURVA DE FRECUENCIA REGIONAL ZONA HOMOGENEA NIVAL “Wn”

CUENCAS VI REGIÓN

<table>
<thead>
<tr>
<th>(T)</th>
<th>(Q(T)/Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>2</td>
<td>0,65</td>
</tr>
<tr>
<td>5</td>
<td>0,87</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,10</td>
</tr>
<tr>
<td>20</td>
<td>1,12</td>
</tr>
<tr>
<td>25</td>
<td>1,16</td>
</tr>
<tr>
<td>50</td>
<td>1,27</td>
</tr>
<tr>
<td>75</td>
<td>1,33</td>
</tr>
<tr>
<td>100</td>
<td>1,36</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS CUENCA APORTANTE

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Área nival (km²)</th>
<th>Latitud media (°C)</th>
<th>(Q(10)) (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Sapos</td>
<td>5,56</td>
<td>34,1</td>
<td>1,09</td>
</tr>
</tbody>
</table>
CAUDAL MÁXIMO MEDIO DIARIO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Los Sapos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,84</td>
</tr>
<tr>
<td>5</td>
<td>1,12</td>
</tr>
<tr>
<td>10</td>
<td>1,29</td>
</tr>
<tr>
<td>15</td>
<td>1,42</td>
</tr>
<tr>
<td>20</td>
<td>1,44</td>
</tr>
<tr>
<td>25</td>
<td>1,49</td>
</tr>
<tr>
<td>50</td>
<td>1,64</td>
</tr>
<tr>
<td>75</td>
<td>1,71</td>
</tr>
<tr>
<td>100</td>
<td>1,75</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMO INSTANTÁNEO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Los Sapos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,99</td>
</tr>
<tr>
<td>5</td>
<td>1,19</td>
</tr>
<tr>
<td>10</td>
<td>1,29</td>
</tr>
<tr>
<td>15</td>
<td>1,42</td>
</tr>
<tr>
<td>20</td>
<td>1,48</td>
</tr>
<tr>
<td>25</td>
<td>1,55</td>
</tr>
<tr>
<td>50</td>
<td>1,74</td>
</tr>
<tr>
<td>75</td>
<td>1,84</td>
</tr>
<tr>
<td>100</td>
<td>1,89</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, se obtienen extrapolando para períodos de retorno de 200, 500 y 1000 años, y son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Los Sapos</td>
<td>3,00</td>
</tr>
</tbody>
</table>
Por la falta de otros métodos de cálculo y debido a la pequeña extensión de algunas cuencas, para la obtención de resultados se consultó la frecuencia máxima $Q(T)/Q(10)$ que también se utiliza para caracterizar cuencas pluviales.

Finalmente la expresión queda de la siguiente forma:

$$Q(T) = \beta \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10$$

En donde $Q(T)$, corresponde al caudal instantáneo máximo según el período de retorno T, y el coeficiente β es igual a 1,18.

CURVA DE FRECUENCIA REGIONAL ZONA HOMOGENEA NIVAL "Wn"
CUENCAS VI REGIÓN

<table>
<thead>
<tr>
<th>T</th>
<th>$Q(T)/Q(10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>2</td>
<td>0.65</td>
</tr>
<tr>
<td>5</td>
<td>0.87</td>
</tr>
<tr>
<td>10</td>
<td>1.00</td>
</tr>
<tr>
<td>15</td>
<td>1.10</td>
</tr>
<tr>
<td>20</td>
<td>1.12</td>
</tr>
<tr>
<td>25</td>
<td>1.16</td>
</tr>
<tr>
<td>50</td>
<td>1.27</td>
</tr>
<tr>
<td>75</td>
<td>1.33</td>
</tr>
<tr>
<td>100</td>
<td>1.36</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS CUENCA APORTANTE

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Área nival (km²)</th>
<th>Latitud media (°C)</th>
<th>Q(10) (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Sapos</td>
<td>5,56</td>
<td>34,1</td>
<td>1,09</td>
</tr>
</tbody>
</table>
CAUDAL MÁXIMO MEDIO DIARIO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Los Sapos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,84</td>
</tr>
<tr>
<td>5</td>
<td>1,12</td>
</tr>
<tr>
<td>10</td>
<td>1,29</td>
</tr>
<tr>
<td>15</td>
<td>1,42</td>
</tr>
<tr>
<td>20</td>
<td>1,44</td>
</tr>
<tr>
<td>25</td>
<td>1,49</td>
</tr>
<tr>
<td>50</td>
<td>1,64</td>
</tr>
<tr>
<td>75</td>
<td>1,71</td>
</tr>
<tr>
<td>100</td>
<td>1,75</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMO INSTANTÁNEO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Los Sapos</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,99</td>
</tr>
<tr>
<td>5</td>
<td>1,19</td>
</tr>
<tr>
<td>10</td>
<td>1,29</td>
</tr>
<tr>
<td>15</td>
<td>1,42</td>
</tr>
<tr>
<td>20</td>
<td>1,48</td>
</tr>
<tr>
<td>25</td>
<td>1,55</td>
</tr>
<tr>
<td>50</td>
<td>1,74</td>
</tr>
<tr>
<td>75</td>
<td>1,84</td>
</tr>
<tr>
<td>100</td>
<td>1,89</td>
</tr>
</tbody>
</table>

> Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, se obtienen extrapolando para períodos de retorno de 200, 500 y 1000 años, y son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Los Sapos</td>
<td>3,00</td>
</tr>
</tbody>
</table>
1.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla limo arenosa (con gravas aisladas), cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

MURO 1
Altura: 24,0 m
Ancho coronamiento: 7,0 m
Borde libre: 1,8 m
Talud Aguas Arriba: H : V = 2,75 : 1
Talud Aguas Abajo: H : V = 1,88 : 1

MURO 2
Altura: 7,0 m
Ancho coronamiento: 7,1 m
Borde libre: 1,8 m
Talud Aguas Arriba: H : V = 2,75 : 1
Talud Aguas Abajo: H : V = 1,73 : 1

MURO 3
Altura: 12,0 m
Ancho coronamiento: 7,1 m
Borde libre: 1,8 m
Talud Aguas Arriba: H : V = 2,75 : 1
Talud Aguas Abajo: H : V = 1,73 : 1
c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 1.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (T/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>φ = 25°</td>
<td>1,0</td>
<td>1,90</td>
<td>2,10</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 1.4-1
MURO 1 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 1.4-2
MURO 1 TALUD AGUASABAJO - ESTÁTICO CON AGUA
FIGURA 1.4-3
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 1.4-4
MURO 1 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 1.4-5
MURO 1 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 1.4-6
MURO 1 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 1.4-7
MURO 1 TALUD AGUAS ARriba - SÍSMICO SIN AGUA

FIGURA 1.4-8
MURO 1 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
FIGURA 1.4-9
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 1.4-10
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 1.4-11
MURO 2 TALUD AGUAS ARriba - SÍSMICO CON AGUA

FIGURA 1.4-12
MURO 2 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 1.4-13
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 1.4-14
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 1.4-15
MURO 2 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 1.4-16
MURO 2 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
FIGURA 1.4-17
MURO 3 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 1.4-18
MURO 3 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 1.4-19
MURO 3 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 1.4-20
MURO 3 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 1.4-21
MURO 3 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 1.4-22
MURO 3 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 1.4-23
MURO 3 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 1.4-24
MURO 3 TALUD AGUASABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 1.4-2
FACTORES DE SEGURIDAD DE TALUDES
LOS SAPOS

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Sapos</td>
<td>Água Arriba</td>
<td>Água Abajo</td>
</tr>
<tr>
<td>Muro 1</td>
<td>1,855</td>
<td>1,080</td>
</tr>
<tr>
<td>Muro 2</td>
<td>2,406</td>
<td>1,399</td>
</tr>
<tr>
<td>Muro 3</td>
<td>2,114</td>
<td>1,107</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Sapos</td>
<td>Água arriba</td>
<td>Água abaixo</td>
</tr>
<tr>
<td>Muro 1</td>
<td>1,717</td>
<td>1,260</td>
</tr>
<tr>
<td>Muro 2</td>
<td>2,252</td>
<td>1,670</td>
</tr>
<tr>
<td>Muro 3</td>
<td>1,978</td>
<td>1,404</td>
</tr>
</tbody>
</table>

1.5 Determinación de Filtraciones

Para determinar la filtración del tranqué se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C \cdot h \]
Para el caso del tranque Los Sapos, se tiene:

<table>
<thead>
<tr>
<th></th>
<th>Muro 1</th>
<th>Muro 2</th>
<th>Muro 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lh (m)</td>
<td>118,1</td>
<td>38,5</td>
<td>60,9</td>
</tr>
<tr>
<td>Lv (m)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C'</td>
<td>1,8</td>
<td>1,8</td>
<td>1,8</td>
</tr>
<tr>
<td>h (m)</td>
<td>22,2</td>
<td>5,2</td>
<td>10,2</td>
</tr>
</tbody>
</table>

Longitud horizontal en la base del tranque o embalse.
Longitud vertical en la base del tranque o embalse.
Coeficiente de filtración que depende del tipo de material del embalse.
Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.

De acuerdo con el criterio de Lane, en este caso, para el muro M1, NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS SAPOS M1</td>
<td>118,1</td>
<td>0</td>
<td>39,37</td>
<td>24,0</td>
<td>1,8</td>
<td>22,2</td>
<td>1,80</td>
<td>40,0</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso, para los muros M2 y M3, SÍ se cumple la relación, por lo tanto, NO existe riesgo de filtraciones, según se detalla en las tablas siguientes.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS SAPOS M2</td>
<td>38,5</td>
<td>0</td>
<td>12,82</td>
<td>7,0</td>
<td>1,8</td>
<td>5,2</td>
<td>1,80</td>
<td>9,4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS SAPOS M3</td>
<td>60,9</td>
<td>0</td>
<td>20,29</td>
<td>12,0</td>
<td>1,8</td>
<td>10,2</td>
<td>1,80</td>
<td>18,4</td>
</tr>
</tbody>
</table>

1.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Los Sapos.
LOS SAPOS
CÁLCULO DE REVANCHEA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Linea N°</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>442</td>
<td>0,2746</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>526</td>
<td>0,3268</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>680</td>
<td>0,4225</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>718</td>
<td>0,4461</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>928</td>
<td>0,5766</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>878</td>
<td>0,5456</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9881</td>
<td>880</td>
<td>0,5468</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>1040</td>
<td>0,6462</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9881</td>
<td>534</td>
<td>0,3318</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>539</td>
<td>0,3349</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>563</td>
<td>0,3498</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>594</td>
<td>0,3691</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>485</td>
<td>0,3014</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>373</td>
<td>0,2318</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>349</td>
<td>0,2169</td>
</tr>
</tbody>
</table>

Suma 13,5109 **Suma** 5,0560

Fetch o longitud de acción del viento (F)

\[F = 0,374 \text{ millas} \]

\[F = 602,24 \text{ m} \]

Velocidad del Viento

\[v = 50 \text{ mph} \]

\[v = 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,64</td>
<td>0,8033</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,45</td>
<td>0,7477</td>
</tr>
<tr>
<td>Creager</td>
<td>1,33</td>
<td>0,4063</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1,80 m, se tiene que la altura de la ola no superaría esta revancha.

1.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

1.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "(p)"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05 Muro 1</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2 Muro 2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td>0,2 Muro 3</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

1.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Los Sapos

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 3,02 m³/s

Coeficiente capacidad: 0,336 C1 x C2 x C3

Capacidad efectiva: 1,015 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>0,00</td>
<td>0</td>
<td>3,00</td>
<td>0,95</td>
</tr>
<tr>
<td>0,002</td>
<td>0,00</td>
<td>0</td>
<td>3,51</td>
<td>0,95</td>
</tr>
<tr>
<td>0,0010</td>
<td>0,00</td>
<td>0</td>
<td>3,89</td>
<td>0,95</td>
</tr>
</tbody>
</table>

1.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
1.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td>0,5</td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

1.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>0,80</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Muro 2</td>
<td>0,20</td>
<td>0,00</td>
<td>0,48</td>
</tr>
<tr>
<td>Muro 3</td>
<td>0,80</td>
<td>0,00</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico para los muros 1 y 3, y por escorrentía en el muro 2.
1.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Los Sapos.
<table>
<thead>
<tr>
<th>Vista Mucho Desde Estribo Derecho</th>
<th>Vista Mucho Hacia Estribo Derecho</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Vista Talud Aguas Arriba</td>
<td>Vista Talud Aguas Abajo</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Obra de Entrega</td>
<td>Obra de Entrega</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</th>
<th>CANAL DE TOMA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CANAL DE TOMA</th>
<th>OBRAS DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRAS DE ENTREGA</td>
<td>PARAMENTOS VERTICALES</td>
</tr>
<tr>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>MEDICION DE ASENTAMIENTOS EN CORONAMIENTO DEL MURO</td>
<td>TUBOS PARA PIEZOMETROS EN CORONAMIENTO Y TALUD DEL MURO</td>
</tr>
<tr>
<td>FILTRACIONES AL PIE DEL MURO</td>
<td>FILTRACIONES AL PIE DEL MURO</td>
</tr>
</tbody>
</table>
Ficha de Catastro de Embalse

1. Antecedentes Generales

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Los Túpac, Mina 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Compañía Cultura El Tambo</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>61.704.000-X</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1952</td>
</tr>
<tr>
<td>Reparación (S/N)</td>
<td>S</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>1995 - 1996</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Río Coy</td>
</tr>
<tr>
<td>Ubicación / Código DGA</td>
<td>Rio Coy</td>
</tr>
<tr>
<td>Fuente del resguardo</td>
<td>Externo Expos</td>
</tr>
</tbody>
</table>

2. Ubicación de Presa

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador Río O'aguas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Catamara</td>
</tr>
<tr>
<td>Comuna</td>
<td>Macha</td>
</tr>
<tr>
<td>Coordenadas UTM (Estación Derecha)</td>
<td>N = 6.229.978; E = 367.162</td>
</tr>
<tr>
<td>Coordenadas UTM (Centro)</td>
<td>N = 6.229.220; E = 367.237</td>
</tr>
<tr>
<td>Coordenadas UTM (Estación Izquierda)</td>
<td>N = 6.229.477; E = 367.218</td>
</tr>
<tr>
<td>Datum WGS 84</td>
<td>ED = 2.228; ED = 2.228; ED = 2.228</td>
</tr>
</tbody>
</table>

3. Uso o Destino del Embalse

<table>
<thead>
<tr>
<th>Pago</th>
<th>Edificación de agua potable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retenes</td>
<td>Control de ríos</td>
</tr>
<tr>
<td>Electro</td>
<td>Reducción de energía</td>
</tr>
<tr>
<td>Otros usos</td>
<td>Indica el uso o destino del embalse</td>
</tr>
</tbody>
</table>

4. Tipo de Embalse

- Presa de tierra homogénea: X
- Presa de granizo graduado
- Presa por encostramiento (CRFQ)
- Presa de hormigón (grueso, contraste, arcilla)
- Presa de RCG
- Otros tipos

5. Geometría de la Presa

- Con batería
- Longitud del embalse (metros): 705
- Ancho del embalse (metros): ED = 7,50; EC = 6,50; EL = 7,50
- Largo del embalse (metros): 24 (centros de mano)
- Ancho mínimo de la presa (metros): 1,3
- Área de la presa (metros): 5,84
- Alcanza el suelo elevado (metros): 1,99
- Volumen declarado a proyectado (millones de m³): 5,0

6. Estimación Capacidad Máxima del Embalse

<table>
<thead>
<tr>
<th>Altura máxima del muro (metros)</th>
<th>Presina de muro elevado (metros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

7.4. Características del Verbo

- Inserción elevada
- Toma de muro del suelo (proyección en el centro del muro): S
- Identificación del punto de masa (luz máx.): S
- Vuelta de embalse (metros): 117
- Coordenadas UTM: 6.232.229; E= 367.327 |
- Ascensión de agua (metros): ED = 16°; EC = 18°; EL = 16°
- Ascensión de agua arriba: ED = 26°; EC = 29°; EL = 29°

8. Características Obras Evacuador de Crecidas

- Por su localización en relación a la estructura principal: X
- Vertederos frontales
- Vertederos laterales
- Vertederos de campo
- X: Indica localización y estructura del vertedero

- Desde el punto de vista de la pared donde se produce el crecido:
 - Vertederos de pared frontales
 - Vertederos de pared trasera
 - Vertederos con perfil hidráulico: X

- Las uvas a considerar son:
 - Toma de vertedero
 - Vertedero frontal con compartimentos de madera, y canal en llama atípica y más alto

<table>
<thead>
<tr>
<th>Materiales</th>
<th>Concreto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado de conservación</td>
<td>En buen estado y operativo</td>
</tr>
<tr>
<td>Dimensiones relevantes (anch. altura, largo)</td>
<td>3,50 m; 5,00 m; 3,50 m</td>
</tr>
</tbody>
</table>

7.6. Estado del Embalse y Calidad de Construcción

- Descripción
- Diagnóstico de la geometría actual
- Compactación del material estructural
- Uniformidad de los taludes
- Deformaciones visibles y cuantificables a lo largo del embalse
- Gruesos visibles y su ubicación
- Indicios de degradaciones y alteraciones
- Barandas que se precipitan o saltan y altura de saltación
- Ráfagas visibles en litoral de agua abajo en el pie
- Tipo de revestimiento del muro
- Barrera compactada, agua arriba tiene membrana de pvc, agua abajo sola tierra

7.8. Características del Embalse

- Descripción:
 - Hidrometeorología
 - Cuenca Hidrológica
 - Parámetros hidrológicos (climatológicos)
 - Ancho del embalse (metros): 24
 - Largo del embalse (metros): 5,84
 - Volumen declarado a proyectado (millones de m³): 5,0

7.10. Estado de Acceso a la Presa

- Acceso en buena condición
- Rampa de acceso: S
- Venta de agua: S
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Toma de aporte con lona de Ponce y PUC para la evacuación de aguas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>Diámetro interno: 1.02 m, Altura: 1.0 m</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>En buen estado, funcionando</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, tipo de terreno, pendiente media y anchura media del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cauce natural, terreno montañoso, pendiente media 8.4%, anchura media 15 m</td>
<td></td>
</tr>
<tr>
<td>Distancia desde centros poblados medidas por el cauce</td>
<td>6.83 Kms.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>5.86 Kms.</td>
</tr>
<tr>
<td>Caudal de población en las cercanías del tranque</td>
<td>Abur</td>
</tr>
<tr>
<td>Distancia hasta zonas agrícolas</td>
<td>No hay zonas agrícolas en las cercanías del tranque</td>
</tr>
<tr>
<td>Distancia hasta sectores con infraestructura vital u obra de importancia</td>
<td>Cerrada por el pie del muro</td>
</tr>
<tr>
<td>Área de uso servida por el tranque aislado</td>
<td>No hay áreas de uso servidas por el tranque</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

- Planta del muro (forma y dimensiones)
- Sección transversal del muro en la zona con menor resistencia y con mayor resistencia, indicando sus túneles respecto a.

12. OBSERVACIONES

- Muro previsto en dos existencias: de 1984 desde cota 2.213,3 m.s.n.m. a cota 2.219,3 m.s.n.m. con altura de 4 m; el segundo desde las años 1999-2000 desde cota 2.216,3 m.s.n.m. a cota 2.223,3 m.s.n.m. con altura de 7 m.
- A los lados del muro se abren estaciones de filtraciones, que son controladas por plánu almas ubicadas a la base del muro.
- En el largo de los muros se encuentran abiertas tres estaciones instrumentales: 11 piezómetros derechante, 7 manómetros de asentamiento, 3 apantallados, 3 limnímetros de nivel de agua.
- Durante su vida útil, el embalse Las Supas ha presentado problemas de filtraciones en diferentes partes, que al pasar no han afectado mayormente su estabilidad, pero que habrían significado pérdidas importantes de agua. Por esta razón, la presa se revisó con gonoradioแตńados, lo que no se ha permitido por completo las filtraciones, pero si se ha acordado a eliminadas. También, se aprovechó de revisar la presa con instrumentos de control, principalmente de piezómetros por los orillamientos y por los túneles de aguas abajo, así como también de control de deslizamientos mediante la revisión de manómetros y construcción de afeiteros de caustales de filtración. También, dispone de un limnímetro para el control de la cota del nivel de las aguas. Toda esta información es muy útil. (Ver fotografías).
Ficha de Catabismo de Embalse

1. Antecedentes Generales

<table>
<thead>
<tr>
<th>Nombre de la Presa</th>
<th>Los Baños - Murr 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>81.704.092-K</td>
</tr>
<tr>
<td>Año de Construcción</td>
<td>1982</td>
</tr>
<tr>
<td>Región</td>
<td>Viña del Libertador y O'Higgens</td>
</tr>
<tr>
<td>Provincia</td>
<td>Macul</td>
</tr>
<tr>
<td>Coordenadas UTM Este Derecho</td>
<td>N = 6 259 708; E = 386 022</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N = 6 259 712; E = 386 004</td>
</tr>
<tr>
<td>Coordenadas UTM Este Izquierdo</td>
<td>N = 6 259 810; E = 386 723</td>
</tr>
<tr>
<td>Altura m.s.m.</td>
<td>106.20</td>
</tr>
<tr>
<td>N° de ficha</td>
<td>1</td>
</tr>
</tbody>
</table>

2. Ubicación de Presa

<table>
<thead>
<tr>
<th>N°</th>
<th>Este Derecho</th>
<th>Centro</th>
<th>Este Izquierdo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>23 226</td>
<td>23 228</td>
<td>23 223</td>
</tr>
</tbody>
</table>

3. Uso o Destino del Embalse

- Generación de energía: X
- Almacenamiento de agua potable: X
- Reservorio:
- Sedimentación:
- Control de crecidas:
- Recuperación:
- Otros usos:

4. Tipo de Embalse

<table>
<thead>
<tr>
<th>Presa de tierra homogénea</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa de material granular graduable</td>
<td></td>
</tr>
<tr>
<td>Presa de embocaduras (CIFRO)</td>
<td></td>
</tr>
<tr>
<td>Presa de hormigón (gravialidad: contratracción, arena)</td>
<td></td>
</tr>
<tr>
<td>Presa de RCC</td>
<td></td>
</tr>
<tr>
<td>Otros tipos</td>
<td></td>
</tr>
</tbody>
</table>

5. Geometría de la Presa

<table>
<thead>
<tr>
<th>Con flujo</th>
<th>Longitud del coronamiento (m)</th>
<th>785</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>ED = 7.00; C = 7.00; EI = 7.20</td>
<td></td>
</tr>
<tr>
<td>Desarrollo del talud acodado (m)</td>
<td>12 (altura de muro)</td>
<td></td>
</tr>
<tr>
<td>Perfiles verticales</td>
<td>NO</td>
<td></td>
</tr>
<tr>
<td>Con resalto</td>
<td>ED = 30°; C = 30°; B = 30°</td>
<td></td>
</tr>
<tr>
<td>Angular talud de aguas arriba</td>
<td>ED = 20°; C = 20°; B = 20°</td>
<td></td>
</tr>
</tbody>
</table>

6. Estado del Muro y Calidad de Construcción

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularidad de la geometría actual</td>
</tr>
<tr>
<td>Compactación del material estructural</td>
</tr>
<tr>
<td>Uniformidad de los baldos</td>
</tr>
<tr>
<td>Depresiones visibles y cuantificables a lo largo del coronamiento</td>
</tr>
<tr>
<td>Orillas visibles y su ubicación</td>
</tr>
<tr>
<td>Índices de derrumbamientos y ubicación</td>
</tr>
<tr>
<td>Sectores que se presentan saturados y altura de saturación</td>
</tr>
<tr>
<td>Filtaciones visibles en talud de aguas abajo en el pie</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
</tr>
</tbody>
</table>
10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

Tipo de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce	Cauce natural, terreno montañosos, pendiente media 6.4%, ancho medio 15 m
Distancia hacia centros poblados medidos por el cauce	6.03 km
Distancia desde centros poblados perpendicular al cauce	5.66 km
Densidad de población en las cercanías del tranque	Alta
Distancia hacia zonas agrícolas	No hay zonas agrícolas en las cercanías al tranque
Distancia hacia sectores con infraestructura vital u obra de importancia	Camino por el pie del muro
Área de riego servida por el tranque analizado	No hay áreas de riego servidas por el tranque

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

| Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes |

12. OBSERVACIONES

Este muro se encuentra separado del muro 2 por un pequeño montículo de tierra natural que se interna en la zona.

A los pies del muro se observan abundantes filtraciones. Las caídas son compensadas por pozos rellenos ubicados a lo largo del muro.

A lo largo del muro se encuentran montículos de control de asentamientos.

En las cercanías del cimiento se encuentran las regletas de medición de altura de agua en la zona (en m.o.n.m.)
EMBALESE LOS MAQUIS
PARTE B: CATASTRO DE EMBALSES

2. EMBALSE LOS MAQUIS
 2.1 Ubicación
 2.2 Características Generales
 2.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 2.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 2.5 Determinación de Filtraciones
 2.6 Verificación del Oleaje
 2.7 Análisis de Riesgo (Hazop)
 2.8 Álbum Fotográfico y Fichas de Catastro
2. EMBALSE LOS MAQUIS

2.1 Ubicación

El embalse Los Maquis se ubica en la comuna de Malloa, provincia de Cachapoal, en las coordenadas UTM 6.182.844 Norte y 331.555 Este, Datum WGS 84. Se localiza en la cuenca de Rapel, subcuenca del estero Zamorano y la fuente corresponde al estero Rigolemo.

Acceso desde la Ruta 5 por desvío Pelequén hacia calle principal, luego hacia el sur 600 m aproximadamente, finalmente por ruta H-711, seguir por 8 km.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 2.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE LOS MAQUIS

Fuente: Carta IGM
2.2 Características Generales

El embalse corresponde a un tranquie de tierra perteneciente a la Comunidad Los Maquis. El uso y destino del embalse es de riego.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,384 hm3. La altura máxima del muro es de 10,6 m, con una longitud de coronamiento de 531 m y ancho promedio del coronamiento de 3,0 m y borde libre de 0,80 m. El Talud Aguas Arriba es H:V=1,43:1 y el Talud Aguas Abajo es H:V=1,48:1.

El evacuador de crecidas corresponde a un vertedero frontal, libre sin control, con cajón de hormigón de 2,00 x 2,80 m y una altura de 2,80 m, el que descarga a un canal de tierra. Se encuentra en regular estado de conservación funcionando.

La obra de entrega corresponde a una estructura rectangular de hormigón armado de 1 x 1 m y una altura de 7,3 m, dentro de la cual sale una cañería por la base de 600 mm de diámetro. La obra se encuentra en buen estado y operativa.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 2.2-1
IMAGEN SATELITAL EMBALSE LOS MAQUIS
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins

Embalse Los Maquis
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Los Maquis

Vista panorámica Embalse Los Maquis
2.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Los Maquis tiene como fuente al estero Rigolemo, el cual no posee control fluvimétrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 2,81 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 2.3-1
CUENCA EMBALSE LOS MAQUIS
CUADRO 2.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Los Maquis</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>281,2</td>
</tr>
<tr>
<td>Pluvial</td>
<td>281,2</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9.660,0</td>
</tr>
<tr>
<td>Pluvial</td>
<td>9.660,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>1.056,1</td>
</tr>
<tr>
<td>Mínima</td>
<td>394,6</td>
</tr>
<tr>
<td>Diferencia</td>
<td>661,5</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>33,7</td>
</tr>
<tr>
<td>Cauce</td>
<td>16,3</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,22</td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
<td>1,61</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>331.889</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.183.970</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>465,8</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>332.022</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.183.938</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>462</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \quad \text{(hrs)}; \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \[tc = 0.05 \cdot \sqrt{\frac{A}{J}} \]

Fórmula de Témez:

\[tc = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Donde:

\[
\begin{align*}
L &= \text{Longitud del cauce principal en km.} \\
H_{\text{máx}} &= \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \\
A &= \text{Área cuenca en km}^2. \\
J &= \text{Pendiente del cauce (\%).} \\
H_g &= \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.}
\end{align*}
\]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (hr)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Gianotti</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>0,30</td>
<td>1,71</td>
</tr>
</tbody>
</table>

- **Precipitaciones Máximas**

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN. PRECIPITACIONES MÁXIMAS EN 24 HRS EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 hrs,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>San Fernando</td>
<td>0,088</td>
<td>83,7</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

- **Caudales de Crecidas**

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:

- \(Q(T)\) Caudal generado en la cuenca en \((m^3/s)\)
- \(C(T)\) Coeficiente de Escorrentía
- \(I_t^T\) Intensidad de la precipitación para \(t\) igual al tiempo de concentración \(tc\) en \((mm/h)\)
- \(Ap\) Área pluvial de la cuenca tributaria \((km^2)\).

La intensidad de la precipitación va a estar asociada al período de retorno \(T\) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1,24} \cdot (Ap)^{0,88} \]

Donde:
- C(T) Coeficiente empírico para diferentes períodos de retorno
- P_{24}^T Precipitación máxima en 24 h y período de retorno T años
- Ap Área pluvial (km²)

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maquis</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,64</td>
<td>5,21</td>
<td>1,14</td>
<td>4,48</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,86</td>
<td>6,95</td>
<td>1,63</td>
<td>7,63</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,98</td>
<td>7,93</td>
<td>2,77</td>
<td>9,86</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,06</td>
<td>8,58</td>
<td>3,29</td>
<td>11,49</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,13</td>
<td>9,15</td>
<td>3,75</td>
<td>12,88</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,17</td>
<td>9,47</td>
<td>4,07</td>
<td>13,85</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,31</td>
<td>10,61</td>
<td>5,09</td>
<td>16,87</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,45</td>
<td>11,74</td>
<td>6,63</td>
<td>21,46</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- Q_{10} Caudal medio diario máximo con periodo de retorno de 10 años (m³/s)
- P_{24}^{T=10} Precipitación diaria máxima de periodo de retorno 10 años (mm)
- Ap Área Pluvial de la cuenca

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3,432} \cdot (Ap)^{0,915} \]
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

(km²)

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

FACTORES DE CAUDAL

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>0,28</td>
</tr>
</tbody>
</table>

> Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para periodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Los Maquis</td>
<td>7,146</td>
</tr>
</tbody>
</table>
2.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una Arcilla limosa, cuya geometría se presenta en el esquema siguiente.

![Esquema de la presa](image)

Los datos geométricos característicos son:

Altura: 10,6 m
Ancho coronamiento 3,0 m
Borde libre 0,8 m
Talud Aguas Arriba H : V = 1,43 : 1
Talud Aguas Abajo H : V = 1,48 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Ángulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>φ = 25°</td>
<td>1,5</td>
<td>1,75</td>
<td>1,95</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 2.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 2.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 2.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 2.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 2.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 2.4-6
TALUD AGUASABAJO - ESTÁTICO SIN AGUA

FIGURA 2.4-7
TALUD AGUASARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 2.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éstático</td>
<td>Sísmico kh=0,10g</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Los Maquis</td>
<td>1,861</td>
<td>1,101</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éstático</td>
<td>Sísmico kh=0,10g</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>Los Maquis</td>
<td>1,489</td>
<td>1,489</td>
</tr>
</tbody>
</table>
2.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada \(L' \) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración \(L_v \) más un tercio de la suma de las longitudes de filtración horizontales \(1/3 \ L_h \).

\[
L' = \frac{1}{3} \cdot L_h + L_v
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C' \cdot h
\]

Para el caso del tranque **Los Maquis**, se tiene:

\(L_h \) (m)	33,9	Longitud horizontal en la base del tranque o embalse.
\(L_v \) (m)	0	Longitud vertical en la base del tranque o embalse.
\(C' \)	1,7	Coeficiente de filtración que depende del tipo de material del embalse
\(h \) (m)	9,8	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(L_h) (m)</th>
<th>(L_v) (m)</th>
<th>(L') (m)</th>
<th>(H_t) (m)</th>
<th>(b_l) (m)</th>
<th>(h) (m)</th>
<th>(C')</th>
<th>(C' \cdot h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS MAQUIS</td>
<td>33,9</td>
<td>0</td>
<td>11,31</td>
<td>10,6</td>
<td>0,8</td>
<td>9,825</td>
<td>1,7</td>
<td>16,7</td>
<td>No</td>
</tr>
</tbody>
</table>

2.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \(h_{Ola} \). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Los Maquis.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Álfa °</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia m</th>
<th>Dist. * Cos^2(α) millas</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>317</td>
<td>0,1970</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>314</td>
<td>0,1951</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>321</td>
<td>0,1995</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>268</td>
<td>0,1665</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>246</td>
<td>0,1529</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>252</td>
<td>0,1566</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>288</td>
<td>0,1790</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>260</td>
<td>0,1616</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>256</td>
<td>0,1591</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>266</td>
<td>0,1653</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>276</td>
<td>0,1715</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>286</td>
<td>0,1777</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>278</td>
<td>0,1727</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>272</td>
<td>0,1690</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>269</td>
<td>0,1671</td>
</tr>
<tr>
<td>Suma</td>
<td></td>
<td></td>
<td></td>
<td>13,5109</td>
<td>Suma 2,1031</td>
</tr>
</tbody>
</table>

Fetch o longitud de acción del viento (F)

F = 0,156 millas
F = 250,51 m

Velocidad del Viento

v = 50 mph
v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th></th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>pie</td>
<td>m</td>
</tr>
<tr>
<td>Stevenson</td>
<td>2,46</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,35</td>
</tr>
<tr>
<td>Creager</td>
<td>0,96</td>
</tr>
<tr>
<td>Bur. of Rec</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,80 m, se tiene que la altura de la ola superaría esta revancha.

2.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

2.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “(p)”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

2.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Castaño e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Los Maquis

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,5</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 1,56 m³/s
Coeficiente capacidad 0,336 C1 x C2 x C3
Capacidad efectiva 0,52 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q max. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrcencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>7,15</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>8,44</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>9,43</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

2.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Periodo de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:

<table>
<thead>
<tr>
<th>Riesgo de piping según situación del muro</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>
2.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td>0,5</td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

2.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,80</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>2,0</td>
<td></td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

2.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Los Maquis.
<table>
<thead>
<tr>
<th>VISTA MURO</th>
<th>VISTA MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image 1]</td>
<td>![Image 2]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISTA TALUD AGUAS ARRIBA</th>
<th>VISTA TALUD AGUAS ABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image 3]</td>
<td>![Image 4]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA</th>
<th>OBRA DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image 5]</td>
<td>![Image 6]</td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</td>
<td>ZONA DE FILTRACION</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVA 1</td>
<td>RESERVA 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>LOS MAQUIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programa</td>
<td>Tranque Comunitario</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>Sin RUT</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>2003</td>
</tr>
<tr>
<td>Reparación (SI) (NO)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>2003</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Rapel</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Estrella Zamarano</td>
</tr>
<tr>
<td>Fuerza del río</td>
<td>Estrella Rogue</td>
</tr>
</tbody>
</table>

Nº de Echo	2
Fecha del registro	12-10-2000
Cumplimiento Art. 294 del Código de Aguas	
Capacidad > 50,000 m³	
Altura del muro > 2 m	

3. UBICACIÓN DE EMBALSE

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador Bds. O'Higgins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>Comuna</td>
<td>Valdivia</td>
</tr>
<tr>
<td>Coordenadas UTM Extremo Derecho</td>
<td>N = 6.182.995, E = 331.335</td>
</tr>
<tr>
<td>Coordenadas UTM Extremo Izquierdo</td>
<td>N = 6.182.743, E = 331.837</td>
</tr>
<tr>
<td>Altitud m.s.n.m.</td>
<td>ED = 429, C = 493, E1 = 421</td>
</tr>
</tbody>
</table>

E+ Norte	ED = Extremo Derecho
E+ Centro	CD = Centro
E+ Extremo izquierdo	CNI = Extremo izquierdo

4. TIPO DE EMBALSE

| Presa de tierra homogénea | X |
| Presa de material granular graduado |
| Presa de enrocadas (CFRD) |
| Presa de hormigón (gravedad, contrafuerte, aereo) |
| Presa de RCC |

| Otros tipos |

5. USO O DESTINO DEL EMBALSE

| Región | X |
| Generación de energía |
| Abastecimiento de agua potable |
| Riego |
| Sedimentación |
| Control de crecidas |
| Recreación |
| Otras usos |

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones trigonométricas en caso de no poder medirla directamente) (m)	10,8
Profundidad máxima de agua en sector del muro (m)	9,8
Área estimada a calculada de la presa (m²)	194,450
Ancho máximo de la presa (m)	6,54
Largo de la presa (m)	0,79
Volumen declarado o proyectado (millones de m³)	0,384

7. CARACTERÍSTICAS DEL MURO

| Basalto |
| Limestone |

| Presa de cemento |
| Presa de concreto |

8. ESTRUCTURA DE CONSTRUCCIÓN

Regularidad de la geometría actual	Regular con deformaciones
Compacidad del material estructural	Media - Alta
Uniformidad de los taludes	Regularmente uniformes en ambos taludes
Depresiones visibles y cuantificables a lo largo del coronamiento	No se aprecian depresiones visibles
Grietas visibles y su ubicación	No se aprecian grietas visibles
Indicios de deslizamientos y ubicación	No se aprecian tantas de deslizamientos
Sectores que se presentan saturados y altura de saturación	No se aprecian medias
Filtros visibles en talud de agua abajo en el pie	Se aprecian tres en el muro 240 a partir del extremo derecho. (Ver álbum fotográfico)
Tipo de revestimiento del muro	Tierra compactada

6. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

| Presa de concreto |
| Presa de arcilla |

| Presa de concreto |
| Presa de arcilla |

9. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECÍDAS

Por su localización en relación a la estructura principal	X
Vértice frontal	X
Vértice lateral	X
Vértice de canaleta	

| Desde el punto de vista de los instrumentos para el control de la presa visible |
| Vertederos fijos, sin control |
| Vertederos controlados por compuertas |

| Desde el punto de vista de la sección por la cual es de ser el vertedero |
| Rectangulares |
| Triangulares |
| Circulares |

10. DIMENSIONES Y TIPOS DE VERTEDEROS

| Dimensiones relevantes (ancho, altura y carga máxima de operación) | Largo: 2,80 m; alto: 2,80 m, ancho 2,00 m |
| Vertedero frontal, libre sin contra |
| Vertedero de hormigón |
| Estado de conservación y operatividad | Regular estado de conservación, operativo |
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Calín cuadrado de hormigón con compuerta y válvula de volteo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Anch. 1.00 m; larg. 1.00 m; altura 7.00 m; diámetro cañería de sección 6.00 m</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Buen estado, operativo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACION DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
<th>Canal artificial en tierra, terreno de quebrada, pendiente media 2.6%, ancho medio 3.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hasta centros poblados medidos por el cauce</td>
<td>0.57 Km.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>0.57 Km.</td>
</tr>
<tr>
<td>Elevación de población en las cercanías del tranque</td>
<td>Media - Alta</td>
</tr>
<tr>
<td>Elevación hasta zonas agrícolas</td>
<td>0.11 Km.</td>
</tr>
<tr>
<td>Elevación hasta sectores con infraestructura vial u otra de importancia</td>
<td>0.18 Km.</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>300 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFIA

Fotografía del muro (fotografía y dimensiones)

Sección transversal del muro en la zona de estructura revancha y con mayor revancha, indicando sus taludes

Indicación en la planta del muro del sitio de tomada de la muestra de madera

Croquis de la obra de evacuación y dimensiones (planta)

Croquis de la obra de evacuación y dimensiones (corte)

Croquis de la obra de entrega y dimensiones (planta)

Croquis de la obra de entrega y dimensiones (elevación)

12. OBSERVACIONES

Hasta aguas abajo en el estribro derecho se encuentra una pequeña reserva donde regalan la entrega al canal principal. La profundidad actual es de 7.10 m. de profundidad en el sector de la obra de entrega que se encuentra a 194 m. del estribro derecho. (ver álbum fotográfico)

En el estribo izquierdo se encuentra otro presaña reserva que se llena con el canal de entrada. (ver álbum fotográfico)
EMBALSE PILAICITO
PARTE B: CATASTRO DE EMBALSES

3. EMBALSE PILAICITO
 3.1 Ubicación
 3.2 Características Generales
 3.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 3.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 3.5 Determinación de Filtraciones
 3.6 Verificación del Oleaje
 3.7 Análisis de Riesgo (Hazop)
 3.8 Álbum Fotográfico y Fichas de Catastro
3. EMBALSE PILAICITO

3.1 Ubicación

El embalse Pilaicito se ubica en la comuna de Mostazal, provincia de Cachapoal, en las coordenadas UTM 6.244.890 Norte y 349.185. Datum WGS 84 a una Altitud de 677 m.s.n.m. Se localiza en la cuenca del Maipo, subcuenca del Río Cachapoal y la fuente corresponde al Río Peuco.

Este sitio de embalse se localiza entre el límite entre la Región Metropolitana y VI Región y el río Puco, al norte del camino H-15 que une las localidades de La Punta y Chada. Se llega al sitio del embalse por el camino H115G que nace en el puente que cruza el río Peuco que corre paralelo al río por la ribera sur, desde allí se empalma directamente con el embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 3.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE PILAICITO

Fuente: Carta IGM
3.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a la Comunidad O'Higgins de Pilai. El uso y destino del embalse es de riego y fue construido en el año 1940.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,499 hm³. La altura máxima del muro es de 13,9 m, con una longitud de coronamiento de 405 m y ancho promedio del coronamiento de 3 m y borde libre de 0,70 m. El Talud Aguas Arriba es H:V=1,48:1 y el Talud Aguas Abajo es H:V=1,66:1.

El evacuador de crecidas corresponde a un canalón de tierra de sección irregular con un ancho medio de 2,30 m y 0,50 m de alto. No tiene estructura de control. Se encuentra en regular estado de mantención y operación.

La obra de entrega corresponde a una estructura circular de hormigón armado de 1,10 m de diámetro con un volante de acero que permite controlar la tubería de entrega de 0,80 m. La obra se encuentra en regular estado de mantención y operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 3.2-1
IMAGEN SATELITAL EMBALSE PILAICITO
3.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Pilaićito tiene como fuente al río Peuco, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie total de 176,9 km2, siendo la superficie pluvial de 59,9 km2. En la figura y cuadro siguiente se visualizan las características principales de la cuenca.
CUADRO 3.3.1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Pilaicito</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM Este</td>
</tr>
<tr>
<td></td>
<td>UTM Norte</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM Este</td>
</tr>
<tr>
<td></td>
<td>UTM Norte</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{máx}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs); con } \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{\sqrt{A}}{\sqrt{J}} \)

Fórmula de Témez:

\[t_c = 0.3 \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Donde:

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Longitud del cauce principal en km.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hmáx</td>
<td>Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Área cuenca en km².</td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>Pendiente del cauce (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hg</td>
<td>Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (hr)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Pilaicito</td>
<td>1,99</td>
<td>2,26</td>
</tr>
</tbody>
</table>

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 hrs,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilaicito</td>
<td>Rapel</td>
<td>0,192</td>
<td>140</td>
<td>Coya</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6} \]

Donde:
- \(Q(T) \) Caudal generado en la cuenca en (m³/s)
- \(C(T) \) Coeficiente de Escorrentía
- \(I_{tc}^T \) Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)
- \(Ap \) Área pluvial de la cuenca tributaria (km²).

La intensidad de la precipitación va a estar asociada al período de retomo \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[
Q(T) = C(10) \cdot \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^{T})^{1,24} \cdot (Ap)^{0,88}
\]

Donde:
- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^{T} \): Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \): Área pluvial (km\(^2\))

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI–KING

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>(Pp) (T, tc)</th>
<th>(Q(T)) V-K</th>
<th>(Q(T)) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilaeucito</td>
<td>T=2</td>
<td>0,47</td>
<td>Coya</td>
<td>0,639</td>
<td>18,850</td>
<td>31,520</td>
<td>98,300</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Coya</td>
<td>0,857</td>
<td>25,290</td>
<td>45,362</td>
<td>168,308</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0,68</td>
<td>Coya</td>
<td>0,980</td>
<td>28,960</td>
<td>77,650</td>
<td>218,460</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Coya</td>
<td>1,136</td>
<td>33,517</td>
<td>105,404</td>
<td>286,313</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Coya</td>
<td>1,160</td>
<td>34,370</td>
<td>112,960</td>
<td>305,000</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Coya</td>
<td>1,310</td>
<td>38,740</td>
<td>142,520</td>
<td>373,900</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1,00</td>
<td>Coya</td>
<td>1,450</td>
<td>42,665</td>
<td>184,632</td>
<td>473,304</td>
</tr>
</tbody>
</table>

- Análisis Regional de Crecidas (Método DGA-AC)

-Crecidas Pluviales

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km\(^2\))
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el periodo de retorno \(T \) y \(\alpha \) toma el valor de 1.19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>(T) (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDALES MÁXIMOS INSTANTÁNEOS MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q) instantáneo máx ((T)), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pilaicito</td>
<td>26,59</td>
</tr>
</tbody>
</table>

- Crecidas de deshielo

El método denominado DGA-AC para crecidas de deshielo, corresponde a un análisis regional de crecidas del período de deshielo, desarrollado en base a los análisis de frecuencias efectuado a las series de excedencia para el periodo nival de caudales medios diarios máximos y caudales instantáneos máximos, correspondientes a 234 estaciones de control existente en el país.

El área de la cuenca del embalse Pilaicito presenta influencia nival y por lo tanto crecidas de deshielo en el período octubre – marzo, para lo cual se calcula dicha crecida para este período.

Las relaciones empleadas por este método son:

\[Q_{10} = 1,81 \cdot 10^{-4} \cdot An \cdot (Lat - 26,2)^{3.392} \]

Donde:

- \(Q_{10} \): Caudal medio diario con período de retorno 10 años (m³/s)
- \(An \): Ancho del curso de agua en el embalse
An Área Nival de la cuenca (km²)
Lat Latitud media de la cuenca, en grados (°)

\[Q(T) = \beta \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y el coeficiente \(\beta \) es igual a 1,18.

CURVA DE FRECUENCIA REGIONAL ZONA HOMOGENEA NIVAL “Wn” CUENCAS VI REGIÓN

<table>
<thead>
<tr>
<th>T</th>
<th>Q(T)/Q(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>2</td>
<td>0,65</td>
</tr>
<tr>
<td>5</td>
<td>0,87</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,10</td>
</tr>
<tr>
<td>20</td>
<td>1,12</td>
</tr>
<tr>
<td>25</td>
<td>1,16</td>
</tr>
<tr>
<td>50</td>
<td>1,27</td>
</tr>
<tr>
<td>75</td>
<td>1,33</td>
</tr>
<tr>
<td>100</td>
<td>1,36</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS CUENCA APORTANTE

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Área nival (km²)</th>
<th>Latitud media (°C)</th>
<th>Q(10) (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilaiçito</td>
<td>117,018</td>
<td>36</td>
<td>48,77</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMO MEDIO DIARIO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Pilaiçito</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>37,41</td>
</tr>
<tr>
<td>5</td>
<td>50,07</td>
</tr>
<tr>
<td>10</td>
<td>57,55</td>
</tr>
<tr>
<td>15</td>
<td>63,31</td>
</tr>
<tr>
<td>20</td>
<td>64,46</td>
</tr>
<tr>
<td>25</td>
<td>66,76</td>
</tr>
<tr>
<td>50</td>
<td>73,09</td>
</tr>
<tr>
<td>75</td>
<td>76,54</td>
</tr>
<tr>
<td>100</td>
<td>78,27</td>
</tr>
</tbody>
</table>
CAUDAL MÁXIMO INSTANTÁNEO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Pilaicito</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>44.31</td>
</tr>
<tr>
<td>5</td>
<td>52.95</td>
</tr>
<tr>
<td>10</td>
<td>57.55</td>
</tr>
<tr>
<td>15</td>
<td>63.54</td>
</tr>
<tr>
<td>20</td>
<td>66.18</td>
</tr>
<tr>
<td>25</td>
<td>69.06</td>
</tr>
<tr>
<td>50</td>
<td>77.69</td>
</tr>
<tr>
<td>75</td>
<td>82.30</td>
</tr>
<tr>
<td>100</td>
<td>84.60</td>
</tr>
</tbody>
</table>

➢ Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Pilaicito</td>
<td>199.6</td>
</tr>
</tbody>
</table>

3.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla limo arenosa, cuya geometría se presenta en el esquema siguiente.
Los datos geométricos característicos son:

Altura: 13,9 m
Ancho coronamiento 3,0 m
Borde libre 0,7 m
Talud Aguas Arriba H : V = 1,48 : 1
Talud Aguas Abajo H : V = 1,66 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 3.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (T/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>α = 25°</td>
<td>1,5</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:
A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 3.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 3.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 3.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 3.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 3.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 3.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 3.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) **Factores de seguridad**

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 3.4-2

FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico (k_h = 0.10)g</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>1,684</td>
<td>1,070</td>
</tr>
<tr>
<td>Aguas Abajo</td>
<td>1,068</td>
<td>0,785</td>
</tr>
<tr>
<td>Pilaicito</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico (k_h = 0.10)g</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>1,385</td>
<td>1,484</td>
</tr>
<tr>
<td>Aguas abajo</td>
<td>1,072</td>
<td>1,129</td>
</tr>
<tr>
<td>Pilaicito</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada \(L' \) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración \(L_v \) más un tercio de la suma de las longitudes de filtración horizontales \(1/3 \) \(L_h \).

\[
L' = \frac{1}{3} \cdot L_h + L_v
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C' \cdot h
\]

Para el caso del Embalse Pilaicito, se tiene:

\(L_h \) (m) =	46,8	Longitud horizontal en la base del tranque o embalse.
\(L_v \) (m) =	0	Longitud vertical en la base del tranque o embalse.
\(C' \) =	1,8	Coeficiente de filtración que depende del tipo de material del embalse
\(h \) (m) =	13,21	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(L_h) (m)</th>
<th>(L_v) (m)</th>
<th>(L') (m)</th>
<th>(H_t) (m)</th>
<th>(b_l) (m)</th>
<th>(h) (m)</th>
<th>(C')</th>
<th>((C' \cdot h))</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>PILAICITO</td>
<td>46,8</td>
<td>0</td>
<td>15,59</td>
<td>13,9</td>
<td>0,7</td>
<td>13,21</td>
<td>1,8</td>
<td>23,8</td>
<td>No</td>
</tr>
</tbody>
</table>

3.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \(h_{ow} \). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Pilaicito.
PILAICITO

CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia</th>
<th>Dist. * Cos^2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°</td>
<td>m</td>
<td>milhas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>206</td>
<td>0,1280</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>235</td>
<td>0,1460</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>264</td>
<td>0,1640</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>373</td>
<td>0,2318</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>423</td>
<td>0,2628</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>436</td>
<td>0,2709</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>441</td>
<td>0,2740</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>433</td>
<td>0,2691</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>394</td>
<td>0,2448</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>272</td>
<td>0,1690</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>270</td>
<td>0,1678</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>268</td>
<td>0,1665</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>261</td>
<td>0,1622</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>252</td>
<td>0,1566</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>250</td>
<td>0,1553</td>
</tr>
</tbody>
</table>

Suma: 13,5109 milhas

Suma: 2,5242

Fetch o longitud de acción del viento (F)

F = 0,187 milhas

F = 300,67 m

Velocidad del Viento

v = 50 mph

v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,49</td>
<td>0,7592</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,36</td>
<td>0,7200</td>
</tr>
<tr>
<td>Creager</td>
<td>1,03</td>
<td>0,3142</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huinchas, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,70 m, se tiene que la altura de la ola superaríamos esta revancha.

3.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sin, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “p” y “V” son independientes por evento, y el valor “E” es idéntico para todos los eventos.

3.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable V para el evento sísmico considerado.

VULNERABILIDAD FREnte A EVENTo SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “p”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

3.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th>Obra de hormigón armado</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Canal revestido en hormigón</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 0,78 m³/s
Coeficiente capacidad 0,336 C1 x C2 x C3
Capacidad efectiva 0,26 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurridencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>199,60</td>
<td>0,95</td>
<td>96,68</td>
<td>0,95</td>
</tr>
<tr>
<td>0,002</td>
<td>235,84</td>
<td>0,95</td>
<td>112,67</td>
<td>0,95</td>
</tr>
<tr>
<td>0,0010</td>
<td>263,25</td>
<td>0,95</td>
<td>126,50</td>
<td>0,95</td>
</tr>
</tbody>
</table>

3.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
3.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td></td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td>0,25</td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>0,125</td>
</tr>
</tbody>
</table>

3.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Esorrentia</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,10</td>
<td>0,06</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

3.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Pilaicito.
<table>
<thead>
<tr>
<th>VISTA MURO HACIA ESTRIBO DERECHO</th>
<th>TALUD AGUAS ABAJO CON CUBIERTA VEGETAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EVACUADOR DE CRECIDAS</th>
<th>OBRA DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA</th>
<th>CANAL DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CANAL DE ENTREGA</td>
<td>FILTRACIÓN VISIBLE EN EL TALUD AGUAS ABAJO EN EL PIE</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONA DE SATURACIÓN</th>
<th>ESTRUCTURA A UN COSTADO DEL EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACIÓN DEL MATERIAL DE CONSTRUCCIÓN</th>
<th>SOCAVACIÓN O EROSIÓN POR OLEAJE EN TALUD AGUAS ARRIBA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Placeto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad O'Higgins de Pilai</td>
</tr>
<tr>
<td>NIT Propietario</td>
<td>12.255.138-1</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1940</td>
</tr>
<tr>
<td>Reparación (Si/No)</td>
<td>No</td>
</tr>
<tr>
<td>Año de reparación</td>
<td></td>
</tr>
<tr>
<td>Cuanto / Código DGA</td>
<td>Río Carapal</td>
</tr>
<tr>
<td>Subcuarto / Código DGA</td>
<td>Río Carapal</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Río Pucó - Canal Romero</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>Del Libertador Bdo. O'Higgins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Carapal</td>
</tr>
<tr>
<td>Comuna</td>
<td>San Francisco de Moscosal</td>
</tr>
<tr>
<td>Coordenadas UTM / Estrecho Derecho</td>
<td>N= 6,244,739</td>
</tr>
<tr>
<td>Coordenadas UTM / Centro</td>
<td>N= 6,244,893</td>
</tr>
<tr>
<td>Coordenadas UTM / Estrecho Izquierdo</td>
<td>N= 6,245,114</td>
</tr>
<tr>
<td>Altitud m.s.n.m.</td>
<td>E= 673</td>
</tr>
<tr>
<td>N= Norte</td>
<td>E= Este</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

- **Riego**
- **Abastecimiento de agua potable**
- **Recreación**
- **Otros usos**

4. TIPO DE EMBALSE

- Presa de tierra homogénea
- Presa de material granular graduado
- Presa de arrastre
- Presa de hormigón (gravedad, contrafuerte, arco)
- Presa de RCC
- Otros tipos

5. GEOMETRÍA DE LA PRESA

- **Capacidad máxima (m³)**: 13,9
- **Profundidad máxima de agua en sector del muro (m)**: 13,2
- **Área de proyección o caudal de la poza (m²)**: 191,203
- **Ancho máximo de la poza (m)**: 0,63
- **Largo de la poza (m)**: 0,24
- **Volumen declarado o proyectado (millones de m³)**: 0,499

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

| Presa de tierra homogénea | X |

7. CARACTERÍSTICAS DEL MURO

- **Inspección visual**
 - **Toma de muestra del suelo (preferentemente en el centro del muro)**: Sí
 - **Toma de coordenadas y fotografías del punto muestrado**
- **Coordinadas (UTM)**: N= 6,245,043 | E= 348,258
- **Clasificación del material de construcción (clasificación según tabla)**: Arcilla limo arenosa

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIDAS

- **Por su localización en relación a la estructura principal**
 - Vertederos frontales: X
 - Vertederos laterales
 - Vertederos de campamento
 - "X" indica localización y estructura del vertedero

- **Desde el punto de vista de los instrumentos para el control del capitel vertedor**: X
 - Vertederos frontales:
 - Vertederos laterales:
 - Vertederos de campamento:

- **Desde el punto de vista del eje de la sección por la cual se da el vertedero**: X
 - Rectangulares
 - Triangulares
 - Circulares

- **Los datos a considerar son**
 - **Tipo de vertedero**
 - **Material constructivo**
 - **Ejido de conservación y restitución**
 - **Dimensiones retenidas (ancho, altura y carga máxima de operación (m))**: Sección rectangular ancho 2,50 - alto 0,50 m

9. USOS Y DESTINO DEL EMBALSE

- **Riego**
- **Abastecimiento de agua potable**
- **Recreación**
- **Otros usos**

10. DOCUMENTACIÓN ADICIONAL

- **Fecha (determinado)**: 20-08-2009
- **Cumplimiento Act. 294 del Código de Aguas**
 - **Código**: 50.000 m³
 - **Alto del muro**: > 5 m

11. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nº de ficha</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha</td>
<td>20-08-2009</td>
</tr>
<tr>
<td>Compromiso</td>
<td>Act. 294 del Código de Aguas</td>
</tr>
<tr>
<td>Código</td>
<td>50.000 m³</td>
</tr>
<tr>
<td>Alto muro</td>
<td>> 5 m</td>
</tr>
</tbody>
</table>

12. USO O DESTINO DEL EMBALSE

- **Riego**
- **Abastecimiento de agua potable**
- **Recreación**
- **Otros usos**
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Torre circular de hormigón armado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Alto 10.40 m, diámetro interno 1,50 m, Paredes: 0,25 m. Salida por la parte inferior por tubería de hormigón de diámetro 0,60 m</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>En funcionamiento</td>
</tr>
</tbody>
</table>

10. CARACTERIZACION DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
<th>Cañal en Sieno, terreno plano al pie de cerro, agrícolas, pendiente media 3,2%, ancho medio 3,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>7,5 Km</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>7,5 Km</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Media a Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacentes</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial o otra de importancia</td>
<td>1,5 Km</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>100 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFIA

Planta del muro (forma y dimensiones)

Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes respecto a la horizontal.

Croquis de la obra de evacuación y dimensiones (planta)

Croquis de la obra de evacuación y dimensiones (elevación)

Croquis de la obra de Toma y dimensiones (planta)

Croquis de la obra de Toma y dimensiones (elevación)

12. OBSERVACIONES

Desde este último corto hasta 210 m talud aguas arriba se presenta erosionado por el oleaje (ver álbum fotográfico)
EMBALSE ROMERAL
PARTE B: CATASTRO DE EMBALSES

4. EMBALSE ROMERAL
4.1 Ubicación
4.2 Características Generales
4.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
4.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
4.5 Determinación de Filtraciones
4.6 Verificación del Oleaje
4.7 Análisis de Riesgo (Hazop)
4.8 Álbum Fotográfico y Fichas de Catastro
4. EMBALSE ROMERAL

4.1 Ubicación

El embalse Romeral se ubica en la comuna de Mostazal, provincia de Cachapoal, en las coordenadas UTM 6.243.049 Norte y 347.347, Datum WGS 84 a una Altitud de 585 m.s.n.m. Se localiza en la cuenca del Maipo, subcuenca del Río Cachapoal y la fuente corresponde al Río Peuco.

Este sitio de embalse se localiza entre el límite entre la Región Metropolitana y VI Región y el Río Peuco, al norte del camino H-15 que une las localidades de La Punta y Chada. Se llega al sitio del embalse por este camino cruzando el río Peuco por un poco menos que 1 km, desde allí se toma un camino lateral al poniente hasta llegar al mismo sitio de embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

![Plano de ubicación sitio de embalse Romeral](image)

Fuente: Carta IGM
4.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a la Comunidad O'Higgins de Pilay. El uso y destino del embalse es de riego y fue construido en el año 1940.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,616 hm³. La altura máxima del muro es de 8,5 m, con una longitud de coronamiento de 148 m y ancho promedio del coronamiento de 2,1 m y borde libre de 0,5 m. Los taludes de los muros son:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba H:V</th>
<th>MURO 1</th>
<th>MURO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1,11:1</td>
<td>1,92:1</td>
</tr>
<tr>
<td>Talud Aguas Abajo H:V</td>
<td>1,73:1</td>
<td>1,92:1</td>
</tr>
</tbody>
</table>

El evacuador de crecidas corresponde a un vertedero frontal de hormigón de longitud 6,0 m; ancho 3,0 m; altura 1,50 m, la cual se encuentra en buen estado de conservación y operación.

La obra de entrega corresponde a una torre circular de paredes de hormigón armado con compuerta volante de fierro, con una tubería de hormigón armado de sección rectangular por el fondo del muro. Sus medidas principalmente son: espesor paredes: 0,20 m; Ø interior 1,10 m; altura: 0,7 m; Profundidad del evacuador: 7 m. La salida también es con una obra de hormigón de 2,1 ancho x 1,5 alto y Ø tubería 0,40 m

En la figura siguiente se presenta una imagen satelital del sitio de embalse.
FIGURA 4.2-1
IMAGEN SATELITAL EMBALSE ROMERAL
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Romeral

Vista panorámica Embalse Romeral
4.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Romeral tiene como fuente al río Peuco, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 1,28 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 4.3-1
CUENCA EMBALSE ROMERAL

![Cuenca Aportante Embalse Romeral](image)

Simbología
- Fuente
- Ubicación Embalse
- Cuenca Aportante

Área Cuenca: 127,98 Ha
CUADRO 4.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Romeral</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total 128,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial 128,0</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total 5.400,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial 5.400,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima 802,21</td>
</tr>
<tr>
<td></td>
<td>Mínima 586,70</td>
</tr>
<tr>
<td></td>
<td>Diferencia 215,51</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca 18,6</td>
</tr>
<tr>
<td></td>
<td>Cauce 4,9</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total 1,08</td>
</tr>
<tr>
<td></td>
<td>Desde centro de</td>
</tr>
<tr>
<td></td>
<td>gravedad 0,54</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM Este 347,804</td>
</tr>
<tr>
<td></td>
<td>UTM Norte 6.243,370</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm) 593,21</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM Este 347,742</td>
</tr>
<tr>
<td></td>
<td>UTM Norte 6.243,170</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm) 583,52</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California: \(t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} \)

Fórmula de Giandotti: \(t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \) (hrs); con \(\frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \)

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{A}{\sqrt{J}} \)

Fórmula de Témez: \(t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} \)
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Romeral

Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (%).} \]
\[H_g = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (hr)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,13</td>
<td>0,52</td>
</tr>
</tbody>
</table>

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romeral</td>
<td>Rapel</td>
<td>0,062</td>
<td>120</td>
<td>Coya</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{Tc} \cdot Ap}{3,6} \]

Donde:

\[Q(T) = \text{Caudal generado en la cuenca en (m}^3/\text{s)} \]
\[C(T) = \text{Coeficiente de Escorrentía} \]
\[I_{Tc} = \text{Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)} \]
\[Ap = \text{Área pluvial de la cuenca tributaria (km}^2\). \]

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^{T})^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^{T} \): Precipitación máxima en 24 h y periodo de retorno \(T \) años
- \(Ap \): Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Romeral</td>
<td>T=2</td>
<td>0.47</td>
<td>Coya</td>
<td>0.639</td>
<td>5,190</td>
<td>0.880</td>
<td>3,610</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0.60</td>
<td>Coya</td>
<td>0.857</td>
<td>6,980</td>
<td>1.270</td>
<td>6,184</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0.68</td>
<td>Coya</td>
<td>0.980</td>
<td>7,970</td>
<td>2.170</td>
<td>8,030</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0.77</td>
<td>Coya</td>
<td>1,136</td>
<td>9,223</td>
<td>2.951</td>
<td>10,519</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0.80</td>
<td>Coya</td>
<td>1,160</td>
<td>9,460</td>
<td>3.160</td>
<td>11,210</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0.87</td>
<td>Coya</td>
<td>1,310</td>
<td>10,660</td>
<td>3.990</td>
<td>13,740</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1.00</td>
<td>Coya</td>
<td>1,450</td>
<td>11,740</td>
<td>5.169</td>
<td>17,390</td>
</tr>
</tbody>
</table>

> Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País. Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de periodo de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q(10) \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDALES MÁXIMOS INSTANTÁNEOS MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Romeral</td>
<td>0,95</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS ((m^3/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T=200)</td>
</tr>
<tr>
<td>Romeral</td>
<td>5,61</td>
</tr>
</tbody>
</table>
4.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

<table>
<thead>
<tr>
<th></th>
<th>MURO 1</th>
<th>MURO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura</td>
<td>7.5 m</td>
<td>8.5 m</td>
</tr>
<tr>
<td>Ancho coronamiento</td>
<td>2.7 m</td>
<td>2.1 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>0.5 m</td>
<td>0.5 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 1,11 : 1</td>
<td>H : V= 1,92 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 1,73 : 1</td>
<td></td>
</tr>
</tbody>
</table>

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 4.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>ø = 22°</td>
<td>2.5</td>
<td>1.80</td>
<td>2.00</td>
</tr>
<tr>
<td>Arcilla Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Sísmico</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 4.4-1
MURO 1: TALUD AGUAS ARriba - ESTÁTICO CON AGUA
FIGURA 4.4-2
MURO 1: TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 4.4-3
MURO 1: TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 4.4-4
MURO 1: TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 4.4-5
MURO 1: TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 4.4-6
MURO 1: TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 4.4-7
MURO 1: TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
FIGURA 4.4-8
MURO 1: TALUD AGUAS ABAJO - SÍSMICO SIN AGUA

FIGURA 4.4-9
MURO 2: TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 4.4-10
MURO 2: TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 4.4-11
MURO 2: TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 4.4-12
MURO 2: TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 4.4-13
MURO 2: TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 4.4-14
MURO 2: TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 4.4-15
MURO 2: TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 4.4-2
MURO 1: FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1.5</th>
<th>Factor de seguridad 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0.10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Romeral M1</td>
<td>2,242</td>
<td>1,547</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1.5</td>
</tr>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Romeral M1</td>
</tr>
</tbody>
</table>
CUADRO 4.4-3
MURO 2: FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1.5</th>
<th>Factor de seguridad 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0.10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>Romeral M2</td>
<td>2,447</td>
<td>1,320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1.5</th>
<th>Factor de seguridad 1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0.10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Romeral M2</td>
<td>2,109</td>
<td>1,639</td>
</tr>
</tbody>
</table>

4.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 \cdot L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C\cdot h$$
Para el caso del tranque Romeral, se tiene:

<table>
<thead>
<tr>
<th>MURO 1</th>
<th>MURO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lh (m)</td>
<td>24,0</td>
</tr>
<tr>
<td>Lv (m)</td>
<td>0</td>
</tr>
<tr>
<td>C'</td>
<td>1,8</td>
</tr>
<tr>
<td>h (m)</td>
<td>7,0</td>
</tr>
</tbody>
</table>

- **Lh**: Longitud horizontal en la base del tranque o embalse.
- **Lv**: Longitud vertical en la base del tranque o embalse.
- **C'**: Coeficiente de filtración que depende del tipo de material del embalse.
- **h**: Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh (m)</th>
<th>Lv (m)</th>
<th>L' (m)</th>
<th>Ht (m)</th>
<th>bl (m)</th>
<th>h (m)</th>
<th>C' (m)</th>
<th>(C'h) (m)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROMERAL M1</td>
<td>24,0</td>
<td>0</td>
<td>8,01</td>
<td>7,5</td>
<td>0,5</td>
<td>7</td>
<td>1,80</td>
<td>12,6</td>
<td>No</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh (m)</th>
<th>Lv (m)</th>
<th>L' (m)</th>
<th>Ht (m)</th>
<th>bl (m)</th>
<th>h (m)</th>
<th>C' (m)</th>
<th>(C'h) (m)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROMERAL M2</td>
<td>23,4</td>
<td>0</td>
<td>7,80</td>
<td>5,5</td>
<td>0,5</td>
<td>5,041</td>
<td>1,80</td>
<td>9,1</td>
<td>No</td>
</tr>
</tbody>
</table>

4.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{OM}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Romeral
ROMERAL
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa (°)</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia (m)</th>
<th>Dist. * Cos2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>144</td>
<td>0.0895</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>148</td>
<td>0.0920</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>142</td>
<td>0.0882</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>137</td>
<td>0.0851</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>158</td>
<td>0.0982</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>147</td>
<td>0.0913</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>153</td>
<td>0.0951</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>163</td>
<td>0.1013</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>155</td>
<td>0.0963</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>141</td>
<td>0.0876</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>131</td>
<td>0.0814</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>94</td>
<td>0.0584</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>87</td>
<td>0.0541</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>79</td>
<td>0.0491</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>71</td>
<td>0.0444</td>
</tr>
</tbody>
</table>

Suma 13,5109

Fetch o longitud de acción del viento (F)

F = 0,075 millas
F = 121,12 m

Velocidad del Viento
v = 50 mph
v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,39</td>
<td>0,7278</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,31</td>
<td>0,7029</td>
</tr>
<tr>
<td>Creager</td>
<td>0,74</td>
<td>0,2244</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,50 m, se tiene que la altura de la ola superaría esta revancha.

4.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

4.7.1 Evento Sísrico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
<th>Muro 1</th>
<th>Muro 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

Obra de hormigón armado	C1	Valor adoptado	1
Obra de albañilería	0,8		
Obra de tierra	0,6		

Estado de conservación

Obra en óptimo estado	C2	Valor adoptado	1
Obra en estado regular, con dudas de operatividad	0,8		
Obra en mal estado, no confiable	0,6		

Calidad del canal de descarga

Canal revestido en hormigón	C3	Valor adoptado	1
Canal en mampostería o albañilería irregular	0,9		
Canal en tierra	0,7		
No existe canal de descarga	0,1		

Capacidad evacuación: 2.34 m³/s
Coeficiente capacidad 0,432 C1 x C2 x C3
Capacidad efectiva 1,01 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max, último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx, último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrida</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>5,61</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>6,62</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>7,39</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

4.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo “p”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:

<table>
<thead>
<tr>
<th>Riesgo de piping según situación del muro</th>
<th>Riesgo “p”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muro 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins
Embalse Romeral

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
</tr>
</tbody>
</table>

4.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td>0,25</td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

4.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>0,20</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td>Muro 2</td>
<td>0,20</td>
<td>0,19</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía para los muros 1 y 2.

4.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del embalse Romeral.
POSIBLE FILTRACIÓN EN MURO 1 EN EL TALUD AGUAS ABAJO EN EL PIE (ZARZAMORAS)	COLOCACIÓN DE SACOS DE ARENA Y VEGETACIÓN EN TALUD AGUAS BAJO DE MURO 2
FILTRACIÓN ESTRIBO DERECHO MURO 2	CLASIFICACIÓN DEL MATERIAL DE CONSTRUCCIÓN
OBRA DE ENTREGA	OBRA DE ENTREGA
1. ANTICIPACIONES GENERALES

- Nombre de la presa: Barquisimeto Muro 1
- Propietario: Comunidad (Pescadores de Piar)
- RUT Propietario: En Trámite
- Año de construcción: 1940
- Seguro: NO
- Ubicación: Estado Carabobo
- Departamento: Muro 1
- País: Venezuela
- Fuente de recursos: Río Piar
- N° de ficha: 41
- Fecha (sistema): 02-09-2009

2. UBICACIÓN DE PRESA

- Región: Del Litoral Bol. Chocó
- Provincia: Chocó
- Comuna: San Juan de Montes
- UTM Estadio Derecho: N= 6243 1111 E= 347 339
- UTM Estadio Izquierdo: N= 6243 045 E= 347 347
- Datum WGS 84
- Altitud n.a.s.l.: E= 555; C= 855; N= 580
- E= Este; C= Centro; N= Norte

3. USO O DESTINO DEL EMBALSE

- Uso: X
- Generación de energía
- Abastecimiento de agua potable
- Agricultura
- Reservas
- Estanqueamiento
- Control de crecidas
- Recreación
- Otros usos: X

4. TIPO DE EMBALSE

- Presa de tierra homogénea: X
- Presa de material granular excavado
- Presa de agregados (C/RO)
- Presa de hormigón armado
- Presa de acceso
- Presa de RCC
- Otros tipos

5. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

- Altura máxima del muro (cal media por razones geomecánicas en caso de no poder medir directamente) (m): 8,5
- Profundidad máxima de agua en el embalse (m): 8,0
- Área estimada de cobertura de la presa (kilométrico): 306 000
- Ancho máximo de la presa (m): 0,4
- Largo de la presa (m): 777
- Volumen declarado o proyectado (millones de m3): 0,016

6. GEOMETRÍA DE LA PRESA

- Con fecha:
- Longitud del corrimiento (m): 148
- Ancho del corrimiento (m): 22,2
- Elevación de la parte alta de la presa (m): 15,0
- Rampa máxima en relación a la cota máxima de agua consignada (m): 0,5
- Hasta:
- Presos verticales: NO
- Con el embalse:
- Angulo lateral de agua arriba (*) ED=05º; C= 90º; N= 34º
- Angulo lateral de agua arriba (*) ED=45º; C= 45º; N= 45º

7. CARACTERÍSTICAS DEL MUREN

- Inspección visual:
- Toma de muestras de la parte superior del centro del muro: SI
- Toma de coordenadas y fotografías del punto masificado: SI
- Coordenadas UTM:
- N= 6243 348 E= 347 347
- Estratificación del material de construcción: Arcilla arenosa

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIDAS

- Por la localización en relación a la estructura principal:
- Vertientes horizontales: X
- Vertientes laterales
- Vertientes de campaña
- "X" Indica localización y estructura del vertedero

- Desde el punto de vista de los instrumentos para el control del cascal vertido:
- Vertedero de pared plana
- Vertedero de pared delgada
- Vertedero de pared gruesa
- Vertedero con perfil irregular

- Desde el punto de vista de la sección por la cual se de la vertedera:
- Bocarranura
- Trancasriesas
- Conctreras

- Los datos a considerar son:
- Tipo de vertedero: Fincar
- Material constructivo: De Mampostería en paja
- Estado de conservación y operatividad: En buen estado, operativo
- Dimensiones límites: Ancho x Largura x Altura = 6,0 x 3,0 m altura 1,50 m

9. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

- Regularidad de la geometría actual: Regular
- Compacidad del material estructural: Alta
- Uniformidad de las fauces: Ajustes arribas concreto por creaje, aguas abajo uniformes a semiuniformes, cubiertas por zarzas
- Deterioros visibles y cuantificables: No
- Gravedad del deterioro: No presenta gravedades visibles
- Indicio de desplazamientos y deslizamientos: No presenta indicios de deslizamientos
- Sectores que se presentan saturados y altura de saturación: Gran sector saturado bajo el muro a 50 mts arriba los pantanos de 0 a 100, altura del agua entre 10 y 30 cm, área bastante considerable (ver álbum fotográfico)
- Filtraciones visibles en talud de agua abajo en el pie:
- Tipo de revestimiento del muro: Tarea compactada mezcla con piedras (bolas), además de protección con zarzas y matorral arboreo-cornal
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGUE DE FONDO

Tipo de estructura: Fondo circular de paredes de hormigón armado con compuerta volante de fierro. Tubo de hormigón armado de sección rectangular por el fondo del muro.

Mediciones estructurales:
- Espesor paredes: 0.20 m (óptima), 0.10 m (interior).
- Altura: 0.7 m.
- Profundidad del desagüe: 7 m.

Funcionamiento actual:
- En buen estado, funcionando.

10. CARACTERIZACIÓN DEL CAUSÓ Y USO DEL SUELO AGUAS ABAJO

- Tipo de causa natural e artificial: aguas alrededor del embalse, tipo de terreno, pendiente media y ancho medio del causó.
- Caída entre lados pittados: 0.70 m.
- Distancia entre parcelas pittadas: 0.40 m.
- Distancia entre parcelas perpendicular al causó: 0.20 m.
- Densidad de población en las cercanías del cañal: media.
- Distancia hacia zonas agrícolas: adyacentes.
- Distancia hacia sectores con infraestructura vial u obra de importancia: adyacentes.
- Área de riego servida por el cañal analizado: 0.50 ha.

11. MONOGRAFÍA

Planta del muro (forma y dimensiones): Sección transversal del muro en la zona con menor revancha y con mayor revancha, ilustrando sus taludes respecto a la horizontal.

Circuas de la obra de evasión y dimensiones (planta): Circuas de la obra de evasión y dimensiones (elevación).

12. OBSERVACIONES

- Instalaciones y espacios asociados: aguas abajo del muro, a 0.5 m aprox. Se encuentra saturado a pasar de contar con un canal de contorno para el control de aguas.
- La obra de limpieza se encuentra en el metro 1.08 desde el extremo derecho; el material es de hormigón con compuerta de fierro; la salida es mediante tubería.
Ficha de Catastro de Embalse

1. Antecedentes Generales

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Roremal Núm 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad Chiquiar de Pata</td>
</tr>
<tr>
<td>Altura del muelo</td>
<td>3 m</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1940</td>
</tr>
<tr>
<td>Reparación</td>
<td>NO</td>
</tr>
<tr>
<td>Cuenca Código DGA</td>
<td>Río Acosega</td>
</tr>
<tr>
<td>Fuente del relleno</td>
<td>Río Pescara</td>
</tr>
<tr>
<td>Nº de Eda.</td>
<td>4.2</td>
</tr>
<tr>
<td>Fecha (d/m/año)</td>
<td>02-09-2039</td>
</tr>
<tr>
<td>Cumplimiento Art. 284 del Código de Aguas</td>
<td></td>
</tr>
<tr>
<td>Capacidad = 50 000 m³</td>
<td></td>
</tr>
<tr>
<td>Altura del muelo = 5 m</td>
<td></td>
</tr>
</tbody>
</table>

2. Ubicación de Presa

<table>
<thead>
<tr>
<th>Región</th>
<th>Del Libertador Bos. Chiquiar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Casvitas</td>
</tr>
<tr>
<td>Cuenca</td>
<td>San Francisco de Matarazal</td>
</tr>
<tr>
<td>Cuenca UTM Este Derecho</td>
<td>N= 8242.867 E= 347.385</td>
</tr>
<tr>
<td>Cuenca UTM Centro 1</td>
<td>N= 8242.607 E= 347.497</td>
</tr>
<tr>
<td>Cuenca UTM Centro 2</td>
<td>N= 8242.734 E= 347.931</td>
</tr>
<tr>
<td>Cuenca UTM Este Izquierdo</td>
<td>N= 8242.827 E= 347.703</td>
</tr>
<tr>
<td>Altitud m.s.n.m</td>
<td>E0= 591; C1= 509; C= 353; E= 608</td>
</tr>
<tr>
<td>Nº Norte</td>
<td>E0= Suroeste Derecho</td>
</tr>
<tr>
<td>Nº Este</td>
<td>C1= Centro1; C= Centro2; E= Este Izquierdo</td>
</tr>
</tbody>
</table>

3. Uso o Destino del Embalse

<table>
<thead>
<tr>
<th>Uso</th>
<th>Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conexión</td>
<td>X</td>
</tr>
<tr>
<td>Conformación de agua potable</td>
<td></td>
</tr>
<tr>
<td>Abastecimiento de agua potable</td>
<td></td>
</tr>
<tr>
<td>Benevolencia</td>
<td></td>
</tr>
<tr>
<td>Rezagos</td>
<td></td>
</tr>
<tr>
<td>Reservación</td>
<td></td>
</tr>
<tr>
<td>Otras uso</td>
<td></td>
</tr>
</tbody>
</table>

4. Tipo de Embalse

Presa de tierra	X
Presa de terraplen	
Presa de concreto	
Presa de hormigón (proyectada, construida, etc)	
Presa de RCC	
Otros tipos	

5. Geometría de la Presa

<table>
<thead>
<tr>
<th>Conclusión</th>
<th>Conclusión</th>
<th>Conclusión</th>
<th>Conclusión</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del corrimiento (m)</td>
<td>427</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchura del corrimiento (m)</td>
<td>30</td>
<td>25</td>
<td>18</td>
</tr>
<tr>
<td>Desbordamiento (m)</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alzas mínima en relación a la alta mínima de agua conocida (m)</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relajaciones verticales</td>
<td>NO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relajaciones altas (m)</td>
<td>E0= 30; C1= 30; C= 25; E= 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ángulo tierra de agua bajo</td>
<td>E0= 30; C1= 30; C= 25; E= 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altura de aguas arriba (m)</td>
<td>E0= 30; C1= 30; C= 25; E= 25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1= Este Derecho; C= Centro; E= Este Izquierdo</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6. Estado del Muero y Calidad de Construcción

<table>
<thead>
<tr>
<th>Estado</th>
<th>Estado</th>
<th>Estado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material de la armazón</td>
<td>Armazón</td>
<td></td>
</tr>
<tr>
<td>Concreabilidad del material estructural</td>
<td>Armazón</td>
<td></td>
</tr>
<tr>
<td>Uniformidad de los tielos</td>
<td>Armazón</td>
<td></td>
</tr>
<tr>
<td>Depresiones visibles y superficiales a la vista del corrimiento</td>
<td>No se vislumbren depresiones</td>
<td></td>
</tr>
<tr>
<td>Gravilla utilizada y su disposición</td>
<td>No se presentan grava visibles</td>
<td></td>
</tr>
<tr>
<td>Indicios de deslizamientos y adhesión</td>
<td>No se presentan indicios de deslizamientos</td>
<td></td>
</tr>
<tr>
<td>Setores que presentan embalses y altura de saturación</td>
<td>No se presentan sectores saturados</td>
<td></td>
</tr>
<tr>
<td>Filtraciones visibles en talud de aguas abajo</td>
<td>No de se presenta filtraciones en la parte baja del muero, en el embalse derecho de este (ver álbum fotográfico)</td>
<td></td>
</tr>
<tr>
<td>Tipo de revestimiento del muero</td>
<td>Tierra compactada mezclada con piedras (bunter), además de protección en ambas taludes con zarzas y matorriles sobresalientes</td>
<td></td>
</tr>
</tbody>
</table>
10. CARACTERIZACION DEL CAUCE Y USO DEL SUELO AGUAS ABajo

| T
c|n de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conchón traslape, terreno plano, agroindustrial, pendiente media de 1°, ancho medio cauce 12.0 m</td>
<td></td>
</tr>
<tr>
<td>Distancia desde centros poblados medidas por el cauce</td>
<td>246 m</td>
</tr>
<tr>
<td>Distancia desde costas poblados perpendiculares al cauce</td>
<td>246 m</td>
</tr>
</tbody>
</table>
| Altitud de población en las cercanías del tranque | Vía
c |
| Distancia hacia zonas agrícolas | Adyacentes |
| Distancia hacia sectores con infraestructura vial u obra de importancia | Adyacentes |
| Área de riachuelo por el tranque anevo | 150 ha |

11. MONOGRAFÍA

12. OBSERVACIONES

- El muro 2 corresponde a muro auxiliar, separado del muro principal por pequeño cerro.
- El muro 2 presenta incrustación por arcos en todo su largo lo que hace que el talud se plante a dominio.
- Al momento de la visita al talud aguas arriba estaba siendo reforzado con sacos con arena y cubierta vegetal de espacios intermedios.
EMBALSE PICARQUÍN
PARTE B: CATASTRO DE EMBALSES

5. EMBALSE PICARQUÍN
5.1 Ubicación
5.2 Características Generales
5.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Mínimos Instantáneos
5.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
5.5 Determinación de Filtraciones
5.6 Verificación del Oleaje
5.7 Análisis de Riesgo (Hazop)
5.8 Álbum Fotográfico y Fichas de Catastro
5. EMBALSE PICARQUÍN

5.1 Ubicación

El embalse Picarquín se ubica en la comuna de Mostazal, provincia de Cachapoal, en las coordenadas UTM 6.238.987 Norte y 350.614 Este, Datum WGS 84. Se localiza en la cuenca del Maipo, subcuenca del Río Angostura y la fuente corresponde al estero Picarquín.

Acceso desde Ruta 5 sur por desvío por la ruta H-111 hacia el oriente hasta Santa Teresa por 6 km, luego hacia el norte hasta Casas de Peuco (aprox. 300 m) y tomar camino de 1 km hacia Recinto Picarquín. Acceso controlado. Finalmente por caminos interiores hasta el tranque.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 5.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE PICARQUÍN

Fuente: Carta IGM
5.2 Características Generales

El embalse corresponde a un tranque de tierra, que se alimenta a través de un canal alimentador proveniente del estero Picarquín. El embalse es de propiedad de John Botto. El uso y destino del embalse es de riego.

El tipo de presa es de tierra homogénea de una capacidad máxima de 1,254 hm³. La altura máxima del muro es de 20,1 m, con una longitud de coronamiento de 585 m y ancho promedio del coronamiento de 2,6 m, lo que se considera insuficiente con respecto a las recomendaciones para este tipo de presas, dada su altura. El borde libre es de 2,5 m. El Talud Aguas Arriba es H:V=1,04:1 y el Talud Aguas Abajo es H:V=0,90:1, lo que constituye un serio riesgo para su estabilidad. La obra se encuentra en regular estado.

El evacuador de crecidas El vertedero se ubica en el estribo izquierdo de la presa, es del tipo frontal, está construido en hormigón y no tiene compuertas. No obstante, dispone de vanos con gulas para la colocación de ellas o de tablones. El muro de embalse se apoya en el hormigón del vertedero. El vertedero tiene una carga máxima de 2,7 m, que disminuye en la medida que su umbral se peralte, lo que puede significar un riesgo de que las aguas sobrepasen el muro durante una crecida. Las medidas principales son: ancho de 13,0 m, largo 15 m. La obra, se encuentra en buen estado de conservación y operación. El vertedero entrega al cauce principal de la quebrada.

La obra de entrega se ubica aproximadamente al centro de la presa y consisten en un pique de captación con entrega a tres tuberías con válvulas de regulación ubicadas al pie del muro. El acceso al pique debe hacerse en balza y a través de una escala de gato construida por su exterior, ya que no existe un puente desde el muro. La obra se encuentra en buen estado y operativa.

En resumen, ante la imposibilidad de observar con mayor detalle el embalse y por las dimensiones que tiene, se recomienda la realización de un estudio más detallado de su estabilidad y riesgos posibles de falla. Una eventual ruptura de la presa, podría poner en riesgo la vida de personas que se ubican aguas abajo, aunque su densidad sea baja. Además, podría perderse una gran cantidad de terreno agrícola aledaño al cauce aguas abajo. El factor positivo es que se trata de un embalse alimentado por recursos de otra cuenca, por lo que ante signos de comienzo de alguna falla, como por ejemplo aumento importante de las filtraciones, el nivel de las aguas podría bajarse en forma relativamente rápida por sus obras de entrega. Asimismo, se considera recomendable la construcción de mayores obras de control del comportamiento de la presa. Puede ser piezometría y aforadores en sectores estratégicos, como mínimo.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.
FIGURA 5.2-1
IMAGEN SATELITAL EMBALSE PICARQUÍN
Vista panorámica Embalse Picarquín
5.3 Crecidas Afluientes al Embalse

a) Características de la cuenca

La cuenca del embalse Picarquín tiene como fuente al estero Picarquín, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie total de 20,55 km², siendo la superficie pluvial de 14,75 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 5.3-1
CUENCA EMBALSE PICARQUÍN
CUADRO 5.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Picarquín</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{máx}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs)}; \quad \text{con} \quad \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \sqrt{\frac{A}{J}} \)

Fórmula de Témez:

\[t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (¡¡).} \]
\[H_{\text{g}} = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Picarquín</td>
<td>0,55</td>
<td>1,70</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picarquín</td>
<td>Rapel</td>
<td>0,123</td>
<td>140</td>
<td>Coya</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot A_p}{3,6} \]

Donde:

\[Q(T) = \text{Caudal generado en la cuenca en (m}^3/\text{s)} \]
\[C(T) = \text{Coeficiente de Escorrentía} \]
\[I_{tc}^T = \text{Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)} \]
\[A_p = \text{Área pluvial de la cuenca tributaria (km}^2) \]

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- C(T): Coeficiente empírico para períodos de retorno
- Precipitación máxima en 24 h y periodo de retorno T años
- Ap: Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picarquín</td>
<td>T=2</td>
<td>0,47</td>
<td>Coya</td>
<td>0,6</td>
<td>12,1</td>
<td>9,2</td>
<td>31,8</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Coya</td>
<td>0,9</td>
<td>16,2</td>
<td>13,2</td>
<td>54,5</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0,68</td>
<td>Coya</td>
<td>1,0</td>
<td>18,5</td>
<td>22,6</td>
<td>70,6</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Coya</td>
<td>1,1</td>
<td>20,1</td>
<td>26,9</td>
<td>82,4</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Coya</td>
<td>1,1</td>
<td>21,5</td>
<td>30,8</td>
<td>93,0</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Coya</td>
<td>1,2</td>
<td>21,9</td>
<td>32,7</td>
<td>98,3</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Coya</td>
<td>1,3</td>
<td>24,6</td>
<td>41,0</td>
<td>119,8</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Coya</td>
<td>1,4</td>
<td>27,2</td>
<td>53,5</td>
<td>152,5</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

-Crecidas Pluviales

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

Donde:

- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDALES MÁXIMOS INSTANTÁNEOS MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx. (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Picarquín</td>
<td>7,38</td>
</tr>
</tbody>
</table>

- Crecidas de deshielo

El método denominado DGA-AC para crecidas de deshielo, corresponde a un análisis regional de crecidas del período de deshielo, desarrollado en base a los análisis de frecuencias efectuado a las series de excedencia para el período nival de caudales medios diarios máximos.
y caudales instantáneos máximos, correspondientes a 234 estaciones de control existente en el país.

Para estimar el valor del caudal medio diario asociado al período de retorno 10 años se utiliza la siguiente ecuación:

\[
Q_{10} = 1,81 \cdot 10^{-4} \cdot An \cdot (Lat - 26,2)^{3,392}
\]

Donde:

- \(Q_{10}\) Caudal medio diario con período de retorno 10 años (m\(^3\)/s)
- \(An\) Área Nival de la cuenca (km\(^2\))
- \(Lat\) Latitud media de la cuenca, en grados (°)

Por la falta de otros métodos de cálculo y debido a la pequeña extensión de algunas cuencas, para la obtención de resultados se consultó la frecuencia máxima \(Q(T)/Q(10)\).

Finalmente la expresión queda de la siguiente forma:

\[
Q(T) = \beta \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10}
\]

En donde \(Q(T)\), corresponde al caudal instantáneo máximo según el período de retorno T, y el coeficiente \(\beta\) es igual a 1,18.

**CURVA DE FRECUENCIA REGIONAL ZONA HOMOGENEA NIVAL “Wn”
CUENCAS VI REGIÓN**

<table>
<thead>
<tr>
<th>T</th>
<th>Q(T)/Q(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Média</td>
<td>Mín.</td>
</tr>
<tr>
<td>2</td>
<td>0,65</td>
</tr>
<tr>
<td>5</td>
<td>0,87</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,10</td>
</tr>
<tr>
<td>20</td>
<td>1,12</td>
</tr>
<tr>
<td>25</td>
<td>1,16</td>
</tr>
<tr>
<td>50</td>
<td>1,27</td>
</tr>
<tr>
<td>75</td>
<td>1,33</td>
</tr>
<tr>
<td>100</td>
<td>1,36</td>
</tr>
</tbody>
</table>

5-12

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
CARACTERÍSTICAS CUENCA APORTANTE

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Área nival (km²)</th>
<th>Latitud media (°C)</th>
<th>Q(10) (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Picaquín</td>
<td>5,8</td>
<td>35,5</td>
<td>2,03</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMO MEDIO DIARIO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Picarquín</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1,55</td>
</tr>
<tr>
<td>5</td>
<td>2,08</td>
</tr>
<tr>
<td>10</td>
<td>2,39</td>
</tr>
<tr>
<td>15</td>
<td>2,63</td>
</tr>
<tr>
<td>20</td>
<td>2,67</td>
</tr>
<tr>
<td>25</td>
<td>2,77</td>
</tr>
<tr>
<td>50</td>
<td>3,03</td>
</tr>
<tr>
<td>75</td>
<td>3,18</td>
</tr>
<tr>
<td>100</td>
<td>3,25</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMO INSTANTÁNEO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>Picarquín</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1,84</td>
</tr>
<tr>
<td>5</td>
<td>2,20</td>
</tr>
<tr>
<td>10</td>
<td>2,39</td>
</tr>
<tr>
<td>15</td>
<td>2,64</td>
</tr>
<tr>
<td>20</td>
<td>2,75</td>
</tr>
<tr>
<td>25</td>
<td>2,87</td>
</tr>
<tr>
<td>50</td>
<td>3,22</td>
</tr>
<tr>
<td>75</td>
<td>3,42</td>
</tr>
<tr>
<td>100</td>
<td>3,51</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXimos EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Picarquín</td>
<td>57,73</td>
</tr>
</tbody>
</table>

5.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una Arcilla arenoso limosa (algunas gravas muy meteorizadas), cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 20,1 m
- Ancho coronamiento: 2,6 m
- Borde libre: 2,5 m
- Talud Aguas Arriba: $H : V = 1,04 : 1$
- Talud Aguas Abajo: $H : V = 0,90 : 1$

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.
CUADRO 5.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa Arcilla Limo Arenosa</td>
<td>$\varnothing = 30^\circ$</td>
<td>1.5</td>
<td>1,90</td>
<td>2,10</td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Sísmico</th>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Sísmico</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Con Agua</td>
<td>Con Agua</td>
<td></td>
<td>Con Agua</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td>Sin Agua</td>
<td></td>
<td>Sin Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 5.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 5.4-2
TALUD AGUASABAJO - ESTÁTICO CON AGUA
FIGURA 5.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 5.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 5.4-5
TALUD AGUAS ARriba - ESTÁTICO SIN AGUA

FIGURA 5.4-6
TALUD AGUAS ABaJO - ESTÁTICO SIN AGUA
FIGURA 5.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 5.4-8
TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 5.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éstático</td>
<td>Sísmico $k_h=0,10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>Picarquín</td>
<td>1,430</td>
<td>1,071</td>
</tr>
<tr>
<td></td>
<td>0,991</td>
<td>0,712</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
</tr>
<tr>
<td>Éstático</td>
</tr>
<tr>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Picarquín</td>
</tr>
<tr>
<td>1,132</td>
</tr>
<tr>
<td>0,904</td>
</tr>
</tbody>
</table>

5.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C' \cdot h$$

Para el caso del tranque Picarquín, se tiene:

$L_h \ (m)$	41,5	Longitud horizontal en la base del tranque o embalse.
$L_v \ (m)$	0	Longitud vertical en la base del tranque o embalse.
C'	1,9	Coeficiente de filtración que depende del tipo de material del embalse
$h \ (m)$	17,6	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Picarquín

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>PICARQUÍN</td>
<td>41.5</td>
<td>0</td>
<td>13.82</td>
<td>20.1</td>
<td>2.5</td>
<td>17.6</td>
<td>1.9</td>
<td>33.4</td>
<td>No</td>
</tr>
</tbody>
</table>

5.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{Ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Picarquín.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa (°)</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia (m)</th>
<th>Distancia * Cos^2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>365</td>
<td>0.2268</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>357</td>
<td>0.2218</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>386</td>
<td>0.2398</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>402</td>
<td>0.2498</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>424</td>
<td>0.2635</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>456</td>
<td>0.2833</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>506</td>
<td>0.3144</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>552</td>
<td>0.3430</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>502</td>
<td>0.3119</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>444</td>
<td>0.2759</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>429</td>
<td>0.2666</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>398</td>
<td>0.2473</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>287</td>
<td>0.1783</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>336</td>
<td>0.2088</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>230</td>
<td>0.1429</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 3,1915

Fetch o longitud de acción del viento (F)

\[
F = 0.236 \text{ millas}
\]

\[
F = 380.15 \text{ m}
\]

Velocidad del Viento

\[
v = 50 \text{ mph}
\]

\[
v = 22.35 \text{ m/s}
\]

Fórmulas Empiricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2.53</td>
<td>0.7717</td>
</tr>
<tr>
<td>Molitor</td>
<td>2.39</td>
<td>0.7276</td>
</tr>
<tr>
<td>Creager</td>
<td>1.12</td>
<td>0.3427</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3.11</td>
<td>0.9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huinchia, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 2,50 m, se tiene que la altura de la ola no superaría esta revancha.

5.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores \("p" \) y \("V" \) son independientes por evento, y el valor \("E" \) es idéntico para todos los eventos.

5.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td>0,8</td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

5.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th>Obra de hormigón armado</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Canal revestido en hormigón</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Capacidad evacuación: **53,35 m³/s**

Coeficiente capacidad: **0,36 C1 x C2 x C3**

Capacidad efectiva: **19,21 m³/s**

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>57,73</td>
<td>0,95</td>
<td>4,02</td>
<td>0,05</td>
</tr>
<tr>
<td>0,002</td>
<td>68,19</td>
<td>0,95</td>
<td>4,68</td>
<td>0,05</td>
</tr>
<tr>
<td>0,00010</td>
<td>76,10</td>
<td>0,95</td>
<td>5,25</td>
<td>0,05</td>
</tr>
</tbody>
</table>

5.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:

<table>
<thead>
<tr>
<th>Riesgo de piping según situación del muro</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>
5.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td>0,35</td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

5.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Esorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>3,20</td>
<td>0,48</td>
<td>0,03</td>
</tr>
<tr>
<td>0,19</td>
<td>0,10</td>
<td>0,01</td>
</tr>
<tr>
<td>0,03</td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td>2,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

5.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Picarquín.
<table>
<thead>
<tr>
<th>VISTA MURO</th>
<th>VISTA MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISTA TALUD AGUAS ARRIBA</th>
<th>VISTA TALUD AGUAS ABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA</th>
<th>OBRA DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</td>
<td>CANAL DE ENTREGA DESDE ESTERO PEUCO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CANAL DEL EVACUADOR</td>
<td>CANAL DE ENTREGA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATASTRO DE EMBALLES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Picanqui</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad Entelape Picanqui</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>SI</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>SI</td>
</tr>
<tr>
<td>Representación (E):</td>
<td>SI</td>
</tr>
<tr>
<td>MTO de operación</td>
<td>SI</td>
</tr>
<tr>
<td>Nombre / Código DGA</td>
<td>Mapa</td>
</tr>
<tr>
<td>Región / Código DGA</td>
<td>Río Angapampa</td>
</tr>
<tr>
<td>Nombre de reservo</td>
<td>Estero Picanqui</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° de ficha</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha estimada (año)</td>
<td>22-10-2009</td>
</tr>
<tr>
<td>Cumplimiento Act.:</td>
<td>254 del Código de Aguas</td>
</tr>
<tr>
<td>Capacidad > 50,000 m³</td>
<td></td>
</tr>
<tr>
<td>Altura del muro > 5 m</td>
<td></td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Llamarco Hr. O'Hagana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cauca</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N = 6,238,087 E = 320,614</td>
</tr>
<tr>
<td>Coordenadas UTM 6º Este Izquierda</td>
<td>N = 6,238,010 E = 526,303</td>
</tr>
<tr>
<td>Altitud m s.m</td>
<td>ED = 566 C = 611 EL = 612</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>No Norte</th>
<th>0º 6º Estero Derecho</th>
</tr>
</thead>
<tbody>
<tr>
<td>C= Centro</td>
<td>En Estero Izquierda</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

| Uso | X |

4. TIPO DE EMBALLES

Presa de tierra homogénea	X
Presa de material granular gradado	
Presa de angulares (CIFRO)	
Presa de hormigón (gravedad, contrainvierno, arena)	
Presa de RCC	
Otros tipos	

5. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALLES

Altura máxima del muro (m)	20,1
Profundidad máxima de agua en sector del muro (m)	17,5
Área estimada como daño de la presa (m²)	289,000
Alcance máximo de la presa (km)	0,32
Largura de la presa (m)	0,5
Volumen declarado o proyectado (millones de m³)	1,254

6. GEOMETRÍA DE LA PRESA

Cenital (°)	565
Longitud del acostamiento (m)	565
Ancho del acostamiento (m)	ED = 2,70 C = 2,00 EL = 2,60
Desarrollo del talud de agua abajo (m)	27,0
Rebanada mínima en relación a la cota máxima de agua corriente (m)	2,5
Parametros verticales	NO
Cen lateral	ED = 45° C = 90° ED = 45°
Ángulo talud de agua arriba	ED = 45° C = 45° ED = 43°
ED = Estero Derecho	C= Centro
En Estero Izquierdo	

7. CARACTERÍSTICAS DEL MURO

Aspereza visual	SI
Tomografia de muestras del suelo (preferentemente en el centro del muro)	SI
Identificación del punto de toma de muestra	SI
Tomografía de concreto y fotografías de punto nivelado	SI
Coordenadas UTM N = 6,238,206 E = 349,873	
Clasificación del material de construcción (clasificación según leyes)	Archiva
Antes	Linosa (total материала)

8. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

Descripción	
Uniformidad de los lados	Ambos lados regulares
Compacidad del material estructural	Media, alta
Desgastes visibles y cuantificables y a lo largo del acostamiento	No se presentan desgastes visibles
Orígenes visibles y su ubicación	No se presentan orígenes visibles
Indicios de desplazamientos y ubicación	No se presentan indicios de desplazamientos
Sectores que se presentan agujereados y altura de agujereado	No se presentan sectores agujereados
Orígenes visibles en talud de agua abajo en el pas	No se presentan orígenes visibles
Tipo de revestimiento del muro	Tierra compactada, se presenta bastante cubierta vegetal en todo el acostamiento y en el talud de agua abajo

9. CARACTERÍSTICAS OBRAS EVACUADOR DE CREADAS

Por su localización en relación a la estructura principal:

Vértices frontales	X
Vértices laterales	
Vértices de勇气	
Vértices de salida	X

Desde el punto de vista de los instrumentos para el control del caudal vertido:

Vértices de carga/descarga	
Vértices de carga/pruebas	
Vértices con verificadores	X

Desde el punto de vista de la sección por la cual se de el vertido:

Vértices de carga/descarga	X
Transmisiones	
Circunferencias	

Les datos a controlar son:

Material constructivo	Hormigón
Estado de conservación y operatividad	En buen estado, operativo
Dimensiones relevantes (ancho, altura y carga máxima de operación)	Ancho 14,0 m; largo 15,0 m; Altura 2,70 m
8. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura:</th>
<th>Estructura circular de hormigón armado dentro de la cual se localizan 3 tunel.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales:</td>
<td>No se detallan medidas estructurales, solo que el tronco se encuentra bien a la obra de entrega en el fondo del tronco.</td>
</tr>
<tr>
<td>Protección antifuego</td>
<td>Bajo proyecto y ejecutivo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial:</th>
<th>Agua alta del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cauce natural:</td>
<td>Terreno 플 de costa, pendiente media 3.5%, ancho medio cauce 7,0 m</td>
</tr>
<tr>
<td>Distancia a centros poblados cercanos por el cauce</td>
<td>2,11 Km.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>1,87 Km.</td>
</tr>
<tr>
<td>Velocidad de propagación en las cercanías del tronco</td>
<td>Rápida</td>
</tr>
<tr>
<td>Distancia a zonas agrícolas</td>
<td>Adyacentes</td>
</tr>
<tr>
<td>Distancia a sectores con infraestructura vial u obra de importancia</td>
<td>2,0 Km.</td>
</tr>
<tr>
<td>Área de riego servida por el tronco analizado</td>
<td></td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

- Planta del muro (líneas y dimensiones)
- Sección transversal del muro con zona con menor revenga y con mayor revenga, indicando sus taludes respectivos

12. OBSERVACIONES

El muro se encuentra totalmente libre de vegetación y pasto por arboles talados y por su comportamiento, situación que incluso incluso necesita a pie de un estanco al oeste. Con respecto a las filtraciones, no se observan a simple vista, pero sí se detectan minores al escenario de la ventilación existente por todo el muro. El proceder a la obra de entregar la obra en el estado se realizará con hormigón con hormigón de pizarra. El problema a la fecha de la venta estaba hecho en su interior.
EMBALSE ESMERALDA
PARTE B: CATASTRO DE EMBALSES

6. EMBALSE ESMERALDA
 6.1 Ubicación
 6.2 Características Generales
 6.3 Crecidas Afuentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 6.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 6.5 Determinación de Filtraciones
 6.6 Verificación del Oleaje
 6.7 Análisis de Riesgo (Hazop)
 6.8 Álbum Fotográfico y Fichas de Catastro
6. EMBALSE ESMERALDA

6.1 Ubicación

El embalse Esmeralda se ubica en la comuna de Quinta de Tilcoco, provincia de Cachapoal, en las coordenadas UTM 6.198.838 Norte y 325.306, Datum WGS 84 a una Altitud de 319 m.s.n.m. Se localiza en la cuenca de Rapel, subcuenca del Río Cachapoal y la fuente corresponde al Río Claro de Rengo.

El sitio de embalse se localiza a menos de 1 km al sur del cruce del camino H-50 y el cementerio del poblado de Esmeralda. Se accede a este lugar por la Ruta 5 Sur y a la altura de Rosario se toma el camino hacia el poniente aproximadamente por 5 km hasta llegar al cruce indicado.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 6.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE ESMERALDA

Fuente: Carta IGM
6.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a la Comunidad de Aguas Esmeralda. El uso y destino del embalse es de riego y fue construido en el año 1962.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,039 hm³. La altura máxima del muro es de 6 m, con una longitud de coronamiento de 805 m y ancho promedio del coronamiento de 1,2 m y borde libre de 0,5 m. El Talud Aguas Arriba es H:V=1,73:1 y el Talud Aguas Abajo es H:V=1,73:1. La obra estructural se encuentra en buen estado, pero el lago con un embanque importante.

El evacuador de crecidas corresponde a un vertedero de campana de hormigón armado de 1,0 m de diámetro interior controlado por una compuerta, la cual se encuentra en buen estado de conservación y operación.

La obra de entrega corresponde a una estructura rectangular de hormigón armado con salida controlada de 0,80 m de ancho. La obra se encuentra en buen estado y operativa.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 6.2-1
IMAGEN SATELITAL EMBALSE ESMERALDA
Vista panorámica Embalse Esmeralda
6.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Esmeralda tiene como fuente al río Claro, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentia.

La cuenca en estudio tiene una superficie de 2,07 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 6.3-1
CUENCA EMBALSE ESMERALDA
CUADRO 6.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>Esmeralda</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
</tr>
<tr>
<td>Pluvial</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
</tr>
<tr>
<td>Pluvial</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
</tr>
<tr>
<td>Mínima</td>
</tr>
<tr>
<td>Diferencia</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
</tr>
<tr>
<td>Cauce</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
</tr>
<tr>
<td>UTM Norte</td>
</tr>
<tr>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
</tr>
<tr>
<td>UTM Norte</td>
</tr>
<tr>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>DATUM</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{max}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \quad (hrs); \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{A}{J} \)

Fórmula de Témez:

\[t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[Hm_{\text{max}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (%).} \]
\[Hg = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>1,17</td>
<td>2,48</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmeralda</td>
<td>San Fernando</td>
<td>0,12</td>
<td>80</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:

\[Q(T) = \text{Caudal generado en la cuenca en (m}^3/\text{s)} \]
\[C(T) = \text{Coeficiente de Escorrentía} \]
\[I_{tc}^T = \text{Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)} \]
\[Ap = \text{Área pluvial de la cuenca tributaria (km}^2). \]

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- \(C(T) \) Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \) Precipitación máxima en 24 h y periodo de retorno T años
- \(Ap \) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esmeralda</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>6,820</td>
<td>0,820</td>
<td>2,240</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,859</td>
<td>9,100</td>
<td>1,174</td>
<td>3,820</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,980</td>
<td>10,400</td>
<td>2,000</td>
<td>4,950</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,133</td>
<td>12,003</td>
<td>2,711</td>
<td>6,467</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,170</td>
<td>12,380</td>
<td>2,930</td>
<td>6,930</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,310</td>
<td>13,820</td>
<td>3,650</td>
<td>8,420</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1,00</td>
<td>Cachapoal</td>
<td>1,430</td>
<td>15,191</td>
<td>4,715</td>
<td>10,629</td>
</tr>
</tbody>
</table>

➤ Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Mátimos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \) Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de periodo de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km²)

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Esmeralda

\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>Q(T) / Q(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDALES MÁXIMOS INSTANTÁNEOS MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>0,39</td>
</tr>
</tbody>
</table>

 Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDALES MÁXIMOS EXTRAPOLADOS T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>5,11</td>
</tr>
</tbody>
</table>
6.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla gravo arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

<table>
<thead>
<tr>
<th>Altura:</th>
<th>6,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho coronamiento</td>
<td>1,2 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>0,5 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 1,73 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 1,73 : 1</td>
</tr>
</tbody>
</table>

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción $^\circ$</th>
<th>Cohesión (t/m2)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>$\phi = 20^\circ$</td>
<td>1,0</td>
<td>1,70</td>
<td>1,90</td>
</tr>
<tr>
<td>Arcilla Gravo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rockscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 6.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 6.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 6.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 6.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 6.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 6.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 6.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 6.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th></th>
<th>Análisis con embalse lleno</th>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
</tr>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico kh=0,10g</td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>2,338</td>
<td>2,033</td>
</tr>
<tr>
<td>Aguas Abajo</td>
<td>1,433</td>
<td>2,015</td>
</tr>
<tr>
<td>Esmeralda</td>
<td>1,473</td>
<td>1,537</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.5 Determinación de Filtraciones

Para determinar la filtración del trance se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada \((L') \) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración \((L_v) \) más un tercio de la suma de las longitudes de filtración horizontales \((1/3 \ L_h) \).

\[
L' = \frac{1}{3} \cdot L_h + L_v
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45\(^\circ\) y menor de 45\(^\circ\), respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C' h
\]

Para el caso del trance **Esmeralda**, se tiene:

\(L_h \) (m) =	22,0	Longitud horizontal en la base del trance o embalse.
\(L_v \) (m) =	0	Longitud vertical en la base del trance o embalse.
\(C' \) =	2,1	Coeficiente de filtración que depende del tipo de material del embalse
\(h \) (m) =	5,5	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(L_h) (m)</th>
<th>(L_v) (m)</th>
<th>(L') (m)</th>
<th>(H_t) (m)</th>
<th>(b_l) (m)</th>
<th>(h) (m)</th>
<th>(C')</th>
<th>((C' h))</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESMERALDA</td>
<td>22,0</td>
<td>0</td>
<td>7,33</td>
<td>6,0</td>
<td>0,5</td>
<td>5,5</td>
<td>2,10</td>
<td>11,6</td>
<td>NO</td>
</tr>
</tbody>
</table>

6.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \((h_{ow}) \). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta como ejemplo la planilla de cálculo del cálculo de la revancha para el embalse Esmeralda.
ESMERALDA
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa °</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia m</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>117</td>
<td>0,0727</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>134</td>
<td>0,0833</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>158</td>
<td>0,0982</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>173</td>
<td>0,1075</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>178</td>
<td>0,1106</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>177</td>
<td>0,1100</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>193</td>
<td>0,1199</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>263</td>
<td>0,1834</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>220</td>
<td>0,1367</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>163</td>
<td>0,1013</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>121</td>
<td>0,0752</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>107</td>
<td>0,0665</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>94</td>
<td>0,0584</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>87</td>
<td>0,0541</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>76</td>
<td>0,0472</td>
</tr>
</tbody>
</table>

Suma: 13,5109

Fetch o longitud de acción del viento (F)

\[F = \frac{0,089 \text{ millas}}{143,67 \text{ m}} \]

Velocidad del Viento
\[v = \frac{50 \text{ mph}}{22,35 \text{ m/s}} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,40</td>
<td>0,7320</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,31</td>
<td>0,7049</td>
</tr>
<tr>
<td>Creager</td>
<td>0,78</td>
<td>0,2391</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola: 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,50 m, se tiene que la altura de la ola superaría esta revancha.

6.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores \(p \) y \(V \) son independientes por evento, y el valor \(E \) es idéntico para todos los eventos.

6.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "(p)"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

6.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th></th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 4,74 m³/s
Coeficiente capacidad: 0,36 \(C1 \times C2 \times C3 \)
Capacidad efectiva: 1,71 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

Tabla de probabilidades

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>5,11</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>6,03</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>6,73</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

6.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
6.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,8</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

6.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,20</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

6.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Esmeralda.
<table>
<thead>
<tr>
<th>OBRA DE CAPTACION</th>
<th>CANAL DE CAPTACION</th>
</tr>
</thead>
<tbody>
<tr>
<td>VISTA MURO PONIENTE HACIA EL NORTE</td>
<td>VISTA MURO ORIENTE HACIA EL NORTE</td>
</tr>
<tr>
<td>VISTA MURO SUR HACIA EL ORIENTE</td>
<td>VISTA MURO NORTE HACIA EL PONIENTE</td>
</tr>
<tr>
<td>ZONA DE EMBANCAMIENTO</td>
<td>OBRA DE ENTREGA</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CANAL DE ENTREGA</th>
<th>CANAL DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACIÓN DEL MATERIAL DE CONSTRUCCIÓN</th>
<th>OBRAS DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Examinada</th>
<th>Nº de ficha</th>
<th>Fecha (dd/mm/año)</th>
<th>31-08-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ejecutora</td>
<td>Comunidad de Aguas Examinada</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RUT Emisario</td>
<td>En trámite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1962</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reparación</td>
<td>SI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Año de reparación</td>
<td>NO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Código DGA</td>
<td>Río Cachagapel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subcuenca</td>
<td>Río Cachagapel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Puente del relleno</td>
<td>Río Cieno de Rancho</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE EMBALSE

Región	Del Libertador Bts. Otagues				
Provincia	Cachagapel				
Comuna	Paezta				
Coordenadas UTM ED	N: 6.199.052	E: 325.420			
Coordenadas UTM C1	N: 6.198.836	E: 325.305			
Coordenadas UTM C2	N: 6.198.784	E: 325.403			
Coordenadas UTM C3	N: 6.198.007	E: 325.585			
Datum WGS 84					
Altitud m.s.n.m.	ED: 319	C1:319	C2:329	El:326	
Nº Norte	ED Norte: C1= Centro 1	C2= Centro 2			

3. USO O DESTINO DEL EMBALSE

Palabra				
Generación de energía				
Abastecimiento de agua potable y saneamiento				
Riegos				
Sedimentación				
Control de ciudades				
Reparación				
Otros usos				

4. TIPO DE EMBALSE

Presa de tierra húmeda	X			
Presa de material granular gradual				
Presa de embudos				
Presa de hormigón (gravedad, contrafuerte, arco)				
Presa de RCC				
Otros tipos				

5. GEOMETRÍA DE LA PRESA

Coeficiente				
Longitud del coronaíón (m)	805			
Ancho del coronaíón (m)	ED: 1,7; C1: 1,2; C2: 1,0 m; El: 1,0 m			
Desplazamiento del talud agua abajo (m)	12			
Raveña mínima en relación a la cota máxima de aguas conocida (m)	0,5			
Parámetros verticales	NO			
Con escultura				
Ancho talud de aguas abajo	ED: 36°; C1: 36°; C2: 37° m; El: 37° m			
Ancho talud de aguas arriba	ED: 36°; C1: 36°; C2: 34° m; El: 37° m			
Ramojo de la presa (km)	0,3			
Rampa de la presa (km)	0,14			
Volumen declarado o proyectado (millones de m³)	0,039			

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones geométricas en caso de no poder medir directamente) (m)	6,0			
Profundidad máxima de agua en su conducto del muro (m)	5,5			
Área estimada o colocado de la presa (m²)	24.000			
Ancho máximo de la presa (km)	0,3			
Largo de la presa (km)	0,14			

7. A. CARACTERÍSTICAS DEL MURO

Inspección visual				
Toma de muestras del suelo (profundamente en el centro del muro)	SI			
Identificación del punto de tomada de muestra	SI			
Toma de coordenadas y fotografías del punto muestreado	SI			
Coordenadas UTM	N: 6.198.836	E: 325.306		
Clasificación del material de construcción (clasificación según tabla)	Árida Grava Arenosa			

7. B. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

Describir				
Regularidad de la geometría actual	Regular			
Compensación del material estructural	Alta			
Uniformidad de los taludes	El talud aguas arriba y aguas abajo es uniforme			
Depresiones visibles y cuantificables a la largo del coronaíón	No se aprecian depresiones			
Grutas visibles y su ubicación	No se aprecian grutas visibles, sólo las cárcavas en el talud aguas abajo			
Indicios desplazamientos y ubicación	No se aprecian desplazamientos			
Sectores que presentan saturados y altura de saturación	No se aprecian sectores saturados			
Fórmulas visibles en talud aguas abajo en el pie	No se aprecian fórmulas visibles ni revestimiento del muro			
Pastor de revestimiento del muro	Tierra compactada mezclada con piedras (aluzones)			

Lesiones o condiciones que:				
Tipo de vertedero	No posee vertedero, se controla por la compuerta de entrada al embalse			
Material constructivo	No posee vertedero, se controla por la compuerta de entrada al embalse			
Estado de conservación y operatividad	No posee vertedero, se controla por la compuerta de entrada al embalse			
Dimensiones relevantes (ancho, altura y carga máxima de operación)	No posee vertedero, se controla por la compuerta de entrada al embalse			
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

Tipo de estructura: La obra de entrega es de hormigón armado. La salida se realiza por obra de hormigón en forma de "
Mediciones estructurales: 2 m de alto por 1 de ancho. La " tiene un ancho de 60 cm, luego es conducida a canal revestido con concreto de F6 hacia el sur y marco paralelo al poriente
Funcionamiento actual: Operativo

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce</th>
<th>Caudal de hoz y curso, bancos agrícolas, pendiente media 1,2%, ancho medio de cauce 1,60 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>100 m</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>100 m</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tramo</td>
<td>Media - Alta</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial u obra de importancia</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Área de riego servida por el tramo analizado</td>
<td>700 Hs</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

<table>
<thead>
<tr>
<th>Planta del muro (formas y dimensiones)</th>
<th>Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>---</td>
</tr>
</tbody>
</table>

12. OBSERVACIONES

- El embalse tiene un cañal de contorno
- El embalse no presenta vertedero, se controla por la compuerta de entrada al embalse
EMBALSE CHANCÓN
PARTE B: CATASTRO DE EMBALSES

7. EMBALSE CHANCON
 7.1 Ubicación
 7.2 Características Generales
 7.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 7.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 7.5 Determinación de Filtraciones
 7.6 Verificación del Oleaje
 7.7 Análisis de Riesgo (Hazop)
 7.8 Álbum Fotográfico y Fichas de Catastro
7. EMBALSE CHANCÓN

7.1 Ubicación

El embalse Chancón se ubica en la comuna de Rancagua, provincia de Cachapoal, en las coordenadas UTM 6.226.085 Norte y 330.426, Datum WGS 84 a una Altitud de 456 m.s.n.m. Se localiza en la cuenca del Río Rapel, subcuenca del Río Cachapoal y la fuente corresponde al estero Las Cadenas.

Se accede al lugar por la ruta 5 Sur tomando el camino H-30 que va a Doñihue. A la altura del sector denominado El Crucero se toma el desvío hacia el poniente por la ruta H-188. El sitio de embalse se encuentra justamente al norte del camino en la localidad de El Carmen. En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 7.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE CHANCÓN

Fuente: Carta IGM
7.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a la Frutícola Ramirana. El uso y destino del embalse es de riego y fue construido en el año 1989.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,055 hm³. La altura máxima del muro es de 3,3 m, con una longitud de coronamiento de 494 m y ancho promedio del coronamiento de 3,4 m y borde libre de 0,65 m. El Talud Aguas Arriba es H:V=2,36:1 y el Talud Aguas Abajo es H:V=2,14:1.

El evacuador de crecidas corresponde a un vertedero de campana de hormigón armado de 2,4 m de diámetro interior controlado por una compuerta, la cual se encuentra en buen estado de conservación y operación.

La obra de entrega corresponde a una estructura rectangular de hormigón armado de 1x0,80 m dentro de la cual se localizan 3 tubos. La obra se encuentra en buen estado y operativa (en el momento de la inspección se encontraba en mantención).

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 7.2-1
IMAGEN SATELITAL EMBALSE CHANCÓN
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Chancón

Vista panorámica Embalse Chancón
7.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Chancón tiene como fuente al estero Las Cadenas, el cual no posee control fluvimétrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 11,78 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 7.3-1
CUENCA EMBALSE CHANCÓN
CUADRO 7.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>Total</th>
<th>1.178,3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>1.178,3</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
<td>21.480,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
<td>21.480,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
<td>1.594,60</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
<td>457,50</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
<td>1.137,10</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
<td>34,8</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
<td>16,7</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
<td>5,37</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
<td>2,68</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM Este</td>
<td>331,964</td>
</tr>
<tr>
<td></td>
<td>UTM Norte</td>
<td>6.229,370</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>635,31</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM Este</td>
<td>332,718</td>
</tr>
<tr>
<td></td>
<td>UTM Norte</td>
<td>6.229,150</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>586,21</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración \((tc) \) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[
t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385}
\]

Fórmula de Giandotti:

\[
t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \quad \text{(hrs)}; \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6}
\]

Fórmula de Ventura - Heras: \(tc = 0.05 \cdot \sqrt{\frac{A}{J}} \)

Fórmula de Témez:

\[
t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75}
\]
Donde:

- **L** = Longitud del cauce principal en km.
- **H_{\text{máx}}** = Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
- **A** = Área cuenca en km².
- **J** = Pendiente del cauce (%).
- **H_{\text{g}}** = Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Chancón</td>
<td>0,44</td>
<td>0,81</td>
</tr>
</tbody>
</table>

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chancón</td>
<td>Rapel</td>
<td>0,097</td>
<td>100</td>
<td>Coya</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{\text{c}}^T \cdot A_p}{3,6}
\]

Donde:

- **Q(T)** = Caudal generado en la cuenca en (m³/s)
- **C(T)** = Coeficiente de Escorrentía
- **I_{\text{c}}^T** = Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)
- **A_p** = Área pluvial de la cuenca tributaria (km²).

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(T) \frac{C(T)}{C(T=10)} \cdot 0,00618 \cdot (P_{24}^T)^{1,24} \cdot (Ap)^{0,88} \]

Donde:
- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \): Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \): Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Periodo de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chancón</td>
<td>T=2</td>
<td>0,47</td>
<td>Coya</td>
<td>0,639</td>
<td>6,810</td>
<td>4,970</td>
<td>20,970</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Coya</td>
<td>0,857</td>
<td>9,140</td>
<td>7,145</td>
<td>35,896</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0,68</td>
<td>Coya</td>
<td>0,980</td>
<td>10,470</td>
<td>12,230</td>
<td>46,590</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Coya</td>
<td>1,136</td>
<td>12,115</td>
<td>16,603</td>
<td>61,064</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Coya</td>
<td>1,160</td>
<td>12,420</td>
<td>17,790</td>
<td>65,050</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Coya</td>
<td>1,310</td>
<td>14,000</td>
<td>22,450</td>
<td>79,740</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1,00</td>
<td>Coya</td>
<td>1,450</td>
<td>15,421</td>
<td>29,082</td>
<td>100,945</td>
</tr>
</tbody>
</table>

> **Análisis Regional de Crecidas (Método DGA-AC)**

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3,432} \cdot (Ap)^{0,915} \]

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10}^{} \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el periodo de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDALES MÁXIMOS INSTANTÁNEOS MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q_{\text{instantáneo máximo}}(T),) DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Chancón</td>
<td>3,02</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Chancón</td>
<td>31,44</td>
</tr>
</tbody>
</table>
7.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla areno limosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 3,3 m
- Ancho coronamiento: 3,4 m
- Borde libre: 0,65 m
- Talud Aguas Arriba: H : V = 2,36 : 1
- Talud Aguas Abajo: H : V = 2,14 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 7.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>22°</td>
<td>2,0</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Areno Limosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 7.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 7.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 7.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 7.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 7.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 7.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 7.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 7.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0.10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Chancón</td>
<td>3,225</td>
<td>2,284</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0.10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Chancón</td>
<td>3,012</td>
<td>3,013</td>
</tr>
</tbody>
</table>

En todos los casos analizados el factor de seguridad de los taludes es mayor que 1,5.
7.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C' \cdot h \]

Para el caso del tranque **Chancón**, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>18.4</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv (m)</td>
<td>0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>C'</td>
<td>1.70</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>h (m)</td>
<td>2.7</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso **Sí** se cumple la relación, por lo tanto, **NO** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHANCON</td>
<td>18.4</td>
<td>0</td>
<td>6.14</td>
<td>3.3</td>
<td>0.65</td>
<td>2.689</td>
<td>1.70</td>
<td>4.6</td>
<td>Sí</td>
</tr>
</tbody>
</table>

7.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{OA}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Chancón.
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Linea Nº</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>168</td>
<td>0,1044</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>179</td>
<td>0,1112</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>200</td>
<td>0,1243</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>231</td>
<td>0,1435</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>262</td>
<td>0,1628</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>273</td>
<td>0,1696</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>286</td>
<td>0,1777</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>304</td>
<td>0,1889</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>301</td>
<td>0,1870</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>292</td>
<td>0,1814</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>266</td>
<td>0,1653</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>262</td>
<td>0,1628</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>253</td>
<td>0,1572</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>243</td>
<td>0,1510</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>225</td>
<td>0,1398</td>
</tr>
</tbody>
</table>

Suma 13,5109 **Suma** 1,9556

Fetch o longitud de acción del viento (F)

- F = 0,145 millas
- F = 232,94 m

Velocidad del Viento

- v = 50 mph
- v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th></th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pie</td>
</tr>
<tr>
<td>Stevenson</td>
<td>2,45</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,34</td>
</tr>
<tr>
<td>Creager</td>
<td>0,94</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,65 m, se tiene que la altura de la ola superaría esta revancha.

7.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- **p**: probabilidad de ocurrencia del evento
- **V**: Vulnerabilidad del evento
- **E**: Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "p" y "V" son independientes por evento, y el valor "E" es idéntico para todos los eventos.

7.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable **V** para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

7.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 11,48 m³/s
Coeficiente capacidad 0,6 C1 x C2 x C3
Capacidad efectiva 6,89 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>31,44</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,002</td>
<td>37,14</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,0010</td>
<td>41,46</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

7.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
7.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

7.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Pluvial</th>
<th>Riesgo Nival</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,20</td>
<td>0,48</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

7.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Chancón.
<table>
<thead>
<tr>
<th>SATURACIONES</th>
<th>SATURACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VERTEDERO</td>
<td>OBRAS DE DRENAJE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</td>
<td>SALIDA DEL VERTEDERO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LISTA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

- Nombre de la presa: Chacra
- Propietario: Federico Le Raccova
- RUT Propietario: 77.482.000-0
- Año de construcción: 1989
- Reparación (SI/NO): NO
- Año de reparación: -
- Cuenca Código DGA: Rapel
- Subcuenca/Código DGA: Río Cachapoal
- Punto de recogida: Caño Los Cadenas
- Nº de ficha: 7
- Fecha (día/mes/año): 21-06-2008
- Cumplimiento Art. 294 del Código de Aguas
- Capacidad máxima: 50.000 m³
- Altura del muro: > 5 m

2. UBICACIÓN DE PRESA

- Región: Del Libertador Bío. O'Higgins
- Provincia: Cachapoal
- Comuna: Rapel
- Coordenadas UTM Este Derecho: N = 6.216.287, E = 330.444
- Coordenadas UTM Centro: N = 6.216.089, E = 330.426
- Altitud: ED = 454, C = 496, EI = 454

3. USO O DESTINO DEL EMBALSE

- Uso: X
- Generación de energía: -
- Abastecimiento de agua potable: -
- Férrea: -
- Recreación: -
- Ensayos: -
- Otros usos: -

4. TIPO DE EMBALSE

- Presa de tierra homogénea: X
- Presa de material granulizado: -
- Presa de enrocados (CPRH): -
- Presa de morfología (gravedad, contrafuerte, arco): -
- Presa de RCC: -
- Otros tipos: -

5. GEOMETRÍA DE LA PRESA

- Cos fisúntica: -
- Longitud del corrimiento (m): 494
- Anchura del corrimiento (m): ED = 3.3, C = 2.6, EI = 4.2 m
- Desvío del talud (ángulo oblicuo) (m): 7,6
- Elevación mínima en relación a la cota máxima de agua conectada (m): 0,05
- Parametros verticales: NO
- Caliente: -
- Angulo talud de agua oblicuo: ED = 20º, C = 27º, EI = 27,5º
- Angulo talud de agua arriba: ED = 13º, C = 26º, EI = 21º
- ED = Este Derecho
- C = Centro
- EI = Este Izquierdo

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

- Altura máxima del muro (definida por relaciones ingenierométricas en caso de no poder medir directamente) (m): 3,3
- Profundidad máxima de agua en seco del muro (m): 2,85
- Área estimada o calculada de la poza (m²): 83.000
- Apuntado máximo de la poza (m³): 0,31
- Largo de la poza (m³): 0,27
- Volumen declarado o proyectado (millares de m³): 0,055

7. A. CARACTERÍSTICAS DEL MUNDO

- Inspección visual: -
- Toma de muestra del suelo (preferentemente en el centro del muro): SI
- Identificación del punto de toma de muestra: SI
- Toma de coordenadas y fotografías del punto midiendo: SI
- Coordenadas UTM: N = 6.226.085, E = 330.426
- Volumen total del muro: 330.426
- Calidad del material de construcción: (clasificación según tabla): Arcilla Arenisca

7.8. ESTADO DEL MUNDO Y CALIDAD DE CONSTRUCCIÓN

- Describir: -
- Regularidad de la geometría actual: Aguas abajo regular, aguas arriba irregular
- Comportamiento del material estructural: Alta
- Uniformidad de los taludes: Talud aguas abajo uniforme, talud aguas arriba escasamente y en un sector protegido contra oleaje por enroscado desde el muro 402 al 494 desde el estribor derecho
- Depresiones visibles y científicas a lo largo del corrimiento: No se aprecian depresiones
- Orígenes visibles y su ubicación: No se aprecian grietas visibles
- Indicios de deslizamientos y ubicación: No se aprecian deslizamientos
- Sectores que presentan saturados y altura de saturación: 2 sectores saturados junto a casa de máquinas a los pies del talud aguas abajo (metro 162 y 196), a unos 7 metros del corrimiento (ver álbum fotográfico)
- Filtraciones visibles en talud de aguas abajo en el pie: No se aprecian filtraciones visibles a través del muro
- Tipo de revestimiento del muro: Tierra compactada y protección de enrocado (desde el muro 402 al 494 desde el estribor derecho)

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRISEIDAS

- Por su localización en relación a la estructura principal: -
- Vértices frontales: -
- Vértices laterales: -
- Vértice de amparo: -
- Vértice de amparo: X
- Vértex: -
- Vértice de pared gusano: -
- Vértice con perfil hiloínico: X
- Vértice: -
- Los datos a consignar son: -
- Tipo de vallado: -
- Material constructivo: Hervidero armado
- Estado de conservación y operatividad: En buen estado de conservación, operativo
- Dimensiones relevantes (ancho, altura y carga máxima de operación): Ancho 3,9 m; Diámetro exterior 3,0 m; Diámetro interior 2,4 m; Espesor muro 30 cm
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>En el plano del embalse cámara de hormigón armado de 1,30 x 1,30 m con espesor de paredes de 0,30 m cubierto con arcojado de fierro. (ver álbum fotográfico)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>No se pudo medir diámetro de calafía hacia casa de máquinas</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Operativo - en el momento de la visita se encontraba en mantenimiento</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABajo

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, tipo de terreno, pendiente</th>
<th>Salida de cauce artificial en tierra, terrenos agrícolas al pie de canto, pendiente media 0,6%, ancho medio del cauce 2,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>A 100 m de casas</td>
<td></td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>A 100 m de casas</td>
<td></td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Densidad baja</td>
<td></td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Extensión</td>
<td></td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vital u obra de importancia</td>
<td>200 m de camino de acceso a plantas del fundo La Ramirana</td>
<td></td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>189 has</td>
<td></td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

<table>
<thead>
<tr>
<th>Planta del muro (forma y dimensiones)</th>
<th>Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. OBSERVACIONES

El embalse está rodeado de densas a lo largo del muro con distanciamiento entre ellos de aprox. 100 m. Pieza de hormigón armado de 0,80 m diámetro con una profundidad de 2,3 m (ver álbum fotográfico)

Desde el metro 100 el 400 del estribio derecho, existe secesión por eleveja

Desde el metro 400 en adintelado del estribio derecho, hasta el estribio izquierdo, comienza muro de concreto de protección de eleveja abatiendo el costado sur y oriente del embalse (ver álbum fotográfico)

El llenado del embalse se efectuó por canal procedente del estera La Ciesena, canal de tierra de aprox. 3 m de ancho por una profundidad promedio de 1,75 m, con compuerta de guía de una estructura de hormigón de 1,80 m de alto

Una segunda capa se hace a través de pocos profesos ubicados aproximadamente a 1 Km, a la izquierda del embalse, y trazada por cañería de pvc de 0,40 m de diámetro.
EMBALSE SAN ISIDRO
PARTE B: CATASTRO DE EMBALSES

8. EMBALSE SAN ISIDRO
8.1 Ubicación
8.2 Características Generales
8.3 Crecidas Afuentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
8.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
8.5 Determinación de Filtraciones
8.6 Verificación del Oleaje
8.7 Análisis de Riesgo (Hazop)
8.8 Álbum Fotográfico y Fichas de Catastro
8. **EMBALSE SAN ISIDRO**

8.1 **Ubicación**

El embalse San Isidro se ubica en la comuna de Requinoa, provincia de Cachapoal, en las coordenadas UTM 6.199.203 Norte y 341.608, Datum WGS 84 a una Altitud de 415 m.s.n.m. Se localiza en la cuenca de Rapel, subcuenca del Río Cachapoal y la fuente corresponde al Río Cachapoal 1ª Sección.

El sitio de embalse se localiza siguiendo la Ruta 5 S por aproximadamente 20 km hasta llegar al cruce del camino H-455 al sur de Requinoa, desde ese cruce hacia el oriente se sigue aproximadamente por otros 10 km hasta llegar al sector de San Isidro.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 8.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE SAN ISIDRO

Fuente: Carta IGM
8.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente al particular Fernando Velolio, quien confirma que el tranque es de Bien Común General. El uso y destino del embalse es de riego y fue construido en el año 1980.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,005 hm³. La altura máxima del muro es de 2 m, con una longitud de coronamiento de 69 m y ancho promedio del coronamiento de 4,3 m y borde libre de 0,5 m. El Talud Aguas Arriba es H:V=1,73:1 y el Talud Aguas Abajo es H:V=1,96:1.

El evacuador de crecidas es de tipo vertedero libre sin control que funciona rebalsando el agua sobrante por el mismo muro que lo contiene, pasando el agua por el coronamiento.

La obra de entrega corresponde a una estructura tipo torre circular de hormigón armado, sus principales medidas son: Alto 10,40 m; Ø interior : 1,50 m; Paredes: 0,20 m. Salida por la parte inferior por tubería de hormigón de Ø : 0,80 m.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 8.2-1
IMAGEN SATELITAL EMBALSE SAN ISIDRO
Vista panorámica Embalse San Isidro
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse San Isidro
8.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse San Isidro tiene como fuente a la quebrada Sin Nombre, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie total de 21,98 km², siendo la superficie pluvial de 20,94 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 8.3-1
CUENCA EMBALSE SAN ISIDRO
CUADRO 8.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>San Isidro</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM Este</td>
</tr>
<tr>
<td></td>
<td>UTM Norte</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM Este</td>
</tr>
<tr>
<td></td>
<td>UTM Norte</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) **Estimación de Caudales Máximos Instantáneos**

➢ **Tiempo de Concentración**

Para estimar el tiempo de concentración \(t_c \) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[
t_c = 0.95 \left(\frac{L^3}{H_{max}} \right)^{0.385}
\]

Fórmula de Giandotti:

\[
t_c = \frac{4 \cdot \sqrt{A} + 1,5 \cdot L}{0.8 \sqrt{Hg}} \quad \text{(hrs)}; \quad \text{con} \quad \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6}
\]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \sqrt{\frac{A}{J}} \)

Fórmula de Témez:

\[
t_c = 0.3 \left(\frac{L}{J^{0.75}} \right)
\]
Donde:

- \(L \) = Longitud del cauce principal en km.
- \(H_{\text{máx}} \) = Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
- \(A \) = Área cuenca en km\(^2\).
- \(J \) = Pendiente del cauce (%).
- \(H_g \) = Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>San Isidro</td>
<td>0,75</td>
<td>1,08</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Isidro</td>
<td>San Fernando</td>
<td>0,119</td>
<td>120</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{Tc}^{T} \cdot Ap}{3,6}
\]

Donde:

- \(Q(T) \) = Caudal generado en la cuenca en \((m^3/s) \)
- \(C(T) \) = Coeficiente de Escorrentía
- \(I_{Tc}^{T} \) = Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(t_{c} \) en \((mm/h) \)
- \(Ap \) = Área pluvial de la cuenca tributaria \((km^2) \).

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1,24} \cdot (Ap)^{0,88} \]

Donde:
- \(C(T) \) Coeficiente empírico para diferentes periodos de retorno
- \(P_{24}^T \) Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI –KING

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Isidro</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,644</td>
<td>10,100</td>
<td>10,430</td>
<td>34,520</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,859</td>
<td>13,470</td>
<td>14,905</td>
<td>58,778</td>
</tr>
<tr>
<td></td>
<td>T=10</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>0,980</td>
<td>15,390</td>
<td>25,450</td>
<td>76,130</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,133</td>
<td>17,765</td>
<td>34,420</td>
<td>99,492</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,170</td>
<td>18,320</td>
<td>37,160</td>
<td>106,620</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,310</td>
<td>20,480</td>
<td>46,340</td>
<td>129,480</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1,00</td>
<td>Cachapoal</td>
<td>1,430</td>
<td>22,485</td>
<td>59,869</td>
<td>163,538</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

-Crecidas Pluviales

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \) Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDALES MÁXIMOS INSTANTÁNEOS MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q) instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>San Isidro</td>
<td>8,32</td>
</tr>
</tbody>
</table>

- Crecidas de deshielo

El método denominado DGA-AC para crecidas de deshielo, corresponde a un análisis regional de crecidas del período de deshielo, desarrollado en base a los análisis de frecuencias efectuado a las series de excedencia para el período nival de caudales medios diarios máximos y caudales instantáneos máximos, correspondientes a 234 estaciones de control existente en el país.

El área de la cuenca del embalse San Isidro presenta influencia nival y por lo tanto crecidas de deshielo en el período octubre – marzo, para lo cual se calcula dicha crecida para este período.

Las relaciones empleadas por este método son:

\[Q_{10} = 1,81 \cdot 10^{-4} \cdot An \cdot (Lat - 26,2)^3 \]

Donde:
$Q(T) = \beta \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10}$

En donde $Q(T)$ corresponde al caudal instantáneo máximo según el período de retorno T, y el coeficiente β es igual a 1,18.

CURVA DE FRECUENCIA REGIONAL ZONA HOMOGENEA NIVAL “Wn” CUENCAS VI REGIÓN

<table>
<thead>
<tr>
<th>T</th>
<th>$Q(T)/Q(10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Media</td>
</tr>
<tr>
<td>2</td>
<td>0,65</td>
</tr>
<tr>
<td>5</td>
<td>0,87</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,10</td>
</tr>
<tr>
<td>20</td>
<td>1,12</td>
</tr>
<tr>
<td>25</td>
<td>1,16</td>
</tr>
<tr>
<td>50</td>
<td>1,27</td>
</tr>
<tr>
<td>75</td>
<td>1,33</td>
</tr>
<tr>
<td>100</td>
<td>1,36</td>
</tr>
</tbody>
</table>

CARACTERÍSTICAS CUENCA APORTANTE

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Área nival (km²)</th>
<th>Latitud media (°C)</th>
<th>$Q(10)$ (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Isidro</td>
<td>1,04</td>
<td>34,5</td>
<td>0,25</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMO MEDIO DIARIO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>T (m³/s)</th>
<th>San Isidro</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,19</td>
</tr>
<tr>
<td>5</td>
<td>0,25</td>
</tr>
<tr>
<td>10</td>
<td>0,29</td>
</tr>
<tr>
<td>15</td>
<td>0,32</td>
</tr>
<tr>
<td>20</td>
<td>0,33</td>
</tr>
<tr>
<td>25</td>
<td>0,34</td>
</tr>
<tr>
<td>50</td>
<td>0,37</td>
</tr>
<tr>
<td>75</td>
<td>0,39</td>
</tr>
<tr>
<td>100</td>
<td>0,40</td>
</tr>
</tbody>
</table>
CAUDAL MÁXIMO INSTANTÁNEO MÉTODO DGA-AC, DESHIELO

<table>
<thead>
<tr>
<th>Q(T) (m³/s)</th>
<th>San Isidro</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,22</td>
</tr>
<tr>
<td>5</td>
<td>0,27</td>
</tr>
<tr>
<td>10</td>
<td>0,29</td>
</tr>
<tr>
<td>15</td>
<td>0,32</td>
</tr>
<tr>
<td>20</td>
<td>0,33</td>
</tr>
<tr>
<td>25</td>
<td>0,35</td>
</tr>
<tr>
<td>50</td>
<td>0,39</td>
</tr>
<tr>
<td>75</td>
<td>0,42</td>
</tr>
<tr>
<td>100</td>
<td>0,43</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Isidro</td>
<td>T=200</td>
</tr>
<tr>
<td></td>
<td>65,82</td>
</tr>
</tbody>
</table>

8.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa, cuya geometría se presenta en el esquema siguiente.
Los datos geométricos característicos son:

Altura: 2,0 m
Ancho coronamiento: 4,3 m
Borde libre: 0,5 m
Talud Aguas Arriba: H : V= 1,73 : 1
Talud Aguas Abajo: H : V= 1,96 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 8.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción $^\circ$</th>
<th>Cohesión (t/m2)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa Arcilla Arenosa</td>
<td>$\phi = 22^\circ$</td>
<td>2,5</td>
<td>1,80</td>
<td>2,00</td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rockscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:
Talud Aguas Arriba	Estático	Con Agua
		Sin Agua
	Sísmico	Con Agua
		Sin Agua
Talud Aguas Abajo	Estático	Con Agua
		Sin Agua
	Sísmico	Con Agua
		Sin Agua

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 8.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 8.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 8.4-3
TALUD AGUAS ARriba - SÍSMICO CON AGUA
FIGURA 8.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 8.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 8.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 8.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
FIGURA 8.4-8
TALUD AGUAS ABAJO - SÍSMICO SIN AGUA

e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 8.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0,10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>San Isidro</td>
<td>4,252</td>
<td>3,528</td>
</tr>
<tr>
<td></td>
<td>2,569</td>
<td>2,625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0,10g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>San Isidro</td>
<td>4,112</td>
<td>4,200</td>
</tr>
<tr>
<td></td>
<td>3,049</td>
<td>3,037</td>
</tr>
</tbody>
</table>
8.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($L_h/3$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C' \cdot h$$

Para el caso del tranque **San Isidro** se tiene:

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Lh (m) =</td>
<td>11,5</td>
<td>Longitud horizontal en la base del tranque o embalse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lv (m) =</td>
<td>0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C' =</td>
<td>1,8</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h (m) =</td>
<td>1,45</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso **Sí** se cumple la relación, por lo tanto, **NO** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN ISIDRO</td>
<td>11,5</td>
<td>0</td>
<td>3,84</td>
<td>2,0</td>
<td>0,5</td>
<td>1,452</td>
<td>1,80</td>
<td>2,6</td>
<td>Sí</td>
</tr>
</tbody>
</table>

8.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ola}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse San Isidro.
SAN ISIDRO
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia</th>
<th>Dist. * Cos^2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>m</td>
<td>millas</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>57</td>
<td>0,0354</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>58</td>
<td>0,0360</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>62</td>
<td>0,0385</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>63</td>
<td>0,0391</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>68</td>
<td>0,0423</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>74</td>
<td>0,0460</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>95</td>
<td>0,0590</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>118</td>
<td>0,0733</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>68</td>
<td>0,0423</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>82</td>
<td>0,0510</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>78</td>
<td>0,0485</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>67</td>
<td>0,0416</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>63</td>
<td>0,0391</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>56</td>
<td>0,0348</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>51</td>
<td>0,0317</td>
</tr>
</tbody>
</table>

Suma 13,5109
Suma 0,5574

Fetch o longitud de acción del viento (F)

\[F = \frac{13,5109}{0,5574} \]

Velocidad del Viento

\[v = \frac{50 \text{ mph}}{22,35 \text{ m/s}} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,35</td>
<td>0,7175</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,29</td>
<td>0,6991</td>
</tr>
<tr>
<td>Creager</td>
<td>0,59</td>
<td>0,1797</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huinchá, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,50 m, se tiene que la altura de la ola superaría esta revancha.

8.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "p" y "V" son independientes por evento, y el valor "E" es idéntico para todos los eventos.

8.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

8.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse San Isidro

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 4,42 m³/s
Coeficiente capacidad: 0,336 C1 x C2 x C3
Capacidad efectiva: 1,49 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q máx. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,01</td>
<td>65,82</td>
<td>0,95</td>
<td>0,49</td>
<td>0,05</td>
</tr>
<tr>
<td>0,002</td>
<td>77,71</td>
<td>0,95</td>
<td>0,58</td>
<td>0,05</td>
</tr>
<tr>
<td>0,0010</td>
<td>86,70</td>
<td>0,95</td>
<td>0,65</td>
<td>0,05</td>
</tr>
</tbody>
</table>

8.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:

<table>
<thead>
<tr>
<th>Riesgo de piping según situación del muro</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td>0,05</td>
</tr>
</tbody>
</table>
8.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

8.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,20</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

8.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse San Isidro.
| VISTA MURO DESDE ESTRIBO DERECHO |
| TALUD AGUAS ABAJO |
| VISTA MURO DESDE ESTRIBO IZQUIERDO |
| TALUD AGUAS ARRIBA |

| SOCAVACION POR CURSO DE AGUA |
| CANAL APORTANTE |

<p>| OBRA DE ENTREGA |
| SALIDA OBRA DE ENTREGA |</p>
<table>
<thead>
<tr>
<th>CASA DE BOMBAS</th>
<th>TOMA DE CASA DE BOMBAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACIÓN DEL MATERIAL DE CONSTRUCCIÓN</th>
<th>EVACUADOR DE CRECIDAS POR SOBRE EL MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>EVACUADOR DE CRECIDAS</th>
<th>EVACUADOR DE CRECIDAS - SALIDA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Beni Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Bien Común General</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>Sin RUT</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1980</td>
</tr>
<tr>
<td>Reparación (SÍ/NO)</td>
<td>SÍ</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>2009</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Río Cachapal</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Cachapal</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Río Cachapal</td>
</tr>
</tbody>
</table>

Nº de ficha	4
Fecha (d/m/a/a)	31-08-2009
Cumplimiento Act.	294 de Código de Aguas
Capacidad	50,000 m³
Altura del muro > 5 m	

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>Del Libertador Sujo, Oritojú</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cachapal</td>
</tr>
<tr>
<td>Comuna</td>
<td>Ríos</td>
</tr>
<tr>
<td>Coordenadas UTM Este derecho</td>
<td>N= 6,198,230 E= 341,058</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N= 6,198,203 E= 341,056</td>
</tr>
<tr>
<td>Coordenadas UTM Este izquierdo</td>
<td>N= 6,195,102 E= 341,023</td>
</tr>
<tr>
<td>Datum WGS 84</td>
<td></td>
</tr>
<tr>
<td>Altitud</td>
<td>89 de 421, 415, 390</td>
</tr>
<tr>
<td>Nº Norte</td>
<td>ED= Este Derecho</td>
</tr>
<tr>
<td>E= Este</td>
<td>C= Centro</td>
</tr>
<tr>
<td>E= Este izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Tipo</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso</td>
<td>X</td>
</tr>
<tr>
<td>Generación de energía</td>
<td></td>
</tr>
<tr>
<td>Almacenamiento de agua potable / saneamiento</td>
<td></td>
</tr>
<tr>
<td>Riego</td>
<td></td>
</tr>
<tr>
<td>Sedimentación</td>
<td></td>
</tr>
<tr>
<td>Control de crecimientos</td>
<td></td>
</tr>
<tr>
<td>Recreación</td>
<td></td>
</tr>
<tr>
<td>Otras usos</td>
<td></td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

<table>
<thead>
<tr>
<th>Tipo</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa de tierra homogénea</td>
<td></td>
</tr>
<tr>
<td>Presa de materiales granulares y gradados</td>
<td></td>
</tr>
<tr>
<td>Presa de erosiones (CIFR)</td>
<td></td>
</tr>
<tr>
<td>Presa de hormigón (gravedad, contrafuerte, ancho)</td>
<td></td>
</tr>
<tr>
<td>Presa de RCC</td>
<td></td>
</tr>
<tr>
<td>Otros tipos</td>
<td></td>
</tr>
</tbody>
</table>

5. GEOMETRÍA DE LA PRESA

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del coronamiento (m)</td>
<td>59</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>ED=4,0; C=6,0; E=4,0</td>
</tr>
<tr>
<td>Altura del talud de agua abajo (m)</td>
<td>4,3</td>
</tr>
<tr>
<td>Relevancia mínima en relación a la cota máxima de agua conocida (m)</td>
<td>5,0</td>
</tr>
<tr>
<td>Parámetros verticales</td>
<td>NO</td>
</tr>
<tr>
<td>Con deslizamiento</td>
<td></td>
</tr>
<tr>
<td>Ángulo talud de agua abajo (°)</td>
<td>ED = 27°; C = 27°; E = 27°</td>
</tr>
<tr>
<td>Ángulo talud de agua arriba (°)</td>
<td>ED = 30°; C = 30°; E = 30°</td>
</tr>
<tr>
<td>ED = Este Derecho</td>
<td></td>
</tr>
<tr>
<td>C = Centro</td>
<td></td>
</tr>
<tr>
<td>E = Este izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones trigonométricas en caso de no poder medir directamente) (m)	2,0
Profundidad máxima de agua en sector del muro (m)	1,5
Área estimada o calculada de la poza (m²)	12,800
Altura máxima de la poza (m)	0,10
Largo de la poza (m)	0,08
Volumen declarado o proyectado (millones de m³)	0,005

7. A. CARACTERÍSTICAS DEL MUBO

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspección visual</td>
<td></td>
</tr>
<tr>
<td>Toma de muestra del suelo (preferentemente en el centro de la muro)</td>
<td>SÍ</td>
</tr>
<tr>
<td>Identificación del punto de toma de muestra</td>
<td>SÍ</td>
</tr>
<tr>
<td>Toma de coordenadas y fotografías del punto muestreado</td>
<td>SÍ</td>
</tr>
<tr>
<td>Coordenadas UTM</td>
<td>N= 6,199,209 E= 341,028</td>
</tr>
<tr>
<td>Clasificación del material de construcción (clasificación según tabla)</td>
<td>Arcilla Arenosa</td>
</tr>
</tbody>
</table>

7. B. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desbarbado</td>
<td></td>
</tr>
<tr>
<td>Regulación de la geometría actual</td>
<td>Irregular en toda su extensión</td>
</tr>
<tr>
<td>Complejidad del material estructural</td>
<td>Muy alta</td>
</tr>
<tr>
<td>Uniformidad de los taludes</td>
<td>Talud agua abajo irregular, talud agua arriba escavado por oléaje</td>
</tr>
<tr>
<td>Depresiones visibles y cuantificables a lo largo del coronamiento</td>
<td>Depresiones visibles causadas por tránsito vehicular</td>
</tr>
<tr>
<td>Grafitas visibles y su ubicación</td>
<td>No se presentan grafitas visibles</td>
</tr>
<tr>
<td>Índices de deslizamientos y ubicación</td>
<td>No se presentan índices de deslizamientos</td>
</tr>
<tr>
<td>Sectores que se presentan saturados y altura de saturación en relación al coronamiento</td>
<td>No se presentan sectores saturados</td>
</tr>
<tr>
<td>Filtraciones visibles en talud de agua abajo en el pie</td>
<td>No se presentan filtraciones visibles</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Muro de tierra compactada con grava</td>
</tr>
</tbody>
</table>

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIDAS

<table>
<thead>
<tr>
<th>Elemento</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Por su localización en relación a la estructura principal</td>
<td>Desde el punto de vista de los instrumentos para el control de caudal vertical:</td>
</tr>
<tr>
<td>Vertederos frontales</td>
<td>X</td>
</tr>
<tr>
<td>Vertederos laterales</td>
<td>Verteduras libres, sin control</td>
</tr>
<tr>
<td>Vertedera de concha</td>
<td>Vertederas contrapuestas por compartimentos</td>
</tr>
</tbody>
</table>

| Desde el punto de vista de la sección por la cual se de vaciado en el vertedero: |
Vertedera de pared plana	Rectangulares
Vertedera de pared curvada	Triangulares
Vertedera con perfil hidráulico	Circulares

| Los datos a conseguir son: |
Tapa de vertedero	Por rebalse por sobre coronamiento
Material constructivo	en tierra cubierto por erosiones
Estado de conservación y operatividad	Conservación en regular estado, en funcionamiento
Dimensiones relevantes (ancho, altura y carga máxima de operación) (m)	Sección rectangular ancho 2,30; alto 0,50, m
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Torre circular de hormigón armado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>Alto 10.40 m; diámetro interior 1.50 m; Paredes 0.25 m. Salida por la parte inferior por tubería de hormigón de Ø 0.80 m</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>En funcionamiento</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

Tipo de cauce natural o artificial, aguas abajo del embalse, tipo de terreno pendiente media y ancho medio del cauce	Canal artificial en terreno, terrenos agrícolas, pendiente media 2%, ancho medio cauce 2 m
Distancia hasta centros poblados medios por el cauce	7.5 Km.
Distancia desde centros poblados perpendiculares al cauce	7.5 Km.
Densidad de población en las cercanías del tranque	Media a Baja
Distancia hasta zonas agrícolas	Adjacentes
Distancia hasta sectores con infraestructura vial u otra de importancia	1.5 Km.
Área de tierra servida por el tranque analizado	85 has

11. MONOGRAFÍA

- Planta del muro (forma y dimensiones)
- Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes respecto a la horizontal.
- Croquis de la obra de evacuación y dimensiones (planta)
- Croquis de la obra de evacuación y dimensiones (elevación)
- Croquis de la obra de entrega y dimensiones (planta)
- Croquis de la obra de entrega y dimensiones (elevación)

12. OBSERVACIONES

La obra de torre es mediante una casa de bombas que distribuye el agua para el regadío de los pedidos.

Además existen 3 obras de entrega de quejas una en malas condiciones. Estas corresponden a obras de hormigón con compuertas de fango.

El tranque se encuentra en regular estado, la zona por donde evacúa el agua en caso de rebalse está recubierta con boleos de piedra (evacuador de crecidas por sobre el muro).
EMBALSE MILLAHUE
PARTE B: CATASTRO DE EMBALSES

9. EMBALSE MILLAHUE
 9.1 Ubicación
 9.2 Características Generales
 9.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 9.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 9.5 Determinación de Filtraciones
 9.6 Verificación del Oleaje
 9.7 Análisis de Riesgo (Hazop)
 9.8 Álbum Fotográfico y Fichas de Catastro
9. EMBALSE MILLAHUE

9.1 Ubicación

El embalse Millahue se ubica en la comuna de San Vicente de Tagua Tagua, provincia de Colchagua, en las coordenadas UTM 6.175.352 Norte y 295.370 Este, Datum WGS 84 a una Altitud de 231 m.s.n.m. Se localiza en la cuenca de Rapel, subcuenca del Río Cachapoal y la fuente corresponde a la quebrada Los Alazanes.

Se llega el sitio de emplazamiento desde San Vicente de Tagua-Tagua (km 0) por la ruta H-80-I hasta el cruce puente Zamorano (800 m desde plaza), luego por la ruta H-800 hacia el sur hasta, finalmente hacia el sur por ruta H-830 por 21 km.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 9.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE MILLAHUE

Fuente: Carta IGM
9.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente al Comité de Riego Tranque Millahue y La Rioja. El uso y destino del embalse es de riego y fue construido en el año 1950.

El tipo de presa es de tierra homogénea de una capacidad máxima de 1,217 hm3. La altura máxima del muro es de 7,4 m, con una longitud de coronamiento de 590 m y ancho promedio del coronamiento de 6,8 m y borde libre de 1,60 m. El Talud Aguas Arriba es H:V=1,33:1 y el Talud Aguas Abajo es H:V=1,73:1.

El evacuador de crecidas corresponde a un Vertedero de caída libre con compuertas de madera con un ancho medio de 110 m y 0,50 m de alto. Tiene estructura de control. En buen estado, operativo.

La obra de entrega corresponde a una torre de hormigón con salida en tubo de hormigón por el fondo del muro de 2,9 m de diámetro por 12 m de alto. La obra se encuentra en buen estado, funcionando.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 9.2-1
IMAGEN SATELITAL EMBALSE MILLAHUE
Vista panorámica Embalse Millahue
9.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Millahue tiene como fuente a la quebrada Los Alazanes, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 34,51 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 9.3-1
CUENCA EMBALSE MILLAHUE
CUADRO 9.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Millahue</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3.450,6</td>
</tr>
<tr>
<td>Pluvial</td>
<td>3.450,6</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>34.740,0</td>
</tr>
<tr>
<td>Pluvial</td>
<td>34.740,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>1.196,7</td>
</tr>
<tr>
<td>Minima</td>
<td>230,0</td>
</tr>
<tr>
<td>Diferencia</td>
<td>966,7</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>31,4</td>
</tr>
<tr>
<td>Cauce</td>
<td>10,7</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7,77</td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
<td>3,88</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>293.669</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.174.110</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>339,3</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>293.080</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.175.089</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>250</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandonetti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L}{H_{\text{max}}} \right)^{0.385} \]

Fórmula de Giandonetti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \quad \text{(hrs); con } \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \[t_c = 0.05 \cdot \sqrt{\frac{A}{J}} \]

Fórmula de Témez:

\[t_c = 0.3 \left(\frac{L}{J^{\frac{1}{4}}} \right)^{0.75} \]
Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (%).} \]
\[H_{g} = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Millahue</td>
<td>0,72</td>
<td>4,20</td>
</tr>
</tbody>
</table>

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millahue</td>
<td>San Fernando</td>
<td>0,126</td>
<td>120</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^{T} \cdot Ap}{3,6}
\]

Donde:

\[Q(T) \] Caudal generado en la cuenca en \(m^3/s \)
\[C(T) \] Coeficiente de Escorrentía
\[I_{tc}^{T} \] Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(tc \) en \(mm/h \)
\[Ap \] Área pluvial de la cuenca tributaria \(km^2 \).

La intensidad de la precipitación va a estar asociada al período de retomo \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- \(C(T) \): Coeficiente empírico para distintos períodos de retorno
- \(P_{24}^T \): Precipitación máxima en 24 h y periodo de retorno \(T \) años
- \(Ap \): Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI-KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millahue</td>
<td>T=2</td>
<td>0.47</td>
<td>Cachapoal</td>
<td>0.6</td>
<td>10.7</td>
<td>16.2</td>
<td>54.0</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0.60</td>
<td>Cachapoal</td>
<td>0.9</td>
<td>14.3</td>
<td>23.1</td>
<td>91.9</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0.68</td>
<td>Cachapoal</td>
<td>1.0</td>
<td>16.3</td>
<td>39.4</td>
<td>118.9</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0.73</td>
<td>Cachapoal</td>
<td>1.1</td>
<td>17.7</td>
<td>47.0</td>
<td>139.0</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0.77</td>
<td>Cachapoal</td>
<td>1.1</td>
<td>18.8</td>
<td>53.2</td>
<td>155.2</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0.80</td>
<td>Cachapoal</td>
<td>1.2</td>
<td>19.5</td>
<td>57.7</td>
<td>167.0</td>
</tr>
<tr>
<td></td>
<td>T=60</td>
<td>0.87</td>
<td>Cachapoal</td>
<td>1.3</td>
<td>21.8</td>
<td>72.2</td>
<td>203.3</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1.5</td>
<td>24.2</td>
<td>94.2</td>
<td>258.7</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(\frac{Q(T)}{Q(10)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q) instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Millahue</td>
<td>9,46</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS ((m^3/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Millahue</td>
<td>101,52</td>
</tr>
</tbody>
</table>
9.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una Arcilla arenosa gravosa (gravas ½”), cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 9,0 m
- Ancho coronamiento: 6,8 m
- Borde libre: 1,6 m
- Talud Aguas Arriba: H : V = 1,33 : 1
- Talud Aguas Abajo: H : V = 1,73 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>φ = 20°</td>
<td>2.0</td>
<td>1,70</td>
<td>1,90</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rockscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 9.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 9.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 9.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 9.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 9.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 9.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 9.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
FIGURA 9.4-8
TALUD AGUAS ABAJO - SÍSMICO SIN AGUA

e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 9.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico kh=0,10g</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Millahue</td>
<td>1,999</td>
<td>1,222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico kh=0,10g</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>Millahue</td>
<td>1,642</td>
<td>1,433</td>
</tr>
</tbody>
</table>
9.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C' h \]

Para el caso del tranque **Millahue**, se tiene:

Lh (m) = 34,3	Longitud horizontal en la base del tranque o embalse.
Lv (m) = 0	Longitud vertical en la base del tranque o embalse.
C' = 3,2	Coeficiente de filtración que depende del tipo de material del embalse
h (m) = 7,4	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>MILLAHUE</td>
<td>34,3</td>
<td>0</td>
<td>11,45</td>
<td>9,0</td>
<td>1,6</td>
<td>7,4</td>
<td>3,20</td>
<td>23,7</td>
<td>L' \geq C' h</td>
</tr>
</tbody>
</table>

9.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Millahue.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa (°)</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia (m)</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>623</td>
<td>0.3871</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>654</td>
<td>0.4064</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>731</td>
<td>0.4542</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>1013</td>
<td>0.6294</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>1190</td>
<td>0.7394</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>1394</td>
<td>0.8662</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>1437</td>
<td>0.8929</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1505</td>
<td>0.9352</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>960</td>
<td>0.5965</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>381</td>
<td>0.2367</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>373</td>
<td>0.2318</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>367</td>
<td>0.2280</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>342</td>
<td>0.2125</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>338</td>
<td>0.2100</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>337</td>
<td>0.2094</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 6,2906

Fetch o longitud de acción del viento (F)

\[F = \ 0,466 \text{ millas} \]
\[F = \ 749,30 \text{ m} \]

Velocidad del Viento

\[v = \ 50 \text{ mph} \]
\[v = \ 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>Altura Máxima de Ola</th>
</tr>
</thead>
<tbody>
<tr>
<td>pie</td>
<td>m</td>
</tr>
<tr>
<td>Stevenson</td>
<td>2,70</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,49</td>
</tr>
<tr>
<td>Creager</td>
<td>1,45</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
</tr>
</tbody>
</table>
De acuerdo a las mediciones realizadas en terreno con huinchía, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1.60 m, se tiene que la altura de la ola no superaría esta revancha.

9.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

9.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “(p)”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

9.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción	C1	Valor adoptado
Obra de hormigón armado | 1 |
Obra de albañilería | 0,8 |
Obra de tierra | 0,6 | 0,6 |

Estado de conservación	C2	Valor adoptado
Obra en óptimo estado | 1 |
Obra en estado regular, con dudas de operatividad | 0,8 |
Obra en mal estado, no confiable | 0,6 | 0,6 |

Calidad del canal de descarga	C3	Valor adoptado
Canal revestido en hormigón | 1 | 1 |
Canal en mampostería o albañilería irregular | 0,9 |
Canal en tierra | 0,7 |
No existe canal de descarga | 0,1 |

Capacidad evacuación: 75,7 m^3/s
Coeficiente capacidad: 0,36 C1 x C2 x C3
Capacidad efectiva: 27,25 m^3/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>101,52</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,002</td>
<td>119,95</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,0010</td>
<td>133,89</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

9.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
9.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

9.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,80</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

9.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Millahue.
<table>
<thead>
<tr>
<th>EVACUADOR DE CRECIDAS</th>
<th>EVACUADOR DE CRECIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACION DE MATERIAL DE CONSTRUCCION</th>
<th>ZONA DE SATURACION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CARCAVAS EN MURO</th>
<th>CANAL DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Milahue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comités de Riego Transversal Milahue y La Roja</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>619-6</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1950</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>1985</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Nepe</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Río Cachapoal</td>
</tr>
<tr>
<td>Fuente de recursos</td>
<td>Guadalupe Las Ánimas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° de ficha</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha (d/m/año)</td>
<td>06-10-2009</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE EMBALSE

<table>
<thead>
<tr>
<th>Región</th>
<th>V. del Libertador, Bío-Bío</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>Comuna</td>
<td>San Vicente de Tagua-Tagua</td>
</tr>
<tr>
<td>Coordenadas UTM Este</td>
<td>N = 6,175,173 E = 295,552</td>
</tr>
<tr>
<td>Coordenadas UTM Oeste</td>
<td>N = 6,175,582 E = 295,370</td>
</tr>
<tr>
<td>Coordenadas UTM Sureste</td>
<td>N = 6,175,068 E = 295,130</td>
</tr>
<tr>
<td>Altitude</td>
<td>ED = 231; C = 231; El = 229</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N° Norte</th>
<th>ED = Este Derecho</th>
</tr>
</thead>
<tbody>
<tr>
<td>E = Rais</td>
<td>C = Centro</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Uso</th>
<th>X</th>
</tr>
</thead>
</table>

4. TIPO DE EMBALSE

| Presa de tierra homogénea | X |
| Presa de material granular graduado |
| Presa de erosionados (CFRD) |
| Presa de hormigón (gravedad, contrafuerte, arco) |
| Presa de RCC |

5. GEOMETRÍA DE LA PRESA

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>HUINCHA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del coronamiento (m)</td>
<td>500</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>ED = 5,40; C = 7,1; El = 7,0</td>
</tr>
<tr>
<td>Desarrollo del talud abajo (m)</td>
<td>18,0</td>
</tr>
<tr>
<td>Reversa mínima en relación a la cota máxima de aguas conocida (m)</td>
<td>1,00</td>
</tr>
<tr>
<td>Parámetros verticales</td>
<td>NO</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clasificación</th>
<th>COTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angulo talud de aguas abajo</td>
<td>ED = 32°; C = 30°; El = 30°</td>
</tr>
<tr>
<td>Angulo talud de aguas arriba</td>
<td>ED = 35°; C = 31°; El = 31°</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ED = Este Derecho</th>
</tr>
</thead>
<tbody>
<tr>
<td>C = Centro</td>
</tr>
<tr>
<td>E = Este Izquierdo</td>
</tr>
</tbody>
</table>

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (medida por relaciones trigonométricas en caso de no poder medir directamente) (m)	9,0
Profundidad máxima de agua en sector del muro (m)	7,4
Área estimada ocupada por la paja (m2)	657,600
Ancho máximo de la paja (m)	0,40
Largo de la paja (m)	1,43
Volumen declarado o proyectado (m3)	1,217

7.4. CARACTERÍSTICAS DEL RUEDO

<table>
<thead>
<tr>
<th>Inspección visual</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación del punto de toma de muestras</td>
<td>SI</td>
</tr>
</tbody>
</table>

| Clasificación del material de construcción (clasificación según tabla) | Acuífera Ancho-Corriente |

7.6. ESTADO DEL RUEDO Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Regularidad de la geometría actual</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición del material estructural</td>
<td>Alba</td>
</tr>
<tr>
<td>Uniformidad de los taludes</td>
<td>Agua arriba: uniformes; Agua abajo: semi uniformes por presencia de cárcavas. (ver álbum fotográfico)</td>
</tr>
<tr>
<td>Depresiones visibles y quebrantos a lo largo del coronamiento</td>
<td>No se aprecian depresiones visibles</td>
</tr>
<tr>
<td>Gentes visibles y su ubicación</td>
<td>No se aprecian gentes visibles</td>
</tr>
<tr>
<td>Indicios de deslizamientos y ubicación</td>
<td>No se aprecian indicios de deslizamientos</td>
</tr>
<tr>
<td>Sectores que se presentan saturados y altura de saturación</td>
<td>A 120 m de este derecho saturación, 10 cm de altura de agua</td>
</tr>
<tr>
<td>Fisuras visibles en talud de aguas abajo en el pie</td>
<td>No se aprecian fisuras visibles</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Tierra compactada, aguas arriba presencia avanzada de protección y aguas abajo, cubierta vegetal</td>
</tr>
</tbody>
</table>

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CREDIDAS

| Por su localización en relación a la estructura principal | X |
| Vértices frontales |
| Vértices laterales |
| Vértices de carrera |

| Desde el punto de vista de los instrumentos para el control del caudal vertido: |
| Vertederos frontales con compuertas |

| Desde el punto de vista de la sección por la cual se deja el vertimiento: |
| Vertederos frontales con compuertas |

| Los datos de compuerta son: |
Tipo de vertedero	Vértedero frontal de caída libre con compuertas de madera
Material constructivo	Hormigón en su estructura, sección con gaviones
Estado de conservación y operatividad	En buen estado, operativo
Dimensiones relevantes (anch, altura y carga máxima de operación)	Ancho 0,50 m; Ancho 1,10 m

9. CARACTERÍSTICAS DEL RUEDO

<table>
<thead>
<tr>
<th>Inspección visual</th>
<th>SI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificación del punto de toma de muestras</td>
<td>SI</td>
</tr>
</tbody>
</table>

| Clasificación del material de construcción (clasificación según tabla) | Acuífera Ancho-Corriente |

10. ESTADO DEL RUEDO Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Regularidad de la geometría actual</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Composición del material estructural</td>
<td>Alba</td>
</tr>
<tr>
<td>Uniformidad de los taludes</td>
<td>Agua arriba: uniformes; Agua abajo: semi uniformes por presencia de cárcavas. (ver álbum fotográfico)</td>
</tr>
<tr>
<td>Depresiones visibles y quebrantos a lo largo del coronamiento</td>
<td>No se aprecian depresiones visibles</td>
</tr>
<tr>
<td>Gentes visibles y su ubicación</td>
<td>No se aprecian gentes visibles</td>
</tr>
<tr>
<td>Indicios de deslizamientos y ubicación</td>
<td>No se aprecian indicios de deslizamientos</td>
</tr>
<tr>
<td>Sectores que se presentan saturados y altura de saturación</td>
<td>A 120 m de este derecho saturación, 10 cm de altura de agua</td>
</tr>
<tr>
<td>Fisuras visibles en talud de aguas abajo en el pie</td>
<td>No se aprecian fisuras visibles</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Tierra compactada, aguas arriba presencia avanzada de protección y aguas abajo, cubierta vegetal</td>
</tr>
</tbody>
</table>

11. CARACTERÍSTICAS OBRAS EVACUADOR DE CREDIDAS

| Por su localización en relación a la estructura principal | X |
| Vértices frontales |
| Vértices laterales |
| Vértices de carrera |

| Desde el punto de vista de los instrumentos para el control del caudal vertido: |
| Vertederos frontales con compuertas |

| Desde el punto de vista de la sección por la cual se deja el vertimiento: |
| Vertederos frontales con compuertas |

| Los datos de compuerta son: |
Tipo de vertedero	Vértedero frontal de caída libre con compuertas de madera
Material constructivo	Hormigón en su estructura, sección con gaviones
Estado de conservación y operatividad	En buen estado, operativo
Dimensiones relevantes (anch, altura y carga máxima de operación)	Ancho 0,50 m; Ancho 1,10 m
11. MONOGRÁFICA

12. OBSERVACIONES
A 110 m derecha existe derecha zona con saturación en el plano del muro
A 418 m derecha derecha zona de órdenes en el muro
A 510 m derecha derecha órdenes en el muro
Esta pega fue reparada en la mitad superior después del sismo del 3 de marzo de 1985
EMBALSE SAN JOSÉ DE LAS PATAGUAS
(SAN HERNAN)
PARTE B: CATASTRO DE EMBALSES

10. EMBALSE SAN HERNÁN (SAN JOSÉ LAS PATAGUAS)
10.1 Ubicación
10.2 Características Generales
10.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
10.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
10.5 Determinación de Filtraciones
10.6 Verificación del Oleaje
10.7 Análisis de Riesgo (Hazop)
10.8 Álbum Fotográfico y Fichas de Catastro
10. EMBALSE SAN JOSÉ DE LAS PATAGUAS (SAN HERNÁN)

10.1 Ubicación

El embalse San José de Las Pataguas se ubica en la comuna de San Vicente de Tagua Tagua, provincia de Cachapoal, en las coordenadas UTM 6.176.741 Norte y 301.185 Este, Datum WGS 84. Se localiza en la cuenca de Rapel, subcuenca del Río Cachapoal y la fuente corresponde a la quebrada El Durazno.

Se accede desde San Vicente de Tagua-Tagua por la ruta H-80-l hasta el cruce puente Zamorano, se empalma la ruta H-800 hacia el sur hasta empalme con ruta H-930 (1,3 km aproximadamente), finalmente se continua hacia el sur por ruta H-830 por 20 km.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 10.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE SAN JOSÉ DE LAS PATAGUAS

[Mapa con ubicación del embalse]

Fuente: Carta IGM
10.2 Características Generales

El embalse corresponde a un tranque de tierra siendo un bien comunitario de los parceleros. El uso y destino del embalse es de riego y fue construido en el año 1958.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,783 hm³. La altura máxima del muro es de 7,8 m, con una longitud de coronamiento de 630 m y ancho promedio del coronamiento de 4,0 m y borde libre de 1,0 m. El Talud Aguas Arriba es H:V=2,48:1 y el Talud Aguas Abajo es H:V=1,80:1.

El evacuador de crecidas corresponde a un vertedero frontal, libre y sin control, de hormigón con forma escalonada y decreciendo en su volumen hasta descargar con un ancho de 3,0 m se encuentra en regular estado de conservación y operación.

La obra de entrega corresponde a una estructura circular de hormigón armado, de 3 m de diámetro y 7 m de altura. La obra se encuentra en buen estado y operativa.

En el Anexo 1 se incluye la planilla de Registro de Embalses en donde se consignan los datos principales y un croquis de planta y elevación del muro, obra de toma y obra de entrega.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 10.2-1
IMAGEN SATELITAL EMBALSE SAN JOSÉ DE LAS PATAGUAS
Vista panorámica Embalse San Hernán
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse San José de las Pataguas (San Hernán)
10.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse San José Las Pataguas (San Hernán) tiene como fuente a la quebrada El Durazno, la cual no posee control fluvimétrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – esorrentía.

La cuenca en estudio tiene una superficie de 19,7 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 10.3-1
CUENCA EMBALSE SAN JOSE DE LAS PATAGUAS
CUADRO 10.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>San José de Las Pataguas (San Hernán)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total: 1.973,2</td>
</tr>
<tr>
<td></td>
<td>Pluvial: 1.973,2</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total: 27.720,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial: 27.720,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima: 1.072,7</td>
</tr>
<tr>
<td></td>
<td>Mínima: 225,4</td>
</tr>
<tr>
<td></td>
<td>Diferencia: 847,4</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca: 25125,0</td>
</tr>
<tr>
<td></td>
<td>Cauce: 14,1</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total: 6,33</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad: 3,16</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E: 302.444</td>
</tr>
<tr>
<td></td>
<td>UTM N: 6.174.070</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm): 679,8</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E: 301.690</td>
</tr>
<tr>
<td></td>
<td>UTM N: 6.173.745</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm): 476</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (t_c) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

$$ t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} $$

Fórmula de Giandotti:

$$ t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \quad \text{(hrs)}; \quad \text{con } \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} $$

Fórmula de Ventura - Heras: $t_c = 0.05 \cdot \sqrt{A} / J$

Fórmula de Témez:

$$ t_c = 0.3 \left(\frac{L}{J^{1/4}} \right)^{0.75} $$
Donde:

\[
\begin{align*}
L &= \text{Longitud del cauce principal en km.} \\
H_{\text{máx}} &= \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \\
A &= \text{Área cuenca en km}^2. \\
J &= \text{Pendiente del cauce (\%).} \\
H_g &= \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.}
\end{align*}
\]

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>San José de Las Pataguas</td>
<td>0,60</td>
<td>1,60</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>San José de Las Pataguas</td>
<td>San Fernando</td>
<td>0,113</td>
<td>121,4</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:

\[
\begin{align*}
Q(T) &= \text{Caudal generado en la cuenca en (m}^3/s) \\
C(T) &= \text{Coeficiente de Escorrentía} \\
I_{tc}^T &= \text{Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)} \\
Ap &= \text{Área pluvial de la cuenca tributaria (km}^2) \\
\end{align*}
\]

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

$$Q(T) = C(10) \cdot \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1,24} \cdot (Ap)^{0,88}$$

Donde:

- $C(T)$ Coeficiente empírico para diferentes períodos de retorno
- P_{24}^T Precipitación máxima en 24 h y período de retorno T años
- Ap Área pluvial (km2)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>$P_p (T, tc)$</th>
<th>$Q(T)$ V-K</th>
<th>$Q(T)$ Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Jose de Las Pataguas</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>9,7</td>
<td>10,0</td>
<td>34,3</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>13,0</td>
<td>14,3</td>
<td>58,5</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>14,8</td>
<td>24,4</td>
<td>75,6</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>16,1</td>
<td>29,2</td>
<td>88,4</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>17,0</td>
<td>33,0</td>
<td>98,7</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>17,7</td>
<td>35,8</td>
<td>106,2</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>19,8</td>
<td>44,8</td>
<td>129,3</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>21,9</td>
<td>58,4</td>
<td>164,5</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km\(^2\))

En donde Q(T), corresponde al caudal instantáneo máximo según el período de retorno T y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>Q(T) / Q(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.42</td>
</tr>
<tr>
<td>5</td>
<td>0.74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1.14</td>
</tr>
<tr>
<td>20</td>
<td>1.29</td>
</tr>
<tr>
<td>25</td>
<td>1.39</td>
</tr>
<tr>
<td>50</td>
<td>1.72</td>
</tr>
<tr>
<td>75</td>
<td>1.94</td>
</tr>
<tr>
<td>100</td>
<td>2.1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q Instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>San José de Las Pataguas</td>
<td>5,90</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin
sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San José de Las Pataguas</td>
<td>T=200</td>
</tr>
<tr>
<td></td>
<td>58,42</td>
</tr>
</tbody>
</table>

10.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una Arcilla aren limosa, cuya geometría se presenta en el esquema siguiente.

![Esquema de la presa](image)

Los datos geométricos característicos son:

- Altura: 7,76 m
- Ancho coronamiento: 4,0 m
- Borde libre: 1,0 m
- Talud Aguas Arriba: H : V = 2,48 : 1
- Talud Aguas Abajo: H : V = 1,80 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.
CUADRO 10.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción ($^\circ$)</th>
<th>Cohesión (t/m2)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>$\phi = 25^\circ$</td>
<td>1.80</td>
<td>2.00</td>
<td>2.20</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 10.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 10.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 10.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 10.4-4
TALUD AGUASABAJO - SÍSMICO CON AGUA
FIGURA 10.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 10.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 10.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 10.4-8
TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 10.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>San José de las Pataguás (San Hernán)</th>
<th>Análisis con embalse lleno</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0,12g$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
</tr>
<tr>
<td>2,586</td>
<td>1,591</td>
<td>1,393</td>
<td>1,137</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>San José de las Pataguás (San Hernán)</th>
<th>Análisis con embalse seco</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0,12g$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
</tr>
<tr>
<td>2,372</td>
<td>2,027</td>
<td>1,662</td>
<td>1,499</td>
</tr>
</tbody>
</table>

10.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 \cdot L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C' \cdot h$$

Para el caso del tranque San José de Las Pataguás, se tiene:

L_h (m)	37,2	Longitud horizontal en la base del tranque o embalse.
L_v (m)	0	Longitud vertical en la base del tranque o embalse.
C'	1,70	Coeficiente de filtración que depende del tipo de material del embalse
h (m)	6,75	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba
De acuerdo con el criterio de Lane, en este caso **Sí** se cumple la relación, por lo tanto, **NO** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>L_h</th>
<th>L_v</th>
<th>L'_v</th>
<th>H_t</th>
<th>b_l</th>
<th>h</th>
<th>C'</th>
<th>$(C' \cdot h)$</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN JOSE DE LAS PATAGUAS</td>
<td>37,2</td>
<td>0</td>
<td>12,40</td>
<td>7,8</td>
<td>1,0</td>
<td>6,757</td>
<td>1,70</td>
<td>11,5</td>
<td>Sí</td>
</tr>
</tbody>
</table>

10.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse San José de las Pataguas.

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de **1,00 m**, se tiene que la altura de la ola no superaría esta revancha.
SAN JOSE DE LAS PATAGUAS
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>$\cos(\alpha)$</th>
<th>$\cos^2(\alpha)$</th>
<th>Distancia</th>
<th>Dist. $\times \cos^2(\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>455</td>
<td>0,2827</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>487</td>
<td>0,3026</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>491</td>
<td>0,3051</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>529</td>
<td>0,3287</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>638</td>
<td>0,3964</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>668</td>
<td>0,4151</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>781</td>
<td>0,4853</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>813</td>
<td>0,5052</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>661</td>
<td>0,4107</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>623</td>
<td>0,3871</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>576</td>
<td>0,3579</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>530</td>
<td>0,3293</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>490</td>
<td>0,3045</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>487</td>
<td>0,3026</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>490</td>
<td>0,3045</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 4,5680

Fetch o longitud de acción del viento (F)

$F = \begin{align*}
&0,338 \text{ millas} \\
&544,11 \text{ m}
\end{align*}$

Velocidad del Viento

$v = \begin{align*}
&50 \text{ mph} \\
&22,35 \text{ m/s}
\end{align*}$

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td>pie</td>
</tr>
<tr>
<td>--------</td>
</tr>
<tr>
<td>Stevenson</td>
</tr>
<tr>
<td>Molitor</td>
</tr>
<tr>
<td>Creager</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
10.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

10.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>VULNERABILIDAD FRENTE A EVENTO SÍSMICO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaciamiento en función de la traza de la falla</td>
</tr>
<tr>
<td>No se registra falla para el evento dado</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
</tr>
</tbody>
</table>

10.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
</table>
Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor adoptado</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Canal revestido en hormigón</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Capacidad evacuación: 1,83 m³/s

Coeficiente capacidad 0,36 C1 x C2 x C3

Capacidad efectiva 0,67 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>58,42</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>62,95</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>74,38</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

10.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro

<table>
<thead>
<tr>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
</tr>
</tbody>
</table>

10.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

Según la cercanía a la faja probable de Inundación

<table>
<thead>
<tr>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
</tr>
</tbody>
</table>

Según la Cercanía al Punto de Vaciamiento

<table>
<thead>
<tr>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

10.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>Nival</td>
<td>Pluvial</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,80</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

10.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse San José de las Pataguas (San Hernán).
<table>
<thead>
<tr>
<th>VISTA MURO</th>
<th>VISTA MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA TALUD AGUAS ARRIBA</td>
<td>VISTA TALUD AGUAS ABAJO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>San José de las Fataquas (San Remón)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>San Remón</td>
</tr>
<tr>
<td>BRT Propietario</td>
<td>San Remón</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1958</td>
</tr>
<tr>
<td>Regulación (SI, NO)</td>
<td>NO</td>
</tr>
<tr>
<td>Año de reparación</td>
<td></td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Rural</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Rio Catapal</td>
</tr>
<tr>
<td>Ubicación del recurso</td>
<td>Querencia El Durazo</td>
</tr>
<tr>
<td>N° de ficha</td>
<td>10</td>
</tr>
<tr>
<td>Fecha (asignación)</td>
<td>13-10-2029</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador (o) Ucapa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Catapal</td>
</tr>
<tr>
<td>Comuna</td>
<td>San Vicente de Taque-Taqua</td>
</tr>
<tr>
<td>Coordenadas UTM Este / Derecho (m)</td>
<td>N = 6.176.880; E = 301.517</td>
</tr>
<tr>
<td>Coordenadas UTM Centro (m)</td>
<td>N = 6.176.741; E = 301.185</td>
</tr>
<tr>
<td>Coordenadas UTM Izquierda (m)</td>
<td>N = 6.176.041; C = 302.341</td>
</tr>
<tr>
<td>Datum WGS 84</td>
<td></td>
</tr>
<tr>
<td>Altitud m.s.m. ED = 224; C = 214; El = 222</td>
<td></td>
</tr>
<tr>
<td>N° de Hoja</td>
<td></td>
</tr>
<tr>
<td>E = Este</td>
<td></td>
</tr>
<tr>
<td>C = Centro</td>
<td></td>
</tr>
<tr>
<td>E = Estiba Izquierda</td>
<td></td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Uso</th>
<th>X</th>
</tr>
</thead>
</table>

4. TIPO DE EMBALSE

- Presa de tierra homogénea: X
- Presa de material granular graduido
- Presa de enrocados (CFFD)
- Presa de hormigón (gravedad, confluente, arenado)
- Presa de RCC
- Otros tipos

5. GEOMETRÍA DE LA PRESA

- Con hulecha
- Longitud del coronamiento (m): 200
- Ancho del coronamiento (m): ED = 4,50; C = 3,0; El = 4,50
- Desarrollo del talud abajo (m): 10,0
- Revancha mínima en relación a la base máxima de agua conocida (m): 1,0
- Parámetros verticales: NO
- Cota altimetría
- Ángulo talud de aguas abajo ED = 29°; C = 29°; El = 25°
- Ángulo talud de aguas arriba ED = 25°; C = 22°; El = 22°
- ED = Estiba Derecho
- C = Centro
- E = Estiba Izquierda

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

<table>
<thead>
<tr>
<th>Altura máxima del muro (m)</th>
<th>7,6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad máxima de agua en sector del muro (m)</td>
<td>6,6</td>
</tr>
<tr>
<td>Área estimada a calculada de la presa (ha)</td>
<td>460,800</td>
</tr>
<tr>
<td>Altura máxima de la presa (m)</td>
<td>0,49</td>
</tr>
<tr>
<td>Largo de la presa (m)</td>
<td>0,46</td>
</tr>
<tr>
<td>Volumen declarado o proyectado (millones de m³)</td>
<td>0,783</td>
</tr>
</tbody>
</table>

7. A. CARACTERÍSTICAS DEL MURO

- Inspección visual
- Longitud del talud: 200 m
- Ancho del coronamiento: 4,50 m
- Desarrollo del talud: 10,0 m
- Revancha mínima: 1,0 m
- Parámetros verticales: NO
- Cota altimetría
- Ángulo talud de aguas abajo: 29°
- Ángulo talud de aguas arriba: 25°
- ED = Estiba Derecho
- C = Centro
- E = Estiba Izquierda

7. B. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

- Descripción: Irregular por aliciente en el muro
- Composición del material estructural: Media - Alta
- Uniformidad de las tochas: Aguas Abajo Regular
- Depresiones visibles y fracturas: No se aprecian depresiones visibles
- Criques visibles y su ubicación: No se aprecian criques visibles
- Indicios de deslizamientos y ubicación: Si, hasta aguas arriba a 450 m del estribito derecho
- Sectores que presentan saturación y altura de saturación: Si, en varios puntos a la izquierda del muro
- Filtraciones visibles en talud de aguas abajo en el pie: No se presentan filtraciones

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIDAS

- Por su localización en relación a la estructura principal: X
- Vertederos laterales X
- Vertederos de campana
- "X" indica localización y estructura del vertedero

- Desde el punto de vista de los instrumentos para el control del caudal vertido:
 - Vertederos libres, sin control
 - Vertederos controlados por compuertas

- Desde el punto de vista de la sección por la cual se da el vertedamiento:
 - Rastreador X
 - Reguladores
 - Troncal X
 - Circulares

Las demás a seguir son:
- Tipo de vertedero: Libre y sin control
- Material constructivo: Hormigón
- Estado de conservación y operatividad: Regular, operativo
- Dimensiones relevantes (ancho, altura y carga máxima de operación): Largo 30,0 m; Alto 7 m (en la parte más alta)
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE PONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Tubería de hormigón con presencia metálica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Diámetro: 3.0 m, Alto: 1.0 m, Longitud Vertedero: 20.0 m</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Se encuentra en funcionamiento, pero la obra está en regular estado</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Agua abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hasta centros poblados medidos por el cauce</td>
<td>1.97 km</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>1.54 km</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hasta zonas agrícolas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Distancia hasta sectores con infraestructura vial u obra de importancia</td>
<td>1.67 km</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>200 has.</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

<table>
<thead>
<tr>
<th>Planta del muro (forma y dimensiones)</th>
<th>Sección transversal del muro en la zona con menor revanche y con mayor revanche, indicando sus taludes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Croquis de la obra de evacuación y dimensiones (planta)</td>
<td>Croquis de la obra de evacuación y dimensiones (elevación)</td>
</tr>
<tr>
<td>Croquis de la obra de entrega y dimensiones (planta)</td>
<td>Croquis de la obra de entrega y dimensiones (elevación)</td>
</tr>
</tbody>
</table>

12. OBSERVACIONES

Embarques de propiedad de 15 componentes que no están construidos en ningún tipo de sociedad

A los 150 mts. zona con saturación
A los 400 mts. zona con saturación
A los 500 mts. zona con saturación
A los 600 mts. desembarques en el talud hace aguas arriba por efectos del oleaje
A los 600 mts. zona con saturación

Por lo general el muro es irregular en varios tramos por el trabajo de relleno que se realizó, aumentando el muro existente en unos 2.0 mts. quedando notoriamente un pelotar hecho aguas arriba como aguas arriba haciendo dola inestable al aumentar la capacidad de embalsemiento.

El muro del vertedero con una longitud de 30.0 m y un ancho de muro de 0.20 m. se encuentra con 4 fisuras en puntos distintos desde la parte superior a la inferior, actualmente por esos grietas filtra agua.
EMBALSE IDAHUE
PARTE B: CATASTRO DE EMBALSES

11. EMBALSE IDAHUE
11.1 Ubicación
11.2 Características Generales
11.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
11.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
11.5 Determinación de Filtraciones
11.6 Verificación del Oleaje
11.7 Análisis de Riesgo (Hazop)
11.8 Álbum Fotográfico y Fichas de Catastro
11. **EMBALSE IDAHUE**

11.1 Ubicación

El embalse Idahue se ubica en la comuna de San Vicente de Tagua Tagua, provincia de Cardenal Caro, en las coordenadas UTM 6.182.993 Norte y 298.002 Este, Datum WGS 84 a una Altitud de 206 m.s.n.m. Se localiza en la cuenca de Rapel, subcuenca del estero Zamorano y la fuente corresponde a una quebrada Sin Nombre.

Se accede desde San Vicente de Tagua-Tagua por la ruta H-80-I hasta el cruce con el puente Zamorano (800 m desde la plaza), luego se sigue por la ruta H-800, hacia el sur hasta la ruta H-930 (1,3 km aprox.), luego hacia el oriente por ruta H-830 por 13 km hasta un camino secundario hacia el norte por 1 km.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 11.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE IDAHUE

Fuente: Carta IGM
11.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Comunidad Tranque Idahue. El uso y destino del embalse es de riego y fue construido en el año 1934.

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,470 hm³. La altura máxima del muro es de 8,2 m, con una longitud de coronamiento de 1.027 m (son 3 muros en total) y ancho promedio del coronamiento de 3,4 m y borde libre de 1,5 m. Los taludes de los muros son:

<table>
<thead>
<tr>
<th></th>
<th>MURO 1</th>
<th>MURO 2</th>
<th>MURO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud Aguas Arriba H:V</td>
<td>1,54:1</td>
<td>1,48:1</td>
<td>1,28:1</td>
</tr>
<tr>
<td>Talud Aguas Abajo H:V</td>
<td>1,19:1</td>
<td>1,07:1</td>
<td>1,04:1</td>
</tr>
</tbody>
</table>

El evacuador de crecidas corresponde a un vertedero de hormigón de 32,40 m de longitud y una altura promedio de 1,60 m, con compuertas de madera. Regular estado de mantención y operación.

La obra de entrega corresponde a una estructura circular de hormigón armado ubicada a los 88 m desde el estribo derecho, de 8,0 m de altura y diámetro de 2,30 m salida por tubería de 700 mm por el fondo del muro hacia canales. La obra se encuentra en buen estado, en funcionamiento.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 11.2-1
IMAGEN SATELITAL EMBALSE IDAHUE
Vista panorámica Embalse Idahue
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Idahue
11.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Idahue tiene como fuente a la quebrada Sin Nombre, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 16,46 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 11.3-1
CUENCA EMBALSE IDAHUE
CUADRO 11.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Idahue</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>Minima</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

Tiempo de Concentración

Para estimar el tiempo de concentración (t_c) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

$$t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385}$$

Fórmula de Giandotti:

$$t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs)}; \quad \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6}$$

Fórmula de Ventura - Heras: $t_c = 0.05 \cdot \frac{\sqrt{A}}{J}$

Fórmula de Témez:

$$t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75}$$
Donde:

\[\begin{align*}
L &= \text{Longitud del cauce principal en km.} \\
H_{\text{máx}} &= \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \\
A &= \text{Área cuenca en km}^2. \\
J &= \text{Pendiente del cauce (\%)}.
\end{align*} \]

\[H_{g} = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Idahue</td>
<td>0,68</td>
<td>5,67</td>
</tr>
</tbody>
</table>

> **Precipitaciones Máximas**

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idahue</td>
<td>San Fernando</td>
<td>0,115</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

> **Caudales de Crecidas**

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{tc} \cdot Ap}{3,6} \]

Donde:

- \[Q(T) \] Caudal generado en la cuenca en (m\(^3\)/s)
- \[C(T) \] Coeficiente de Escorrentía
- \[I_{tc} \] Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)
- \[Ap \] Área pluvial de la cuenca tributaria (km\(^2\)).

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

$$Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88}$$

Donde:

- $C(T)$: Coeficiente empírico para diferentes períodos de retorno
- P_{24}^T: Precipitación máxima en 24 h y período de retorno T años
- Ap: Área pluvial (km2)

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>$Pp (T, tc)$</th>
<th>$Q(T)$ V-K</th>
<th>$Q(T)$ Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idahue</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>7,3</td>
<td>5,9</td>
<td>20,9</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>9,8</td>
<td>8,4</td>
<td>35,6</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>11,2</td>
<td>14,4</td>
<td>46,1</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>12,1</td>
<td>17,1</td>
<td>53,9</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>12,9</td>
<td>19,4</td>
<td>60,1</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>13,3</td>
<td>21,1</td>
<td>64,7</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>14,9</td>
<td>26,4</td>
<td>78,8</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>16,5</td>
<td>34,4</td>
<td>100,2</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

Donde:

- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1.19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>(T) (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.42</td>
</tr>
<tr>
<td>5</td>
<td>0.74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1.14</td>
</tr>
<tr>
<td>20</td>
<td>1.29</td>
</tr>
<tr>
<td>25</td>
<td>1.39</td>
</tr>
<tr>
<td>50</td>
<td>1.72</td>
</tr>
<tr>
<td>75</td>
<td>1.94</td>
</tr>
<tr>
<td>100</td>
<td>2.1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Idahue</td>
<td>1.79</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
11.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla limo arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

MURO 1
Altura: 7,4 m
Ancho coronamiento 3,5 m
Borde libre 1,5 m
Talud Aguas Arriba H : V= 1,54 : 1
Talud Aguas Abajo H : V= 1,19 : 1

MURO 2
Altura: 8,2 m
Ancho coronamiento 3,9 m
Borde libre 1,5 m
Talud Aguas Arriba H : V= 1,48 : 1
Talud Aguas Abajo H : V= 1,07 : 1
MURO 3
Altura: 7,6 m
Ancho coronamiento 2,9 m
Borde libre 1,5 m
Talud Aguas Arriba H : V= 1,28 : 1
Talud Aguas Abajo H : V= 1,04 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 11.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>ø = 25°</td>
<td>1,0</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLiDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudada estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLiDE.
FIGURA 11.4-3
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 11.4-4
MURO 1 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 11.4-7
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 11.4-8
MURO 1 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
FIGURA 11.4-13
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 11.4-14
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 11.4-15
MURO 2 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 11.4-16
MURO 2 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
FIGURA 11.4-17
MURO 3 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 11.4-18
MURO 3 TALUD AGUASABAJO - ESTÁTICO CON AGUA
FIGURA 11.4-19
MURO 3 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 11.4-20
MURO 3 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 11.4-21
MURO 3 TALUD AGUAS ARriba - ESTÁTICO SIn AGUA

FIGURA 11.4-22
MURO 3 TALUD AGUAS ABAJO - ESTÁTICO SIn AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 11.4-2
FACTORES DE SEGURIDAD DE TALUDES
IDAHUE

<table>
<thead>
<tr>
<th></th>
<th>Asentamiento lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $k_h=0,10g$</td>
<td></td>
</tr>
<tr>
<td>IDAHUE</td>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>1,856</td>
<td>1,218</td>
<td>1,209</td>
</tr>
<tr>
<td>Muro 2</td>
<td>1,785</td>
<td>1,154</td>
<td>1,170</td>
</tr>
<tr>
<td>Muro 3</td>
<td>1,730</td>
<td>1,136</td>
<td>1,180</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Asentamiento seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $k_h=0,10g$</td>
<td></td>
</tr>
<tr>
<td>IDAHUE</td>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>1,565</td>
<td>1,366</td>
<td>1,187</td>
</tr>
<tr>
<td>Muro 2</td>
<td>1,474</td>
<td>1,246</td>
<td>1,129</td>
</tr>
<tr>
<td>Muro 3</td>
<td>1,394</td>
<td>1,259</td>
<td>1,100</td>
</tr>
</tbody>
</table>

11.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales $(1/3 \, L_h)$.

\[L' = \frac{1}{3} \cdot L_h + L_v \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C \cdot h \]
Para el caso del tranque Idahue, se tiene:

<table>
<thead>
<tr>
<th></th>
<th>Muro 1</th>
<th>Muro 2</th>
<th>Muro 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Lh} \ (\text{m}))</td>
<td>23,7</td>
<td>24,9</td>
<td>20,7</td>
</tr>
<tr>
<td>(\text{Lv} \ (\text{m}))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(\text{C'})</td>
<td>1,7</td>
<td>1,7</td>
<td>1,7</td>
</tr>
<tr>
<td>(\text{h} \ (\text{m}))</td>
<td>5,89</td>
<td>6,68</td>
<td>6,14</td>
</tr>
</tbody>
</table>

- Longitud horizontal en la base del tranque o embalse.
- Longitud vertical en la base del tranque o embalse.
- Coeficiente de filtración que depende del tipo de material del embalse.
- Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(\text{Lh}) (m)</th>
<th>(\text{Lv}) (m)</th>
<th>(\text{L'}) (m)</th>
<th>(\text{Ht}) (m)</th>
<th>(\text{bl})</th>
<th>(\text{h}) (m)</th>
<th>(\text{C'})</th>
<th>(\text{C' h}) (m)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDAHUE M1</td>
<td>23,7</td>
<td>0</td>
<td>7,90</td>
<td>7,4</td>
<td>1,5</td>
<td>5,8921</td>
<td>1,70</td>
<td>10,0</td>
<td>No</td>
</tr>
<tr>
<td>IDAHUE M2</td>
<td>24,9</td>
<td>0</td>
<td>8,31</td>
<td>8,2</td>
<td>1,5</td>
<td>6,684</td>
<td>1,70</td>
<td>11,4</td>
<td>No</td>
</tr>
<tr>
<td>IDAHUE M3</td>
<td>20,7</td>
<td>0</td>
<td>6,90</td>
<td>7,6</td>
<td>1,5</td>
<td>6,1413</td>
<td>1,70</td>
<td>10,4</td>
<td>No</td>
</tr>
</tbody>
</table>

11.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \(h_{\text{ola}} \). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Idahue.

Determínación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>329</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>348</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>381</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>416</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>450</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>502</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>564</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>623</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>419</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>430</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>390</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>358</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>353</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>345</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>329</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 3,2685

Fetch o longitud de acción del viento (F)

\[F = 0,242 \text{ millas} \]

\[F = 389,33 \text{ m} \]

Velocidad del Viento

\[v = 50 \text{ mph} \]

\[v = 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,54</td>
<td>0,7731</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,39</td>
<td>0,7284</td>
</tr>
<tr>
<td>Creager</td>
<td>1,13</td>
<td>0,3457</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de la Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huinchas, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1,50 m, se tiene que la altura de la ola no superaría esta revancha.

11.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "\(p \)" y "\(V \)" son independientes por evento, y el valor "\(E \)" es idéntico para todos los eventos.

11.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "(p)"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>Muro 1 0,2 0,2</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2 0,2 0,2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td>Muro 2 0,2 0,2</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td>Muro 3 0,2 0,2</td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

11.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th>Descripción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th>Descripción</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Descripción</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 23,25 m³/s

Coeficiente capacidad: 0,36 C1 x C2 x C3

Capacidad efectiva: 8,37 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máximo</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máximo < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>37,04</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>43,76</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>48,85</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

11.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro

<table>
<thead>
<tr>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Muro 1</td>
</tr>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
</tr>
</tbody>
</table>

11.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

11.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>0,80</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td>Muro 2</td>
<td>0,80</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td>Muro 3</td>
<td>0,80</td>
<td>0,19</td>
<td>0,10</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico para los muros 1, 2 y 3.

11.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Idahue.
<table>
<thead>
<tr>
<th>VISTA MURO M1</th>
<th>VISTA MURO M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA MURO M3</td>
<td>VISTA TALUD AGUAS ARRIBA M1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA TALUD AGUAS ABAJO M1</td>
<td>VISTA TALUD AGUAS ARRIBA M2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA</td>
<td>OBRA DE ENTREGA</td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUIDOR DE CRECIDAS</td>
<td>EVACUIDOR DE CRECIDAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</td>
<td>ZONA SATURADA M1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PIZARRA DE CATASTRÓF DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Isla de Muro 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad Isla de Muro</td>
</tr>
<tr>
<td>MUN. Propietario</td>
<td>En Isla</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1934</td>
</tr>
<tr>
<td>Reparación (SI)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>2009</td>
</tr>
<tr>
<td>Cuenta</td>
<td>Código DGA</td>
</tr>
<tr>
<td>Superfície</td>
<td>Código DGA</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Piscina Sin Nombre</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE EMBALSE

<table>
<thead>
<tr>
<th>País</th>
<th>VI del Ubiaral Ildo. Orzanos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cachapelen</td>
</tr>
<tr>
<td>Comuna</td>
<td>San Vicente de Tapas-Tapoa</td>
</tr>
<tr>
<td>Coordenadas UTM Estribor Derecho</td>
<td>N = 8.182.093</td>
</tr>
<tr>
<td>Coordenadas UTM Estribor Izquierdo</td>
<td>N = 8.183.141</td>
</tr>
<tr>
<td>Altitud</td>
<td>ED = 210</td>
</tr>
<tr>
<td>N° H.</td>
<td>E = Este</td>
</tr>
<tr>
<td>E = Este</td>
<td>ED = Estribor Derecho</td>
</tr>
<tr>
<td>C = Centro</td>
<td></td>
</tr>
<tr>
<td>EL = Estribor Izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Uso</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uso</td>
<td>Generación de energía</td>
</tr>
<tr>
<td>Uso</td>
<td>Almacenamiento de agua potable</td>
</tr>
<tr>
<td>Uso</td>
<td>Relaves</td>
</tr>
<tr>
<td>Uso</td>
<td>Sedimentación</td>
</tr>
<tr>
<td>Uso</td>
<td>Control de crecidos</td>
</tr>
<tr>
<td>Uso</td>
<td>Recreación</td>
</tr>
<tr>
<td>Uso</td>
<td>Otras usos</td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

| Presa de tierra homogénea | X |
| Presa de material granular graduado |
| Presa de arena (CORE) |
| Presa de hormigón (gravitación, contrafuerte, arco) |
| Presa de RCC |
| Otros tipos |

5. GEOMETRÍA DE LA PRESA

<table>
<thead>
<tr>
<th>Con húmedo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del coronamiento (m)</td>
<td>282</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>ED = 2,00</td>
</tr>
<tr>
<td>Desarrollo del talud (m)</td>
<td>11,50</td>
</tr>
<tr>
<td>Revancha mínima en relación a la cota máxima de aguas concurridas (m)</td>
<td>1,50</td>
</tr>
<tr>
<td>Parámetros verticales</td>
<td>NO</td>
</tr>
<tr>
<td>Con elíptico</td>
<td></td>
</tr>
<tr>
<td>Aspereza talud de aguas arriba</td>
<td>ED = 3,09</td>
</tr>
<tr>
<td>Aspereza talud de aguas abajo</td>
<td>ED = 3,11</td>
</tr>
<tr>
<td>ED = Estribor Derecho</td>
<td></td>
</tr>
<tr>
<td>C = Centro</td>
<td></td>
</tr>
<tr>
<td>EL = Estribor Izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

6. ESTADO DEL MUNRO Y CALIDAD DE CONSTRUCCIÓN

Regularidad de la geométrica actual	Regular
Compressibilidad del material estructural	Alta
Uniformidad de los taludes	Agua arriba homogénea, aguas abajo regularmente uniformes
Depresiones visibles y cuantificables a lo largo del coronamiento	No se aprecian depresiones visibles
Grietas visibles y su ubicación	No se aprecian grietas visibles
Indicios de desplazamientos y ubicación	No se aprecian indicios de desplazamientos
Sectores que se presentan saturados y altura de saturación	Se presenta sector saturado al final del muro 1 (ver álbum fotográfico)
Filtraciones visibles en talud de aguas abajo en el pie	No se aprecian filtraciones visibles
Tipo de revestimiento del muro	Tierra compactada, aguas arriba previa empedrado de protección, aguas abajo cubierta vegetal

Nota: Las coordenadas UTM se refieren a la proyección WGS 84.

Descripción: Los datos de la presa Isla de Muro 1 se han recogido en un formulario específico para el catastro de embalses, incluyendo información sobre su ubicación, uso, geometría, y condiciones de construcción.
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Torre de hormigón ubicada a los 88 m desde el punto de bebedero por el fondo del muro hacia canales</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Diámetro externo 2.30 m grueso paredes 0.46 m altura 8.00 m</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>En buen estado, en funcionamiento</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELLO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse. Tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>0.2 Kms.</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tronque</td>
<td>Media - Alta</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial obra de importancia</td>
<td>0.77 Kms.</td>
</tr>
<tr>
<td>Área de riego servida por el tronque analizado</td>
<td>140 has</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones) Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes

Croquis de la obra de Toma y dimensiones (planta) Croquis de la obra de Toma y dimensiones (elevación)

12. OBSERVACIONES

Persona legalizada en trámite

Desde 131 m hasta 188 m zona desprotegida por reparaciones (ver álbum fotografico)

Se hicieron arreglos en el núcleo por filtraciones defemuada por reajustes
FICHA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Iscagua Muro 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad Tramo Iscagua</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>En trámite</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1994</td>
</tr>
<tr>
<td>Región (DD)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>2002</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Racal</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Filete Zaramago</td>
</tr>
<tr>
<td>Extensión del reservorio</td>
<td>Extinguida Sin Nombre</td>
</tr>
<tr>
<td>Plano de fecha</td>
<td>09-10-2009</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE EMBALSE

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador Bto. O'Higgins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Casapiél</td>
</tr>
<tr>
<td>Comuna</td>
<td>San Vicente de Topo-Topo</td>
</tr>
<tr>
<td>Coordenadas UTM Este Derecho</td>
<td>N = 6.183.111 E = 298.164</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N = 6.183.189 E = 298.189</td>
</tr>
<tr>
<td>Coordenadas UTM Este Izquierdo</td>
<td>N = 6.183.201 E = 298.207</td>
</tr>
<tr>
<td>Altitud</td>
<td>ED = 206; C = 204; EI = 205</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

- **Uso**: X
- **Generación de energía**
- **Abastecimiento de agua potable**
- **Recreación**

4. TIPO DE EMBALSE

- Presa de tierra homogénea
- Presa de material granular graduable
- Presa de enrocados (CFRD)
- Presa de hormigón (gravedad, contrafuerte, anco)
- Presa de RCC
- **Otras épocas**: X

5. GEOMETRÍA DE LA PRESA

- **Cabeza**:
- **Longitud del coronamiento (m)**: 205
- **Ancho del coronamiento (m)**: ED = 4,60; C = 3,70; EI = 3,10
- **Densidad de talud agua abajo (m)**: 12,00
- **Revestimiento mínimo en relación a la cota máxima de aguas conectadas (m)**: 1,50
- **Para el caso vertical**: NO
- **Con acumulador**: ED = 42°; C = 65°; EI = 42°
- **Motivo de agua arriba**: ED = 35°; C = 30°; EI = 33°

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

- **Altura máxima del muro (oficial por relaciones hidrúmicas en caso de no poder medir directamente)**: 8,2
- **Pronunciación de agua en sector del muro (m)**: 8,7
- **Área estimada o calculada de la poza (m²)**: 288.600
- **Ancho máximo de la poza (km)**: 0,46
- **Largo de la poza (km)**: 0,61
- **Volumen declarado proyectado (millones de m³)**: 0,470

7.1. CARACTERÍSTICAS DEL MURO

- **Invasión visual**
- **Toma de medida del suelo (preferentemente en el costado del muro)**: SI
- **Identificación del punto de medición**: SI
- **Toma de coordenadas y fotografías del punto medido**: SI
- **Coordenadas UTM**: N = 6.183.169 E = 298.168
- **Clasificación del material de construcción (clasificación según tabla)**: Arcilla Limo Arenosa

7.2. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

- **Descripción**:
- **Regularity de la geometría actual**: Regular
- **Complejidad del material estructural**: Media
- **Uniformidad de los tielados**: Agua arriba uniformes, agua abajo regularmente uniformes
- **Orientación y colocación de los tielados**: No se registran deformaciones
- **Orientación y colocación de las pedreras**: S.I. a los 145 m (ver plano fotográfico) donde existe defecto
- **Orientación y colocación de los pilotes**: No se registran elementos de deslizamiento
- **Sectores que presentan saturación y altura de saturación**: S.I. a los 10 m donde existe elono zona con saturación e los plios del talud agua abajo
- **Fibraciones visibles o talud agua abajo en el pie**: No se registran fibraciones visibles
- **Tipo de revestimiento del muro**: Tierra compactada, agua arriba presenta encenado de protección, agua abajo presenta cubierta vegetal
10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y longitud del tramo a considerar</th>
<th>Canal en terraza, terreno plan de corno, pendiente media 9.4%, ancho medio 7.5 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia desde centros poblados medios por el cauce</td>
<td>0.2 Kms.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>0.2 Kms.</td>
</tr>
<tr>
<td>Relevamiento de poblaciones en cercanías del tranque</td>
<td>Median. Alta</td>
</tr>
<tr>
<td>Distancia hasta zonas argentinas</td>
<td>Adjacentes</td>
</tr>
<tr>
<td>Distancia hasta sectores con infraestructura vital o de importancia</td>
<td>0.77 Kms.</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>140 has</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

12. OBSERVACIONES

Se presenta en cada fila la extensión del muro saturaciones a los pies del talud aguas abajo:

A. 45 m desde el filo derecho con depresión en el coronamiento

A. 141 m desde el filo derecho grietas en el coronamiento
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Valles Mun 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad Tranque Hídate</td>
</tr>
<tr>
<td>GTI Propietario</td>
<td>En tramite</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1994</td>
</tr>
<tr>
<td>Reparación (SI) (NO)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>2202</td>
</tr>
<tr>
<td>Cuenca / Código UDA</td>
<td>Rapel</td>
</tr>
<tr>
<td>Subcuenca / Código UDA</td>
<td>Estero Zambrano</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Quebrada sin Nombre</td>
</tr>
</tbody>
</table>

Nº de ficha	11.3
Fecha (días-meses)	08-10-2009
Cumplimiento Art. 294 del Código de Aguas	
Capacidad = 50,000 m³	
Altura del muro > 5 m	

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador Ben. O'Higgins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cachapoal</td>
</tr>
<tr>
<td>Comuna</td>
<td>San Vicente de Tagua-Tagua</td>
</tr>
<tr>
<td>Coordenadas UTM Este Derecho</td>
<td>N = 6,183,301 E = 298,207</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N = 6,183,422 E = 298,102</td>
</tr>
<tr>
<td>Coordenadas UTM Este Izquierdo</td>
<td>N = 6,183,617 E = 297,786</td>
</tr>
<tr>
<td>Datum WGS 84</td>
<td></td>
</tr>
<tr>
<td>Altitud</td>
<td>ED = 206 ; C = 205 ; E = 206</td>
</tr>
<tr>
<td>N° Norte</td>
<td>ED = Este Derecho</td>
</tr>
<tr>
<td>E = Este Izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Presa de tierra homogénea</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa de material granular graduado</td>
<td></td>
</tr>
<tr>
<td>Presa de arcillosas (CRIOR)</td>
<td></td>
</tr>
<tr>
<td>Presa de hierrográn (apareado, contrapuente, arco)</td>
<td></td>
</tr>
<tr>
<td>Presa de ROC</td>
<td></td>
</tr>
<tr>
<td>Otros tipos</td>
<td></td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

<table>
<thead>
<tr>
<th>Presa de tierra homogénea</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa de material granular graduado</td>
<td></td>
</tr>
<tr>
<td>Presa de arcillosas (CRIOR)</td>
<td></td>
</tr>
<tr>
<td>Presa de hierrográn (apareado, contrapuente, arco)</td>
<td></td>
</tr>
<tr>
<td>Presa de ROC</td>
<td></td>
</tr>
<tr>
<td>Otros tipos</td>
<td></td>
</tr>
</tbody>
</table>

5. GEOMETRÍA DE LA PRESA

<table>
<thead>
<tr>
<th>Cenihuela</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del coronamiento (m)</td>
<td>540</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>ED = 3,10 ; C = 2,40 ; E = 3,10</td>
</tr>
<tr>
<td>Desarrollo del talud aguas abajo (m)</td>
<td>11,0</td>
</tr>
<tr>
<td>Revancha mínima en relación a la sección máxima de aguas conocida (m)</td>
<td>1,50</td>
</tr>
<tr>
<td>Paramontes verticales</td>
<td>NO</td>
</tr>
<tr>
<td>Cen inmediato</td>
<td></td>
</tr>
<tr>
<td>Ángulo talud de aguas abajo</td>
<td>ED = 42° ; C = 42° ; E = 42°</td>
</tr>
<tr>
<td>Ángulo talud de aguas arriba</td>
<td>ED = 33° ; C = 30° ; E = 44°</td>
</tr>
<tr>
<td>ED = Este Derecho</td>
<td></td>
</tr>
<tr>
<td>E = Este Izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

6. ESTADO DEL EMBALSE Y CALIDAD DE CONSTRUCCIÓN

Descrisbido	
Regularidad de la geometría actual	Regular
Comportamiento del material estructural	Media
Uniformidad de los taludes	Aguas arriba uniformes, aguas abajo regularmente uniformes
Depresiones visibles y cuantitativas a lo largo del coronamiento	No se aprecian depresiones visibles
Grutas visibles y su ubicación	No se aprecian grutas visibles
Indicios de destierramientos y ulceración	No se aprecian indicios de destierramientos
Sectores que presentan saturación y altura de saturación	Muro se presenta saturado en casi toda su longitud por presencia de densa cubierta vegetal
Fisuras visibles en talud de aguas abajo en el pie	No se aprecian fisuras visibles
Tipo de revestimiento del muro	Tierra compactada, aguas arriba presenta enrocado de protección, aguas abajo cubierta vegetal

7. CARACTERÍSTICAS COBRAS EVACUADOR DE CRECIDAS

<table>
<thead>
<tr>
<th>Por su localización en relación a la estructura principal</th>
<th>Desde el punto de vista de los instrumentos para el control del caudal vertical:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertientes Frontales</td>
<td>Vertedero lineal, sin central</td>
</tr>
<tr>
<td>Vertedores laterales</td>
<td>Vertedores controlados por campanas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desde el punto de vista de la pared donde se produjo el vertimiento:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertedero de pared debajo</td>
</tr>
<tr>
<td>Vertedero de pared arriba</td>
</tr>
<tr>
<td>Vertedero con perfil hexagonal</td>
</tr>
</tbody>
</table>

8. COSTE DE COMPLEMENTARIS OBRAS EVACUADOR DE CRECIDAS

<table>
<thead>
<tr>
<th>Tipo de vertedero</th>
<th>Vertedero de homología con campanas de madera</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material constructivo</td>
<td>Hormigón y enrocado</td>
</tr>
<tr>
<td>Estado de conservación y operatividad</td>
<td>Buen estado, operativo</td>
</tr>
<tr>
<td>Dimensiones relevantes (ancho, altura y carga máximo de operación)</td>
<td>Ancho : 35,0 m; Altura : 1,80 m; Largo 19,50 m</td>
</tr>
</tbody>
</table>
10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUASABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Agua abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en tierra, terreno pie de cuesta, pendiente media 0,4%, ancho medio 2,5 m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia hasta centros poblados medidas por el cauce</th>
<th>2,2 Km.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>0,3 Km.</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Media - Alta</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adjacentes</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vital o de importancia</td>
<td>0,77 Km.</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>140 has</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus táctiles

Cortes de la obra de ejecución y dimensiones (planta)

Cortes de la obra de ejecución y dimensiones (elevación)

12. OBSERVACIONES

Sobre el coronamiento del muro existe abundante cubierta vegetal que mantiene el muro con una alta humedad, la composición del material es más baja que en los otros muros.

A 80 m desde el muro derecho se presenta zona de saturación a los pies del muro.

Cercano a este muro se encuentra zona de embalsemiento de la corte.
EMBALSE SAN VICENTE
PARTE B: CATASTRO DE EMBALSES

12. EMBALSE SAN VICENTE
12.1 Ubicación
12.2 Características Generales
12.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
12.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
12.5 Determinación de Filtraciones
12.6 Verificación del Oleaje
12.7 Análisis de Riesgo (Hazop)
12.8 Álbum Fotográfico y Fichas de Catastro
12. **EMBALSE SAN VICENTE**

12.1 Ubicación

El embalse San Vicente se ubica en la comuna de Litueche, provincia de Cardenal Caro, en las coordenadas UTM 6.224.151 Norte y 246.263 Este, Datum WGS 84 a una Altitud de 229 m.s.n.m. Se localiza en la cuenca de Rapel, subcuenca del Río Rapel y la fuente corresponde al estero El Rosario.

Se puede acceder al sitio del embalse desde la localidad de Litueche, al norte por la ruta G-80-L por aproximadamente 5 km hasta la entrada de un camino particular al embalse en dirección poniente por 3,5 km.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 12.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE SAN VICENTE

Fuente: Carta IGM
12.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Eduardo Doberti Quic. El uso y destino del embalse es de riego y fue construido en el año 1990.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,171 hm3. La altura máxima del muro es de 9,0 m, con una longitud de coronamiento de 104 m y ancho promedio del coronamiento de 3,0 m y borde libre de 1,1 m. El Talud Aguas Arriba es H:V=1,19:1 y el Talud Aguas Abajo es H:V=1,73:1.

El evacuador de crecidas corresponde a uno de caída libre a quebrada con un ancho medio de 12,0 m y 2,5 m de alto. No tiene estructura de control. Buen estado de mantención y operación.

La obra de entrega corresponde a 2 cajones de hormigón. Uno ubicado entre el estribo derecho y el centro del tranque y el otro ubicado entre el centro del tranque y el estribo izquierdo, cada cajón con una válvula de entrega de volante con tuberías de 12,5 cm de diámetro. La obra se encuentra en buen estado de mantención y operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 12.2-1
IMAGEN SATELITAL EMBALSE SAN VICENTE
Vista panorámica Embalse San Vicente
12.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse San Vicente tiene como fuente al estero El Rosario, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 8,73 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 12.3-1
CUENCA EMBALSE SAN VICENTE
CUADRO 12.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>Total</th>
<th>872,6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>872,6</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
<td>21.240,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
<td>21.240,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
<td>319,7</td>
</tr>
<tr>
<td></td>
<td>Minima</td>
<td>236,7</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
<td>83,1</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
<td>8,1</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
<td>6,6</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
<td>5,78</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
<td>2,89</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
<td>245.009</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6.223.130</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>264,9</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
<td>245.381</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6.223.713</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>254</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➤ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{max}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A + 1.5 \cdot L}}{0.8 \sqrt{Hg}} \text{(hrs)} \]

\[\text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \sqrt{\frac{A}{J}} \)

Fórmula de Témez:

\[t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Donde:

\[L = \text{Longitud del cauce principal en km.} \]

\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]

\[A = \text{Área cuenca en km}^2. \]

\[J = \text{Pendiente del cauce (%).} \]

\[H_g = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>San vicente</td>
<td>1,31</td>
<td>2,81</td>
</tr>
</tbody>
</table>

➢ **Precipitaciones Máximas**

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Vicente</td>
<td>Rapel</td>
<td>0,128</td>
<td>108,1</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

➢ **Caudales de Crecidas**

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{tc} \cdot Ap}{3,6} \]

Donde:

\[Q(T) = \text{Caudal generado en la cuenca en (m}^3/\text{s}) \]

\[C(T) = \text{Coeficiente de Escorrentía} \]

\[I_{tc} = \text{Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)} \]

\[Ap = \text{Área pluvial de la cuenca tributaria (km}^2). \]

La intensidad de la precipitación va a estar asociada al período de retomo T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^{T})^{1.24} \cdot (Ap)^{0.88} \]

Donde:

- \(C(T) \) Coeficiente empírico para diferentes periodos de retorno
- \(P_{24}^{T} \) Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \) Área pluvial (km\(^2\))

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Periodo de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Vicente</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>9,8</td>
<td>4,2</td>
<td>14,3</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>13,1</td>
<td>6,1</td>
<td>24,3</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>14,9</td>
<td>10,3</td>
<td>31,4</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>16,2</td>
<td>12,3</td>
<td>36,7</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>17,2</td>
<td>13,9</td>
<td>41,0</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>17,8</td>
<td>15,1</td>
<td>44,1</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>20,0</td>
<td>18,9</td>
<td>53,7</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>22,1</td>
<td>24,7</td>
<td>68,3</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:

- \(Q_{10} \) Caudal medio diario máximo con período de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km\(^2\))

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx ((T)) (,) DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>San Vicente</td>
<td>1,88</td>
</tr>
</tbody>
</table>

➤ Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS ((m^3/s))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>San Vicente</td>
<td>26,59</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
12.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla areno limosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 9,00 m
- Ancho coronamiento: 3,00 m
- Borde libre: 1,10 m
- Talud Aguas Arriba: H : V = 1,19 : 1
- Talud Aguas Abajo: H : V = 1,73 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 12.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción ($^\circ$)</th>
<th>Cohesión (t/m3)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td></td>
<td>2,5</td>
<td>1,8</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td>$\varphi = 25^\circ$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td>Error! Marcador no definido.</td>
<td>Sísmico</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 12.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 12.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 12.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 12.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 12.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 12.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>San Vicente</td>
<td>2,072</td>
<td>1,455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>San Vicente</td>
<td>1,710</td>
<td>1,852</td>
</tr>
</tbody>
</table>

12.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es
igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 \cdot L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C' \cdot h$$

Para el caso del tranque San Vicente, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>29,3</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv (m)</td>
<td>0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>C'</td>
<td>1,8</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>h (m)</td>
<td>7,9</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN VICENTE</td>
<td>29,3</td>
<td>0</td>
<td>9,77</td>
<td>9,0</td>
<td>1,1</td>
<td>7,900</td>
<td>1,80</td>
<td>14,2</td>
<td>L' \geq C' h</td>
</tr>
</tbody>
</table>

12.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{om}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse San Vicente.
SAN VICENTE
CÁLCULO DE REVANCHAPOR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>$\cos(\alpha)$</th>
<th>$\cos^2(\alpha)$</th>
<th>Distancia (m)</th>
<th>Dist. * $\cos^2(\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>95</td>
<td>0,0590</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>148</td>
<td>0,0920</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8860</td>
<td>0,7500</td>
<td>207</td>
<td>0,1286</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>242</td>
<td>0,1504</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>264</td>
<td>0,1640</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>293</td>
<td>0,1821</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>334</td>
<td>0,2075</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>517</td>
<td>0,3212</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>483</td>
<td>0,3001</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>417</td>
<td>0,2591</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>364</td>
<td>0,2262</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>206</td>
<td>0,1280</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8860</td>
<td>0,7500</td>
<td>156</td>
<td>0,0989</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>133</td>
<td>0,0826</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>112</td>
<td>0,0696</td>
</tr>
</tbody>
</table>

Suma: $13,5109$
Suma: $2,1852$

Fetch o longitud de acción del viento (F)

\[
F = 0,162 \text{ millas} \\
F = 260,29 \text{ m}
\]

Velocidad del Viento

\[
\begin{align*}
\nu &= 50 \text{ mph} \\
\nu &= 22,35 \text{ m/s}
\end{align*}
\]

Fórmulas Empiricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,47</td>
<td>0,7526</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,35</td>
<td>0,7161</td>
</tr>
<tr>
<td>Creager</td>
<td>0,98</td>
<td>0,2979</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola: $0,95 \text{ m}$
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1,10 m, se tiene que la altura de la ola no superaría esta revancha.

12.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

12.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “(p)”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas (*)</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

12.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th></th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 23,58 m³/s
Coeficiente capacidad 0,48 C1 x C2 x C3
Capacidad efectiva 11,32 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>26,59</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>31,42</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0001</td>
<td>35,07</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

12.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro	Riesgo "p"	Valor adoptado
Sin humedad al pie | 0,05 |
Saturación abajo del muro | 0,05 a 0,10 |
Saturación del pie | 0,10 a 0,20 |
Filtración | 0,20 a 0,95 | 0,2
Si existe sistema de drenaje | 0 |
Si el material es cohesivo | 0,05 |

12.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

12.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,20</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

12.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse San Vicente.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISTA TALUD AGUAS ARRIBA</th>
<th>VISTA TALUD AGUAS ABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA 1</th>
<th>OBRA DE ENTREGA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>QUEBRADA EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA QUEBRADA SALIDA EVACUADOR DE CRECIDAS</td>
<td>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SECTOR SATURADO</td>
<td></td>
</tr>
</tbody>
</table>
FICHA DE CATASTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>San Vicente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Eduardo Dobelt Guio</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>3.715.656-K</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1990</td>
</tr>
<tr>
<td>Reparación (SI / NO)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>1999</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Rapel</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Rio Rapel</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Estero El Bosque</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador Bbo. O'Higgins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Curanto Caro</td>
</tr>
<tr>
<td>Comuna</td>
<td>Liquiñe</td>
</tr>
<tr>
<td>Coordenadas UTM Estribor Derecho</td>
<td>N: 8.224.125 E: 246.215</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N: 8.224.151 E: 246.263</td>
</tr>
<tr>
<td>Coordenadas UTM Estribor Izquierdo</td>
<td>N: 8.224.196 E: 246.211</td>
</tr>
<tr>
<td>Altitud m.s.n.m.</td>
<td>ED = 228; C = 229; E1 = 229</td>
</tr>
<tr>
<td>En Esta</td>
<td>ED = Batibo Derecho</td>
</tr>
<tr>
<td>En Estee</td>
<td>Cn Carbe</td>
</tr>
<tr>
<td></td>
<td>En Estee Izquierdo</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Riego</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación de energía</td>
<td>X</td>
</tr>
<tr>
<td>Abastecimiento de agua potable y saneamiento</td>
<td>X</td>
</tr>
<tr>
<td>Recreación</td>
<td>X</td>
</tr>
<tr>
<td>Control de crecimientos</td>
<td>X</td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

- Presa de tierra homogénea: X
- Presa de materiales granulares graduados
- Presa de enrocados (CIP/RCD)
- Presa de hormigón (gravedad, contrafuerte, arcos)
- Presa de RCC
- Otros tipos

5. GEOMETRÍA DE LA PRESA

<table>
<thead>
<tr>
<th>Con hoja</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del coronamiento (m)</td>
<td>104</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>ED = 3.0; C = 3.0; E1 = 3.0</td>
</tr>
<tr>
<td>Desarrollo del talud aguas abajo (m)</td>
<td>18,0</td>
</tr>
<tr>
<td>Reancha mínima en relación a la cota máxima de aguas conocidas (m)</td>
<td>1,10</td>
</tr>
<tr>
<td>Parametros verticales</td>
<td>NO</td>
</tr>
<tr>
<td>Con esc bordel</td>
<td>X</td>
</tr>
<tr>
<td>Angulo talud de aguas bajo</td>
<td>ED = 30°; C = 30°; E1 = 30°</td>
</tr>
<tr>
<td>Angulo talud de aguas arriba</td>
<td>FD = 30°; C = 40°; E1 = 40°</td>
</tr>
<tr>
<td>ED = Estribor Derecho</td>
<td>Cn Carbe</td>
</tr>
<tr>
<td>En Estee Izquierdo</td>
<td>en Estee Izquierdo</td>
</tr>
</tbody>
</table>

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Alto máximo del muro (m)	9,0
Profundidad máxima de agua en sector del muro (m)	7,0
Área estimada o calculada de la poza (m2)	96.400
Ancho máximo de la poza (km)	6,18
Largo de la poza (km)	0,48
Volumen declarado o proyectado (millones de m3)	0,171

7. ESTADO DEL MURU Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regularidad de la geometría actual</td>
<td>Regular</td>
</tr>
<tr>
<td>Humedad del material estructural</td>
<td>Medio-Alt</td>
</tr>
<tr>
<td>Uniformidad de los taludes</td>
<td>Regular</td>
</tr>
<tr>
<td>Depresiones visibles y cuantificables a lo largo del coronamiento</td>
<td>No se presentan depresiones visibles</td>
</tr>
<tr>
<td>Orígenes visibles y su ubicación</td>
<td>No se aprecian grietas visibles</td>
</tr>
<tr>
<td>Indicios de deslizamientos y ubicación</td>
<td>No se aprecian indicios de deslizamientos</td>
</tr>
<tr>
<td>Sector que se presentan saturados y altura de saturación</td>
<td>Se aprecia sector saturado (ver álbum fotográfico)</td>
</tr>
<tr>
<td>Filtraciones visibles en talud de aguas abajo en el pie</td>
<td>Se aprecian filtraciones en el talud de aguas abajo en el pie</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Tierra compactada</td>
</tr>
</tbody>
</table>

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECEDAS

<table>
<thead>
<tr>
<th>Por su localización en relación a la estructura antecipada</th>
<th>Verdeses frontales: X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdeses laterales</td>
<td>X</td>
</tr>
<tr>
<td>Verdeses de campaña</td>
<td>X medida localización y estructura del vertedero</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desde el punto de vista de la pared donde se produce el vertimiento:</th>
<th>Verdeses de pared dilatada: X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verdeses de pared gruesa</td>
<td>X</td>
</tr>
<tr>
<td>Verdeses con paréntrico flujo</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desde el punto de vista de la sección por la cual se da el vertimiento:</th>
<th>Rectángulos: X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trapezoides</td>
<td>triangulares</td>
</tr>
<tr>
<td>Columnas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Los datos a consignar son:</th>
<th>Tipo de vertedero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caída libre o quebrada (ver álbum fotográfico)</td>
<td>Caida libre a quebrada (ver album fotográfico)</td>
</tr>
<tr>
<td>Material constructivo</td>
<td>Hormigón</td>
</tr>
<tr>
<td>Estado de conservación y operatividad</td>
<td>En buen estado, operativo</td>
</tr>
<tr>
<td>Dimensiones relevantes (anchura, altura y carga máxima de operación)</td>
<td>Anchura: 10.0 mts; Alto: 2,0 mts</td>
</tr>
</tbody>
</table>

9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>2 cañones de hormigón. 1 ubicado entre el eje libre derecho y el centro del tranque y el otro ubicado entre el centro del tranque y el eje izquierdo, cada cañón con una sección de cañón de volante con tuberías de 12,5 cm de diámetro. (ver altura fotográfica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>Valvulas de entrega con tuberías de 12.5 cm de diámetro.</td>
</tr>
<tr>
<td>Funcionamiento anual</td>
<td>Operativo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
<th>Canal en tierra, terreno de quiebro, pendiente media 1,1%, ancho medio cauce 3,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>No hay centros poblados cercanos</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>No hay centros poblados cercanos</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>0,30 Km.</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial u otra de importancia</td>
<td>1,21 Km.</td>
</tr>
<tr>
<td>Área de riego servido por el tranque analizado</td>
<td>30 ha.</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes

Croquis de la obra de evacuación y dimensiones (plana)

Croquis de la obra de evacuación y dimensiones (elevación)

12. OBSERVACIONES

Tranque en muy buen estado
EMBALSE COCAUQUÉN O PAILIMO 1
PARTE B: CATASTRO DE EMBALSES

13. **EMBALSE COCAUQUEN O PAILÍMO 1**

13.1 Ubicación

13.2 Características Generales

13.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos

13.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad

13.5 Determinación de Filtraciones

13.6 Verificación del Oleaje

13.7 Análisis de Riesgo (Hazop)

13.8 Álbum Fotográfico y Fichas de Catastro
13. **EMBALSE COCAUQUEN O PAILIMO 1**

13.1 **Ubicación**

El embalse Cocauquén o Pailimo 1 se ubica en la comuna de Marchigue, provincia de Cardenal Caro, en las coordenadas UTM 6.202.442 Norte y 241.686 Este, Datum WGS 84 a una Altitud de 225 m.s.n.m. Se localiza en la cuenca del estero quebrada Honda, subcuenca del estero Pailimo y la fuente corresponde al estero Cocauquén.

Se emplaza a 1,5 km del estero Las Garzas. Se puede acceder desde el cruce de la ruta I-50, que une San Fernando con Pichilemu, con la ruta I-170 al norte hasta poblado de Pailimo al poniente hasta cruce con ruta I-182 por 2 km hasta el embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 13.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE COCAUQUÉN O PAILIMO 1

Fuente: Carta IGM
13.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a varios parceleros como bien común. El uso y destino del embalse es de riego y fue construido en el año 1890.

El tipo de presa es de tierra homogénea con una capacidad máxima de 1,014 hm³. La altura máxima del muro es de 10,5 m, con una longitud de coronamiento de 339 m y ancho promedio del coronamiento de 4,2 m y borde libre de 2,1 m. El Talud Aguas Arriba es H:V=2,14:1 y el Talud Aguas Abajo es H:V=1,43:1.

El evacuador de crecidas corresponde a un vertedero frontal con una barrera de madera. El ancho es de 11,7 m y alto de 1,5 m. Estructura de hormigón con compuertas de madera. El agua sale a quebrada natural. En buen estado, operacional.

La obra de entrega corresponde a una tubería de acero de diámetro desconocido debido a que se encuentra bajo el agua, la que entrega el agua a cajón de hormigón con 2 compuertas, cada una de estas le entregan a canal en tierra de 1,5 m por 1,0 mts de profundidad. En la inspección realizada, no se pudo determinar sí se encuentra operativo.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 13.2-1
IMAGEN SATELITAL EMBALSE COCAUQUÉN O PAILIMO 1
Vista panorámica Embalse Cocauquén (Pailimo 1)
13.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Cocauquén (Pailimo 1) tiene como fuente al estero Cocauquén, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 25,39 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 13.3-1
CUENCA EMBALSE COCAUQUEN
CUADRO 13.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>Total</th>
<th>2.538,8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>2.538,8</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
<td>32.220,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
<td>32.220,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
<td>513,5</td>
</tr>
<tr>
<td></td>
<td>Minima</td>
<td>227,3</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
<td>286,1</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
<td>12,1</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
<td>13,7</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
<td>7,86</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
<td>3,93</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
<td>239.624</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6.203.860</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>271,2</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
<td>239.795</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6.202.545</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>304</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{\text{max}}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs); } \text{con } \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{A}{J} \)

Fórmula de Témez:

\[t_c = 0.3 \left(\frac{L}{J^{0.4}} \right)^{0.75} \]
Donde:

- \(L = \) Longitud del cauce principal en km.
- \(H_{\text{máx}} = \) Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
- \(A = \) Área cuenca en km\(^2\).
- \(J = \) Pendiente del cauce (%).
- \(H_g = \) Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Cocauquén</td>
<td>1,17</td>
<td>6,03</td>
</tr>
</tbody>
</table>

➢ **Precipitaciones Máximas**

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocauquén</td>
<td>Rapel</td>
<td>0,136</td>
<td>100</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

➢ **Caudales de Crecidas**

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:
- \(Q(T) \) Caudal generado en la cuenca en (m\(^3\)/s)
- \(C(T) \) Coeficiente de Escorrentía
- \(I_{tc}^T \) Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(tc \) en (mm/h)
- \(Ap \) Área pluvial de la cuenca tributaria (km\(^2\)).

La intensidad de la precipitación va a estar asociada al periodo de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:

- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \): Precipitación máxima en 24 h y período de retorno T años
- \(Ap \): Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cocauquén</td>
<td>T=2</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,6</td>
<td>9,2</td>
<td>9,3</td>
<td>35,2</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Nilahue</td>
<td>0,8</td>
<td>12,6</td>
<td>13,8</td>
<td>62,0</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Nilahue</td>
<td>1,0</td>
<td>14,8</td>
<td>24,3</td>
<td>82,3</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,1</td>
<td>16,1</td>
<td>29,1</td>
<td>96,7</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,2</td>
<td>17,2</td>
<td>33,1</td>
<td>108,3</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Nilahue</td>
<td>1,2</td>
<td>17,8</td>
<td>35,9</td>
<td>116,4</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,4</td>
<td>20,2</td>
<td>45,7</td>
<td>143,6</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Nilahue</td>
<td>1,5</td>
<td>22,6</td>
<td>60,3</td>
<td>184,6</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
Donde:

- \(Q_{10}\) Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10}\) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap\) Área Pluvial de la cuenca (km²)

En donde Q (T), corresponde al caudal instantáneo máximo según el período de retorno T y \(\alpha\) toma el valor de 1.19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>Q(T) / Q(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cocauquén</td>
<td>3,82</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Cocaquén</td>
<td>64,66</td>
</tr>
</tbody>
</table>

13.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arena arcillosa con algunas gravas, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 12,62 m
- Ancho coronamiento: 4,2 m
- Borde libre: 2,1 m
- Talud Aguas Arriba: H: V= 2,14 : 1
- Talud Aguas Abajo: H: V= 1,43 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.
CUADRO 13.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Ángulo de fricción (º)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>ø = 25º</td>
<td>2,2</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limon Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 13.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 13.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 13.4-5
TALUD AGUAS ARriba - ESTÁTICO SIN AGUA

FIGURA 13.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 13.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 13.4-8
TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 13.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
</tr>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>2,100</td>
</tr>
<tr>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>1,205</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
</tr>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Aguas arriba</td>
</tr>
<tr>
<td>1,944</td>
</tr>
<tr>
<td>Aguas arriba</td>
</tr>
<tr>
<td>1,397</td>
</tr>
</tbody>
</table>

13.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C' \cdot h$$

Para el caso del tranque **Cocauquén o Pailimo I**, se tiene:

- $L_h (m) = 49,3$ (Longitud horizontal en la base del tranque o embalse.
- $L_v (m) = 0$ (Longitud vertical en la base del tranque o embalse.
- $C' = 1,9$ (Coeficiente de filtración que depende del tipo de material del embalse.
- $h (m) = 10,52$ (Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.)
De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>COCAUQUÉN</td>
<td>49,3</td>
<td>0</td>
<td>16,43</td>
<td>12,6</td>
<td>2,1</td>
<td>10,519</td>
<td>1,90</td>
<td>20,0</td>
<td>L' ≥ C' h</td>
</tr>
</tbody>
</table>

13.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{Ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Cocauquén (Pailimo I).

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 2,10 m, se tiene que la altura de la ola no superaría esta revancha.
COCAUQUEN (PAILIMO 1)
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

| Línea N° | Alfa | Cos(α) | Cos²(α) | Distancia | Dist. * Cos²(α) | m | millas | 0,1653 | 0,0913 | 0,2082 | 0,1362 | 0,2349 | 0,1762 | 0,3244 | 0,2707 | 0,4511 | 0,4080 | 0,5853 | 0,5600 | 0,6593 | 0,6521 | 0,8494 | 0,8494 | 0,4722 | 0,4671 | 0,3480 | 0,3329 | 0,2796 | 0,2529 | 0,2523 | 0,2105 | 0,2150 | 0,1612 | 0,1951 | 0,1277 | 0,1765 | 0,0975 |
|----------|-------|---------|---------|-----------|---------------|-----|--------|--------|--------|-------|--------|--------|-------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|--------|-------|--------|--------|--------|--------|--------|--------|--------|--------|
| 1 | 42 | 0,7431 | 0,5523 | 266 | 0,1653 | 0,0913 | |
| 2 | 36 | 0,8090 | 0,6545 | 335 | 0,2082 | 0,1362 | |
| 3 | 30 | 0,8660 | 0,7500 | 378 | 0,2349 | 0,1762 | |
| 4 | 24 | 0,9135 | 0,8346 | 522 | 0,3244 | 0,2707 | |
| 5 | 18 | 0,9511 | 0,9045 | 726 | 0,4511 | 0,4080 | |
| 6 | 12 | 0,9781 | 0,9568 | 942 | 0,5853 | 0,5600 | |
| 7 | 6 | 0,9945 | 0,9891 | 1061 | 0,6593 | 0,6521 | |
| 8 | 0 | 1,0000 | 1,0000 | 1367 | 0,8494 | 0,8494 | |
| 9 | 6 | 0,9945 | 0,9891 | 760 | 0,4722 | 0,4671 | |
| 10 | 12 | 0,9781 | 0,9568 | 560 | 0,3480 | 0,3329 | |
| 11 | 18 | 0,9511 | 0,9045 | 450 | 0,2796 | 0,2529 | |
| 12 | 24 | 0,9135 | 0,8346 | 406 | 0,2523 | 0,2105 | |
| 13 | 30 | 0,8660 | 0,7500 | 346 | 0,2150 | 0,1612 | |
| 14 | 36 | 0,8090 | 0,6545 | 314 | 0,1951 | 0,1277 | |
| 15 | 42 | 0,7431 | 0,5523 | 284 | 0,1765 | 0,0975 | |

Suma 13,5109

Suma 4,7938

Fetch o longitud de acción del viento (F)

\[F = 0,355 \text{ millas} \]

\[F = 571,01 \text{ m} \]

Velocidad del Viento

\[v = 50 \text{ mph} \]

\[v = 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,62</td>
<td>0,7991</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,44</td>
<td>0,7450</td>
</tr>
<tr>
<td>Creager</td>
<td>1,31</td>
<td>0,3983</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
13.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "p" y "V" son independientes por evento, y el valor "E" es idéntico para todos los eventos.

13.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,3</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

13.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Cauquén o Pallímo 1

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 25,18 m³/s
Coeficiente capacidad 0,42 C1 x C2 x C3
Capacidad efectiva 10,58 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>64,66</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>76,67</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>85,75</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

13.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro

<table>
<thead>
<tr>
<th></th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
<td></td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
<td></td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
<td>0,2</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

13.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

Según la cercanía a la faja probable de Inundación

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

Según la Cercanía al Punto de Vaciamiento

<table>
<thead>
<tr>
<th></th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td>0,5</td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

13.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>1,20</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

13.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Cocaquén o Palímo I.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO DESDE ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISTA TALUD AGUAS ARRIBA</th>
<th>VISTA TALUD AGUAS ABAJO, CÁRCAVAS EN EL ESTRIBO DERECHO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA</th>
<th>OBRA DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</th>
<th>DETALLE ENROCADO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENROCADO EN OBRA DE ENTREGA</th>
<th>VISTA DEL MURO QUE INDICA QUE ES EL CAMINO PRINCIPAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego

13-23
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Embalse Coaquapeñ a al Pamio 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Bao Comun</td>
</tr>
<tr>
<td>B.I.T. Propietario</td>
<td>Ca, Trento</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1910 (ver observaciones)</td>
</tr>
<tr>
<td>Reemplazo (SÍ/NO)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de rehabilitación</td>
<td>1995</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Estero Quixada Honda</td>
</tr>
<tr>
<td>Subcuenca / Código DGA</td>
<td>Estero Pamio</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Estero Coaquapeñ a</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI de la Provincia, Oviedo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cantabria</td>
</tr>
<tr>
<td>Comarca</td>
<td>Mangaño</td>
</tr>
<tr>
<td>Coordenadas UTM Este Derecho</td>
<td>N= 6 202 370 E= 241 552</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N= 6 202 442 E= 241 588</td>
</tr>
<tr>
<td>Coordenadas UTM Este Izquierdo</td>
<td>N= 6 202 513 E= 241 622</td>
</tr>
<tr>
<td>Datum WGS 84</td>
<td>E0 = 733 ; C = 712 ; E = 227</td>
</tr>
<tr>
<td>N= Este</td>
<td>E= Esteo Derecho</td>
</tr>
<tr>
<td>E= Esteo Izquierdo</td>
<td></td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Uso</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación de energía</td>
<td></td>
</tr>
<tr>
<td>Abastecimiento de agua potable</td>
<td></td>
</tr>
<tr>
<td>Iseramiento</td>
<td></td>
</tr>
<tr>
<td>Rotativas</td>
<td></td>
</tr>
<tr>
<td>Sedimentación</td>
<td></td>
</tr>
<tr>
<td>Control de crecidas</td>
<td></td>
</tr>
<tr>
<td>otras usos</td>
<td></td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

Presa de tierra homogénea	X
Presa de material granulargraduada	
Presa de embalse (CFRD)	
Presa de hormigón (gravedad, contrafuerte, ancho)	
Presa de RCC	
Otros tipos	

5. GEOMETRÍA DE LA PRESA

<table>
<thead>
<tr>
<th>Con avalancha</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del coronamiento (m)</td>
<td>239</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
<td>4.20</td>
</tr>
<tr>
<td>Alto del talud (m)</td>
<td>2.0</td>
</tr>
<tr>
<td>Ancho del talud (m)</td>
<td>2.0</td>
</tr>
<tr>
<td>Alto del talud (m)</td>
<td>2.0</td>
</tr>
<tr>
<td>Año de la presa (an)</td>
<td>1.95</td>
</tr>
<tr>
<td>Volumen declarado o proyectado (millones de m³)</td>
<td>1.014</td>
</tr>
</tbody>
</table>

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones trigonométricas en caso de no poder medir de frente) (m)	12.8
Profundidad máxima de agua en sector del muro (m)	16.5
Área estimada a calcarse de la presa (m²)	383.400
Alto máximo de la presa (m)	15.28
Largo de la presa (m)	480
Volumen declarado o proyectado (millones de m³)	1.014

7. CARACTERÍSTICAS DEL MURO

Inspección visual	
Toma de muestra del suelo (profundizamiento en el centro del muro)	SI
Identificación del punto de toma de muestra	SI
Toma de coordenadas y fotografías del punto mostradodel	SI
Coordenadas UTM	N= 6 202 442 E=241 588
Clasificación del material de construcción (clasificación según tabla)	Arena Arenisfica con Algunas Graves

8. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

Descripción	
Regularidad de la geometría actual	Mediamente regular
Compactitud del material estructural	Alto
Uniformidad de los taludes	Talud aguas arriba regular. Talud aguas abajo irregular
Depresiones visibles y cuantificables a lo largo del coronamiento	No se aprecian depresiones visibles
Grietas visibles y su ubicación	No se aprecian grietas visibles, solo cáscaras en el talud aguas abajo, desde el estrato derecho hasta el metro 18 (ver álbum fotográfico)
Indicios de deslizamientos y ubicación	No se aprecian indicios de deslizamientos
Sectores que se presentan saturados y altura de saturación	No se aprecian sectores saturados
Fracturas visibles en talud aguas abajo en el pie	No se aprecian fracturas
Tipo de revestimiento del muro	Tierra compactada. El talud aguas arriba está cubierto por ensueldado de protección (ver álbum fotográfico)

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIDAS

Por su localización en relación a la estructura principal	Desviado a la izquierda del cauce de la presa
Verteredas frontales	X
Verteredas laterales	
Verteredas de campaña	

Desde el punto de vista de la presa donde se producen vientos	Desde el punto de vista de la sección por la cual se de el vertimiento
Verteredas del pared delante	Rodolíneas
Verteredas del pared tras	Títerolíneas
Verteredas con perfil hidráulico	Gralidades

Los datos a considerar son:

Tipo de vertedor	Vertereda de caida libre de estructura de hormigón con compuertas de maderas. El agua sale a quebrada natural
Material constructivo	Hormigón, fierro y maderas
Estado de conservación y operatividad	Buen estado de conservación, operativo
Dimensiones relevantes (ancho, altura y carga máxima de operación)	Carga Máxima 26 m³; Ancho: 11.70 mts; Alto: 1.5 mts.
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Tubería de acero de diámetro desconocido debido a que se encuentra bajo el agua, la que entrega el agua a cañón de hormigón con 2 compuertas, cada una de éstas le entregan a canal en tierra de 1.5 mts por 1.0 mts de profundidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones establecidas</td>
<td></td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td></td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, techo de terreno, pendiente media y ancho medio del cauce</th>
<th>Canal en tierra, terrenos agrícolas, pendiente media 1.4%, ancho medio cauce 5 mts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>2.14 Km.</td>
<td></td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>1.70 Km.</td>
<td></td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Media</td>
<td></td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacentes</td>
<td></td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura via u otra de importancia</td>
<td>0.70 Km.</td>
<td></td>
</tr>
<tr>
<td>Área de rega servida por el tranque analizado</td>
<td>60 ha</td>
<td></td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus faliciles

Croquis de la obra de ejecución y dimensiones (oriental)

Croquis de la obra de ejecución y dimensiones (elevación)

12. OBSERVACIONES

El talud asperso en la presente bastante vegetación arbustiva y acuática.

El opeamiento del muro es el camino principal.
EMBALSE PIEDRAS BLANCAS O
PAILIMO 2
PARTE B: CATASTRO DE EMBALSES

14. EMBALSE PIEDRAS BLANCAS O PAILIMO 2
14.1 Ubicación
14.2 Características Generales
14.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
14.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
14.5 Determinación de Filtraciones
14.6 Verificación del Oleaje
14.7 Análisis de Riesgo (Hazop)
14.8 Álbum Fotográfico y Fichas de Catastro
14. **EMBALSE PIEDRAS BLANCAS O PAILIMO 2**

14.1 **Ubicación**

El embalse Piedras Blancas o Pailimo 2 se ubica en el límite de las comunas de Marchigue y la Estrella, provincia de Cardenal Caro, en las coordenadas UTM 6.202.292 Norte y 245.859 Este, Datum WGS 84 a una Altitud de 202 m.s.n.m. Se localiza en la cuenca del estero quebrada Honda, subcuenca del estero Pailimo y la fuente corresponde al estero Piedras Blancas.

Se puede acceder al sitio de emplazamiento desde el cruce de la ruta I-50, que une San Fernando con Pichilemu, con la ruta I-170 al norte hasta cruce con ruta I-172 hasta el embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 14.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE PIEDRAS BLANCAS O PAILIMO 2

Fuente: Carta IGM
14.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a varios parceleros como bien común. El uso y destino del embalse es de riego y fue construido en el año 1890.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,796 hm³. La altura máxima del muro es de 7,4 m, con una longitud de coronamiento de 172 m (muro principal, muro 2) y ancho promedio del coronamiento de 3,4 m y borde libre de 1,7 m. Los taludes de los muros son:

<table>
<thead>
<tr>
<th></th>
<th>MURO 1</th>
<th>MURO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud Aguas Arriba H:V</td>
<td>1,33:1</td>
<td>1,00:1</td>
</tr>
<tr>
<td>Talud Aguas Abajo H:V</td>
<td>1,38:1</td>
<td>1,11:1</td>
</tr>
</tbody>
</table>

El evacuador de crecidas corresponde a un vertedero frontal de caída libre, con compuertas de madera de 3,9 m de ancho. En buen estado de conservación, operativo.

La obra de entrega corresponde a una torre de hormigón controlada por compuerta que mediante una válvula de volante entrega a quebrada. Ancho 1,5 m y Alto: 15,0 m. Se encuentra operativa.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 14.2-1
IMAGEN SATELITAL EMBALSE PIEDRAS BLANCAS O PAILIMO 2
Vista panorámica Embalse Piedras Blancas (Pailimo 2)
14.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Piedras Blancas (Pailiomo 2) tiene como fuente al estero Piedras Blancas, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 2,01 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 14.3-1
CUENCA EMBALSE PIEDRAS BLANCAS
CUADRO 14.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Piedras Blancas o Pailillo 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>Minima</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (t_c) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:
$$t_c = 0.95 \left(\frac{L^3}{H_{\text{max}}} \right)^{0.385}$$

Fórmula de Giandotti:
$$t_c = \frac{4 \cdot \sqrt[3]{A + 1.5 \cdot L}}{0.8 \sqrt{H_g}} \, (hrs); \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6}$$

Fórmula de Ventura - Heras: $t_c = 0.05 \cdot \frac{A}{J}$

Fórmula de Témez:
$$t_c = 0.3 \cdot \left(\frac{L}{\sqrt[4]{J}} \right)^{0.75}$$
Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (\%).} \]
\[H_g = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Piedras Blancas o Palliimo 2</td>
<td>0,33</td>
<td>2,69</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piedras Blancas o Palliimo 2</td>
<td>Rapel</td>
<td>0,072</td>
<td>100</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot A_p}{3,6}
\]

Donde:
- \(Q(T) \): Caudal generado en la cuenca en (m\(^3\)/s)
- \(C(T) \): Coeficiente de Escorrentía
- \(I_{tc}^T \): Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(tc \) en (mm/hr)
- \(A_p \): Área pluvial de la cuenca tributaria (km\(^2\)).

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^{T})^{1.24} \cdot (A_p)^{0.88} \]

Donde:
- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^{T} \): Precipitación máxima en 24 h y período de retorno \(T \) años
- \(A_p \): Área pluvial (km\(^2\))

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Piedras Blancas o Palimo 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T=2</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,6</td>
<td>4,8</td>
<td>1,0</td>
<td>4,1</td>
<td></td>
</tr>
<tr>
<td>T=5</td>
<td>0,60</td>
<td>Nilahue</td>
<td>0,8</td>
<td>6,7</td>
<td>1,5</td>
<td>7,3</td>
<td></td>
</tr>
<tr>
<td>T=11</td>
<td>0,68</td>
<td>Nilahue</td>
<td>1,0</td>
<td>7,8</td>
<td>2,6</td>
<td>9,6</td>
<td></td>
</tr>
<tr>
<td>T=15</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,1</td>
<td>8,5</td>
<td>3,1</td>
<td>11,3</td>
<td></td>
</tr>
<tr>
<td>T=20</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,2</td>
<td>9,1</td>
<td>3,6</td>
<td>12,7</td>
<td></td>
</tr>
<tr>
<td>T=25</td>
<td>0,80</td>
<td>Nilahue</td>
<td>1,2</td>
<td>9,4</td>
<td>3,9</td>
<td>13,6</td>
<td></td>
</tr>
<tr>
<td>T=50</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,4</td>
<td>10,6</td>
<td>4,9</td>
<td>16,8</td>
<td></td>
</tr>
<tr>
<td>T=100</td>
<td>1</td>
<td>Nilahue</td>
<td>1,5</td>
<td>11,9</td>
<td>6,5</td>
<td>21,6</td>
<td></td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins
Embalse Piedras Blancas o Pailimo 2

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

Donde:

- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)

\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>0,37</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
CAUDALES MÁXIMOS EXTRAPOLADOS T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Piedras Blancas o Pailimo 2</td>
<td>6,94</td>
</tr>
</tbody>
</table>

14.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

MURO 1
- Altura: 3,5 m
- Ancho coronamiento: 4,8 m
- Borde libre: 0,6 m
- Talud Aguas Arriba: H : V = 1,33 : 1
- Talud Aguas Abajo: H : V = 1,38 : 1

MURO 2
- Altura: 7,4 m
- Ancho coronamiento: 3,4 m
- Borde libre: 1,7 m
- Talud Aguas Arriba: H : V = 1,00 : 1
- Talud Aguas Abajo: H : V = 1,11 : 1
c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 14.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>$\phi = 22^\circ$</td>
<td>2,2</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td></td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td></td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 14.4-1
MURO 1 TALUD AGUAS ARriba - ESTÁTICO CON AGUA

FIGURA 14.4-2
MURO 1 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 14.4-3
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 14.4-4
MURO 1 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 14.4-5
MURO 1 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 14.4-6
MURO 1 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 14.4-7
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 14.4-8
MURO 1 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
FIGURA 14.4-9
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 14.4-10
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 14.4-11
MURO 2 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 14.4-12
MURO 2 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 14.4-13
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 14.4-14
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 14.4-15
MURO 2 TALUD AGUAS ARriba - SÍSMICO SIN AGUA

FIGURA 14.4-16
MURO 2 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 14.4-2

FACTORES DE SEGURIDAD DE TALUDES

PIEDRAS BLANCAS O PAILIMO 2

<table>
<thead>
<tr>
<th>Piedras Blancas o Pailimo 2</th>
<th>Análisis con embalse lleno</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
</tr>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>Muro 1</td>
<td>3,004</td>
<td>2,226</td>
</tr>
<tr>
<td>Muro 2</td>
<td>1,962</td>
<td>1,374</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Piedras Blancas o Pailimo 2</th>
<th>Análisis con embalse seco</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
</tr>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
</tr>
<tr>
<td></td>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
</tr>
<tr>
<td>Muro 1</td>
<td>2,511</td>
<td>2,457</td>
</tr>
<tr>
<td>Muro 2</td>
<td>1,628</td>
<td>1,522</td>
</tr>
</tbody>
</table>

14.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 \, L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C'h$$
Para el caso del tranque *Piedras Blancas o Pailimo 2* se tiene:

<table>
<thead>
<tr>
<th>MURO 1</th>
<th>MURO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_h (m) =</td>
<td>14,3</td>
</tr>
<tr>
<td>L_v (m) =</td>
<td>0</td>
</tr>
<tr>
<td>C' =</td>
<td>1,7</td>
</tr>
<tr>
<td>h (m) =</td>
<td>2,93</td>
</tr>
</tbody>
</table>

Longitud horizontal en la base del tranque o embalse.
Longitud vertical en la base del tranque o embalse.
Coeficiente de filtración que depende del tipo de material del embalse.
Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>L_h (m)</th>
<th>L_v (m)</th>
<th>L_1 (m)</th>
<th>H_t (m)</th>
<th>b_l (m)</th>
<th>h (m)</th>
<th>C' (m)</th>
<th>$(C' h)$ (m)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIEDRAS BLANCAS M1</td>
<td>14,3</td>
<td>0</td>
<td>4,78</td>
<td>3,5</td>
<td>0,6</td>
<td>2,927</td>
<td>1,70</td>
<td>5,0</td>
<td>$L' \geq C' h$</td>
</tr>
<tr>
<td>PIEDRAS BLANCAS M2</td>
<td>18,9</td>
<td>0</td>
<td>6,31</td>
<td>7,4</td>
<td>1,7</td>
<td>5,660</td>
<td>1,70</td>
<td>9,6</td>
<td>$L' \geq C' h$</td>
</tr>
</tbody>
</table>

14.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ola}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Piedras Blancas (Pailimo 2).

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1,70 m, se tiene que la altura de la ola no superaría esta revancha en el muro principal M2.
PIEDRAS BLANCAS (PAILIMO 2)
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Álfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°</td>
<td>m</td>
<td>millas</td>
<td>m</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>236</td>
<td>0,1466</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>267</td>
<td>0,1659</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>329</td>
<td>0,2044</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>632</td>
<td>0,3927</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>736</td>
<td>0,4573</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>841</td>
<td>0,5226</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>950</td>
<td>0,5903</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>1036</td>
<td>0,6437</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>621</td>
<td>0,3859</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>356</td>
<td>0,2212</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>246</td>
<td>0,1529</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>214</td>
<td>0,1330</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>177</td>
<td>0,1100</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>156</td>
<td>0,0969</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>144</td>
<td>0,0895</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 3,8497

Fetch o longitud de acción del viento (F)

\[F = 0,285 \text{ millas} \]
\[F = 458,56 \text{ m} \]

Velocidad del Viento

\[v = 50 \text{ mph} \]
\[v = 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,57</td>
<td>0,7834</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,41</td>
<td>0,7349</td>
</tr>
<tr>
<td>Creager</td>
<td>1,21</td>
<td>0,3673</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
14.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "\(p \)" y "\(V \)" son independientes por evento, y el valor "\(E \)" es idéntico para todos los eventos.

14.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

14.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Estado de conservación

<table>
<thead>
<tr>
<th>Descripción</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Descripción</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 33,72 m³/s
Coeficiente capacidad: 0,42 C1 x C2 x C3
Capacidad efectiva: 14,16 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

Tabulación de probabilidades

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

Crecida Pluvial (m³/s)
Crecida Nival (m³/s)

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>6,94</td>
<td>0,05</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>8,23</td>
<td>0,05</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>9,20</td>
<td>0,05</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

14.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
14.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

14.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>0,20</td>
<td>0,03</td>
<td>0,01</td>
</tr>
<tr>
<td>Muro 2</td>
<td>0,80</td>
<td>0,03</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico para los muros 1 y 2.

14.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Piedras Blancas o Palllmo 2.
<table>
<thead>
<tr>
<th>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</th>
<th>ZONA DE FILTRACIÓN M1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONA DE DEPRESIÓN EN TALUD AGUAS ARRIBA M2</th>
<th>EVACUADOR DE CRECIDAS M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ZONA DE FILTRACIÓN M2</th>
<th>ZONA DE FILTRACIÓN M2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1. ANTECEDENTES GENERALES</td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Nombre de la presa</td>
<td>Piedras Blancas o Palermo 2 (MI)</td>
</tr>
<tr>
<td>Propietario</td>
<td>Bien camuflaje</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>En tramite</td>
</tr>
<tr>
<td>Año de construcció</td>
<td>1910 (ver observaciones)</td>
</tr>
<tr>
<td>Reparación (SO) (NO)</td>
<td>S</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>1993</td>
</tr>
<tr>
<td>Cuenta / Código CDA</td>
<td>Estero Quebrada Hondo</td>
</tr>
<tr>
<td>Subcuenca / Código CDA</td>
<td>Estero Palermo</td>
</tr>
<tr>
<td>Fuente del recursos</td>
<td>Estero Piedras Blancas</td>
</tr>
<tr>
<td>N° de lucha</td>
<td>141</td>
</tr>
<tr>
<td>Fecha (d/m/a/a)</td>
<td>06-10-2009</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Complemento Art. 294 del</td>
<td></td>
</tr>
<tr>
<td>Código de Agua</td>
<td></td>
</tr>
<tr>
<td>Capacidad > 90,000 m3</td>
<td></td>
</tr>
<tr>
<td>Altura del muro > 5 m</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. UBICACIÓN DE PRESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Región</td>
</tr>
<tr>
<td>Provincia</td>
</tr>
<tr>
<td>Comuna</td>
</tr>
<tr>
<td>Coordenadas UTM Estribro Derecho</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Coordenadas UTM Estribro izquierdo</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Datum WGS 84</td>
</tr>
<tr>
<td>Altitud m.s.n.m.</td>
</tr>
<tr>
<td>Norte</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. USO O DESTINO DEL EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riesgo</td>
</tr>
<tr>
<td>Generación de energía</td>
</tr>
<tr>
<td>Abastecimiento de agua potable</td>
</tr>
<tr>
<td>Reserves</td>
</tr>
<tr>
<td>Sedimentación</td>
</tr>
<tr>
<td>Control de erosión</td>
</tr>
<tr>
<td>Recreación</td>
</tr>
<tr>
<td>Otros usos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. TIPO DE EMBALSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presilla de material homogénea</td>
</tr>
<tr>
<td>Presilla de enrocado (CRFD)</td>
</tr>
<tr>
<td>Presilla de hormigón (gravedad, contraluente, arco)</td>
</tr>
<tr>
<td>Presilla de RCC</td>
</tr>
<tr>
<td>Otras tipos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. GEOMETRÍA DE LA PRESA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con hula</td>
</tr>
<tr>
<td>Longitud del coronamiento (m)</td>
</tr>
<tr>
<td>Ancho del coronamiento (m)</td>
</tr>
<tr>
<td>B = 5,9</td>
</tr>
<tr>
<td>Desarrollo del talud aguas abajo (m)</td>
</tr>
<tr>
<td>Reverchón mínimo en relación a la cota máxima de agua corriente (m)</td>
</tr>
<tr>
<td>Parametros verticales</td>
</tr>
<tr>
<td>Con cimentación</td>
</tr>
<tr>
<td>Ancho talud de aguas abajo</td>
</tr>
<tr>
<td>B = 38°</td>
</tr>
<tr>
<td>Ancho talud de aguas arriba</td>
</tr>
<tr>
<td>B = 38°</td>
</tr>
<tr>
<td>C= Centro</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descripción</td>
</tr>
<tr>
<td>Regularidad de la geometría actual</td>
</tr>
<tr>
<td>Compactitud del material estructural</td>
</tr>
<tr>
<td>Uniformidad de las faldas</td>
</tr>
<tr>
<td>Depreciaciones visuales y quitanaturizaciones a lo largo del coronamiento</td>
</tr>
<tr>
<td>No se aprecian depresiones visuales</td>
</tr>
<tr>
<td>Grietas visuales y su ubicación</td>
</tr>
<tr>
<td>No se aprecian grietas visibles</td>
</tr>
<tr>
<td>Indicios de destellementos y ubicación</td>
</tr>
<tr>
<td>No se aprecian indicios de destellementos</td>
</tr>
<tr>
<td>Sectoras que se presentan saturados antes de saturación</td>
</tr>
<tr>
<td>No se aprecian sectores saturados</td>
</tr>
<tr>
<td>Filtraciones visibles en talud de aguas abajo en el pie</td>
</tr>
<tr>
<td>Se aprecia una filtración visible 10 mts arriba y 10 mts después de la cimentación centro del tranque</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
</tr>
<tr>
<td>Tierra compactada con armado de protección en el talud aguas arriba</td>
</tr>
</tbody>
</table>
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGUE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Toro de hormigón concreto por compuerta con marco una válvula de viga en entrada de agua.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Ancho 1.5 mts. Alto 15.0 mts (ver monografía)</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Operativo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCHE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural</th>
<th>artifical aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia cien centros poblados, medidas por el cauce</td>
<td>0.88 Km</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>0.95 Km</td>
</tr>
<tr>
<td>Intensidad de población en las cercanías del tranque</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adjacentes</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial o alta de importancia</td>
<td>0.88 Km</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>30 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (fazías y dimensiones)

Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus tablas respecto a la horizontal.

Indicación en la placa del muro del sitio de toma de la muestra de material

Croquis de la obra de entrega y dimensiones (planta)

Croquis de la obra de entrega y dimensiones (elevación)

12. OBSERVACIONES
FICHA DE CATASTRO DE EMBALSES

1. **ANTecedentes GENERALES**

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Ruta Blanca o Peñillín 2 (LQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Bien común</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>En tramite</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1910 (var. observación)</td>
</tr>
<tr>
<td>Reapertura (SE)</td>
<td>SI</td>
</tr>
<tr>
<td>Año de reapertura</td>
<td>1953</td>
</tr>
<tr>
<td>Cuencas/ Código DGA</td>
<td>Estero Guaymara Honda</td>
</tr>
<tr>
<td>Subcuencas/Código DGA</td>
<td>Estero Peñillín</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Estero Rutas Blancas</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nº de ficha</th>
<th>14.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha (d/m/año)</td>
<td>07-10-2009</td>
</tr>
</tbody>
</table>

2. **UBICACIÓN DE PRESA**

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Libertador Bto. O'Higaya</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Catamín Cara</td>
</tr>
<tr>
<td>Comuna</td>
<td>Machucho</td>
</tr>
<tr>
<td>Coordenadas UTM Estrib. Izquierdo</td>
<td>N= 6,202.263 E= 247.080</td>
</tr>
<tr>
<td>Coordenadas UTM Estrib. Izquierdo</td>
<td>N= 6,201.370 E= 246.987</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Altitud m.s.n.m</th>
<th>ED = 208 C = 207 EL = 210</th>
</tr>
</thead>
<tbody>
<tr>
<td>E= Este</td>
<td>ED= Estrib. Derecho C= Centro EL= Estrib. Izquierdo</td>
</tr>
</tbody>
</table>

3. **USO O DESTÍNIO DEL EMBALSE**

<table>
<thead>
<tr>
<th>Plano</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación de energia</td>
<td>Abastecimiento de agua potable</td>
</tr>
<tr>
<td>Regulación</td>
<td>Semipermanente</td>
</tr>
<tr>
<td>Retenciones</td>
<td></td>
</tr>
<tr>
<td>Control de caídas</td>
<td>Represión</td>
</tr>
<tr>
<td>Otros usos</td>
<td></td>
</tr>
</tbody>
</table>

4. **TIPO DE EMBALSE**

| Presa de tierra homogéneas | X |
| Presa de material granular reforzado |
| Presa de acerado (CPDC) |
| Presa de hormigón (gravedad, contratranque, anco) |
| Presa de RCC |

| Otros tipos |

5. **ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE**

Altura máxima del muro (definida por relaciones hidráulicas)	7,4
Presion hidrostática máxima de agua en sector del muro (m)	4,8
Pérdida máxima de agua en sector del muro (m)	0,9
Volumen total (m³)	488,000
Volumen total (m³)	7,696

6. **DISTRIBUCIÓN DE ALCANTARILLADO**

Área adyacente a la presa (m²)	ED = 3,0º C = 46º EL = 48º
Agua del río a la presa (m³/h)	ED = 48º C = 49º EL = 51º
Área adyacente a la presa (m²)	ED = Estrib. Derecho C= Centro EL= Estrib. Izquierdo

<table>
<thead>
<tr>
<th>Parámetros verticales</th>
<th>NO</th>
</tr>
</thead>
</table>

7. **CARACTERÍSTICAS DEL MUNDO**

<table>
<thead>
<tr>
<th>Inspección visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toma de muestras del suelo (profundamente en el centro del muro)</td>
</tr>
<tr>
<td>Toma de orientaciones y fotocopia del punto mezclado</td>
</tr>
<tr>
<td>Coordenadas UTM</td>
</tr>
</tbody>
</table>

| Clasificación del material de construcción (sección según tabla) | Arcilla Anisomorfa |

7.6. **ESTADO DEL MUNDO Y CALIDAD DE CONSTRUCCIÓN**

Regularidad de la geometría actual	Medioestable regular
Compacidad del material estructural	La compacidad del material estructural fue medida en el muro 1
Uniformidad de las tolvas	Talud agua arriba mediodestable regular. Talud agua abajo irregular
Depresiones visibles y cuantificables a lo largo del contorno	Se aprecian depresiones a lo largo de todo el talud agua abajo (ver álbum fotográfico)
Grietas visibles y su ubicación	No se aprecian grietas visibles
Indicios de desplazamientos y ubicación	No se aprecian indicios de desplazamientos
Sectores que se presentan desgastados y altura de saturación	No se aprecian sectores desgastados

7.7. **CARACTERÍSTICAS GENERALES DE CRISTALIZACIONES**

Por su localización en relación a la estructura	Destruido el punto vista de los instrumentos para el control del caudal vertical:
Verederos laterales	X
Verederos focales	X

Para la detección y estudio de las grietas generales:

Verederos focales	X
Verederos laterales	X
Verederos focales	X

<table>
<thead>
<tr>
<th>Les datos que se presentan son:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veredero de caída libre con compartimentos matra</td>
</tr>
<tr>
<td>Material constructivo</td>
</tr>
<tr>
<td>Estado de conservación y operatividad</td>
</tr>
</tbody>
</table>

| Dimensiones relevantes (ancho, altura y carga máxima de operación) | Largo: 18, 0 mts; Alto: 1,0 mts; Ancho: Compartes: 3,9 mts |
10. CARACTERIZACIÓN DEL CAUCE Y USO DEL

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial, aguas abajo del embalse, tipo de terreno, pendiente media y anchura media del cauce</th>
<th>Canal en terral, terrenos agrícolas, pendiente media 0.8%, ancho medio 2.0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia desde centro polos situados perpendiculares al cauce</td>
<td>No</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tramo</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacentes</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial u obra de importancia</td>
<td>1.30 Km</td>
</tr>
<tr>
<td>Área de riego servida por el tramo analizado</td>
<td>Sí</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

Sección transversal del muro en la zona con menor reventaza y con mayor revancha, indicando sus taludes

ESTRIBO BERCHADO

- 37
- 45

ESTRIBO INSUELDRO

- 44
- 49

Indicación en la planta del muro del sitio donde se ha disuelto el muro de materiales.

Corte de la obra de excavación y dimensiones (planta)

Corte de la obra de excavación y dimensiones (elevación)

12. OBSERVACIONES

EMBALSE LA ROSA
PARTE B: CATASTRO DE EMBALSES

15. EMBALSE LA ROSA
15.1 Ubicación
15.2 Características Generales
15.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
15.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
15.5 Determinación de Filtraciones
15.6 Verificación del Oleaje
15.7 Análisis de Riesgo (Hazop)
15.8 Álbum Fotográfico y Fichas de Catastro
15. EMBALSE LA ROSA

15.1 Ubicación

El embalse La Rosa se ubica en la comuna de Marchigue, provincia de Colchagua, en las coordenadas UTM 6.196.899 Norte y 246.563 Este, Datum WGS 84 a una Altitud de 211 m.s.n.m. Se localiza en la cuenca del Río Tinguiririca, subcuenca del estero Las Cadenas y la fuente corresponde a la quebrada La Rosa.

Este sitio de embalse se localiza al noroeste de la comuna y se accede desde la localidad de Rinconada por la ruta I-50 al norte aproximadamente 3 km hasta la entrada de un camino particular, que corresponde al acceso del tranque.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 15.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE LA ROSA

Fuente: Carta IGM
15.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Soc. Minera y Forestal San Enrique Ltda. El uso y destino del embalse es de riego y fue construido el año 1970.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,634 hm³. La altura máxima del muro es de 14,8 m, con una longitud de coronamiento de 170 m y ancho promedio del coronamiento de 4,3 m y borde libre de 1,7 m. El Talud Aguas Arriba es H:V=1,20:1 y el Talud Aguas Abajo es H:V=1,01:1.

El evacuador de crecidas corresponde a un vertedero frontal. Está controlado por compuerta con salida a canal revestido de 2,7 m de ancho por 2,0 m de alto. En regular estado, operacional.

La obra de entrega corresponde a una tubería de 200 mm de diámetro. También existen unas balsas donde se instalan bombas para la extracción del agua. (El encargado dice que no se usan). Se encuentra operativo.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 15.2-1
IMAGEN SATELITAL EMBALSE LA ROSA
Vista panorámica Embalse La Rosa
15.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse La Rosa tiene como fuente a la quebrada La Rosa, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 5,11 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 15.3-1
CUENCA EMBALSE LA ROSA

![Diagrama de la cuenca de Embalse La Rosa](image_url)
CUADRO 15.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>La Rosa</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td>510,8</td>
<td></td>
</tr>
<tr>
<td>Pluvial</td>
<td>510,8</td>
<td></td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>15.840,0</td>
<td></td>
</tr>
<tr>
<td>Pluvial</td>
<td>15.840,0</td>
<td></td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>437,7</td>
<td></td>
</tr>
<tr>
<td>Mínima</td>
<td>221,0</td>
<td></td>
</tr>
<tr>
<td>Diferencia</td>
<td>216,7</td>
<td></td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>18,8</td>
<td></td>
</tr>
<tr>
<td>Cauce</td>
<td>13,0</td>
<td></td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>3,93</td>
<td></td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
<td>1,96</td>
<td></td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>245,594</td>
<td></td>
</tr>
<tr>
<td>UTM N</td>
<td>6.195,470</td>
<td></td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>335,8</td>
<td></td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>246,238</td>
<td></td>
</tr>
<tr>
<td>UTM N</td>
<td>6.195,680</td>
<td></td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>254</td>
<td></td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
<td></td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A + 1.5 \cdot L}}{0.8 \sqrt{Hg}} \quad \text{(hrs); con} \quad \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{A}{J} \)

Fórmula de Témez:

\[t_c = 0.3 \cdot \left(\frac{L}{J^{0.75}} \right) \]
Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (%).} \]
\[H_g = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,58</td>
<td>1,74</td>
</tr>
</tbody>
</table>

> **Precipitaciones Máximas**

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Rosa</td>
<td>Rapel</td>
<td>0,099</td>
<td>80</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

> **Caudales de Crecidas**

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_t^{\frac{T}{3,6}} \cdot A_p}{3,6}
\]

Donde:

- \(Q(T) \) Caudal generado en la cuenca en (m³/s)
- \(C(T) \) Coeficiente de Escorrentía
- \(I_t \) Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(t_c \) en (mm/h)
- \(A_p \) Área pluvial de la cuenca tributaria (km²).

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1,24} \cdot (Ap)^{0,88} \]

Donde:
- \(C(T) \) Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \) Precipitación máxima en 24 h y período de retorno T años
- \(Ap \) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Rosa</td>
<td>T=2</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,6</td>
<td>5,3</td>
<td>1,7</td>
<td>6,9</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Nilahue</td>
<td>0,8</td>
<td>7,4</td>
<td>2,6</td>
<td>12,1</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Nilahue</td>
<td>1,0</td>
<td>8,6</td>
<td>4,5</td>
<td>16,1</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,1</td>
<td>9,4</td>
<td>5,4</td>
<td>18,9</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,2</td>
<td>10,0</td>
<td>6,1</td>
<td>21,2</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Nilahue</td>
<td>1,2</td>
<td>10,4</td>
<td>6,6</td>
<td>22,8</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,4</td>
<td>11,8</td>
<td>8,4</td>
<td>28,1</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Nilahue</td>
<td>1,5</td>
<td>13,2</td>
<td>11,2</td>
<td>36,1</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

Donde:

- \(Q_{10} \) Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km²)

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>La Rosa</td>
<td>0,41</td>
</tr>
</tbody>
</table>

- **Extrapolación de caudales**

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>La Rosa</td>
<td>11,96</td>
</tr>
</tbody>
</table>

15.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 8,8 m
- Ancho coronamiento: 4,1 m
- Borde libre: 2,1 m
- Talud Aguas Arriba: $H : V = 1,20 : 1$
- Talud Aguas Abajo: $H : V = 1,01 : 1$

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.
CUADRO 15.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>φ = 22°</td>
<td>2,2</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 15.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 15.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 15.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 15.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 15.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 15.4-6
TALUD AGUASABAJO - ESTÁTICO SIN AGUA
FIGURA 15.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 15.4-8
TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) **Factores de seguridad**

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 15.4-2

FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $h_k=0,12g$</td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>1,833</td>
<td>1,439</td>
</tr>
<tr>
<td>Aguas Abajo</td>
<td>1,237</td>
<td>1,092</td>
</tr>
<tr>
<td>La Rosa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $h_k=0,12g$</td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>1,575</td>
<td>1,585</td>
</tr>
<tr>
<td>Aguas abajo</td>
<td>1,249</td>
<td>1,193</td>
</tr>
<tr>
<td>La Rosa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15.5 **Determinación de Filtraciones**

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 L_h$).

$$L' = \frac{1}{3} L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C'h$$

Para el caso del tranque **La Rosa**, se tiene:

<table>
<thead>
<tr>
<th>L_h (m)</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>37,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>L_v (m)</th>
<th>Longitud vertical en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C'</th>
<th>Coeficiente de filtración que depende del tipo de material del embalse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h (m)</th>
<th>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</th>
</tr>
</thead>
<tbody>
<tr>
<td>13,07</td>
<td></td>
</tr>
</tbody>
</table>
De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA ROSA</td>
<td>37.0</td>
<td>0</td>
<td>12.34</td>
<td>14.8</td>
<td>1.7</td>
<td>13,071</td>
<td>1.80</td>
<td>23.5</td>
<td>L' ≥ C' h</td>
<td>No</td>
</tr>
</tbody>
</table>

15.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse La Rosa.

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1.70 m, se tiene que la altura de la ola no superaría esta revancha.
LA ROSA
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N.º</th>
<th>Álfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>134</td>
<td>0,0833</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>144</td>
<td>0,0895</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>150</td>
<td>0,0932</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>161</td>
<td>0,1000</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>163</td>
<td>0,1013</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>173</td>
<td>0,1075</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>169</td>
<td>0,1050</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>179</td>
<td>0,1112</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>200</td>
<td>0,1243</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>233</td>
<td>0,1448</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>278</td>
<td>0,1727</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>338</td>
<td>0,2100</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>445</td>
<td>0,2765</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>85</td>
<td>0,0528</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>85</td>
<td>0,0528</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 1,5316

Fetch o longitud de acción del viento (F)

F = 0,113 millas
F = 182,43 m

Velocidad del Viento
v = 50 mph
v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th></th>
<th>Altura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pie</td>
</tr>
<tr>
<td>Stevenson</td>
<td>2,42</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,32</td>
</tr>
<tr>
<td>Creager</td>
<td>0,86</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
15.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \lor E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

15.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vulnerabilidad frente a evento sísmico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vaciamiento en función de la traza de la falla</td>
</tr>
<tr>
<td>No se registra falla para el evento dado</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
</tr>
</tbody>
</table>

15.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>(C1)</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Estado de conservación

<table>
<thead>
<tr>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
</tr>
</tbody>
</table>

Capacidad evacuación:

- 18,00 m³/s
- Coeficiente capacidad: 0,36
- Capacidad efectiva: 6,48 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

Tabulación de probabilidades

<table>
<thead>
<tr>
<th>Vulnerabilidad</th>
<th>0,05</th>
<th>0,05 a 0,95</th>
<th>0,95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
<td>0,05 a 0,95</td>
<td>0,95</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Creación de vulnerabilidades

<table>
<thead>
<tr>
<th>Probabilidad</th>
<th>Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>11,96</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0,002</td>
<td>14,18</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>0,0010</td>
<td>16,86</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

15.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro

<table>
<thead>
<tr>
<th></th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
<td></td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
<td>0,2</td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
<td>0,2</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

15.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

15.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,40</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,48</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

15.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse La Rosa.
FICHA DE CATÁSTRO DE EMBALSES

1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>La Rosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Soc. Minera y Forestal San Enrique Ltda.</td>
</tr>
<tr>
<td>NIT/Propietario</td>
<td>75 448 210-5</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1970</td>
</tr>
<tr>
<td>Región</td>
<td>La Cuenca del Cauca</td>
</tr>
<tr>
<td>Subregion</td>
<td>Rio Magdalena</td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Quebrada La Rosa</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Liberator Bol. Cauca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Antioquia</td>
</tr>
<tr>
<td>Municipio</td>
<td>Barbalonga</td>
</tr>
<tr>
<td>Coordenadas UTM Este derecho</td>
<td>6,199,827 E= 2,405,519</td>
</tr>
<tr>
<td>Coordenadas UTM Este izquierdo</td>
<td>6,199,989 E= 2,406,563</td>
</tr>
<tr>
<td>Altura m.s.n.m</td>
<td>ED = 213 C = 211; El = 217</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Tipo de Embalse</th>
<th>Presa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa de tierra homogénea</td>
<td>X</td>
</tr>
<tr>
<td>Presa de material granular graduado</td>
<td></td>
</tr>
<tr>
<td>Presa de concreto (CPC)</td>
<td></td>
</tr>
<tr>
<td>Presa de hormigón (gravedad, contrafuerte, aros)</td>
<td></td>
</tr>
<tr>
<td>Presa de ROC</td>
<td></td>
</tr>
</tbody>
</table>

5. SEÑALÍTICA DE LA PRESA

<table>
<thead>
<tr>
<th>Tipo de señal</th>
<th>Cabeza de la presa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del corrimiento (m)</td>
<td>170</td>
</tr>
<tr>
<td>Anchura del corrimiento (m)</td>
<td>ED = 4,76; C = 4,56; El = 3,30</td>
</tr>
<tr>
<td>Diametro del talud de agua abajo (m)</td>
<td>21,0</td>
</tr>
<tr>
<td>Diametro del talud de agua arriba</td>
<td>ED = 34,0 C = 34,0; El = 34,0</td>
</tr>
</tbody>
</table>

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

| Volumen declarado e proyectado (millones de m³) | 0,634 |

7-4. CARACTERÍSTICAS DEL MURO

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRISEVIDAS

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción del muro</th>
<th>Descriptores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad del muro</td>
<td>Uniforme, regular</td>
</tr>
<tr>
<td>Depresiones y fisuras</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Grietas visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Indicios de deslizamientos</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Fisuras visibles</td>
<td>No se aprecian</td>
</tr>
<tr>
<td>Tipo de revestimiento</td>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>
5. CARACTERÍSTICAS OBRAS DE ENTREGA Y OBSTÁCULOS DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Tubería de 0.30 m de diámetro. También estarán unas balsas donde se instalarán bombas para la explotación del agua. (En encargado dice que no se usa).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>Tubería de 0.30 m de diámetro</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Operativo</td>
</tr>
</tbody>
</table>

10. CARACTERÍSTICAS DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial, aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
<th>Canal en tierra, tramos agrícolas, pendiente media 1,4%, ancho medio cauce 26 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancias hacia centros poblados medidos por el cauce</td>
<td>2.26 Kms.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>1.74 Kms.</td>
</tr>
<tr>
<td>Densidad de población en los entornos del tronco de tronco</td>
<td>Media - Alta</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adjascente</td>
</tr>
<tr>
<td>Distancia hasta sectores con infraestructura vial o obra de importancia</td>
<td>1.08 Kms.</td>
</tr>
<tr>
<td>Área de riesgo servida por el tronco analizado</td>
<td>30 ha</td>
</tr>
</tbody>
</table>

11. MONTORAFÍA

- Planta del muro (formas y dimensiones)
- Sección transversal del muro en la zona con menor inclinación y con mayor recuentos, indicando sus faldones

12. OBSERVACIONES

En el extremo 140 a partir del estribio derecho, por medio de la inspección visual, se detecta en el mismo punto una degradación en el embarramado, junto con un deslizamiento de tierra en el talud aguas abajo. Esto se debe a que en algún momento se extrajo el agua con bombas y se entregue al cerro dejándose descubierto por el talud con protecciones plásticas, (ver álbum fotográfico).
EMBALSE ALCONES
ÍNDICE INFORME FINAL

PARTE B: CATASTRO DE EMBALSES

16. EMBALSE ALCONES (EL SAUCE)
16.1 Ubicación
16.2 Características Generales
16.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
16.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
16.5 Determinación de Filtraciones
16.6 Verificación del Oleaje
16.7 Análisis de Riesgo (Hazop)
16.8 Álbum Fotográfico y Fichas de Catastro
16. EMBALSE ALCONES

16.1 Ubicación

El embalse Alcones se ubica en la comuna de Marchique, provincia de Cardenal Caro, en las coordenadas UTM 6.191.839 Norte y 246.460 Este, Datum WGS 84 a una Altitud de 226 m.s.n.m. Se localiza en la cuenca del estero Nilahue, subcuenca del estero Las Cadenas y la fuente corresponde al estero Las Cadenas.

Este sitio de embalse se localiza a 3,7 km del límite con la comuna de Pichilemu. Se puede desde la localidad de Alcones hacia el surponiente por la ruta I-184 aproximadamente 2.2 km hasta el sector la Herradura.

En la figura siguiente se presenta el plano de ubicación del embalse.

**FIGURA 16.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE ALCONES**

Fuente: Carta IGM
16.2 Características Generales

El *embalse* corresponde a un tranque de tierra perteneciente a Comunidad de Aguas Tranque El Sauce. El uso y destino del embalse es de riego y fue construido en el año 1920.

El *tipo de presa* es de tierra homogénea con una capacidad máxima de 7,343 hm³. La altura máxima del muro es de 27,2 m, con una longitud de coronamiento de 450 m y ancho promedio del coronamiento de 8,0 m y borde libre de 2 m. El Talud Aguas Arriba es H:V=2,14:1 y el Talud Aguas Abajo es H:V=1,54:1.

El *evacuador de crecidas* corresponde a un vertedero de campana, de ancho medio de 5 m y 5 m de alto. No tiene estructura de control. Regular estado de mantenención y operación.

La *obra de entrega* corresponde a una estructura circular de hormigón armado de 1,10 m de diámetro con un volante de acero que permite controlar la tubería de entrega de 0,80 m. La obra se encuentra en regular estado de mantenención y operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 16.2-1
IMAGEN SATELITAL EMBALSE ALCONES
Vista panorámica Embalse Alcones
16.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Alcones tiene como fuente al estero Las Cadenas, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 59,54 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 16.3-1
CUENCA EMBALSE ALCONES
CUADRO 16.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Alcones (El Sauce)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total: 5.954,2</td>
</tr>
<tr>
<td></td>
<td>Pluvial: 5.954,2</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total: 53.480,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial: 53.480,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima: 610,0</td>
</tr>
<tr>
<td></td>
<td>Minima: 243,4</td>
</tr>
<tr>
<td></td>
<td>Diferencia: 366,6</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca: 14,4</td>
</tr>
<tr>
<td></td>
<td>Cauce: 3,5</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total: 11,42</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad: 5,71</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E: 243,943</td>
</tr>
<tr>
<td></td>
<td>UTM N: 6,189,391</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm): 292,6</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E: 243,891</td>
</tr>
<tr>
<td></td>
<td>UTM N: 6,187,756</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm): 253</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

Tiempo de Concentración

Para estimar el tiempo de concentración (t_c) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

$$ t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} $$

Fórmula de Giandotti:

$$ t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \cdot \sqrt{H_g}} \quad (hrs); \quad \frac{5.4}{L} \leq t_c \leq \frac{L}{3.6} $$

Fórmula de Ventura - Heras: $t_c = 0.05 \cdot \sqrt{\frac{A}{J}}$

Fórmula de Témez:

$$ t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} $$
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Alcones

Donde:

L = Longitud del cauce principal en km.
Hmáx = Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
A = Área cuenca en km².
J = Pendiente del cauce (%).
Hg = Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Alcones</td>
<td>1,63</td>
<td>8,55</td>
</tr>
</tbody>
</table>

> Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcones</td>
<td>Rapel</td>
<td>0,189</td>
<td>90</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

> Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{c}^{T} \cdot Ap}{3,6} \]

Donde:

- \(Q(T) \) Caudal generado en la cuenca en (m³/s)
- \(C(T) \) Coeficiente de Escorrentía
- \(I_{c}^{T} \) Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)
- \(Ap \) Área pluvial de la cuenca tributaria (km²).

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[
Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^{T})^{1.24} \cdot (Ap)^{0.88}
\]

Donde:
- \(C(T)\) Coeficiente empírico para diferentes periodos de retorno
- \(P_{24}^{T}\) Precipitación máxima en 24 h y período de retorno \(T\) años
- \(Ap\) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alcones</td>
<td>(T=2)</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.6</td>
<td>11.5</td>
<td>17.2</td>
<td>60.7</td>
</tr>
<tr>
<td></td>
<td>(T=5)</td>
<td>0.60</td>
<td>Nilahue</td>
<td>0.8</td>
<td>15.8</td>
<td>25.6</td>
<td>106.8</td>
</tr>
<tr>
<td></td>
<td>(T=11)</td>
<td>0.88</td>
<td>Nilahue</td>
<td>1.0</td>
<td>18.5</td>
<td>45.1</td>
<td>141.9</td>
</tr>
<tr>
<td></td>
<td>(T=15)</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.1</td>
<td>20.2</td>
<td>54.1</td>
<td>166.6</td>
</tr>
<tr>
<td></td>
<td>(T=20)</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1.2</td>
<td>21.5</td>
<td>61.5</td>
<td>186.6</td>
</tr>
<tr>
<td></td>
<td>(T=25)</td>
<td>0.80</td>
<td>Nilahue</td>
<td>1.2</td>
<td>22.3</td>
<td>66.7</td>
<td>200.6</td>
</tr>
<tr>
<td></td>
<td>(T=50)</td>
<td>0.87</td>
<td>Nilahue</td>
<td>1.4</td>
<td>25.3</td>
<td>84.8</td>
<td>247.5</td>
</tr>
<tr>
<td></td>
<td>(T=100)</td>
<td>1</td>
<td>Nilahue</td>
<td>1.5</td>
<td>28.3</td>
<td>112.0</td>
<td>318.2</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

\[
Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915}
\]

Donde:
- \(Q_{10}\) Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10}\) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap\) Área Pluvial de la cuenca (km²)
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(\frac{Q(T)}{Q(10)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Alcones</td>
<td>5,80</td>
</tr>
</tbody>
</table>

 Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Alcones</td>
<td>120,20</td>
</tr>
</tbody>
</table>
16.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla limo arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

Altura:	16,34 m
Ancho coronamiento:	8,0 m
Borde libre:	2,0 m
Talud Aguas Arriba:	H : V= 2,14 : 1
Talud Aguas Abajo:	H : V= 1,54 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>θ = 24°</td>
<td>2,5</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 16.4-1

TALUD AGUAS ARriba - ESTÁTICO CON AGUA
FIGURA 16.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 16.4-3
TALUD AGUAS ARriba - SÍSMICO CON AGUA
FIGURA 16.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 16.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 16.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 16.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 16.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico kh=0,12g</td>
<td></td>
</tr>
<tr>
<td>Agua Arriba</td>
<td>Agua Abajo</td>
<td></td>
</tr>
<tr>
<td>Alcones</td>
<td>2,021</td>
<td>1,219</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
</tr>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Agua Arriba</td>
</tr>
<tr>
<td>Alcones</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
16.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C' h \]

Para el caso del tranque Alcones, se tiene:

<table>
<thead>
<tr>
<th>Lh (m) = 108,4</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv (m) = 0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>C' = 1,70</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>h (m) = 25,23</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh (m)</th>
<th>Lv (m)</th>
<th>L' (m)</th>
<th>Ht (m)</th>
<th>bL (m)</th>
<th>h (m)</th>
<th>C'</th>
<th>(C' h) (m)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALCONES</td>
<td>108,4</td>
<td>36,12</td>
<td>27,2</td>
<td>2,0</td>
<td>25,32</td>
<td>1,70</td>
<td>42,9</td>
<td></td>
<td>L' ≥ C' h</td>
</tr>
</tbody>
</table>

16.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_oa). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Alcones.
Detección de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>(\cos(\alpha))</th>
<th>(\cos^2(\alpha))</th>
<th>Distancia</th>
<th>Dist. * (\cos^2(\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>0,7431</td>
<td>0,5523</td>
<td>87</td>
<td>0,0541</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>0,8090</td>
<td>0,6545</td>
<td>111</td>
<td>0,0690</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>151</td>
<td>0,0938</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>175</td>
<td>0,1087</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>251</td>
<td>0,1560</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>460</td>
<td>0,2858</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>1187</td>
<td>0,7376</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>1987</td>
<td>1,2347</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>1987</td>
<td>1,2347</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>578</td>
<td>0,3592</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>604</td>
<td>0,3753</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>635</td>
<td>0,3946</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>468</td>
<td>0,2908</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>440</td>
<td>0,2734</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>451</td>
<td>0,2802</td>
</tr>
<tr>
<td>Suma</td>
<td>13,5109</td>
<td>0,5523</td>
<td>0,5523</td>
<td>Suma 5,4002</td>
<td></td>
</tr>
</tbody>
</table>

Fetch o longitud de acción del viento (F)

\[F = 0,400 \text{ millas} \]
\[F = 643,24 \text{ m} \]

Velocidad del Viento

\[v = 50 \text{ mph} \]
\[v = 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,65</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,46</td>
</tr>
<tr>
<td>Creager</td>
<td>1,37</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 2,00 m, se tiene que la altura de la ola no superaría esta revancha.

16.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

16.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “(p)”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,2</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

16.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th></th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 32,95 m³/s

Coeficiente capacidad: 0.36 \(C_1 \times C_2 \times C_3 \)

Capacidad efectiva: 11,86 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retomo, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q \text{ af} < Q \text{ normal máx})</td>
<td>0.05</td>
</tr>
<tr>
<td>(Q \text{ normal máx} < Q \text{ af} < Q \text{ max. último})</td>
<td>0.05 a 0.95</td>
</tr>
<tr>
<td>(Q \text{ af} > Q \text{ max. último})</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td>120.20</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.002</td>
<td>142.51</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.0010</td>
<td>159.39</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

16.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0.95 a 0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro	Riesgo "p"	Valor adoptado
Sin humedad al pie | 0,05 |
Saturación abajo del muro | 0,05 a 0,10 |
Saturación del pie | 0,10 a 0,20 |
Filtración | 0,20 a 0,95 | 0,2
Si existe sistema de drenaje | 0 |
Si el material es cohesivo | 0,05 |

16.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

16.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escoorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,80</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

16.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Alcones.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO HACIA ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA TAULD AGUAS ARRIBA</td>
<td>DEPRESION EN EL MURO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA</td>
<td>OBRA DE ENTREGA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Evacuador de Crecidas</td>
<td>Evacuador de Crecidas</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Clasificación de Material de Construcción</td>
<td>Vista Talud Aguas Abajo</td>
</tr>
<tr>
<td>Paramento Vertical</td>
<td>Vegetación en el Muuro Aguas Abajo</td>
</tr>
</tbody>
</table>
Ficha de Catastro de Embalses

1. Antecedentes Generales

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Acceso (El Soto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Comunidad de Agua Tumbes El Sauce</td>
</tr>
<tr>
<td>R.U.P. Propietario</td>
<td>8</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1980</td>
</tr>
<tr>
<td>Uso (Sí/No)</td>
<td>Sí</td>
</tr>
<tr>
<td>Año de regulación</td>
<td>1980</td>
</tr>
<tr>
<td>Código Caja</td>
<td>100101020</td>
</tr>
<tr>
<td>Superficie Código DGA</td>
<td>Entre las Cadenas</td>
</tr>
<tr>
<td>Fuente de reclamo</td>
<td>Entre las Cadenas</td>
</tr>
</tbody>
</table>

2. Ubicación de Presa

<table>
<thead>
<tr>
<th>Región</th>
<th>I (del Litoral) 83° 00' O (Marinus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cantabria</td>
</tr>
<tr>
<td>Comuna</td>
<td>Margarita</td>
</tr>
<tr>
<td>Coordenadas UTM</td>
<td>N8 101 706 E4 248 320</td>
</tr>
<tr>
<td>Coordenadas UTM</td>
<td>N8 101 702 E4 248 400</td>
</tr>
<tr>
<td>Altitud m.s.n.m</td>
<td>ED = 220; C = 220; E = 230</td>
</tr>
<tr>
<td>Estrecho</td>
<td>ED = Estrecho Derecho C = Centro E = Estrecho Izquierdo</td>
</tr>
</tbody>
</table>

4. Tipo de Embalse

Presa de tierra homogénea	X
Presa de material granular prensado	
Presa de concreto (C/F R/D)	
Presa de hormigón (premezclado, concreta, preso)	
Presa de RCC	
Otros tipos	

5. Geometría de la Presa

<table>
<thead>
<tr>
<th>Caso Aislado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Longitud del corrimiento (m)</td>
</tr>
<tr>
<td>Anchura del corrimiento (m)</td>
</tr>
<tr>
<td>Anchura del talud de agua abajo (m)</td>
</tr>
<tr>
<td>Relieve en el talud en relación a la cota máxima de agua contenida (m)</td>
</tr>
<tr>
<td>Parámetros verticales</td>
</tr>
<tr>
<td>Te; El; D; BC</td>
</tr>
</tbody>
</table>

6. Estimación Capacidad Máxima del Embalse

Altura máxima del muro (m)	27,2
Prevalencia máxima de agua en sector del muro (m)	25,2
Área estimada a caudal de la pico (m²)	1.049.250
Área máxima de la presa (m²)	7.450
Longitud de la pano (m)	7,49

7. Estudio del Muero y Calidad de Construcción

7.1. Regularidad de la geometría y materiales

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
</tr>
</tbody>
</table>

7.2. Uniformidad de los bloques

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformemente regular en ambos lados</td>
</tr>
</tbody>
</table>

7.3. Cristales visibles y no y clásicos de desgaste

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se presentan grises visibles</td>
</tr>
</tbody>
</table>

7.4. Indicadores de desgaste y alteraciones

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se presentan indicadores de desgaste</td>
</tr>
</tbody>
</table>

7.5. Alteraciones visibles en talud de agua abajo en la pano

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>No fechas visible que no exista acceso a fondo de presa</td>
</tr>
</tbody>
</table>

7.6. Tipo de revestimiento del muro

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tierra compuesta</td>
</tr>
</tbody>
</table>

7.5. Características Obras Evacuador de Criedas

7.5.1. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

7.5.2. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

7.6. Características Obras Evacuador de Criedas

7.6.1. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

7.6.2. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

8. Características Obras Evacuador de Criedas

8.1. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

8.2. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

9. Características Obras Evacuador de Criedas

9.1. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

9.2. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

10. Características Obras Evacuador de Criedas

10.1. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

10.2. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

11. Características Obras Evacuador de Criedas

11.1. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

11.2. Características Obras Evacuador de Criedas

<table>
<thead>
<tr>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>
9. CARACTERÍSTICAS DE LAS DE EXTREMA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Tapa circular de hormigón de 3,0 m de diámetro y 30,0 m de alto que contiene 3 tuberías de 1,20 m de diámetro que contienen el agua a quebrada natural y que son tapadas por válvulas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Tapa: 3,0 m de diámetro; Alto: 30,0 m. Tubería: 1,20 m de diámetro.</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Fincamiento. El cauce de la quebrada está libre de aguas.</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de suelo natural o artificial que aguas abajo del embalse, tipo de termino, pendiente media y ancho medio del cauce</th>
<th>Quebrada natural, caminos, pendiente media 3,9%, ancho medio 40 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>2,4 Km.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>2,1 Km.</td>
</tr>
<tr>
<td>Densidad de población en los componentes del tramo</td>
<td>Media - alta</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>1,7 Km.</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vital u otro de importancia</td>
<td>1,4 Km.</td>
</tr>
<tr>
<td>Área de Uso sanitaria por el cauce analizado</td>
<td>none</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

- Planta del muro (forma y dimensiones)
- Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes.

12. OBSERVACIONES

El muro del tramo fue recubierto con ayuda del encargado con el que no fue posible hacer el pie del laster agua bajo por un edificio en el que estaban ubicados uso de vacaciones para este efecto, celebrando una reunión de antenas y teléfonos televisores a la instalación.

Nota: La antigüedad del tramo y sus válvulas están llenas de basura y agua, por lo cual no se está usando el tramo para otros servicios.
EMBALSE MALLERMO
ÍNDICE INFORME FINAL

PARTE B: CATASTRO DE EMBALSES

17. EMBALSE MALLERMO
 17.1 Ubicación
 17.2 Características Generales
 17.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 17.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 17.5 Determinación de Filtraciones
 17.6 Verificación del Oleaje
 17.7 Análisis de Riesgo (Hazop)
 17.8 Álbum Fotográfico y Fichas de Catastro
17. EMBALSE MALLERMO

17.1 Ubicación

El embalse Mallermo se ubica en la comuna de Marchigue, provincia de Cardenal Caro, en las coordenadas UTM 6.197.160 Norte y 251.383 Este, Datum WGS 84 a una Altitud de 190 m.s.n.m. Se localiza en la cuenca del Río Tinguiririca, subcuenca del estero Las Cadenas y la fuente corresponde a la quebrada Curamahue.

Este sitio de embalse se localiza al norte del estero La Rosa. Se puede acceder desde la localidad de Alcones, al norte por la ruta l-50 por 4 km hasta el cruce con la ruta l-202, finalmente al nororiente por aproximadamente 2 km.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 17.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE MALLERMO

Fuente: Carta IGM
17.2 Características Generales

El **embalse** corresponde a un tranque de tierra perteneciente a Sociedad Agrícola de Responsabilidad Ltda. Mallermo. El uso y destino del embalse es de riego y fue construido en el año 1920 aproximadamente.

El **tipo de presa** es de tierra homogénea con una capacidad máxima de 1,103 hm³. La altura máxima del muro es de 9,6 m, con una longitud de coronamiento de 489 m y ancho promedio del coronamiento de 4,1 m y borde libre de 2,1 m. El Talud Aguas Arriba es H:V=1,38:1 y el Talud Aguas Abajo es H:V=1,19:1.

El **evacuador de crecidas** corresponde a un vertedero frontal de caída libre con salida a canal en tierra. El ancho es de 17,0 m, alto de 0,8 m y largo de 4,6 m. No tiene estructura de control. En buen estado, operacional.

La **obra de entrega** corresponde a una obra de hormigón de 2,6 m de ancho por 4,2 m de alto, que contiene tubería de 300 mm de diámetro con válvula de volante por donde sale el agua del tranque y la entrega a canal en tierra de 1,0 m de ancho por 0,3 m de alto. Se encuentra operativo. Existe una filtración en la llave por agotamiento de material.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 17.2-1
IMAGEN SATELITAL EMBALSE MALLERMO
Vista panorámica Embalse Mallermo
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins

Embalse Mallermo
17.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Mallermo tiene como fuente a la quebrada Curamahue, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – esorrentía.

La cuenca en estudio tiene una superficie de 3,61 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 17.3-1
CUENCA EMBALSE MALLERMO
CUADRO 17.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>Total</th>
<th>Mallermo</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>360,8</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
<td>13.860,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
<td>13.860,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
<td>232,2</td>
</tr>
<tr>
<td></td>
<td>Minima</td>
<td>188,4</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
<td>43,8</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
<td>4,4</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
<td>3,7</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
<td>3,14</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
<td>1,57</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
<td>252.569</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6.198.370</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>200,3</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
<td>252.295</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
<td>6.198.450</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
<td>192</td>
</tr>
<tr>
<td>DATUM</td>
<td></td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (t_c) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

$$t_c = 0.95 \left(\frac{L^3}{H_{máx}} \right)^{0.385}$$

Fórmula de Giandotti:

$$t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs)}; \quad \text{con } \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6}$$

Fórmula de Ventura - Heras: $t_c = 0.05 \cdot \sqrt{\frac{A}{J}}$

Fórmula de Témez:

$$t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75}$$
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins
Embalse Mallermo

Donde:

L = Longitud del cauce principal en km.
Hmáx= Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
A = Área cuenca en km².
J = Pendiente del cauce (%).
Hg= Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0,83</td>
<td>4,45</td>
</tr>
</tbody>
</table>

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 HRS EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 hrs,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallermo</td>
<td>Rapel</td>
<td>0,103</td>
<td>77,1</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{tc} \cdot Ap}{3,6} \]

Donde:

- \(Q(T) \) = Caudal generado en la cuenca en (m³/s)
- \(C(T) \) = Coeficiente de Escorrentía
- \(I_{tc} \) = Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)
- \(Ap \) = Área pluvial de la cuenca tributaria (km²).

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[
Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^{T})^{1.24} \cdot (A_p)^{0.88}
\]

Donde:
- \(C(T)\): Coeficiente empírico para diferentes periodos de retorno
- \(P_{24}^{T}\): Precipitación máxima en 24 h y periodo de retorno \(T\) años
- \(A_p\): Área pluvial (km\(^2\))

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mallermo</td>
<td>T=2</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0.6</td>
<td>5.4</td>
<td>1.2</td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0.60</td>
<td>Nilahue</td>
<td>0.8</td>
<td>7.4</td>
<td>1.8</td>
<td>8.0</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0.68</td>
<td>Nilahue</td>
<td>1.0</td>
<td>8.7</td>
<td>3.2</td>
<td>10.7</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1.1</td>
<td>9.5</td>
<td>3.8</td>
<td>12.5</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1.2</td>
<td>10.1</td>
<td>4.3</td>
<td>14.0</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0.80</td>
<td>Nilahue</td>
<td>1.2</td>
<td>10.4</td>
<td>4.7</td>
<td>15.1</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0.87</td>
<td>Nilahue</td>
<td>1.4</td>
<td>11.8</td>
<td>5.9</td>
<td>18.6</td>
</tr>
<tr>
<td></td>
<td>T=110</td>
<td>1</td>
<td>Nilahue</td>
<td>1.5</td>
<td>13.2</td>
<td>7.8</td>
<td>23.9</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

\[
Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (A_p)^{0.915}
\]

Donde:
- \(Q_{10}\): Caudal medio diario máximo con periodo de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10}\): Precipitación diaria máxima de periodo de retorno 10 años (mm)
- \(A_p\): Área Pluvial de la cuenca (km\(^2\))
En donde $Q(T)$ corresponde al caudal instantáneo máximo según el período de retorno T y α toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>$Q(T) / Q(10)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Mallermo</td>
<td>0,26</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Mallermo</td>
<td>8,42</td>
</tr>
</tbody>
</table>
17.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arena arcillosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

<table>
<thead>
<tr>
<th>Material</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>φ = 25°</td>
<td>1,8</td>
<td>1,75</td>
<td>1,95</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) **Resultados gráficos estabilidad de taludes**

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 17.4-1

TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 17.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 17.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 17.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 17.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 17.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 17.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 17.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éstático</td>
<td>Sísmico $kh=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Mallermo</td>
<td>1,835</td>
<td>1,409</td>
</tr>
<tr>
<td></td>
<td>1,233</td>
<td>1,064</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Éstático</td>
<td>Sísmico $kh=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>Mallermo</td>
<td>1,575</td>
<td>1,565</td>
</tr>
<tr>
<td></td>
<td>1,247</td>
<td>1,185</td>
</tr>
</tbody>
</table>
17.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C' \cdot h \]

Para el caso del tranque Mallermo, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>28,9</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv (m)</td>
<td>0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>C'</td>
<td>1,9</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>h (m)</td>
<td>7,54</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>MALLERMO</td>
<td>28,9</td>
<td>0</td>
<td>9,62</td>
<td>9,6</td>
<td>2,1</td>
<td>7,542</td>
<td>1,90</td>
<td>14,3</td>
<td>L' \geq C' h</td>
</tr>
</tbody>
</table>

17.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Mallermo.

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 2,10 m, se tiene que la altura de la ola no superaría esta revancha.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>(\cos(\alpha))</th>
<th>(\cos^2(\alpha))</th>
<th>Distancia</th>
<th>Dist. (\times) (\cos^2(\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>271</td>
<td>0.1684</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>269</td>
<td>0.1671</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.8966</td>
<td>0.7500</td>
<td>288</td>
<td>0.1790</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>372</td>
<td>0.2311</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>452</td>
<td>0.2809</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>600</td>
<td>0.3728</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>1406</td>
<td>0.8736</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1346</td>
<td>0.8364</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>1167</td>
<td>0.7251</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>1129</td>
<td>0.7015</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>1082</td>
<td>0.6723</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>1045</td>
<td>0.6493</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>497</td>
<td>0.3088</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>1002</td>
<td>0.6226</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>1000</td>
<td>0.6214</td>
</tr>
</tbody>
</table>

| Suma | 13,5109 | Suma | 6,3615 |

Fetch o longitud de acción del viento (F)

\[F = 0,471 \text{ millas} \]

\[F = 757,74 \text{ m} \]

Velocidad del Viento

\[v = 50 \text{ mph} \]

\[v = 22,35 \text{ m/s} \]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,70</td>
<td>0,8232</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,50</td>
<td>0,7609</td>
</tr>
<tr>
<td>Creager</td>
<td>1,45</td>
<td>0,4423</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola \(0,95\) m
17.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "\(p \)" y "\(V \)" son independientes por evento, y el valor "\(E \)" es idéntico para todos los eventos.

17.7.1 Evento Sísrico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,1</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

17.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Estado de conservación

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación

- **3,9 m³/s**
- **Coeficiente capacidad**: 0,36
- **Capacidad efectiva**: 1,404 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

Tabulación de probabilidades

<table>
<thead>
<tr>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
</tr>
</tbody>
</table>

Crecida Pluvial (m³/s) y Crecida Nival (m³/s)

<table>
<thead>
<tr>
<th>Probabilidad Occurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>8,42</td>
<td>0,95</td>
</tr>
<tr>
<td>0,002</td>
<td>9,98</td>
<td>0,95</td>
</tr>
<tr>
<td>0,0010</td>
<td>11,16</td>
<td>0,95</td>
</tr>
</tbody>
</table>

17.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Periodo de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro	Riesgo "p"	Valor adoptado
Sin humedad al pie | 0,05 |
Saturación abajo del muro | 0,05 a 0,10 |
Saturación del pie | 0,10 a 0,20 |
Filtración | 0,20 a 0,95 | 0,2 |
Si existe sistema de drenaje | 0 |
Si el material es cohesivo | 0,05 |

17.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

17.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Esorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,40</td>
<td>0,48</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por esorrentía.

17.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Mallermo.
<table>
<thead>
<tr>
<th>VISTA MURO</th>
<th>VISTA MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image](VISTA MURO)</td>
<td>![Image](VISTA MURO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISTA TALUD AGUAS ARRIBA</th>
<th>VISTA TALUD AGUAS ABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image](VISTA TALUD AGUAS ARRIBA)</td>
<td>![Image](VISTA TALUD AGUAS ABAJO)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA</th>
<th>OBRA DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Image](OBRA DE ENTREGA)</td>
<td>![Image](OBRA DE ENTREGA)</td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</td>
<td>TUBOS DE ACERO CORRUGADO A LA SALIDA DEL EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ENROCADO EN TALUD AGUAS ARRIBA</td>
<td>BAJADAS AL TRANQUE EN EL SECTOR DEL ESTRIBO IZQUIERDO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ficha de Catastro de Embalse

1. **Antecedentes Generales**
 - Nombre de la presa: [Nombre de la Presa]
 - Propietario: [Propietario]
 - Núm. Proyectado: [Núm. Proyectado]
 - Área de construcción: [Área de construcción]
 - Año de construcción: [Año de construcción]
 - Año de rehabilitación: [Año de rehabilitación]
 - Concesión: [Concesión]
 - Código OGAPA: [Código OGAPA]
 - Subpresa/Gado DGAA: [Subpresa/Gado DGAA]
 - Fuente de recursos: [Fuente de recursos]

2. **Ubicación de Presa**
 - Región: [Región]
 - Provincia: [Provincia]
 - Municipio: [Municipio]
 - Concesión: [Concesión]
 - Concesión UPM Centro: [Concesión UPM Centro]
 - Concesión UPM Este (izquierdo): [Concesión UPM Este (izquierdo)]
 - Desecho UGOC: [Desecho UGOC]
 - Alt. m.s.n.m: [Alt. m.s.n.m]

3. **Tipo de Embalse**
 - Presa de barra horizontal: [Presa de barra horizontal]
 - Presa de material granular previamente compactado: [Presa de material granular]
 - Presa de material compactado (CFRC): [Presa de material compactado]
 - Presa de hormigón (previamente compactado, etc.): [Presa de hormigón]
 - Presa de RCC: [Presa de RCC]

4. **Estabilidad del Embalse**
 - Altura máxima del muro (pesado con resistencia): [Altura máxima del muro]
 - Pluviosidad media de agua en el muro (m): [Pluviosidad media]
 - Área estimada o calculada de la zona (m²): [Área estimada]
 - Ancho máximo de la zona (m): [Ancho máximo]
 - Longitud de la zona (m): [Longitud]
 - Volumen declarado o proyectado (m³): [Volumen]

5. **Geometría de la Presa**
 - Con hileras: [Con hileras]
 - Longitud del casquete (m): [Longitud]
 - Ancho del casquete (m): [Ancho]
 - Altura del casquete (m): [Altura]
 - Longitud del casquete (m): [Longitud]
 - Ancho del casquete (m): [Ancho]

6. **Características del Embalse**
 - Inspección exitosa: [Inspección]
 - Toma de muestras del agua (preferentemente en el punto de muestreo): [Toma de muestras]
 - Toma de muestreos y fotografía del punto muestreado: [Toma de muestreos]
 - Coordenadas UTM: [Coordenadas UTM]
 - Clasificación del material de construcción: [Clasificación]

7. **Características de la Cabeza**
 - Perfiles en la sección: [Perfiles]
 - Variaciones de punto de vista: [Variaciones]
 - Variaciones geofísica: [Variaciones]

8. **Características Obras Evacuación de Crecidas**
 - Presa en relación con la estructura principal: [Presa en relación con la estructura principal]
 - Variaciones en el río: [Variaciones en el río]
 - Variaciones geofísica: [Variaciones geofísica]

Notas:
- X indican localización y configuración del embalse.
- (*) indica localización y configuración de la estructura principal.
- (*) indica localización y configuración de la cabeza del embalse.
- (**) indica localización y configuración del vertedero.
8. CARACTERÍSTICAS OBRAS DE ENTREGA Y DEDAGUE DE FONDO

Tipo de estructura: Obras de hormigón de 2.5 m de ancho por 4.0 m de alto, que contiene subida de 20 cm de diámetro con válvula de vaciado por donde sale el agua del embalse y la entrada a canal en forma de 1.0 m de ancho por 0.5 m de alto.

Mediciones transversales: Obras de hormigón de 2.5 m de ancho por 4.0 m de alto, tubería de 20 cm de diámetro; y salida a canal en forma de 1.0 m de ancho por 0.5 m de alto.

Funcionamiento ideal: Equilibrado. Existe una filtración en la base por fuga de material.

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO

Tipo de cauce natural o artificial: aguas abajo del embalse. Eje de terraza, pendiente media y ancho medio del cauce.

Distancia desde centros poblados municipales: 2.00 km.

Distancia desde centros poblados pertenecientes al cauce: 2.00 km.

Distancia hasta zonas agrícolas: Inexistente.

Densidad de población en los centros del terreno: baja.

11. MONOGRAFÍA

Planta del muro (formas y dimensiones): Sección transversal del muro en la parte con menor reventón y con mayor reventón, indicando sus faldas.

Ilustración: se indica el muro del canal de terreno de la muestra de material.

Cortes de la obra de evacuación y dimensiones (planta): Cortes de la obra de evacuación y dimensiones (sección).

12. OBSERVACIONES

- El muro del muro no es en el centro, hasta el lado izquierdo hay un de verdadero que no hay faldas. En el extremo derecho se encuentra el encuentro de cimientos.
- Ambas faldas poseen tendencias subidas y disminuciones (ver ilustraciones fotográficas).
EMBALSE AGUADILLA
PARTE B: CATASTRO DE EMBALSES

18. EMBALSE AGUADILLA
18.1 Ubicación
18.2 Características Generales
18.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
18.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
18.5 Determinación de Filtraciones
18.6 Verificación del Oleaje
18.7 Análisis de Riesgo (Hazop)
18.8 Álbum Fotográfico y Fichas de Catastro
18. EMBALSE AGUADILLA

18.1 Ubicación

El embalse Aguadilla se ubica en la comuna de Marchigue, provincia de Cardenal Caro, en las coordenadas UTM 6.196.467 Norte y 255.791 Este, Datum WGS 84 a una Altitud de 156 m.s.n.m. Se localiza en la cuenca del Río Rapel, subcuenca del Río Tinguiririca y la fuente corresponde al estero Chequén.

Se puede acceder al embalse desde la localidad de Alones al norte por ruta I-50 4 km hasta el empalme con ruta I-202, luego en dirección al nororiente 8 km hasta el sitio de emplazamiento.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 18.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE AGUADILLA

Fuente: Carta IGM
18.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Viña Montes S.A. El uso y destino del embalse es de riego y fue construido en el año 1960.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,164 hm³. La altura máxima del muro es de 11,8 m, con una longitud de coronamiento de 132 m y ancho promedio del coronamiento de 4,2 m y borde libre de 0,4 m. El Talud Aguas Arriba es H:V=1,28:1 y el Talud Aguas Abajo es H:V=0,97:1.

El evacuador de crecidas corresponde a un vertedero frontal de caída libre, de ancho medio de 1,6 m, 11,0 m de largo y 1 m de alto. No tiene estructura de control. En buen estado, operacional.

La obra de entrega corresponde a una casa de bombas, ubicada en el centro del muro, que mediante 2 tuberías de 310 mm cada una, entrega directamente a predios.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 18.2-1
IMAGEN SATELITAL EMBALSE AGUADILLA
Vista panorámica Embalse Aguadilla
18.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Aguadilla tiene como fuente al estero Chequén, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentia.

La cuenca en estudio tiene una superficie de 7,15 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 18.3-1
CUENCA EMBALSE AGUADILLA
CUADRO 18.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Aguadilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total 715,2</td>
</tr>
<tr>
<td></td>
<td>Pluvial 715,2</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total 18.840,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial 18.840,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima 246,2</td>
</tr>
<tr>
<td></td>
<td>Minima 170,2</td>
</tr>
<tr>
<td></td>
<td>Diferencia 76,0</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca 5,0</td>
</tr>
<tr>
<td></td>
<td>Cauce 2,7</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total 5,37</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad 2,68</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E 254,204</td>
</tr>
<tr>
<td></td>
<td>UTM N 6,198,770</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm) 194,3</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E 254,597</td>
</tr>
<tr>
<td></td>
<td>UTM N 6,198,683</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm) 190</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

Tiempo de Concentración

Para estimar el tiempo de concentración (t_c) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

$$t_c = 0.95 \left(\frac{L^3}{H_{max}} \right)^{0.385}$$

Fórmula de Giandotti:

$$t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \cdot \sqrt{H_g}} \text{ (hrs);} \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6}$$

Fórmula de Ventura - Heras:

$$t_c = 0.05 \cdot \frac{A}{\sqrt{J}}$$

Fórmula de Témez:

$$t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75}$$
Donde:

- \(L \) = Longitud del cauce principal en km.
- \(H_{\text{máx}} \) = Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
- \(A \) = Área cuenca en km\(^2\).
- \(J \) = Pendiente del cauce (%).
- \(H_g \) = Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>1,25</td>
<td>4,77</td>
</tr>
</tbody>
</table>

- **Precipitaciones Máximas**

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguadilla</td>
<td>Rapel</td>
<td>0,138</td>
<td>77,1</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

- **Caudales de Crecidas**

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{c}^{T} \cdot Ap}{3,6}
\]

Donde:
- \(Q(T) \) = Caudal generado en la cuenca en \((m^3/s)\)
- \(C(T) \) = Coeficiente de Escorrentía
- \(I_{c}^{T} \) = Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(t_c \) en \((mm/hr)\)
- \(Ap \) = Área pluvial de la cuenca tributaria \((km^2)\).

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- \(C(T) \) Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \) Precipitación máxima en 24 horas y periodo de retorno \(T \) años
- \(Ap \) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Periodo de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aguadilla</td>
<td>T=2</td>
<td>0,47</td>
<td>Nilahue</td>
<td>0,6</td>
<td>7,1</td>
<td>2,2</td>
<td>7,6</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Nilahue</td>
<td>0,8</td>
<td>9,9</td>
<td>3,3</td>
<td>13,4</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Nilahue</td>
<td>1,0</td>
<td>11,5</td>
<td>5,8</td>
<td>17,8</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Nilahue</td>
<td>1,1</td>
<td>12,6</td>
<td>6,9</td>
<td>20,9</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Nilahue</td>
<td>1,2</td>
<td>13,4</td>
<td>7,9</td>
<td>23,4</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Nilahue</td>
<td>1,2</td>
<td>13,9</td>
<td>8,5</td>
<td>25,1</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Nilahue</td>
<td>1,4</td>
<td>15,7</td>
<td>10,8</td>
<td>31,0</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Nilahue</td>
<td>1,5</td>
<td>17,6</td>
<td>14,3</td>
<td>39,8</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
\[Q_{10} = 5.42 \times 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (A_p)^{0.915} \]

\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(A_p \): Área Pluvial de la cuenca (km²)

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>(T) (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q) instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>0,49</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
CAUDALES MÁXIMOS EXTRAPOLADOS T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m3/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$T=200$</td>
</tr>
<tr>
<td>Aguadilla</td>
<td>15,37</td>
</tr>
</tbody>
</table>

18.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla limo arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 10,1 m
- Ancho coronamiento: 4,2 m
- Borde libre: 0,4 m
- Talud Aguas Arriba: $H : V = 1,28 : 1$
- Talud Aguas Abajo: $H : V = 0,97 : 1$

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.
CUADRO 18.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>20°</td>
<td>2,0</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

Talud Aguas Arriba	Estático	Con Agua
	Sin Agua	
	Con Agua	
	Sin Agua	
Talud Aguas Abajo	Estático	Con Agua
	Sin Agua	
	Con Agua	
	Sin Agua	

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 18.4-1
TALUD AGUAS ARriba - ESTÁTICO CON AGUA

FIGURA 18.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 18.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 18.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 18.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 18.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
e) **Factores de seguridad**

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 18.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>1,700</td>
<td>1,194</td>
</tr>
<tr>
<td>Aguas Abajo</td>
<td>1,096</td>
<td>0,829</td>
</tr>
<tr>
<td>Aguadilla</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
</tr>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Aguas arriba</td>
</tr>
<tr>
<td>Aguas abajo</td>
</tr>
<tr>
<td>Aguadilla</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

18.5 **Determinación de Filtraciones**

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C' \cdot h$$

Para el caso del tranque **Aguadilla**, se tiene:

Lh (m) =	30,7	Longitud horizontal en la base del tranque o embalse.
Lv (m) =	0	Longitud vertical en la base del tranque o embalse.
C' =	1,80	Coeficiente de filtración que depende del tipo de material del embalse
h (m) =	11,4	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Aguadilla

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple</th>
<th>Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGUADILLA</td>
<td>30,7</td>
<td>0</td>
<td>10,23</td>
<td>11,8</td>
<td>0,4</td>
<td>11,397</td>
<td>1,80</td>
<td>20,5</td>
<td>L' ≥ C' h</td>
<td>No</td>
</tr>
</tbody>
</table>

18.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{oa}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Aguadilla.

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,40 m, se tiene que la altura de la ola superaría esta revancha.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>°</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia</th>
<th>Dist. * Cos^2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>66</td>
<td>0,0410</td>
<td>0,0226</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6645</td>
<td>78</td>
<td>0,0485</td>
<td>0,0317</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>102</td>
<td>0,0634</td>
<td>0,0475</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>175</td>
<td>0,1087</td>
<td>0,0908</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>178</td>
<td>0,1106</td>
<td>0,1000</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>208</td>
<td>0,1292</td>
<td>0,1237</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>324</td>
<td>0,2013</td>
<td>0,1991</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>343</td>
<td>0,2131</td>
<td>0,2131</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>123</td>
<td>0,0764</td>
<td>0,0756</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>120</td>
<td>0,0746</td>
<td>0,0713</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>133</td>
<td>0,0826</td>
<td>0,0748</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>234</td>
<td>0,1454</td>
<td>0,1213</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>240</td>
<td>0,1491</td>
<td>0,1118</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>204</td>
<td>0,1268</td>
<td>0,0830</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>177</td>
<td>0,1100</td>
<td>0,0607</td>
</tr>
</tbody>
</table>

Suma 13,5109

Suma 1,4272

Fetch o longitud de acción del viento (F)

F = 0,106 millas
F = 170,00 m

Velocidad del Viento
v = 50 mph
v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,42</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,32</td>
</tr>
<tr>
<td>Creager</td>
<td>0,83</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
18.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

18.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “(p)”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td>0,6</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

18.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>(C1)</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>
Capacidad evacuación: 4,51 m³/s
Coeficiente capacidad 0,36 C1 x C2 x C3
Capacidad efectiva 1,62 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q máx. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

18.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro

<table>
<thead>
<tr>
<th>Riesgo del muro</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
<td></td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
<td></td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
<td>0,2</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

18.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

18.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>2,40</td>
<td>0,00</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

18.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Aguadilla.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO DESDE ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VISTA TALUD AGUAS ARRIBA</th>
<th>VISTA TALUD AGUAS ABAJO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OBRA DE ENTREGA</th>
<th>OBRA DE ENTREGA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
<table>
<thead>
<tr>
<th>EVACUADOR DE CRECIDAS</th>
<th>EVACUADOR DE CRECIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACIÓN DE MATERIAL DE CONSTRUCCIÓN</td>
<td>CASA DE BOMBAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>TOMA DESDE POZOS</td>
<td>FAUNA EN EL EMBALSE</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. ANTecedentes GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Aguadilla</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Utica Nortes S.A.</td>
</tr>
<tr>
<td>R/F P. Proyectado</td>
<td>19 875 7702</td>
</tr>
<tr>
<td>Ano de construcción</td>
<td>1980</td>
</tr>
<tr>
<td>Reparación (R) (NG)</td>
<td>SI</td>
</tr>
<tr>
<td>Ano de reparación</td>
<td>2001</td>
</tr>
<tr>
<td>Cuenca / Código DGA</td>
<td>Rio Jago</td>
</tr>
<tr>
<td>Subcuenc / Código DGA</td>
<td>Rio Truquieta</td>
</tr>
<tr>
<td>Fuente del inyect.</td>
<td>Estero Charqui</td>
</tr>
<tr>
<td>Nº de ficha</td>
<td>18</td>
</tr>
<tr>
<td>Fecha (d/m/año)</td>
<td>02-10-2009</td>
</tr>
<tr>
<td>Cumplimiento A.C.</td>
<td>294</td>
</tr>
<tr>
<td>Códigos de Agua</td>
<td>A410</td>
</tr>
<tr>
<td>Capacidad máx.</td>
<td>50.000 m³</td>
</tr>
<tr>
<td>Altura del muro</td>
<td>> 5 m</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

Región	VI del Libertador Bos. D'Argen
Prop.	Cardenal Ceno
Coordenadas UTM Este Derecho	N=6.190.463 E=255.727
Coordenadas UTM Centro	N=6.188.487 E=255.791
Coordenadas UTM Este Izquierdo	N=6.188.446 E=255.852
Datum WICLA 64	A
Altura m.s.m	ED = 157 C = 150 EI = 150
En mora	ED=Estación Derecho E=Este ED=Estación Izquierda

3. USO O DESTINO DEL EMBALSE

Riesgo	X
Generación de energía	Abastecimiento de agua potable/ saneamiento
Relaves	Sedimentación
Control de crecidas	Recreación
Otros usos	

4. TIPO DE EMBALSE

| Presa de tierra homogénea | X |
| Presa de material granular/graduado |
| Presa de rocas (CPR) |
| Presa de hormigón (gruesas, contrahuella, arcilla) |
| Presa de RCC |
| Otros tipos |

5. GEOMETRÍA DE LA PRESA

Coef. hidráulico	1.32
Longitud del coronamiento (m)	132
Ancho del coronamiento (m)	ED = 4.6 C = 2.8 EI = 4.2
Desembarque del talud aguas abajo (m)	16.4
Presencia mínima en relación a la cola máxima de aguas corrientes (m)	0.4
Parámetros verticales	NO
Gran clase	1
Árbitro talud de aguas abajo	ED = 47° C = 45° EI = 68°
Árbitro talud de aguas abajo	ED = 35° C = 45° EI = 59°
ED=Estación derecha E=Este ED=Estación izquierda	

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (determinado por relaciones trigonométricas en caso de no poder medir directamente) (m)	11.8
Profundidad máxima de agua en asiento del muro (m)	11.4
Anzo estimado a espacios de la roca (m2)	52.800
Anzo volumen de la parte útil	1.18
Largo de la presa (km)	0.38
Volumen declarado proyectado (millones de m³)	0.164

7.4. CARACTERÍSTICAS DEL MURO

| Inspección visual |
Toma de muestra del aporte (preferentemente en el centro del muro)	S
Identificación del punto de toma de muestra	S
Toma de coordenadas a filograpías del punto mostrado	S
Coordenadas UTM	N=6.188.487 E=255.791
Clasificación de material de construcción (clasificación según tabla)	Limpio Apagado

7.3. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

Regularidad de la geografía actual	Regular
Constituyente del material estructural	Bajo
Uniformidad de los taludes	Uniformes
Depresiones visibles y cuantificables a lo largo del coronamiento	No se aprecian depresiones visibles
Grietas visibles y abertura	No se aprecian grietas visibles
Indicios de deslizamientos y ubicación	No se aprecian indicios de deslizamientos
Sectores que se presentan saturados y altura de saturación	No se aprecian sectores saturados
Fracciones visibles en talud de aguas abajo en el plu	No se aprecian fracciones en el talud de aguas abajo en el plu
Tipo de revestimiento del muro	Tierra compactada, extendido hoy macizo roshel en el talud aguas abajo, cubierta vegetal aguas abajo, macizo en corriente

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CREDICIAS

Por su localización en relación a la estructura principal	Destruido el punto de vista de los instrumentos para el control del caudal vitriado	X
Variaduras litorales	Vértices del canal en control	
Variaduras de corriente	Vértices controlados por componentes	
Inclinación y estructura de vertedero		
Desde el punto de vista de la parcela donde se produce el vertimiento	Desde el punto de vista de la sección por la cual se de el vertimiento	X
Vértices de pared izquierda	Rectangulares	
Vértices de pared derecha	X	
Vértice con perfil hidráulico	Triangulares	
Los datos a considerar son		
Tipo de vertedero	Vertedero de caída libre, que sale a canal revestido y lleva hasta exvoto (ver álbum fotográfico)	
Material constructivo	Hormigón	
Estado de conservación y operatividad	En buen estado operacional	
Dimensiones relevantes (arco, altura y carga máxima de operación)	Carpa máxima 1.1 m, Ancho: 1.80 mts; Largo: 11.0 mts y Alto: 1.0 mts	
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGUE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Casa de bombas, ubicada en el centro del muro, que mediante 2 tuberías entrega directamente a presas.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>2 tuberías de 0,91 m de diámetro cu</td>
</tr>
<tr>
<td>Funcionalmente actual</td>
<td>Operativa</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELDO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>No</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>No</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranque</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacentes</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vel o obra de importancia</td>
<td>7,0 Km</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>100 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Fotón del muro (fotografía y dimensiones)

<table>
<thead>
<tr>
<th>Sección transversal del muro en la zona con menor resaca y con mayor resaca, indicando sus taluditos</th>
</tr>
</thead>
</table>

Croquis de la obra de evacuación y dimensiones (planta)

<table>
<thead>
<tr>
<th>Croquis de la obra de evacuación y dimensiones (elevación)</th>
</tr>
</thead>
</table>

12. OBSERVACIONES

El talud agua arriba del tranque está cubierto con malla metálica hasta una profundidad de 1,0 mts aproximadamente.
EMBALSE LOS MAITENES
PARTE B: CATASTRO DE EMBALSES

19. EMBALSE LOS MAITENES
19.1 Ubicación
19.2 Características Generales
19.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
19.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
19.5 Determinación de Filtraciones
19.6 Verificación del Oleaje
19.7 Análisis de Riesgo (Hazop)
19.8 Álbum Fotográfico y Fichas de Catastro
19. EMBALSE LOS MAITENES

19.1 Ubicación

El embalse Los Maîtenes se ubica en la comuna de Marchigüe, provincia de Cardenal Caro, en las coordenadas UTM 6.196.928 Norte y 263.510 Este, Datum WGS 84 a una Altitud de 170 m.s.n.m. Se localiza en la cuenca del Río Rapel, subcuenca del Río Tinguiririca y la fuente corresponde al estero Trinidad.

Para acceder al sitio del embalse se recomienda dirigirse desde Marchigüe hacia el norte por ruta l-76 por aproximadamente 7,5 km, donde es posible observar el tranque al costado del camino.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 19.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE LOS MAITENES

Fuente: Carta IGM
19.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Paulina Lira San Fuentes. El uso y destino del embalse es de riego. Actualmente no está en uso.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,112 hm3. La altura máxima del muro es de 8,5 m, con una longitud de coronamiento de 586 m (son tres muros en total) y ancho promedio del coronamiento de 3,4 m y borde libre de 1,5 m. Los taludes de los muros son:

<table>
<thead>
<tr>
<th></th>
<th>MURO 1</th>
<th>MURO 2</th>
<th>MURO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talud Aguas Arriba H:V</td>
<td>1,19:1</td>
<td>0,93:1</td>
<td>0,97:1</td>
</tr>
<tr>
<td>Talud Aguas Abajo H:V</td>
<td>1,43:1</td>
<td>1,15:1</td>
<td>1,19:1</td>
</tr>
</tbody>
</table>

El evacuador de crecidas corresponde a un vertedero frontal canal en tierra de 1,0 m por 1,0 m. No tiene estructura de control. En buen estado, operacional.

La obra de entrega corresponde a 1 tubería de 100 mm de diámetro que pasa por debajo del tranque y que es controlada por válvula. Hace 2 años que no está en uso.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 19.2-1
IMAGEN SATELITAL EMBALSE LOS MAITENES
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Los Maitenes

Vista panorámica Embalse Los Maitenes
19.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Los Maitenes tiene como fuente al estero Trinidad, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 1,83 km2. En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 19.3-1
CUENCA EMBALSE LOS MAITENES
CUADRO 19.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Los Maitenes</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total 182,6</td>
</tr>
<tr>
<td></td>
<td>Pluvial 182,6</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total 7.560,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial 7.560,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima 395,6</td>
</tr>
<tr>
<td></td>
<td>Minima 173,3</td>
</tr>
<tr>
<td></td>
<td>Diferencia 222,3</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca 20,4</td>
</tr>
<tr>
<td></td>
<td>Cauce 7,5</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total 1,65</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad 0,83</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E 262,829</td>
</tr>
<tr>
<td></td>
<td>UTM N 6.197,440</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm) 213,0</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E 263,127</td>
</tr>
<tr>
<td></td>
<td>UTM N 6.197,167</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm) 180</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración \(t_c \) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[
t_c = 0.95 \left(\frac{L^3}{H_{\text{max}}} \right)^{0.385}
\]

Fórmula de Giandotti:

\[
t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs)}; \quad \text{con} \quad \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6}
\]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{A}{\sqrt{J}} \)

Fórmula de Témez:

\[
t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75}
\]
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Los Maitenes

Donde:

\[
\begin{align*}
L &= \text{Longitud del cauce principal en km.} \\
H_{\text{máx}} &= \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \\
A &= \text{Área cuenca en km².} \\
J &= \text{Pendiente del cauce (%).} \\
H_{\text{g}} &= \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.}
\end{align*}
\]

<table>
<thead>
<tr>
<th></th>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td></td>
<td>0,21</td>
<td>1,56</td>
</tr>
</tbody>
</table>

erdale

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Maitenes</td>
<td>Rapel</td>
<td>0,071</td>
<td>114</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:

- \(Q(T)\): Caudal generado en la cuenca en \((m^3)/s\)
- \(C(T)\): Coeficiente de Escorrentía
- \(I_{tc}^T\): Intensidad de la precipitación para t igual al tiempo de concentración tc en \((mm)/h\)
- \(Ap\): Área pluvial de la cuenca tributaria \((km^2)\).

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T=10)} \cdot 0.00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \): Precipitación máxima en 24 horas y período de retorno \(T \) años
- \(Ap \): Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Los Mañenes</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>5,7</td>
<td>1,1</td>
<td>4,5</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>7,6</td>
<td>1,6</td>
<td>7,7</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>8,7</td>
<td>2,8</td>
<td>10,0</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>9,4</td>
<td>3,3</td>
<td>11,7</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>10,0</td>
<td>3,8</td>
<td>13,0</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>10,4</td>
<td>4,1</td>
<td>14,0</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>11,6</td>
<td>5,1</td>
<td>17,1</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>12,8</td>
<td>6,7</td>
<td>21,7</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.
\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

Donde:

- \(Q_{10} \) Caudal medio diario máximo con período de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km\(^2\))

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno T y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Los Maiteñas</td>
<td>0,54</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.
CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Los Maitenes</td>
<td>7,17</td>
</tr>
</tbody>
</table>

19.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

MURO 1
- Altura: 2,9 m
- Ancho coronamiento: 3,6 m
- Borde libre: 1,5 m
- Talud Aguas Arriba: H : V = 1,19 : 1
- Talud Aguas Abajo: H : V = 1,43 : 1

MURO 2
- Altura: 8,5 m
- Ancho coronamiento: 3,7 m
- Borde libre: 1,5 m
- Talud Aguas Arriba: H : V = 0,93 : 1
- Talud Aguas Abajo: H : V = 1,15 : 1
MURO 3
Altura: 2,6 m
Ancho coronamiento 2,9 m
Borde libre 1,5 m
Talud Aguas Arriba $H : V = 0,97 : 1$
Talud Aguas Abajo $H : V = 1,19 : 1$

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 19.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción ($^\circ$)</th>
<th>Cohesión (t/m3)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa Arcilla Limo Arenosa</td>
<td>$\varnothing = 22^\circ$</td>
<td>2,2</td>
<td>1,80</td>
<td>2,00</td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 19.4-1
MURO 1 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 19.4-2
MURO 1 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 19.4-3
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 19.4-4
MURO 1 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 19.4-5
MURO 1 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 19.4-6
MURO 1 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 19.4-7
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 19.4-8
MURO 1 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
FIGURA 19.4-9
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 19.4-10
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 19.4-13
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 19.4-14
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 19.4-17
MURO 3 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 19.4-18
MURO 3 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 19.4-19
MURO 3 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 19.4-20
MURO 3 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 19.4-21
MURO 3 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 19.4-22
MURO 3 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 19.4-23
MURO 3 TALUD AGUAS ARriba - SÍSMICO SIN AGUA

FIGURA 19.4-24
MURO 3 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 19.4-2
FACTORES DE SEGURIDAD DE TALUDES
LOS MAITENES

<table>
<thead>
<tr>
<th>Los Maitenes</th>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro 1</td>
<td>Aguas Arriba</td>
<td>2,735</td>
<td>2,456</td>
</tr>
<tr>
<td></td>
<td>Aguas Abajo</td>
<td>1,813</td>
<td>1,983</td>
</tr>
<tr>
<td>Muro 2</td>
<td></td>
<td>1,861</td>
<td>1,179</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,247</td>
<td>0,931</td>
</tr>
<tr>
<td>Muro 3</td>
<td></td>
<td>2,800</td>
<td>2,519</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,861</td>
<td>2,112</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Los Maitenes</th>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro 1</td>
<td>Aguas arriba</td>
<td>2,673</td>
<td>2,582</td>
</tr>
<tr>
<td></td>
<td>Aguas abajo</td>
<td>2,045</td>
<td>1,866</td>
</tr>
<tr>
<td>Muro 2</td>
<td></td>
<td>1,504</td>
<td>1,352</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,194</td>
<td>1,049</td>
</tr>
<tr>
<td>Muro 3</td>
<td></td>
<td>2,715</td>
<td>2,663</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,220</td>
<td>1,913</td>
</tr>
</tbody>
</table>

19.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (\(L'\)) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (\(L_v\)) más un tercio de la suma de las longitudes de filtración horizontales (\(1/3 \cdot L_h\)).

\[
L' = \frac{1}{3} \cdot L_h + L_v
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45º y menor de 45º, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C' \cdot h
\]
Para el caso del tranque *Los Mañentes*, se tiene:

<table>
<thead>
<tr>
<th>MURO 1</th>
<th>MURO 2</th>
<th>MURO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_h (m) =</td>
<td>11,1</td>
<td>21,5</td>
</tr>
<tr>
<td>L_v (m) =</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C' =</td>
<td>1,70</td>
<td>1,70</td>
</tr>
<tr>
<td>h (m) =</td>
<td>1,37</td>
<td>7,03</td>
</tr>
</tbody>
</table>

- Longitud horizontal en la base del tranque o embalse.
- Longitud vertical en la base del tranque o embalse.
- Coeficiente de filtración que depende del tipo de material del embalse.
- Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.

De acuerdo con el criterio de Lane, en este caso, para los muros M1 y M3, SÍ se cumple la relación, por lo tanto, NO existe riesgo de filtraciones, según se detalla en las tablas siguientes.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>L_h</th>
<th>L_v</th>
<th>L'</th>
<th>H_t</th>
<th>b_t</th>
<th>h</th>
<th>C'</th>
<th>$(C' \cdot h)$</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS MAÑENTES M1</td>
<td>11,1</td>
<td>0</td>
<td>3,71</td>
<td>2,9</td>
<td>1,5</td>
<td>1,368</td>
<td>1,70</td>
<td>2,3</td>
<td>SÍ</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>LOS MAÑENTES M3</td>
<td>8,4</td>
<td>0</td>
<td>2,82</td>
<td>2,6</td>
<td>1,5</td>
<td>1,071</td>
<td>1,70</td>
<td>1,8</td>
<td>SÍ</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso, el muro M2 NO se cumple la relación, por lo tanto, SÍ existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>L_h</th>
<th>L_v</th>
<th>L'</th>
<th>H_t</th>
<th>b_t</th>
<th>h</th>
<th>C'</th>
<th>$(C' \cdot h)$</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOS MAÑENTES M2</td>
<td>21,5</td>
<td>0</td>
<td>7,16</td>
<td>8,5</td>
<td>1,5</td>
<td>7,029</td>
<td>1,70</td>
<td>11,9</td>
<td>NO</td>
</tr>
</tbody>
</table>

19.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{op}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Los Mañentes.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°</td>
<td>m</td>
<td>millas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>190</td>
<td>0,1181</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,6090</td>
<td>0,6545</td>
<td>228</td>
<td>0,1417</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>250</td>
<td>0,1553</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>200</td>
<td>0,1243</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>208</td>
<td>0,1292</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>241</td>
<td>0,1498</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>307</td>
<td>0,1908</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>394</td>
<td>0,2448</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>256</td>
<td>0,1591</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>228</td>
<td>0,1417</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>219</td>
<td>0,1361</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>210</td>
<td>0,1305</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>201</td>
<td>0,1249</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>176</td>
<td>0,1094</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>157</td>
<td>0,0976</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 1,8158

Fetch o longitud de acción del viento (F)

F = 0,134 millas
F = 216,29 m

Velocidad del Viento
v = 50 mph
v = 22,35 m/s

Fórmulas Empiricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,44</td>
<td>0,7451</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,34</td>
<td>0,7118</td>
</tr>
<tr>
<td>Creager</td>
<td>0,91</td>
<td>0,2781</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con hinchca, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1,50 m, se tiene que la altura de la ola no superaría esta revancha.

19.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

19.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0.04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "(p)"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>Muro 1</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td>Muro 1</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td>Muro 1</td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td>Muro 1</td>
</tr>
</tbody>
</table>

19.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th>Obra de hormigón armado</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de albañilería</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Canal revestido en hormigón</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

Capacidad evacuación: 0.8 m³/s

Coeficiente capacidad: 0.36 C1 x C2 x C3

Capacidad efectiva: 0.29 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0.05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0.05 a 0.95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>7.17</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.002</td>
<td>8.45</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.0010</td>
<td>9.45</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

19.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0.95 a 0.05</td>
<td>0.1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
19.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

Según la cercanía a la faja probable de inundación

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

Según la Cercanía al Punto de Vaciamiento

<table>
<thead>
<tr>
<th></th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

19.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>0,20</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,48</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muro 2</td>
<td>0,80</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,48</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>2,00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muro 3</td>
<td>0,20</td>
<td>0,19</td>
<td>0,10</td>
</tr>
<tr>
<td></td>
<td>0,48</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía para los muros 1 y 3, y sísmico en el muro 2.
19.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Los Maitenes.
<table>
<thead>
<tr>
<th>VISTA MURO 1</th>
<th>VISTA MURO 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA MURO 3</td>
<td>VISTA MURO 2 EN ANGOSTAMIENTO</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA M2</td>
<td>OBRA DE ENTREGA M2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
<table>
<thead>
<tr>
<th>EVACUADOR DE CRECIDAS M3</th>
<th>EVACUADOR DE CRECIDAS M3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación de Material de Construcción</td>
<td>Vista Talud Muro 2 Aguas Arriba</td>
</tr>
<tr>
<td>Vista Talud Muro 2 Aguas Abajo</td>
<td>Depresión en Talud Aguas Abajo Muro 2</td>
</tr>
<tr>
<td>FILTRACIÓN MURO 2</td>
<td>CÁRCAVAS M3</td>
</tr>
<tr>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CÁRCAVAS M3</td>
<td>CÁRCAVAS M3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. ANTecedentes GENERALES

Nº de Prueba: 18.1
Fecha (d/m/año): 25/10/2000
Complemento: Artesial de Agua
Caja de Aguas
Capacidad: 50,000 m3
Altura del muro: 4 m

2. UBICACIÓN DE LA PRESA

Número: 18.1
Propietario: Estado de Salta

3. USO O DISTRITO DEL ENSABLE

4. TIPO DE ENSABLE

Proveedores: Echandies & Compañía

5. GEOMETRÍA DE LA PRESA

Con extensión

6. ESTADO DEL BUEY Y CALIDAD DE CONSTRUCCIÓN

Reglamentación de la geometría estatal: Medio ambiente regular
Compatibilidad del material estructural: No existe en el muro central [D8]
Uniformidad de las bases: Uniformes
Depresiones y curvas excesivas a lo largo del corriente: No se observaron depresiones visibles
Graves vistosos y su ubicación: No se observaron gravedades visibles
Indicadores de descarnamiento y clivaje: No se observaron indicadores de descarnamiento
Elementos que se presentan atenuados y altura de sustentación: No se observaron elementos atenuados
Fisuras visibles en talud de aguas abajo en el pie: No se observaron fisuras visibles en el talud de aguas abajo en el pie
Tipo de revestimiento del muro: Tierra compactada

7. CARACTERIZACIÓN DEL CAUSA Y USO DEL BUEY

8. MONOGRAFÍA

9. OBSERVACIONES
Ficha de Catastro de Embalse

1. Antecedentes Generales

- **Nombre del embalse**: Los Matayos M1
- **Propietario**: Paulina Lis San Juanita
- **RUT del Propietario**: 50...
- **Año de construcción**: 50...
- **Superficie de inundación (SA)**: 510,000 m²
- **Altura del muro**: 5 m

2. Ubicación de Embalse

- **Región**: VI del Libertador Río, Chiquitos
- **Comuna**: Morona
- **Coordenadas UTM Norte**: N1 = 6,195,573 E1 = 203,465
- **Coordenadas UTM Este**: N2 = 6,196,526 E2 = 203,115
- **Fecha de visita**: 07/10/2019

3. Uso o Destino del Embalse

- **Alcance**: X
- **Generación de energía**: X
- **Asentamiento de agua permanente**: X
- **Peces**: X
- **Control de crecida**: X
- **Agua usada por consumo humano**: X

4. Tipo de Embalse

- **Presas de lomos homogéneas**: X
- **Presas de material granular**: X
- **Presas de concreto CDCC**: X
- **Presas de hormigón (grueso... constante, etc)**: X
- **Presas de RCC**: X
- **Otros tipos**: X

5. Geometría de la Presa

- **Largo del muro (m)**: 147
- **Ancho del corrimiento (m)**: ED = 4,0; C = 3,0; E = 3,5
- **Desplazamiento de salto agua abajo (m)**: 13,0
- **Altura mínima en relación a la cota máxima de aguas corrientes (m)**: 1,5
- **Paredes verticales**: X
- **Ángulo abajo de aguas abajo**: ED = 40°; C = 45°; E = 45°
- **Ángulo abajo de aguas arriba**: ED = 45°; C = 55°; E = 55°
- **Estado del Embalse**: ED: Embalse Derecho
- **El: Embalse Izquierdo

6. Estructura Capacidad de Máxima del Embalse

- **Altura máxima**: 9,5
- **Acreción máxima**: 7,0
- **Área estimada de cuneta**: 0,02 ha
- **Largo de la presa (m)**: 0,01
- **Volumen declarado a proyecto (millones de m³)**: 0,112

7. A. Características del Muro

- **Tipo de muro**: piedra
- **Estado de la geometría**: Verticalmente regular
- **Comportamiento del material en el muro**: Vertical
- **Uniformidad de los lados**: Uniforme
- **Depresiones visibles y ausencia de fisuras**: Rígido al taller del corrimiento
- **Orientación y sitio de la ensilación**: No se aprecian
- **Indicios de oscurecimiento y salazas**: No se aprecian
- **Secuestración y altura de salazas**: No se aprecian
- **Finituras visibles en la base del muro**: Rígido al taller del corrimiento

7. B. Estado del Muro. Calidad de Construcción

- **Exterior**: Rígido al taller
- **Interior**: Rígido al taller

7. C. Reflejo del Muro

- **Exterior**: Rígido al taller
- **Interior**: Rígido al taller
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGUE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>2 tuberías de 10 cm de diámetro que asoman por abajo del tranque y que son controladas por válvulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Tuberías de 10 cm de diámetro</td>
</tr>
<tr>
<td>Fundamento actual</td>
<td>No existe en pape</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canal en llano, terreno agrícola, pendiente media 1,36%, ancho medio 2,50 m</td>
</tr>
<tr>
<td>Distancia hacia centros poblados medidos por el cauce</td>
<td>3,05 km</td>
</tr>
<tr>
<td>Distancia hacia centros poblados perpendicular al cauce</td>
<td>3,90 km</td>
</tr>
<tr>
<td>Densidad de población en los contornos del tranque</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adjacentes</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura de otra de importancia</td>
<td>Adjacentes</td>
</tr>
<tr>
<td>Área de rega servida por el tranque analizado</td>
<td>No riega actualmente</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

Sectores transversales del muro en la zona con menor resorte y con mayor resorte, indicando autolías

Croquis de la obra de entrega y dimensiones (planta)

Croquis de la obra de entrega y dimensiones (vertical)

12. OBSERVACIONES

La filtración del muro 1, se encuentra alrededor del adobe ubicado en la parte baja del muro en el pie aguas abajo del tranque. En el álbum fotográfico se ve la abundante vegetación la que impidió llegar hasta el lugar de la filtración. Según nos comentó el encargado del tranque, la filtración aumenta cuanto el tranque está lleno.
<table>
<thead>
<tr>
<th>FICHA DE CATASTRO DE EMBALSES</th>
</tr>
</thead>
</table>

1. ANTECEDENTES GENERALES

- **Nombre de la presa:** Los Villanos SS
- **Propietario:** Callejas, Los San Fuentes
- **RUT Propietario:** S1
- **Año de construcción:** 1971
- **Información:**
 - **Área de reposición:**
 - **Cantidad de agua:**
 - **Catálogo DGA:** No aplicable
 - **Catálogo IG:1:**
 - **Fuente del recurso:** Estero Trinidad

2. UBICACIÓN DE PRESA

- **Región:** N del Libertador, Bajo, Chiquito
- **Provincia:** Carabobo
- **Comuna:** Tarapaca
- **Coordenadas LTM El Estero Derecho:**
 - **Northing:** 166,862
 - **Easting:** 263,581
- **Coordenadas LTM Este:**
 - **Northing:** 166,911
 - **Easting:** 263,510
- **Coordenadas LTM el Estero Izquierdo:**
 - **Northing:** 166,937
 - **Easting:** 263,581
- **Altura de los muros (m):**
- **Intensidad:**

3. USO O DESTINO DEL EMBALSE

- **Uso:**
 - **Control de crecidas:**
 - **Otra uso:**

4. TIPO DE EMBALSE

- **Presas de tierra homogéneas:**
 - **Presas de material granular:**
 - **Presas de entrelazadas (CFHC):**
 - **Presas de hormigón (granulometría, arenisca):**
 - **Presas de ROC:**

5. GEOMETRÍA DE LA PRESA

- **Con látex:**
 - **Longitud del orificio (m):**
 - **Trasera del orificio (m):**
 - **Desviación del agua sobre el muro (m):**
 - **Relevación mínima:**
 - **Parámetros verticales:**

6. ESTADO DEL SEGURO Y CALIDAD DE CONSTRUCCIÓN

- **Regulación de la geometría actual:** Medio estándar
- **Complejidad del material estructural:** Se mide en el muro central (ME)
- **Uniformidad de las salidas:** uniformes aguas abajo. Irregular aguas arriba
- **Determinación de los caudales a lo largo del funcionamiento:**
- **Deterioro de las paredes:**
- **Indicios de presiones:**
- **Indicios de construcción:**

7. CARACTERÍSTICAS OBRAS EN CAUCIAS DE CRECIDAS

- **Por su localización en relación a la estructura principal:**
 - **Veredas frontales:**
 - **Veredas laterales:**
 - **Veredas de campaña:**
- **Desde el punto de vista de los instrumentos para el control del caudal:**
 - **Veredas de veredas:**
 - **Veredas de peñol:**

8. DIVISIÓN DE LA CRECIDA

- **Desde el punto de vista de la esclusa por la cual se desviará el caudal:**
 - **Disposición:**
 - **Veredas:**

Nota: El contenido está en formato tabular y es una representación textual del contenido de la imagen.
10. CARACTERIZACION DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de cauce:</th>
<th>Nivelado en la plataforma del embalse, tipo de tendido, pendiente media, ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canal en lama, tendido agrícola, pendiente media 1.30%, ancho medio 2.80 m</td>
</tr>
<tr>
<td>Distancia hacia centros poblados medios por el cauce</td>
<td>3.65 km</td>
</tr>
<tr>
<td>Distancia de centros poblados perpendiculares al cauce</td>
<td>3.08 km</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del embalse</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Acre de riego servido por el tramo analizado</td>
<td>No riego activo</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (forma y dimensiones)

Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus medidas

<table>
<thead>
<tr>
<th>3.50</th>
<th>2.20</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>39</td>
</tr>
<tr>
<td>60</td>
<td>35</td>
</tr>
</tbody>
</table>

Corte de la obra de evacuación y dimensiones (planta)

Corte de la obra de evacuación y dimensiones (corte)

12. OBSERVACIONES
EMBALSE SAN GUILLERMO
(SANTA MARTA)
PARTE B: CATASTRO DE EMBALSES

20. EMBALSE SAN GUILLERMO (SANTA MARTA)
20.1 Ubicación
20.2 Características Generales
20.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
20.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
20.5 Determinación de Filtraciones
20.6 Verificación del Oleaje
20.7 Análisis de Riesgo (Hazop)
20.8 Álbum Fotográfico y Fichas de Catastro
20. EMBALSE SAN GUILLERMO (SANTA MARTA)

20.1 Ubicación

El embalse San Guillermo se ubica en la comuna de Marchigue, provincia de Colchagua, en las coordenadas UTM 6.194.250 Norte y 259.764 Este, Datum WGS 84 a una Altitud de 143 m.s.n.m. Se localiza en la cuenca del Río Rapel, subcuenca del Río Tinguiririca y la fuente corresponde al estero Chequén.

Al sitio de emplazamiento se puede acceder desde Marchigüe al norte por la ruta I-76 hasta cruce con la ruta I-20, hacia el norponiente aproximadamente 700 m hasta entrada del camino particular al embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 20.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE SAN GUILLERMO

Fuente: Carta IGM
20.2 Características Generales

El embalse corresponde a un tranque de tierra homogénea perteneciente a Soc. Agrícola Ganadera y Forestal Las Cruces Ltda. El uso y destino del embalse es de riego.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,026 hm3. La altura máxima del muro es de 5,4 m, con una longitud de coronamiento de 95 m y ancho promedio del coronamiento de 3,3 m y borde libre de 0,7 m. El Talud Aguas Arriba es H:V=1,15:1 y el Talud Aguas Abajo es H:V=1,11:1.

El evacuador de crecidas corresponde a un vertedero frontal de caída libre, de ancho medio de 8,0 m y 2,5 m de alto. No tiene estructura de control. En regular estado de conservación, operativo.

La obra de entrega corresponde a una casa de bombas con 5 tuberías de 200 mm de diámetro, que conducen el agua a piscinas contenedoras en altura, las que conducen el agua directamente a los predios por gravedad. Las obras están operativas.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 20.2-1
IMAGEN SATELITAL EMBALSE SAN GUILLERMO
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse San Guillermo (Santa Marta)

Vista panorámica Embalse San Guillermo (Santa Marta)
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse San Guillermo (Santa Marta)
20.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse San Guillermo (Santa Marta) tiene como fuente al estero Chequén, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 0,78 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 20.3-1
CUENCA EMBALSE SAN GUILLERMO
CUADRO 20.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>San Guillermo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>77,8</td>
</tr>
<tr>
<td>Total</td>
<td>77,8</td>
</tr>
<tr>
<td>Pluvial</td>
<td>77,8</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>5,220,0</td>
</tr>
<tr>
<td>Total</td>
<td>5,220,0</td>
</tr>
<tr>
<td>Pluvial</td>
<td>5,220,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>174,9</td>
</tr>
<tr>
<td>Mínima</td>
<td>148,6</td>
</tr>
<tr>
<td>Diferencia</td>
<td>26,3</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>2,4</td>
</tr>
<tr>
<td>Cauce</td>
<td>4,0</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1,40</td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
<td>0,70</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>259,724</td>
</tr>
<tr>
<td>UTM N</td>
<td>6,194,720</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>154,8</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>259,807</td>
</tr>
<tr>
<td>UTM N</td>
<td>6,194,607</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>155</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[
t_c = 0.95 \left(\frac{L^3}{H_{máx}} \right)^{0.385}
\]

Fórmula de Giandotti:

\[
t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{H_g}} \quad (hrs); \quad \text{con} \quad \frac{L}{5,4} \leq t_c \leq \frac{L}{3,6}
\]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{\sqrt{A}}{\sqrt{J}} \)

Fórmula de Témez:

\[
t_c = 0.3 \left(\frac{L}{J^{1/4}} \right)^{0.75}
\]
Donde:

\[
L = \text{Longitud del cauce principal en km.}
\]
\[
H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.}
\]
\[
A = \text{Área cuenca en km}^2.
\]
\[
J = \text{Pendiente del cauce (%).}
\]
\[
H_{\text{g}} = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.}
\]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>San Guillermo</td>
<td>0,40</td>
<td>2,81</td>
</tr>
</tbody>
</table>

> Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Guillermo</td>
<td>Rapel</td>
<td>0,070</td>
<td>107,1</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

> Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{\text{tc}}^T \cdot Ap}{3,6}
\]

Donde:

- \(Q(T)\) Caudal generado en la cuenca en (m³/s)
- \(C(T)\) Coeficiente de Escorrentía
- \(I_{\text{tc}}^T\) Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)
- \(Ap\) Área pluvial de la cuenca tributaria (km²).

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \cdot C(T) \cdot \frac{C(T)}{C(T=10)} \cdot 0,00618 \cdot (P_{24}^{T})^{1.24} \cdot (Ap)^{0.88} \]

Donde:

- \(C(T) \) Coeficiente empírico para diferentes periodos de retorno
- \(P_{24}^{T} \) Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentia</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Guillermo</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>5,3</td>
<td>0,5</td>
<td>1,8</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>7,1</td>
<td>0,7</td>
<td>3,1</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>8,1</td>
<td>1,2</td>
<td>4,0</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>8,8</td>
<td>1,4</td>
<td>4,7</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>9,4</td>
<td>1,6</td>
<td>5,2</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>9,7</td>
<td>1,8</td>
<td>5,6</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>10,9</td>
<td>2,2</td>
<td>6,8</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>12,0</td>
<td>2,9</td>
<td>8,7</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]

- \(Q_{10} \) Caudal medio diario máximo con periodo de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km²)
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q_{10} \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>San Guillermo</td>
<td>0,20</td>
</tr>
</tbody>
</table>

➢ Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>San Guillermo</td>
<td>3,13</td>
</tr>
</tbody>
</table>
20.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arena arcillo gravosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 5,4 m
- Ancho coronamiento: 3,3 m
- Borde libre: 0,70 m
- Talud Aguas Arriba: H : V = 1,15 : 1
- Talud Aguas Abajo: H : V = 1,11 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 20.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m³)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>φ = 22°</td>
<td>1,8</td>
<td>1,8</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 20.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 20.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 20.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 20.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 20.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 20.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 20.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 20.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1.5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>San Guillermo</td>
<td>2,316</td>
<td>1,577</td>
</tr>
<tr>
<td></td>
<td>1,526</td>
<td>1,217</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1.5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>San Guillermo</td>
<td>1,810</td>
<td>1,789</td>
</tr>
<tr>
<td></td>
<td>1,451</td>
<td>1,349</td>
</tr>
</tbody>
</table>
20.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada \((L')\) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración \((L_v)\) más un tercio de la suma de las longitudes de filtración horizontales \((1/3 \ L_h)\).

\[
L' = \frac{1}{3} \cdot L_h + L_v
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C' \cdot h
\]

Para el caso del tranque **San Guillermo (Santa Marta)**, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>15,4</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv (m)</td>
<td>0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>C'</td>
<td>2,5</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>h (m)</td>
<td>4,65</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' \ h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAN GUILLERMO</td>
<td>15,4</td>
<td>0</td>
<td>5,14</td>
<td>5,4</td>
<td>0,7</td>
<td>4,653</td>
<td>2,50</td>
<td>11,6</td>
<td>NO</td>
</tr>
</tbody>
</table>

20.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \((h_{\text{ola}})\). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse San Guillermo (Santa Marta).
SAN GUILLERMO (SANTA MARTA)
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea Nº</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia</th>
<th>Dist. * Cos^2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>millas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>94</td>
<td>0,0584</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>91</td>
<td>0,0565</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>86</td>
<td>0,0534</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>86</td>
<td>0,0534</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>87</td>
<td>0,0541</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>101</td>
<td>0,0628</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>138</td>
<td>0,0857</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>270</td>
<td>0,1678</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>233</td>
<td>0,1448</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>58</td>
<td>0,0360</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>55</td>
<td>0,0342</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>51</td>
<td>0,0317</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>45</td>
<td>0,0280</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>41</td>
<td>0,0255</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>41</td>
<td>0,0255</td>
</tr>
</tbody>
</table>

Suma: 13,5109 Suma: 0,8022

Fetch o longitud de acción del viento (F)

F = 0,059 millas
F = 95,56 m

Velocidad del Viento
v = 50 mph
v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pie</td>
<td>m</td>
</tr>
<tr>
<td>Stevenson</td>
<td>2,37</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,30</td>
</tr>
<tr>
<td>Creager</td>
<td>0,67</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,70 m, se tiene que la altura de la ola superaría esta revancha.

20.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- **p**: probabilidad de ocurrencia del evento
- **V**: Vulnerabilidad del evento
- **E**: Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "p" y "V" son independientes por evento, y el valor "E" es idéntico para todos los eventos.

20.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable V para el evento sísmico considerado.

VULNERABILIDAD FREnte A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05-0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40-0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75-0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

20.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins
Embalse San Guillermo (Santa Marta)

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: **22,3 m³/s**
Coeficiente capacidad: **0,36 C1 x C2 x C3**
Capacidad efectiva: **8,03 m³/s**

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q máx. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proabilidad Occurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>3,13</td>
<td>0,05</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>3,70</td>
<td>0,05</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>4,13</td>
<td>0,05</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

20.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
<table>
<thead>
<tr>
<th>Riesgo de piping según situación del muro</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
<td></td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
<td></td>
</tr>
<tr>
<td>Filtración</td>
<td>0,2 a 0,95</td>
<td>0,2</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

20.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

Según la cercanía a la faja probable de Inundación

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

Según la Cercanía al Punto de Vaciamiento

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

20.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentia</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,20</td>
<td>0,03</td>
</tr>
<tr>
<td></td>
<td>0,01</td>
<td>0,01</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2,00</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

20.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse San Guillermo (Santa Marta).
<table>
<thead>
<tr>
<th>Evacuador de Crecidas</th>
<th>Evacuador de Crecidas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clasificación de Material de Construcción</td>
<td>Casa de Bombas</td>
</tr>
<tr>
<td>Vegetación Muro Aguas Arriba</td>
<td>Vista Casa de Bombas</td>
</tr>
</tbody>
</table>
1. ANTECEDENTES GENERALES

Nombre de la presa: San Guillermo (Santa María)
ALI Propietario: 78.721.170-4
Año de construcción: S/N (No se especifica el año de construcción)
Renovaciones: S/N (No se especifica las renovaciones)
Año de estanqueo: No a la fecha
Ciudad: S/N (No se especifica la ciudad)
Concesionario: S/N (No se especifica el concesionario)
Clasificación: S/N (No se especifica la clasificación)

2. UBICACIÓN DE PRESA

Región: M/6 de Liberación Soto O'higgins
Departamento: Canelones
Comuna: Manquehue

Categorías UTM: Este-Denorte
Categorías UTM: Centro
Categorías UTM: Este-Iberá

Datum WGS 84
Altura m.s.n.m.: ED = 142, C = 142, E = 145

N° de parcela: ED + Estilo-Cross
En face: C = Derecho
En frente: C = Delante

3. USO O DESTINO DEL EMBALSE

Riego
Generación de energía
Abastecimiento de agua potable
Recreación

Otros usos: S/N (No se especifican otros usos)

4. TIPO DE EMBALSE

Presas de tierra homogéneas: X
Presas de material granular graduado
Presas de entradas (CFID)
Presas de hormigón (concreto armado, etc.)
Presas de RCC

Otros tipos: S/N (No se especifican otros tipos)

5. GEOMETRÍA DE LA PRESA

Cancha

Longitud del coronamiento (m): 95
Ancho del coronamiento (m): ED = 3,8, C = 2,2, E = 4,0
Desnivel del terreno aguas abajo (m): 8,0
Revestimiento en relación a la base marea de agua (m): 0,7
Parametros verticales: S/N (No se especifican los parámetros verticales)
Corrimientos: S/N (No se especifican los corrimientos)

Angulo tierra de agua arriba: ED = 15°, C = 30°, E = 45°
Angulo tierra de agua arriba: ED = 35°, C = 45°, E = 44°

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (m): 8,4
Profundidad máxima de agua en el sector del muro (m): 4,7
Área estimada a entrada de la presa (m²): 22,300
Área máxima en el sector ladera (m²): 0,35
Largo de la presa (m): 0,37
Volumen declarado o proyectado (millones de m³): 0,128

7.4. ESTADO DEL MURU Y CALIDAD DE CONSTRUCCIÓN

Descripción:
Campos de la geometría actual: Regular
Campos de la geología y estructura: Alta
Uniforrnidad en los talud: Uniformes aguas arriba e irregulares aguas abajo
Dientes vistosos y cuasiidables en el largo del coronamiento: No se presentan depresiones
Dientes vistosos y su ubicación: No se presentan zonas visibles
Inocuas de desniveles y deformaciones: No se presentan desniveles
Inocuas de desniveles y deformaciones: No se presentan desniveles
Sectores que se presentan saludables y altura de seguridad: No se presentan sectores saludables
.Intersecciones visibles en talud de aguas abajo en el pie: No se presentan interferencias
Tipo de revestimiento del muro: Tierra compactada

7.5. CARACTERÍSTICAS OBRAS EVACUADOR DE CRESTAS

Por su localización en relación a la estructura principal:
Varillas frontales: X
Varillas transversales
Varillas de punta

Desde el punto de vista de los instrumentos para el control del caudal vertical:
Varillas libres, en control: X
Varillas controladas por cuerda: X

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRESTAS

Desde el punto de vista de la posición de los instrumentos para el control del caudal vertical:
Varillas libres, en control: X
Varillas controladas por cuerda: X

Desde el punto de vista de la posición de los instrumentos para el control del caudal vertical:
Varillas libres, en control: X
Varillas controladas por cuerda: X

Otros datos a considerar:
Tipo de vertedero: VERTEDERA DE AGUA CHICA
Estado de conservación y operatividad: Regular-funcionando

Dimensiones relevantes (anchura, altura y carga máxima de coheración):
Carga Máx. 0,33 m³/3: Anch. 8,0 m; Alto: 2,5 m
8. CARACTERISTICAS OBRAS DE ENTREGA Y DESAGUÉ DE FONDO

| Tipo de estructura | Casas de bombas con 6 tuberías de 20 cm de diámetro, que conducen el agua a pozas comunitarias a través de manantiales alimentados por el río. Los que conducen el agua directamente a los pozos de agua.
| Medidas estructurales | Tuberías 20 cm de diámetro
| Procedimiento actual | Derrame

10. CARACTERIZACIÓN DEL CAuce Y USO DEL SUEL0

| Tipo de cauce natural o artificial | Aguas abajo del embalse, (las de terraza) pendiente media en el ancho medio del cauce.
| Distancia hacia centros poblados accesibles por el cauce | 4.88 km
| Distancia hacia zonas habitadas accesibles por el cauce | 3.09 km
| Densidad de población en las cercanías del tramo | Alta
| Distancia hacia zonas agrícolas | Adjacentes
| Distancia hacia sectores con infraestructura vital o otra de importancia | 2.78 km
| Área de riego servida por el tramo (total) | 15 ha

11. MONOGRAFÍA

- Planta del muro (formas y dimensiones)
- Sección transversal del muro en la zona con menor revestimiento y con mayor revestimiento, indicando sus medidas

12. OBSERVACIONES

El tramo se da de paso, por esta razón permite irregular transacciones, ya que se bajan y exceden a menudo.
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>San Guillermo (Santa María)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Soc. Agrícola, Ganadera y Forestal La Grane Ltda.</td>
</tr>
<tr>
<td>N° de Inventario</td>
<td>73-01-7738-4</td>
</tr>
<tr>
<td>Área de construcción</td>
<td>S/N (Nuevos ductos - Se desconoce)</td>
</tr>
<tr>
<td>Preservación (S. / D. S.)</td>
<td>No</td>
</tr>
<tr>
<td>Área de reposición</td>
<td>No</td>
</tr>
<tr>
<td>Llave de Acceso C/</td>
<td>No</td>
</tr>
<tr>
<td>Posición y Código AEA</td>
<td>S/N (Nuevos ductos - Se desconoce)</td>
</tr>
<tr>
<td>Fuentes de riego</td>
<td>Estero Chiquito</td>
</tr>
</tbody>
</table>

2. UBICACION DE PRESA

<table>
<thead>
<tr>
<th>Fecha</th>
<th>23-03-2009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complemento del Código de Acceso</td>
<td>No se especifica</td>
</tr>
<tr>
<td>Altura del muro</td>
<td>S/N</td>
</tr>
<tr>
<td>Caudal</td>
<td>S/N</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Uso</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacitación</td>
<td>S/N</td>
</tr>
<tr>
<td>Uso</td>
<td>S/N</td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

Presa de tierra homogénea	X
Presa de material grande graduado	
Presa de embalse (CPDE)	
Presa de hormigón (hormigón, contraventanas, etc.)	
Presa de RCC	
Otros tipos	

5. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones ingenieriles y materiales en caso de no poder medir directamente) (m)	0.4
Presión máxima de agua en el muro (m)	4.7
Volumen de muro y de contenciones (cub)	20,200
Volumen de muro y de contenciones (cub)	0.29
Largo de la represa (m)	0.72
Volumen total de proyectado (m³)	0.025

6. ESTADO DE LA BOCANA Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Fecha</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estado</td>
<td>Fecha</td>
</tr>
<tr>
<td>Calidad del material estructural</td>
<td>AABA</td>
</tr>
<tr>
<td>Uniformidad de los materiales</td>
<td>Uniformes, agudo, inusuales, agudo, variedad</td>
</tr>
<tr>
<td>Discrepancia visibles a un nivel de la orilla del embalse</td>
<td>No se presentan discrepancias</td>
</tr>
<tr>
<td>Gruesos visibles y su ubicación</td>
<td>No se presentan gruesos visibles</td>
</tr>
<tr>
<td>Indicadores de desenlaces y ubicación</td>
<td>No presentan desenlaces</td>
</tr>
<tr>
<td>Sectores que presentan salidas y altura de señalización</td>
<td>No se presentan sectores saturados</td>
</tr>
<tr>
<td>Formaciones visibles en el muro de agua sobre el más no</td>
<td>No se presentan formaciones visibles</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Tierra corriente</td>
</tr>
</tbody>
</table>

7. CARACTERÍSTICAS GÉNERO DURADOR DE CREDADAS

<table>
<thead>
<tr>
<th>Por su localización en relación a la estructura principal</th>
<th>Descripción del punto de vista en los instrumentos para el cálculo del caudal máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertedereces laterales</td>
<td>X</td>
</tr>
<tr>
<td>Trabajos complementarios</td>
<td></td>
</tr>
<tr>
<td>Vertedereces suplementarias</td>
<td></td>
</tr>
<tr>
<td>V del punto de vista de la pared donde se produce la crecida</td>
<td></td>
</tr>
<tr>
<td>Vertedereces de pared</td>
<td>X</td>
</tr>
<tr>
<td>Vertedereces de pared</td>
<td></td>
</tr>
<tr>
<td>Vertedereces con partícula</td>
<td></td>
</tr>
<tr>
<td>V del punto de vista de la pared donde</td>
<td></td>
</tr>
<tr>
<td>Material de concreto</td>
<td>Terra</td>
</tr>
<tr>
<td>Estado de concreción y resistencia</td>
<td>Resistente</td>
</tr>
<tr>
<td>Dimensiones mínimas (anchura, altura y carga máxima de partículas)</td>
<td>Carga Normal 2.0 m³, Anchura 1.0 m, Alto 2.0 m³</td>
</tr>
</tbody>
</table>
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Caja de bocas con 5 tuberías de 20 cm de diámetro, que conducen el agua a piezas cunetas en altura, las que conducen el agua directamente a los medios sin gravedad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unifuncionales</td>
<td>Tuberías 20 cm de diámetro</td>
</tr>
<tr>
<td>Característica actual</td>
<td>Operativo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL NIEVE AGRÍCOLA

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>aguas bajos del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hasta centros poblados preparados al cauce</td>
<td>3.00</td>
</tr>
<tr>
<td>Desviación de población en las cercanías del embalse</td>
<td>Alta</td>
</tr>
<tr>
<td>Distancia hasta aguas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Distancia hasta infraestructuras vecinas o vías de importancia</td>
<td>0.70</td>
</tr>
<tr>
<td>Área de riego servido por el embalse analizado</td>
<td>18 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

- Planta de muro (fresno y dimensiones)
- Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus fáctores

12. OBSERVACIONES

El embalse está en uso, por esta razón permitir ajustes ligeriores, ya que no tendrá población ocupacional.
EMBALSE POROTAL
PARTE B: CATASTRO DE EMBALSES

21. EMBALSE POROTAL
21.1 Ubicación
21.2 Características Generales
21.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
21.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
21.5 Determinación de Filtraciones
21.6 Verificación del Oleaje
21.7 Análisis de Riesgo (Hazop)
21.8 Álbum Fotográfico y Fichas de Catastro
21. EMBALSE POROTAL DE ALCONES

21.1 Ubicación

El embalse Porotal de Alcones se ubica en la comuna de Marchigue, provincia de Colchagua, en las coordenadas UTM 6.192.137 Norte y 252.772 Este, Datum WGS 84 a una Altitud de 140 m.s.n.m. Se localiza en la cuenca del Río Tinguiririca, subcuenca del estero Las Cadenas y la fuente corresponde a la quebrada Porotal.

Este sitio de embalse se localiza al este de la comuna, a 4 km de la comuna de Pichilemu, desde Alcones 500 m al sur por ruta I-50 entrada a camino particular.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 21.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE POROTAL DE ALCONES

Fuente: Carta IGM
21.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Agrícola Alcones Ltda. El uso y destino del embalse es de riego y control de crecidas.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,179 hm³. La altura máxima del muro es de 2,1 m, con una longitud de coronamiento de 238 m y ancho promedio del coronamiento de 4,9 m y borde libre de 0,4 m. El Talud Aguas Arriba es H:V=1,23:1 y el Talud Aguas Abajo es H:V=1,60:1.

El evacuador de crecidas corresponde a uno vertedero de caída libre, que se le agrego unas compuertas para enalatarlo con un ancho medio de 6,7 m y 2 m de alto. Tiene controladores por compuertas. Buen estado de mantención y operación.

La obra de entrega corresponde a dos entregas. Obra 1: Válvula de volante que envía agua por medio de una tubería de 25 cm de diámetro a canal en tierra, se ubica cercana al estribo derecho. Obra 2: 2 válvulas pequeñas con salida a tuberías de 20 cm de diámetro ubicadas en el estribo izquierdo. La salida es a canal en tierra que conduce las aguas directamente hasta los predios. La obra se encuentra en buen estado de mantención y operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 21.2-1

IMAGEN SATELITAL EMBALSE POROTAL DE ALCONES
Vista panorámica Embalse Porotal de Alcones
21.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Porotal de Alones tiene como fuente a la quebrada Porotal, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 3,69 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 21.3-1
CUENCA EMBALSE POROTAL
CUADRO 21.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Porotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>368,6</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td></td>
<td>368,6</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>12,240,0</td>
</tr>
<tr>
<td></td>
<td>Pluvial</td>
</tr>
<tr>
<td></td>
<td>12,240,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td>Máxima</td>
</tr>
<tr>
<td></td>
<td>201,3</td>
</tr>
<tr>
<td></td>
<td>Mínima</td>
</tr>
<tr>
<td></td>
<td>148,6</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
</tr>
<tr>
<td></td>
<td>52,7</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td>Cuenca</td>
</tr>
<tr>
<td></td>
<td>2,1</td>
</tr>
<tr>
<td></td>
<td>Cauce</td>
</tr>
<tr>
<td></td>
<td>6,6</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>2,21</td>
</tr>
<tr>
<td></td>
<td>Desde centro de gravedad</td>
</tr>
<tr>
<td></td>
<td>1,11</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>252,306</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>6,191,068</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td></td>
<td>156,3</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td>UTM E</td>
</tr>
<tr>
<td></td>
<td>252,991</td>
</tr>
<tr>
<td></td>
<td>UTM N</td>
</tr>
<tr>
<td></td>
<td>6,191,179</td>
</tr>
<tr>
<td></td>
<td>Altura (msnm)</td>
</tr>
<tr>
<td></td>
<td>155</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:
\[t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} \]

Fórmula de Giandotti:
\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{H_g}} \quad \text{(hrs)}; \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras:
\[t_c = 0.05 \cdot \sqrt{\frac{A}{J}} \]

Fórmula de Témez:
\[t_c = 0.3 \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Donde:

- \(L = \) Longitud del cauce principal en km.
- \(H_{\text{máx}} = \) Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
- \(A = \) Área cuenca en km\(^2\).
- \(J = \) Pendiente del cauce (%).
- \(H_{\text{g}} = \) Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,52</td>
<td>4,97</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porotal</td>
<td>Rapel</td>
<td>0,082</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:

- \(Q(T) \) Caudal generado en la cuenca en (m\(^3\)/s).
- \(C(T) \) Coeficiente de Escorrentía.
- \(I_{tc}^T \) Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(tc \) en (mm/h).
- \(Ap \) Área pluvial de la cuenca tributaria (km\(^2\)).

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(T) \frac{C(T)}{C(T = 10)} \cdot \frac{1}{0.00618} \cdot (P_{24}^{T = 10})^{0.24} \cdot (Ap)^{0.88} \]

Donde:

- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^{T} \): Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \): Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porotal</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>5,2</td>
<td>1,6</td>
<td>6,6</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>7,0</td>
<td>2,3</td>
<td>11,2</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>8,0</td>
<td>3,9</td>
<td>14,5</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>8,7</td>
<td>4,6</td>
<td>17,0</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>9,2</td>
<td>5,2</td>
<td>18,9</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>9,5</td>
<td>5,6</td>
<td>20,4</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>10,6</td>
<td>7,1</td>
<td>24,8</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>11,8</td>
<td>9,2</td>
<td>31,6</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T = 10})^{3.432} \cdot (Ap)^{0.915} \]

- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m³/s)
- \(P_{24}^{T = 10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área Pluvial de la cuenca (km²)
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q(10) \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q) instantáneo máximo (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Porotal</td>
<td>0,46</td>
</tr>
</tbody>
</table>

➤ **Extrapolación de caudales**

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(T=200)</td>
</tr>
<tr>
<td>Porotal</td>
<td>9,93</td>
</tr>
</tbody>
</table>
21.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa con algunas gravas, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

<table>
<thead>
<tr>
<th>Altura:</th>
<th>2,1 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho coronamiento</td>
<td>4,9 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>0.40 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 1,23 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 1, 60 : 1</td>
</tr>
</tbody>
</table>

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 21.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción ($^\circ$)</th>
<th>Cohesión (t/m2)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td></td>
<td>2,2</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td>$\phi = 22^\circ$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td></td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Sísmico</td>
<td></td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 21.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 21.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 21.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 21.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 21.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 21.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 21.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 21.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Siémico (kh = 0,12)g</td>
<td></td>
</tr>
<tr>
<td>Agua Arriba</td>
<td>Agua Abajo</td>
<td></td>
</tr>
<tr>
<td>Porotal</td>
<td>4,508</td>
<td>2,825</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
</tr>
</thead>
<tbody>
<tr>
<td>Factor de seguridad 1,5</td>
</tr>
<tr>
<td>Estático</td>
</tr>
<tr>
<td>Agua arriba</td>
</tr>
<tr>
<td>Porotal</td>
</tr>
</tbody>
</table>
21.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C' \cdot h \]

Para el caso del tranque Porotal de Alcones, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lv (m)</th>
<th>Longitud vertical en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C'</th>
<th>Coeficiente de filtración que depende del tipo de material del embalse</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>h (m)</th>
<th>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,720</td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso NO se cumple la relación, por lo tanto, SI existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bL</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>POROTAL</td>
<td>10,9</td>
<td>0</td>
<td>3,64</td>
<td>2,1</td>
<td>0,4</td>
<td>1,720</td>
<td>2,40</td>
<td>4,1</td>
<td>L' \geq C' h</td>
</tr>
</tbody>
</table>

21.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ola}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Porotal de Alcones.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea Nº</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°</td>
<td></td>
<td></td>
<td>m</td>
<td>millas</td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>425</td>
<td>0,2641</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>836</td>
<td>0,5195</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>749</td>
<td>0,4654</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>572</td>
<td>0,3554</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>558</td>
<td>0,3467</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>569</td>
<td>0,3536</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>594</td>
<td>0,3691</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>693</td>
<td>0,4306</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>543</td>
<td>0,3374</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>552</td>
<td>0,3430</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>688</td>
<td>0,4275</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>806</td>
<td>0,5008</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>735</td>
<td>0,4567</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>230</td>
<td>0,1429</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>178</td>
<td>0,1106</td>
</tr>
</tbody>
</table>

Suma | 13,5109 | Suma | 4,5428 |

Fetch o longitud de acción del viento (F)

F = 0,336 millas
F = 541,11 m

Velocidad del Viento

v = 50 mph
v = 22,35 m/s

Fórmulas Empiricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,61</td>
<td>0,7950</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,44</td>
<td>0,7424</td>
</tr>
<tr>
<td>Creager</td>
<td>1,28</td>
<td>0,3905</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola | 0,95 m
De acuerdo a las mediciones realizadas en terreno con hinchas, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,40 m, se tiene que la altura de la ola superaría esta revancha.

21.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p V E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores “\(p \)” y “\(V \)” son independientes por evento, y el valor “\(E \)” es idéntico para todos los eventos.

21.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo “(p)”</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas (*)</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

21.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Porotal de Alcones

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Estado de conservación</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td>0,8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 4,9 m³/s
Coeficiente capacidad 0,36
Capacidad efectiva 1,76 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q max. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>9,93</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>11,73</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>13,09</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

21.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
21.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

21.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Esorrentia</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>0,20</td>
<td>0,48</td>
</tr>
<tr>
<td></td>
<td>0,10</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>1,00</td>
<td></td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

21.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Porotal de Alcones.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO HACIA ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA 1</td>
<td>OBRA DE ENTREGA 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Clasificación de Material de Construcción</td>
<td>Canal de Salida del Evacuador de Crecidas</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Depresión Visible en el Metro 90</td>
<td>Sector Saturado en el Metro 60</td>
</tr>
<tr>
<td>Filtración en el Metro 10 y 150</td>
<td>Filtración en el Metro 70 al 100</td>
</tr>
</tbody>
</table>
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Pendal de Águilas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Antonio Arrieta Lluc</td>
</tr>
<tr>
<td>NIF/ Proyecto</td>
<td>87.442.159-1D</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1979</td>
</tr>
</tbody>
</table>
| Reglamento | SN:
| Año de regulación | 1979 |
| Código del embalse | Pendal de Águilas |
| Altura del muro | 2,10 m |
| Altura del núcleo | 1,70 m |
| Volumen de agua en el núcleo | 0,17 m³ |

2. UBICACIÓN DE PRESA

- Relación con la red hidrográfica
- Coordenadas Geográficas

3. USO O DESTINO DEL EMBALSE

<table>
<thead>
<tr>
<th>Uso</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generación de energía</td>
<td></td>
</tr>
<tr>
<td>Reclamación de agua potable</td>
<td></td>
</tr>
<tr>
<td>Reclamación de agua limpieza</td>
<td></td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

Presa de ladera terraza	X
Presa de material granular	
Presa de concreto	
Presa de hormigón	
Presa de RCC	

5. ESTRATEGIA CAPACITIVA MÁXIMA DEL EMBALSE

Altura máxima del muro (m)	2,10
Profundidad media de agua en el sector del muro (m)	1,70
Área del sector (m²)	42.500
Longitud del sector (m)	690

6. ESTADO DEL EMBALE Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Estado</th>
<th>Regular</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comportamiento del material estructural</td>
<td>No</td>
</tr>
<tr>
<td>Uniformidad</td>
<td>No</td>
</tr>
<tr>
<td>Expansión volcánica</td>
<td>No</td>
</tr>
<tr>
<td>Índice de densidad y ubicación</td>
<td>No</td>
</tr>
<tr>
<td>Sector que presenta anomalías</td>
<td>No</td>
</tr>
<tr>
<td>Filtros visuales y ámbito de agua en el núcleo</td>
<td>0,17 m³</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Nueva compatibilidad</td>
</tr>
</tbody>
</table>

7. CARACTERÍSTICAS OBRA EVACUACIÓN DE CREECADA

<table>
<thead>
<tr>
<th>Por su localización en relación al embalse:</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvulas flotantes</td>
<td></td>
</tr>
<tr>
<td>Válvulas mecánicas</td>
<td></td>
</tr>
<tr>
<td>Válvulas de carrera</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Desde el punto de vista de los embalsevante</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvulas de paralelo</td>
<td></td>
</tr>
<tr>
<td>Válvulas de paralelo con distintas funciones</td>
<td></td>
</tr>
</tbody>
</table>

8. CARACTERÍSTICAS OBRA EVACUACIÓN DE CREECADA

<table>
<thead>
<tr>
<th>Desde el punto de vista de los embalsevante</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válvulas de paralelo</td>
<td></td>
</tr>
<tr>
<td>Válvulas de paralelo con distintas funciones</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material constructivo</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dureza de hormigón y concreto</td>
<td></td>
</tr>
<tr>
<td>Estado de conservación y operabilidad</td>
<td></td>
</tr>
<tr>
<td>Dimensiones (Ancho, altura y largo máximo de operación)</td>
<td></td>
</tr>
</tbody>
</table>

FICHA DE CATASTRO DE EMBALSES
10. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

- Tipo de estructura: Cubeta 2 obras de entrega. Obras 1: Válvula de válvula que envía agua por medio de una tubería de 35 cm de diámetro a canal en frente, se ubica en el sector derecho. Obras 2: 2 válvulas pequeñas con salida a tuberías de 8 cm de diámetro ubicadas en el sector izquierdo. La salida es a canal en tierra que condensa las aguas directamente hacia las presas.

- Medición adicional: Obra 1: Válvula de 35 cm de diámetro, entrega a canal grande. Obra 2: 2 válvulas de 8 cm de diámetro entrega a canal pequeño.

11. MONOGRAFÍA

- Planta del muro (forma y dimensiones)

12. OBSERVACIONES

- En el caso de que se quiera en su capacidad máxima, con el misterio ventrilo, se observará que a lo largo de todo el recorrido del agua a la izquierda se forma una depresión en el fondo. El curso del agua se hace en una depresión.
EMBALSE YERBAS BUENAS (SANTA JULIA)
PARTE B: CATASTRO DE EMBALSES

22. EMBALSE YERBAS BUENAS (SANTA JULIA)
22.1 Ubicación
22.2 Características Generales
22.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
22.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
22.5 Determinación de Filtraciones
22.6 Verificación del Oleaje
22.7 Análisis de Riesgo (Hazop)
22.8 Álbum Fotográfico y Fichas de Catastro
22. EMBALSE YERBAS BUENAS (SANTA JULIA)

22.1 Ubicación

El embalse Yerbas Buenas (Santa Julia) se ubica en la comuna de Marchigue, provincia de Cardenal Caro, en las coordenadas UTM 6.188.470 Norte y 254.996 Este, Datum WGS 84 a una Altitud de 140 m.s.n.m. Se localiza en la cuenca del Río Tinguiririca, subcuenca del estero Las Cadenas y la fuente corresponde a la quebrada Las Pataguas.

Este sitio de embalse se localiza a 2,8 km de la localidad de Yerbas Buenas y a 1 km del estero del mismo nombre. Desde Marchigüe por ruta I-50 hacia Alcones, aproximadamente 7,6 km entrada camino particular a embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 22.1-1

PLANO DE UBICACIÓN SITIO DE EMBALSE YERBAS BUENAS (SANTA JULIA)

Fuente: Carta IGM
Vista panorámica Embalse Yerbas Buenas (Santa Julia)
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Yerbas Buenas (Santa Julia)
22.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Yerbas Buena (Santa Julia) tiene como fuente a la quebrada Las Pataguas, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escurritancia.

La cuenca en estudio tiene una superficie de 20,67 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 22.3-1
CUENCA EMBALSE YERBAS BUENAS
CUADRO 22.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Santa Julia (Yerbas Buenas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>2.067,1</td>
</tr>
<tr>
<td>Pluvial</td>
<td>2.067,1</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27.180,0</td>
</tr>
<tr>
<td>Pluvial</td>
<td>27.180,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>343,0</td>
</tr>
<tr>
<td>Mínima</td>
<td>145,4</td>
</tr>
<tr>
<td>Diferencia</td>
<td>197,6</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>3,8</td>
</tr>
<tr>
<td>Cauce</td>
<td>1,0</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>8,62</td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
<td>4,31</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>250,559</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.188.920</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>162,2</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>251,935</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.189,596</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>154</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) **Estimación de Caudales Máximos Instantáneos**

- **Tiempo de Concentración**

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L}{H_{máx}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs)}; \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \[t_c = 0.05 \cdot \frac{\sqrt{A}}{J} \]

Fórmula de Témez:

\[t_c = 0.3 \cdot \left(\frac{L}{J^{1/4}} \right)^{0.75} \]
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins
Embalse Yerbas Buenas (Santa Julia)

Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{m}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (%).} \]
\[H_{g} = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Yerbas Buenas</td>
<td>1,49</td>
<td>9,50</td>
</tr>
</tbody>
</table>

> Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 HRS EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yerbas Buenas</td>
<td>Rapel</td>
<td>0,192</td>
<td>122,5</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

> Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{T}^{T} \cdot A_p}{3,6} \]

Donde:

\[Q(T) = \text{Caudal generado en la cuenca en (m}^3/\text{s)} \]
\[C(T) = \text{Coeficiente de Escorrentía} \]
\[I_{T}^{T} = \text{Intensidad de la precipitación para t igual al tiempo de concentración tc en (mm/h)} \]
\[A_p = \text{Área pluvial de la cuenca tributaria (km}^2) \]

La intensidad de la precipitación va a estar asociada al período de retorno T y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot \left(P_{24}^T \right)^{1,24} \cdot \left(Ap \right)^{0,88} \]

Donde:
- \(C(T) \): Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \): Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \): Área pluvial (km\(^2\))

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>(C) escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>(Pp) (T, tc)</th>
<th>(Q(T)) V-K</th>
<th>(Q(T)) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yerbas Buenas</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>16,6</td>
<td>10,6</td>
<td>29,9</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>22,2</td>
<td>15,1</td>
<td>50,9</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>25,3</td>
<td>25,7</td>
<td>65,9</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>27,5</td>
<td>30,7</td>
<td>77,0</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>29,2</td>
<td>34,8</td>
<td>86,0</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>30,2</td>
<td>37,7</td>
<td>92,5</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>33,8</td>
<td>47,2</td>
<td>112,6</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>37,4</td>
<td>61,5</td>
<td>143,3</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot \left(P_{24}^{T=10} \right)^{3,43} \cdot \left(Ap \right)^{0,915} \]

Donde:
- \(Q_{10} \): Caudal medio diario máximo con período de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10} \): Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \): Área pluvial de la cuenca (km\(^2\))
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \) corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>(T) (años)</th>
<th>(Q(T)) / (Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q \text{ instantáneo máx (T), DGA-AC})</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Yerbas Buenas</td>
<td>6,35</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para periodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Yerbas Buenas</td>
<td>66,33</td>
</tr>
</tbody>
</table>
22.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arena arcillosa con gravas, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

MURO 1

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura</td>
<td>7,8 m</td>
</tr>
<tr>
<td>Ancho coronamiento</td>
<td>5,0 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>1,5 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 1,43 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 1,33 : 1</td>
</tr>
</tbody>
</table>

MURO 2

<table>
<thead>
<tr>
<th>Medida</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altura</td>
<td>2,1 m</td>
</tr>
<tr>
<td>Ancho coronamiento</td>
<td>3,8 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>1,0 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 1,73 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 2,14 : 1</td>
</tr>
</tbody>
</table>
c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 22.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción $^\circ$</th>
<th>Cohesión (t/m3)</th>
<th>Peso unitario seco (t/m3)</th>
<th>Peso unitario saturado (t/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa Arcilla Limo Arenosa</td>
<td>$\phi = 22^\circ$</td>
<td>2,0</td>
<td>1,80</td>
<td>2,00</td>
</tr>
</tbody>
</table>

d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.
FIGURA 22.4-1
MURO 1 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 22.4-2
MURO 1 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 22.4-3
MURO 1 TALUD AGUAS ARRIBA - SÍSMICO CON AGUA

FIGURA 22.4-4
MURO 1 TALUD AGUAS ABAJO - SÍSMICO CON AGUA
FIGURA 22.4-9
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA

FIGURA 22.4-10
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO CON AGUA
FIGURA 22.4-13
MURO 2 TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA

FIGURA 22.4-14
MURO 2 TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA
FIGURA 22.4-15
MURO 2 TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA

FIGURA 22.4-16
MURO 2 TALUD AGUAS ABAJO - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 22.4-2
FACTORES DE SEGURIDAD DE TALUDES
YERBAS BUENAS (SANTA JULIA)

<table>
<thead>
<tr>
<th>Yerbas Buenas (Santa Julia)</th>
<th>Análisis con embalse lleno</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
</tr>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $k_h=0.12g$</td>
</tr>
<tr>
<td></td>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
</tr>
<tr>
<td>Muro 1</td>
<td>2,011</td>
<td>1,517</td>
</tr>
<tr>
<td>Muro 2</td>
<td>3,364</td>
<td>2,956</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Yerbas Buenas (Santa Julia)</th>
<th>Análisis con embalse seco</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Factor de seguridad 1,5</td>
<td>Factor de seguridad 1,1</td>
</tr>
<tr>
<td></td>
<td>Estático</td>
<td>Sísmico $k_h=0.12g$</td>
</tr>
<tr>
<td></td>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
</tr>
<tr>
<td>Muro 1</td>
<td>1,718</td>
<td>1,676</td>
</tr>
<tr>
<td>Muro 2</td>
<td>3,312</td>
<td>3,029</td>
</tr>
</tbody>
</table>

22.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual a la suma de las longitudes verticales de filtración (L_v) más un tercio de la suma de las longitudes de filtración horizontales ($1/3 L_h$).

$$L' = \frac{1}{3} \cdot L_h + L_v$$

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

$$L' \geq C \cdot h$$
Para el caso del tranque *Yerbas Buenas (Santa Julia)*, se tiene:

<table>
<thead>
<tr>
<th>Muro 1</th>
<th>Muro 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lh (m) =</td>
<td>26.6</td>
</tr>
<tr>
<td>Lv (m) =</td>
<td>0</td>
</tr>
<tr>
<td>C’ =</td>
<td>2.0</td>
</tr>
<tr>
<td>h (m) =</td>
<td>6.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Muro 1</th>
<th>Muro 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lh (m) =</td>
<td>26.6</td>
</tr>
<tr>
<td>Lv (m) =</td>
<td>0</td>
</tr>
<tr>
<td>C’ =</td>
<td>2.0</td>
</tr>
<tr>
<td>h (m) =</td>
<td>6.32</td>
</tr>
</tbody>
</table>

Longitud horizontal en la base del tranque o embalse.
Longitud vertical en la base del tranque o embalse.
Coeficiente de filtración que depende del tipo de material del embalse.
Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba.

De acuerdo con el criterio de Lane, en este caso, para M1, **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L’</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C’</th>
<th>(C’ h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>YERBAS BUENAS</td>
<td>26.6</td>
<td>0</td>
<td>8.85</td>
<td>7.8</td>
<td>1.5</td>
<td>6.324</td>
<td>2.00</td>
<td>12.6</td>
<td>L’ ≥ C’ h</td>
</tr>
<tr>
<td>SANTA JULIA M1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>No</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso, para M2, **SI** se cumple la relación, por lo tanto, **NO** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L’</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C’</th>
<th>(C’ h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>YERBAS BUENAS</td>
<td>12.0</td>
<td>0</td>
<td>4.00</td>
<td>2.1</td>
<td>1.0</td>
<td>1.113</td>
<td>2.00</td>
<td>2.2</td>
<td>L’ ≥ C’ h</td>
</tr>
<tr>
<td>SANTA JULIA M2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Si</td>
</tr>
</tbody>
</table>

22.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \(h_{\text{ola}}\). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Santa Julia (Yerbas Buenas).

De acuerdo a las mediciones realizadas en terreno con huincha, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 1,50 m, se tiene que la altura de la ola no superaría esta revancha.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea Nº</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos²(α)</th>
<th>Distancia</th>
<th>Dist. * Cos²(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m</td>
<td>millas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>279</td>
<td>0,1734</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>299</td>
<td>0,1858</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>582</td>
<td>0,3616</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>1096</td>
<td>0,6810</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>1002</td>
<td>0,6226</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>872</td>
<td>0,5418</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>881</td>
<td>0,5474</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>892</td>
<td>0,5543</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>809</td>
<td>0,5027</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>874</td>
<td>0,5431</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>922</td>
<td>0,5729</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>813</td>
<td>0,5052</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>852</td>
<td>0,5294</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>828</td>
<td>0,5145</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>673</td>
<td>0,4182</td>
</tr>
</tbody>
</table>

Suma 13,5109

Suma 6,1555

Fetch o longitud de acción del viento (F)

F = 0,456 millas
F = 733,21 m

Velocidad del Viento

v = 50 mph
v = 22,35 m/s

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,69 0,8202</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,49 0,7589</td>
</tr>
<tr>
<td>Creager</td>
<td>1,43 0,4370</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11 0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
22.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "\(p \)" y "\(V \)" son independientes por evento, y el valor "\(E \)" es idéntico para todos los eventos.

22.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "(p)"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

22.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:

<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego

22-23
Estado de conservación

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Calidad del canal de descarga</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: $25,0 \text{ m}^3/\text{s}$

Coeficiente capacidad: $0,36 \quad C1 \times C2 \times C3$

Capacidad efectiva: $9,0 \text{ m}^3/\text{s}$

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_{af} < Q_{normal \ máx}$</td>
<td>0,05</td>
</tr>
<tr>
<td>$Q_{normal \ máx} < Q_{af} < Q_{max. \ último}$</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>$Q_{af} > Q_{max. \ último}$</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m3/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m3/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>66,33</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,002</td>
<td>78,37</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>0,0010</td>
<td>84,48</td>
<td>0,95</td>
<td>0,00</td>
<td>0</td>
</tr>
</tbody>
</table>

22.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro

<table>
<thead>
<tr>
<th></th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Muro 1</td>
</tr>
<tr>
<td>Sin humedad al pie</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>Saturación abajo del muro</td>
<td>0,05 a 0,10</td>
<td></td>
</tr>
<tr>
<td>Saturación del pie</td>
<td>0,10 a 0,20</td>
<td></td>
</tr>
<tr>
<td>Filtración</td>
<td>0,20 a 0,95</td>
<td>0,2</td>
</tr>
<tr>
<td>Si existe sistema de drenaje</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Si el material es cohesivo</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

22.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05</td>
<td>0,5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5</td>
<td>0,8</td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05</td>
<td>0,5</td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

22.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo</th>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muro 1</td>
<td>0,20</td>
<td>0,19</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,48</td>
<td>0,10</td>
<td>0,00</td>
</tr>
<tr>
<td>Muro 2</td>
<td>0,20</td>
<td>0,19</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,48</td>
<td>0,10</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,50</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo por escorrentía.

22.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Yerbas Buenas (Santa Julia).
<table>
<thead>
<tr>
<th>VISTA MURO 1 DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO 1 DESDE ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS M1</td>
<td>EVACUADOR DE CRECIDAS M1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA M1</td>
<td>OBRA DE ENTREGA M1</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CLASIFICACIÓN DE MATERIAL DE CONSTRUCCIÓN M1</td>
<td>SOC AVACIÓN POR OLEAJE MURO 1</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA MURO 2</td>
<td>OBRA DE ENTREGA MURO 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA MURO 2</td>
<td>SATURACIÓN EN MURO 2 EN LOS METROS 80 Y 433</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego

22-27
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Yerbas buenas M1 (Santa rula)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Apurímac Aynón</td>
</tr>
<tr>
<td>RUT Propietario</td>
<td>84.442.100-1</td>
</tr>
<tr>
<td>Año de construcción</td>
<td>2001</td>
</tr>
<tr>
<td>Reparación (S) / (NO)</td>
<td>NO</td>
</tr>
<tr>
<td>Año de reparación</td>
<td>S</td>
</tr>
<tr>
<td>Correl. Código DGA</td>
<td>Ríos Tiquintillas</td>
</tr>
<tr>
<td>Subcorrel. Código DGA</td>
<td>Estero Las Cadenas</td>
</tr>
<tr>
<td>Fuente del agua</td>
<td>Quebrada Las Pataquis</td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VI del Litoral Sur, O/Popovs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cardenal Carl</td>
</tr>
<tr>
<td>Comuna</td>
<td>Maripolpe</td>
</tr>
<tr>
<td>Coordenadas UTM Este DERECHO</td>
<td>N= 61.986.349 E= 254.054</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N= 61.986.470 E= 254.998</td>
</tr>
<tr>
<td>Coordenadas UTM Izquierdo</td>
<td>S= 61.986.550 E= 253.836</td>
</tr>
<tr>
<td>Datum UTM 94</td>
<td>N = 154, C = 140, H = 149</td>
</tr>
<tr>
<td>N° Noreste</td>
<td>ED= Este Derecho</td>
</tr>
<tr>
<td></td>
<td>C= Centro</td>
</tr>
<tr>
<td></td>
<td>ED= Este Izquierdo</td>
</tr>
</tbody>
</table>

3. USO O DESTINO DEL EMBALSE

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Riego</td>
<td>X</td>
</tr>
<tr>
<td>Gestionamiento de aguas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fincas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Viviendas</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Cria</td>
<td></td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

Presa de tierra homogénea	X
Presa de material granular graduado	
Presa de enrocados (CRFC)	
Presa de hormigón (gravedad, contrahuella, erco)	
Presa de RCC	
Otros tipos	

5. GEOMETRÍA DE LA PRESA

Con huellas	
Longitud del coronamiento (m)	413
Ancho del coronamiento (m)	ED = 5,40, C = 4,50, E= 5,0
Desnivel del talud agua abajo (m)	13,0
Reversa mínima en relación a la cota máxima de aguas corridas (m)	1,5
Paramentos verticales	NO
Con elevación	
Ángulo talud agua abajo	ED = 35°, C = 42°, E= 35°
Ángulo talud agua arriba	ED = 35°, C = 35°, E= 35°
EDM Este Derecho	C= Centro
EDM Este Izquierdo	

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones trigonométricas en caso de no poder medir directamente) (m)	7,60
Profundidad máxima de agua en sector del muro (m)	0,30
Área estimada a calculada de la presa (m2)	456,2
Ancho máximo de la presa (m)	0,64
Largo de la presa (m)	0,63
Volumen declarado o proyectado (millones de m3)	0,723

7. A. CARACTERÍSTICAS DEL MURO

Inspección visual	
Toma de muestra del suelo (preferentemente en el centro del muro)	SI
Identificación del punto de toma de muestra	SI
Toma de coordenadas y fotografías del punto mostrado	SI
Clasificación del material de construcción (clasificación según tabla)	Arena Arenisca con Gravas

7. B. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

Desdoblado	
Regularidad de la geometría actual	Regular
Compactación del material estructural	Muy Alto
Uniformidad de los taludes	Uniforme en ambos taludes
Derrumbes visibles y cuantificables a lo largo del coronamiento	No se presentan derrumbes visibles
Grietas visibles y su ubicación	No se presentan grietas visibles
Índices de deslizamientos y ubicación	No se presentan índices de deslizamientos
Sectores que se presentan saturados y altura de saturación	No se presentan sectores saturados
Fisuraciones visibles en talud de agua abajo en el pie	No se presentan fisuraciones visibles
Tipo de revestimiento del muro	Tierra compactada

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIMIENTOS

Vides de vertederos en relación a la estructura principal:	X
Vides de vertederos frontales	X
Vides de vertederos laterales	
Vides de vertederos de remanso	

| Desde el punto de vista de los instrumentos para el control del caudal v debtado: | |
| Desde el punto de vista de la sección por la cual pasa el vertedero: | X |

Material constructivo	Hormigón
Estado de conservación y operatividad	En buen estado de conservación, operativo
Dimensiones relevantes (ancho, altura y cegado máxima de operación)	Ancho: 13,0 mts; Alto: 4,5 mts; Largo: 20 mts
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>La obra de entrega (M1) se encuentra en el metro 199, bajo el agua, a partir del estribó derecho. El agua se recibirá por una tubería de 80 cm de diámetro, la que entregará a estructura de hormigón con salida a canal en tierra (ver álbum fotográfico).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>Ancho: 3,10 mts, Alto: 2,0 mts</td>
</tr>
<tr>
<td>Ensayamiento actual</td>
<td>Operativo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en tierra, terrenos agrícolas, pendiente media 0,4%, ancho medio cauce Ancho: 13,0 m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distancia hacia centros poblados</th>
<th>8,72 Km.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia desde centros poblados perpendiculares al cauce</td>
<td>5,24 Km.</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del tranca</td>
<td>Baja</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>0,33 Km.</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vial u otra de importancia</td>
<td>2,11 Km.</td>
</tr>
<tr>
<td>Área de riego servida por el tranca analizado</td>
<td>5 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del muro (firma y dimensiones)

<table>
<thead>
<tr>
<th>Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus taludes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Croquis de la obra de evaluación y dimensiones (planta)</th>
<th>Croquis de la obra de evaluación y dimensiones (elevación)</th>
</tr>
</thead>
</table>

| Indicación en la planta del muro del sitio de toma de la muestra de material |

12. OBSERVACIONES

El tranca se encuentra en buen estado, dado a que es relativamente nuevo; el muro 5, talud aguas arriba, presenta una socavación por erosión (ver álbum fotográfico).
Ficha de catastro de embalses

1. Antecedentes Generales

<table>
<thead>
<tr>
<th>N° de ficha</th>
<th>22.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha (d/m/año)</td>
<td>30-09-2009</td>
</tr>
</tbody>
</table>

- **Nombre de la presa:** Viñales M2 (Santa Julia)
- **Propietario:** Agricola Alciones Ltda
- **RUT Propietario:** 84.442.100-1
- **Año de construcción:** 2001
- **Reparación (S) (NO):** NO
- **Cuencas / Código DGA:** Río Tiquín
- **Subcuencas / Código DGA:** Estero Las Cadenas
- **Fuente del recurso:** Quebrada Las Pataguas
- **Cumplimiento (Art. 294 del Código de Aguas):**
 - Capacidad > 50,000 m³
 - Altura del muro > 5 m

2. Ubicación de Presa

Región: VI del Libertador Río O'Higgins
Provincia: Cardenal Caro
Comuna: Maitín

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N= 6.187.937</td>
<td>E= 253.479</td>
</tr>
<tr>
<td>Coordenadas UTM Estrecho Izquierdo</td>
<td>N= 6.187.935</td>
<td>E= 253.982</td>
</tr>
</tbody>
</table>

| Altitud m.s.n.m | ED = 149, C = 141; El = 141 |

N° Norte	ED= Estrecho Derecho
E= Este	C= Centro
E= Estrecho Izquierdo	

3. Uso o Destino del Embalse

- **Uso:** X
- **Generación de energía:**
- **Abastecimiento de agua potable / saneamiento:**
- **Relaves:**
- **Sedimentación:**
- **Control de crecidas:**
- **Recreación:**
- **Otras usos:**

4. Tipo de Embalse

<table>
<thead>
<tr>
<th>Presa de tamaño homogénea</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presa de material granular gradado</td>
<td></td>
</tr>
<tr>
<td>Presa de enrocados (CFRO)</td>
<td></td>
</tr>
<tr>
<td>Presa de hormigón (gravedad, contrafuerte, etc.)</td>
<td></td>
</tr>
<tr>
<td>Presa de RCC</td>
<td></td>
</tr>
<tr>
<td>Otros tipos</td>
<td></td>
</tr>
</tbody>
</table>

5. Geometría de la Presa

- **Conclusión de la presa:**
 - **Longitud del coronamiento (m):** 754
 - **Ancho del coronamiento (m):** ED = 3,8; C = 3,5; El = 4,1
 - **Desarrollo del talud aguas abajo (m):** 5,0
 - **Revancha mínima en relación a la cota máxima de aguas corriente (m):** 1,0
 - **Parámetros verticales:** NO

- **Con culvert:**
 - **Angulo talud de aguas abajo ED = 26°; C = 26°; El = 24°**
 - **Angulo talud de aguas arriba ED = 26°; C = 30°; El = 33°**

**ED= Estrecho Derecho
C= Centro
El= Estrecho Izquierdo**

7.9. Estado del Muro y Calidad de Construcción

<table>
<thead>
<tr>
<th>Uniformidad de los materiales</th>
<th>Regularidad moderada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calidad del muro estructural</td>
<td>Muy Alto</td>
</tr>
<tr>
<td>Depresiones visibles y cuantificables a lo largo del coronamiento</td>
<td>No se presentan depresiones visibles</td>
</tr>
<tr>
<td>Grietas visibles y su ubicación</td>
<td>No se presentan grietas visibles, solo cárceas a lo largo de todo el muro en el talud aguas abajo del muro 2</td>
</tr>
<tr>
<td>Indicios de deslizamientos y ubicación</td>
<td>No se presentan indicios de deslizamientos</td>
</tr>
<tr>
<td>Sectores que se presentan saturados y altura de saturación</td>
<td>Se presentan sectores saturados en los metros 85 y 433 desde el estrecho derecho del muro 2, ambos con una altura de aguas de 5 cm (ver álbum fotográfico)</td>
</tr>
<tr>
<td>Filtraciones visibles en talud de aguas abajo en el pie</td>
<td>No se presentan filtraciones visibles</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Tierra compactada</td>
</tr>
</tbody>
</table>
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

Tipo de estructura	Otra obra N.º 2. Tubo de 25 cm de diámetro la que por medio de bombas saca el agua del tramo y la conduce a pivote de regadío. Esta obra de entrega se ubica en el muro 115 desde el establo derecho del muro 2. En este mismo muro se sitúa piscina contenidora de 4,5 mts de diámetro (ver álbum fotográfico).
Mediciones estructurales	Ancho: 3,06 mts, Alto: 2,0 mts
Funcionamiento actual	Operativo

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

Tipo de cauce natural o artificial	Agua abajo del embalse, tipo de tamaño, pendiente media y ancho medio del cauce
Distancia hacia centros poblados mediados por el cauce	6,72 Km
Distancia desde centros poblados perpendicular al cauce	5,24 Km
Densidad de población en las canteras del tramo	Media
Distancia hacia zonas agrícolas	0,50 Km
Distancia hacia sectores con infraestructura vital o obra de importancia	2,11 Km
Área de riego servida por el tramo analizado	5 ha

11. MONOGRAFÍA

- Planta del muro (forma y dimensiones)
- Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus

12. OBSERVACIONES

El muro 2 tiene un ancho variable sobre todo en el sector donde se ubica la obra de entrega.
EMBALSE CARRIZAL
PARTE B: CATASTRO DE EMBALSES

23. EMBALSE CARRIZAL
 23.1 Ubicación
 23.2 Características Generales
 23.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 23.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 23.5 Determinación de Filtraciones
 23.6 Verificación del Oleaje
 23.7 Análisis de Riesgo (Hazop)
 23.8 Álbum Fotográfico y Fichas de Catastro
23. **EMBALSE CARRIZAL**

23.1 **Ubicación**

El embalse Carrizal se ubica en la comuna de Marchigue, provincia de Cardenal Caro, en las coordenadas UTM 6.183.922 Norte y 247.530 Este, Datum WGS 84 a una Altitud de 198 m.s.n.m. Se localiza en la cuenca del Río Tinguiririca, subcuenca del estero Las Cadenas y la fuente corresponde a la quebrada El Durazno.

El embalse se ubica al suroeste de la comuna, desde Marchigüe por ruta I-50 hacia Alcones, hasta el cruce con ruta I-674 hacia el sur hasta el cruce con camino secundario hacia embalse.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 23.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE CARRIZAL

Fuente: Carta IGM
23.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a Sociedad Agrícola Carrizal S.A. El uso y destino del embalse es de riego.

El tipo de presa es de tierra homogénea con una capacidad máxima de 1,405 hm³. La altura máxima del muro de 15,0 m, con una longitud de coronamiento de 378 m y ancho promedio del coronamiento de 5 m y borde libre de 2,0 m. El Talud Aguas Arriba es H:V=2,14:1 y el Talud Aguas Abajo es H:V=1,73:1.

El evacuator de crecidas corresponde a un vertedero de caída libre, en hormigón y ladrillo, con un ancho medio de 11,5 m y 3,0 m de alto. No tiene estructura de control. En buen estado de conservación y operación.

La obra de entrega corresponde a salida a canal mediante tubería de hormigón de 1,10 m de diámetro que se abre desde manivela (escalera) y conduce las aguas a una piscina con rebalse y luego a canal revestido que bordea cerro y conduce las aguas a los predios. La obra se encuentra en regular estado de mantenición y operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 23.2-1
IMAGEN SATELITAL EMBALSE CARRIZAL
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Carrizal

Vista panorámica Embalse Carrizal
23.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Carrizal tiene como fuente a la quebrada El Durazno, la cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 18,15 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 23.3-1
CUENCA EMBALSE CARRIZAL
CUADRO 23.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th></th>
<th>Carrizal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUPERFICIE (ha)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1.815,4</td>
</tr>
<tr>
<td>Pluvial</td>
<td>1.815,4</td>
</tr>
<tr>
<td>PERÍMETRO (m)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>27.900,0</td>
</tr>
<tr>
<td>Pluvial</td>
<td>27.900,0</td>
</tr>
<tr>
<td>ALTURA CUENCA (msnm)</td>
<td></td>
</tr>
<tr>
<td>Máxima</td>
<td>608,4</td>
</tr>
<tr>
<td>Mínima</td>
<td>199,7</td>
</tr>
<tr>
<td>Diferencia</td>
<td>408,6</td>
</tr>
<tr>
<td>PENDIENTE MEDIA (%)</td>
<td></td>
</tr>
<tr>
<td>Cuenca</td>
<td>24,7</td>
</tr>
<tr>
<td>Cauce</td>
<td>15,9</td>
</tr>
<tr>
<td>LONGITUD CAUCE (km)</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>9,53</td>
</tr>
<tr>
<td>Desde centro de gravedad</td>
<td>4,76</td>
</tr>
<tr>
<td>CENTROIDE CUENCA</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>247.529</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.180.500</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>355,1</td>
</tr>
<tr>
<td>CENTRO DE GRAVEDAD CAUCE</td>
<td></td>
</tr>
<tr>
<td>UTM E</td>
<td>248.151</td>
</tr>
<tr>
<td>UTM N</td>
<td>6.180.300</td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>251</td>
</tr>
<tr>
<td>DATUM</td>
<td>WGS 84</td>
</tr>
</tbody>
</table>

b) Estimación de Caudales Máximos Instantáneos

➢ Tiempo de Concentración

Para estimar el tiempo de concentración \(t_c \) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California: \[t_c = 0.95 \left(\frac{L^3}{H_{máx}} \right)^{0.385} \]

Fórmula de Giandotti: \[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \] (hrs); \[\frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \[t_c = 0.05 \cdot \sqrt{\frac{A}{J}} \]

Fórmula de Témez: \[t_c = 0.3 \cdot \left(\frac{L}{J^{\frac{1}{4}}} \right)^{0.75} \]
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O’Higgins
Embalse Carrizal

Donde:

\[L = \text{Longitud del cauce principal en km.} \]
\[H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.} \]
\[A = \text{Área cuenca en km}^2. \]
\[J = \text{Pendiente del cauce (}). \]
\[H_g = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.} \]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Carrizal</td>
<td>1,27</td>
<td>3,14</td>
</tr>
</tbody>
</table>

➢ Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 hrs,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrizal</td>
<td>Rapel</td>
<td>0,146</td>
<td>100</td>
<td>Nilahue</td>
</tr>
</tbody>
</table>

➢ Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_t^T \cdot Ap}{3,6}
\]

Donde:

- \(Q(T)\) Caudal generado en la cuenca en \((m^3/s)\)
- \(C(T)\) Coeficiente de Escorrentía
- \(I_t^T\) Intensidad de la precipitación para \(T\) igual al tiempo de concentración \(tc\) en \((mm/h)\)
- \(Ap\) Área pluvial de la cuenca tributaria \((km^2)\).

La intensidad de la precipitación va a estar asociada al período de retomo \(T\) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[
Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^{T})^{1.24} \cdot (Ap)^{0.88}
\]

Donde:
- \(C(T)\) Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^{T}\) Precipitación máxima en 24 h y período de retorno T años
- \(Ap\) Área pluvial \((\text{km}^2)\)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>(C) escorrentia</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrizal</td>
<td>T=2</td>
<td>0.47</td>
<td>Nilahue</td>
<td>0,6</td>
<td>9,9</td>
<td>6,9</td>
<td>24,1</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0.60</td>
<td>Nilahue</td>
<td>0,8</td>
<td>13,6</td>
<td>10,3</td>
<td>42,4</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0.68</td>
<td>Nilahue</td>
<td>1,0</td>
<td>15,9</td>
<td>18,1</td>
<td>56,3</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0.73</td>
<td>Nilahue</td>
<td>1,1</td>
<td>17,4</td>
<td>21,7</td>
<td>66,1</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0.77</td>
<td>Nilahue</td>
<td>1,2</td>
<td>18,5</td>
<td>24,7</td>
<td>74,1</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0.80</td>
<td>Nilahue</td>
<td>1,2</td>
<td>19,1</td>
<td>26,7</td>
<td>79,6</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0.87</td>
<td>Nilahue</td>
<td>1,4</td>
<td>21,7</td>
<td>34,0</td>
<td>98,3</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Nilahue</td>
<td>1,5</td>
<td>24,3</td>
<td>44,9</td>
<td>126,3</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10}\) Caudal medio diario máximo con período de retorno de 10 años \((\text{m}^3/\text{s})\)
- \(P_{24}^{T=10}\) Precipitación diaria máxima de período de retorno 10 años \((\text{mm})\)
- \(Ap\) Área Pluvial de la cuenca \((\text{km}^2)\)

\[
Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915}
\]
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Carrizal</td>
<td>2,81</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Carrizal</td>
<td>48,16</td>
</tr>
</tbody>
</table>
23.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arena arcillosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

<table>
<thead>
<tr>
<th>Altura:</th>
<th>25,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho coronamiento</td>
<td>5,0 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>2,0 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 2,14 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 1,73 : 1</td>
</tr>
</tbody>
</table>

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>0 = 30°</td>
<td>1,8</td>
<td>1,75</td>
<td>1,95</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
<th>Sin Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
<td>Sin Agua</td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 23.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 23.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 23.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 23.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 23.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 23.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 23.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 23.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico k=0,12g</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Carrizal</td>
<td>1,875</td>
<td>1,193</td>
</tr>
<tr>
<td></td>
<td>1,345</td>
<td>0,996</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico k=0,12g</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>Carrizal</td>
<td>1,786</td>
<td>1,455</td>
</tr>
<tr>
<td></td>
<td>1,362</td>
<td>1,128</td>
</tr>
</tbody>
</table>
23.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada (L') de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración (Lv) más un tercio de la suma de las longitudes de filtración horizontales (1/3 Lh).

\[L' = \frac{1}{3} \cdot Lh + Lv \]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[L' \geq C' \cdot h \]

Para el caso del tranque Carrizal, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>63,2</td>
<td></td>
</tr>
<tr>
<td>Lv (m)</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C'</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>1,8</td>
<td></td>
</tr>
<tr>
<td>h (m)</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
<tr>
<td>13,0</td>
<td></td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh</th>
<th>Lv</th>
<th>L'</th>
<th>Ht</th>
<th>bl</th>
<th>h</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>CARRIZAL</td>
<td>63,2</td>
<td>0</td>
<td>21,05</td>
<td>15,0</td>
<td>2,0</td>
<td>13,00</td>
<td>1,80</td>
<td>23,4</td>
<td>L' \geq C' \cdot h</td>
</tr>
</tbody>
</table>

23.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta (h_{ole}). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Carrizal.
CARRIZAL
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>(\cos(\alpha))</th>
<th>(\cos^2(\alpha))</th>
<th>Distancia</th>
<th>Dist. (\times) (\cos^2(\alpha))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>278</td>
<td>0.1727</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>266</td>
<td>0.1653</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>293</td>
<td>0.1821</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>316</td>
<td>0.1964</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>323</td>
<td>0.2007</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>353</td>
<td>0.2193</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>665</td>
<td>0.4132</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1.0000</td>
<td>1.0000</td>
<td>1196</td>
<td>0.7432</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0.9945</td>
<td>0.9891</td>
<td>1169</td>
<td>0.7264</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0.9781</td>
<td>0.9568</td>
<td>990</td>
<td>0.6152</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0.9511</td>
<td>0.9045</td>
<td>838</td>
<td>0.5207</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0.9135</td>
<td>0.8346</td>
<td>745</td>
<td>0.4629</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0.8660</td>
<td>0.7500</td>
<td>681</td>
<td>0.4232</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0.8090</td>
<td>0.6545</td>
<td>593</td>
<td>0.3685</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0.7431</td>
<td>0.5523</td>
<td>556</td>
<td>0.3455</td>
</tr>
</tbody>
</table>

Suma: 13,5109

Distancia: 4,9609

Fetch o longitud de acción del viento (F)

\[
F = \begin{cases}
0,367 & \text{millas} \\
590,92 & \text{m}
\end{cases}
\]

Velocidad del Viento

\[
v = \begin{cases}
50 & \text{mph} \\
22,35 & \text{m/s}
\end{cases}
\]

Fórmulas Empiricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,63</td>
<td>0,8018</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,45</td>
<td>0,7468</td>
</tr>
<tr>
<td>Creager</td>
<td>1,32</td>
<td>0,4034</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola: 0,95 m
De acuerdo a las mediciones realizadas en terreno con huinch, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 2,00 m, se tiene que la altura de la ola no superaría esta revancha.

23.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "\(p \)" y "\(V \)" son independientes por evento, y el valor "\(E \)" es idéntico para todos los eventos.

23.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable \(V \) para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td>0,6</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

23.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th>Obra de hormigón armado</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de albañilería</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th>Obra en óptimo estado</th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0.6</td>
<td></td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th>Canal revestido en hormigón</th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en mantelería o albañilería irregular</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0.1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 21,49 m³/s
Coeficiente capacidad: 0,36 C1 x C2 x C3
Capacidad efectiva: 7,73 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máximo</td>
<td>0.05</td>
</tr>
<tr>
<td>Q normal máximo < Q af < Q max. último</td>
<td>0.05 a 0.95</td>
</tr>
<tr>
<td>Q af > Q max. último</td>
<td>0.95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurriendo</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>48.16</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.002</td>
<td>57.10</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
<tr>
<td>0.0010</td>
<td>63.86</td>
<td>0.95</td>
<td>0.00</td>
<td>0</td>
</tr>
</tbody>
</table>

23.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0.95 a 0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
23.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,5 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td></td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td>0,5</td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>0,5</td>
</tr>
</tbody>
</table>

23.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>1,20</td>
<td>0,00</td>
</tr>
<tr>
<td></td>
<td>0,00</td>
<td>0,24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

De esta manera el Riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico y es igual a 1,2%.

23.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Carrizal.
<table>
<thead>
<tr>
<th>EVACUADOR DE CRECIDAS</th>
<th>EVACUADOR DE CRECIDAS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CLASIFICACION DE MATERIAL DE CONSTRUCCIÓN</th>
<th>CARCAVA EN EL MURO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTRUCTURA APERTURA OBRA DE TOMA</th>
<th>FILTRACIÓN EN EL ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ficha de Catastro de Embalse

1. Antecedentes Generales
- **Nombre del embalse:** Canal de Artesanal Medio de El Llano
- **Propietario:** Comunidad del Valle de Artesanal Medio de El Llano
- **Sujeto a construir:** SRA-Punta de Arco
- **Altura del muro:** 5 m
- **Alto del embalse:** 150 m
- **Tipo de llenado:** Hidroeléctrico
- **Paisaje:** X
- **Generación de energía:** 100 kW
- **Capacidad de almacenamiento:** 10,000 m³
- **Presión de agua:** 1 m

2. Unidad de Presa
- **Región:** VI del Llano de El Llano
- **Paisaje:** X
- **Generación de energía:** 100 kW
- **Transporte:** X
- **Salubridad del agua:** X

3. USO O DESTINO DEL EMBALE
- **Uso:** Abastecimiento de agua potable para consumo humano
- **Transporte:** X
- **Salubridad del agua:** X

4. Tipo de Embalse
- **Presas de tierra homogéneas:** X
- **Presas de tierra heterogéneas:** X
- **Presas de hormigón:** X
- **Presas de RCC:** X

5. Geometría de la Presa
- **Longitud del embalse (m):** 130 m
- **Ancho del embalse (m):** 15 m
- **Alto del embalse (m):** 150 m

6. Características del Muro
- **Material:** Hormigón
- **Salud del agua:** X

7. Características Obras Excavadoras de Crecidas
- **Por la localización en relación a la estructura principal:** X
- **Por la localización en relación a la estructura auxiliar:** X

8. Características Generales del Embalse
- **Número de muros:** 23
- **Fecha de inicio:** 26-09-2009
- **Capacidad:** 10,000 m³
- **Altura del muro:** 5 m
- **Tipo de llenado:** Hidroeléctrico
- **Uso:** Abastecimiento de agua potable para consumo humano
- **Transporte:** X
- **Salubridad del agua:** X

9. Estimación Capacidad Máxima del Embalse
- **Altura máxima del muro (m):** 150 m
- **Profundidad máxima del agua en el embalse (m):** 130 m
- **Área estimada de inundación (m²):** 420,450
- **Volumen destinado o proyectado (m³):** 1,405

10. Lote de Emergencia y Calidad de Construcción
- **Lote de emergencia:** X
- **Calidad de construcción:** X

11. Características Otras Excavadoras de Crecidas
- **Por la localización en relación a la estructura principal:** X
- **Por la localización en relación a la estructura auxiliar:** X

12. Material de construcción
- **Hormigón:** X
- **Salud del agua:** X
- **Transporte:** X
- **Salud del agua:** X

13. Dimensiones relevantes (anchura, altura y superficie máxima)
- **Anchura:** 4,8 m
- **Altura:** 11,5 m
- **Superficie máxima:** 16,0 m

Nota: Los datos incluidos en esta ficha de catastro de embalse son de carácter informativo y pueden ser sujetos a cambios según las condiciones específicas del proyecto y las regulaciones vigentes.
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Revocada con cal, cubierta de hormigón de 1.50 m de diámetro que se alberga dentro de muro</th>
<th>Diseño</th>
<th>Revestido con mortero, con cubierta de concreto armado y calle</th>
<th>Ladera con revestimiento de árboles y césped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Altura 2.6 m (apremio); Largo 2.2 m</td>
<td>Drenaje</td>
<td>Reglar mantener, fomentando</td>
<td>Moisturizador y riego</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de cauce</th>
<th>Cauce natural, quebrada, pendiente media 1.5%, ancho media 4.0 m, ancho media 150 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distancia hasta centros poblados medido por el cauce</td>
<td>1.85 Km.</td>
</tr>
<tr>
<td>Distancia hasta centros poblados perpendicular al cauce</td>
<td>1.85 Km.</td>
</tr>
<tr>
<td>Distancia de poblamiento</td>
<td></td>
</tr>
<tr>
<td>Distancia hasta zonas agrícolas</td>
<td>3.0 Km.</td>
</tr>
<tr>
<td>Distancia hasta zonas con infraestructura vital o otra de importancia</td>
<td>3.8 Km.</td>
</tr>
<tr>
<td>Áreas de riego servida por el tramo analizado</td>
<td>100 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

| Planta del muro (forma y dimensiones) | Sección transversal del muro en la zona con menor revancha y con mayor revancha, indicando sus tableros |

12. OBSERVACIONES

En este momento, dado que el tramo está en su posibilidad media, no hay malezas, cuando está lloviendo mucha agua que se escurre en el falso desagüe.

En ambos lados, en márgenes del tramo, hay agua proveniente de desechos sólidos y enterrados.
EMBALSE PIHUCHÉN
PARTE B: CATASTRO DE EMBALSES

24. EMBALSE PIHUCHÉN
24.1 Ubicación
24.2 Características Generales
24.3 Crecidas Afuentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
24.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
24.5 Determinación de Filtraciones
24.6 Verificación del Oleaje
24.7 Análisis de Riesgo (Hazop)
24.8 Álbum Fotográfico y Fichas de Catastro
24. **EMBALSE PIHUCHÉN**

24.1 **Ubicación**

El embalse Pihuchén se ubica al sur de la comuna de Marchigüe, provincia de Cardenal Caro, en las coordenadas UTM 6.183.235 Norte y 259.332 Este, Datum WGS 84 a una Altitud de 165 m.s.n.m. Se localiza en la cuenca del Río Tinguiririca, subcuenca del estero Las Cadenas y la fuente corresponde al estero Grande de Pihuchén.

Para acceder al embalse se debe seguir desde la localidad de Población (sureste de Marchigüe) al sur por ruta I-50 hasta cruce con ruta I-668, hacia el poniente hasta cruce con ruta I-682, a 6 km hacia el Este de la localidad La Quebrada y del Estero del Monte.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 24.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE PIHUCHÉN

Fuente: Carta IGM
24.2 Características Generales

El embalse corresponde a un tranque de tierra perteneciente a la Sucesión José Ravello. El uso y destino del embalse es de riego y fue construido en el año 1939.

El tipo de presa es de tierra homogénea con una capacidad máxima de 0,035 hm³. La altura máxima del muro es de 6,0 m, con una longitud de coronamiento de 230 m y ancho promedio del coronamiento de 1,2 m y borde libre de 0,2 m. El Talud Aguas Arriba es H:V=1,28:1 y el Talud Aguas Abajo es H:V=1,11:1.

El evacuador de crecidas corresponde a uno canal en tierra muy pequeño con un ancho medio de 4,2 m y 0,5 m de alto. No tiene estructura de control. Buen estado de mantención y operación.

La obra de entrega se ubica en el metro 45 desde el estribro derecho se ubica la obra de entrega compuesta por una tubería y en canal en tierra que conduce las aguas hasta los predios. La obra se encuentra en buen estado de mantención y operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 24.2-1
IMAGEN SATELITAL EMBALSE PIHUCHÉN
Vista panorámica Embalse Pihuchén
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Pihuchén
24.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse Pihuchén tiene como fuente al estero Grande de Pihuchén, el cual no posee control fluvimétrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos períodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 0,68 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 24.3-1
CUENCA EMBALSE PIHUCHÉN
CUADRO 24.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

<table>
<thead>
<tr>
<th>SUPERFICIE (ha)</th>
<th>Total</th>
<th>Pihuchén</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>67,9</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PERÍMETRO (m)</th>
<th>Total</th>
<th>Pihuchén</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pluvial</td>
<td>5,340,0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ALTURA CUENCA (msnm)</th>
<th>Máxima</th>
<th>211,3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mínima</td>
<td>170,4</td>
</tr>
<tr>
<td></td>
<td>Diferencia</td>
<td>40,9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PENDIENTE MEDIA (%)</th>
<th>Cuenca</th>
<th>2,5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cauce</td>
<td>1,7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LONGITUD CAUCE (km)</th>
<th>Total</th>
<th>1,02</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desde centro de gravedad</td>
<td>0,51</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTROIDE CUENCA</th>
<th>UTM E</th>
<th>259,499</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTM N</td>
<td>6,182,740</td>
<td></td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>180,4</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CENTRO DE GRAVEDAD CAUCE</th>
<th>UTM E</th>
<th>259,433</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTM N</td>
<td>6,183,062</td>
<td></td>
</tr>
<tr>
<td>Altura (msnm)</td>
<td>176</td>
<td></td>
</tr>
</tbody>
</table>

| DATUM | WGS 84 |

b) **Estimación de Caudales Máximos Instantáneos**

Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{Hg}} \text{ (hrs)}; \quad \text{con} \quad \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \(tc = 0.05 \cdot \frac{A}{J} \)

Fórmula de Témez:

\[tc = 0.3 \cdot \left(\frac{L}{J^{0.4}} \right)^{0.75} \]
Catastro e Inspección Preliminar de Embalses Región del Libertador Bernardo O'Higgins
Embalse Pihuchén

Donde:

L = Longitud del cauce principal en km.
Hmáx= Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.
A = Área cuenca en km².
J = Pendiente del cauce (%).
Hg= Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0,23</td>
<td>1,91</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio “Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991”.

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pihuchén</td>
<td>Rapel</td>
<td>0,067</td>
<td>122,5</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[Q(T) = \frac{C(T) \cdot I_{tc}^{T} \cdot Ap}{3,6} \]

Donde:

- \(Q(T) \) Caudal generado en la cuenca en \(m^3/s \)
- \(C(T) \) Coeficiente de Escorrentía
- \(I_{tc}^{T} \) Intensidad de la precipitación para \(t \) igual al tiempo de concentración \(tc \) en \(mm/h \)
- \(Ap \) Área pluvial de la cuenca tributaria \(km^2 \)

La intensidad de la precipitación va a estar asociada al período de retorno \(T \) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0.00618 \cdot (P_{24}^T)^{1.24} \cdot (Ap)^{0.88} \]

Donde:
- \(C(T) \) Coeficiente empírico para diferentes periodos de retorno
- \(P_{24}^T \) Precipitación máxima en 24 h y período de retorno \(T \) años
- \(Ap \) Área pluvial (km\(^2\))

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI-KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentía</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pihuchén</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>5,8</td>
<td>0,5</td>
<td>1,9</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>7,8</td>
<td>0,7</td>
<td>3,2</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>8,9</td>
<td>1,3</td>
<td>4,1</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>9,6</td>
<td>1,5</td>
<td>4,8</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>10,2</td>
<td>1,7</td>
<td>5,4</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>10,6</td>
<td>1,9</td>
<td>5,8</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>11,9</td>
<td>2,3</td>
<td>7,0</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>13,1</td>
<td>3,0</td>
<td>8,9</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio “Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos” AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \) Caudal medio diario máximo con período de retorno de 10 años (m\(^3\)/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km\(^2\))

\[Q_{10} = 5.42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3.432} \cdot (Ap)^{0.915} \]
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Q instantáneo máx (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>0,28</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Vern-King, extrapolando para períodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>Pihuchén</td>
<td>3,28</td>
</tr>
</tbody>
</table>
24.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arcilla arenosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

<table>
<thead>
<tr>
<th>Altura:</th>
<th>6,0 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ancho coronamiento</td>
<td>1,2 m</td>
</tr>
<tr>
<td>Borde libre</td>
<td>0,20 m</td>
</tr>
<tr>
<td>Talud Aguas Arriba</td>
<td>H : V= 1,28 : 1</td>
</tr>
<tr>
<td>Talud Aguas Abajo</td>
<td>H : V= 1,11 : 1</td>
</tr>
</tbody>
</table>

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

CUADRO 24.4-1
PROPIEDADES DE RESISTENCIA AL CORTE PARA ANÁLISIS DE ESTABILIDAD

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td>$\varphi = 22^\circ$</td>
<td>2,2</td>
<td>1,80</td>
<td>2,00</td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Aguas Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Talud Aguas Abajo</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Sísmico</td>
<td>Con Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 24.4-1
TALUD AGUASARRIBA - ESTÁTICO CON AGUA

ARRAU INGENIERÍA E.I.R.L.
Consultores en Ingeniería Hidráulica y de Riego
FIGURA 24.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 24.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 24.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 24.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 24.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 24.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) **Factores de seguridad**

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 24,4-2

FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td></td>
</tr>
<tr>
<td>Pihuchén</td>
<td>2,563</td>
<td>1,416</td>
</tr>
<tr>
<td></td>
<td>1,682</td>
<td>1,072</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $k_h=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td></td>
</tr>
<tr>
<td>Pihuchén</td>
<td>1,899</td>
<td>1,899</td>
</tr>
<tr>
<td></td>
<td>1,519</td>
<td>1,430</td>
</tr>
</tbody>
</table>
24.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada \(L' \) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración \(L_v \) más un tercio de la suma de las longitudes de filtración horizontales \(1/3 L_h \).

\[
L' = \frac{1}{3} L_h + L_v
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C'h
\]

Para el caso del tranque Pihuchén, se tiene:

<table>
<thead>
<tr>
<th>Lh (m)</th>
<th>15,6</th>
<th>Longitud horizontal en la base del tranque o embalse.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lv (m)</td>
<td>0</td>
<td>Longitud vertical en la base del tranque o embalse.</td>
</tr>
<tr>
<td>C'</td>
<td>1,70</td>
<td>Coeficiente de filtración que depende del tipo de material del embalse</td>
</tr>
<tr>
<td>h (m)</td>
<td>5,82</td>
<td>Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba</td>
</tr>
</tbody>
</table>

De acuerdo con el criterio de Lane, en este caso **NO** se cumple la relación, por lo tanto, **SI** existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Lh (m)</th>
<th>Lv (m)</th>
<th>L'</th>
<th>Ht (m)</th>
<th>bl (m)</th>
<th>h (m)</th>
<th>C'</th>
<th>(C' h)</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pihuchén</td>
<td>15,6</td>
<td>0</td>
<td>5,20</td>
<td>6,0</td>
<td>0,2</td>
<td>5,822</td>
<td>1,70</td>
<td>9,9</td>
<td>L' \geq C' h</td>
</tr>
</tbody>
</table>

24.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \(h_{oa} \). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.

Se adjunta la planilla de cálculo de la revancha para el embalse Pihuchén.
Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Linea N°</th>
<th>Alfa</th>
<th>$\cos(\alpha)$</th>
<th>$\cos^2(\alpha)$</th>
<th>Distancia</th>
<th>Dist. * $\cos^2(\alpha)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>76</td>
<td>0,0472</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>89</td>
<td>0,0553</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>122</td>
<td>0,0758</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>132</td>
<td>0,0820</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>133</td>
<td>0,0826</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>187</td>
<td>0,1162</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>227</td>
<td>0,1411</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>269</td>
<td>0,1671</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>176</td>
<td>0,1094</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>159</td>
<td>0,0988</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>148</td>
<td>0,0920</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>146</td>
<td>0,0907</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>143</td>
<td>0,0889</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>143</td>
<td>0,0889</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>136</td>
<td>0,0845</td>
</tr>
</tbody>
</table>

Suma 13,5109

Distancia Suma 1,2132

Fetch o longitud de acción del viento (F)

$F = 0,090$ millas
$F = 144,51$ m

Velocidad del Viento

$v = 50$ mph
$v = 22,35$ m/s

Fórmulas Empiricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,40</td>
<td>0,7322</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,31</td>
<td>0,7049</td>
</tr>
<tr>
<td>Creager</td>
<td>0,79</td>
<td>0,2396</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con hinchada, y que corresponde a la revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de este embalse es de 0,20 m, se tiene que la altura de la ola superaría esta revancha.

24.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la relación:

\[R = p \cdot V \cdot E \]

Con:

- **p**: probabilidad de ocurrencia del evento
- **V**: Vulnerabilidad del evento
- **E**: Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escobernía, y riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores "p" y "V" son independientes por evento, y el valor "E" es idéntico para todos los eventos.

24.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en la zona central del país. En el siguiente cuadro se muestra el valor de la variable V para el evento sísmico considerado.

VULNERABILIDAD FRENTE A EVENTO SÍSMICO

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td>0,6</td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

24.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escobernía se determina en primer lugar la capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
<table>
<thead>
<tr>
<th>Calidad de construcción</th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Estado de conservación</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
<tr>
<td>Calidad del canal de descarga</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 4,2 m³/s

Coeficiente capacidad: 0,36 C1 x C2 x C3

Capacidad efectiva: 1,51 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes períodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q max. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>3,28</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,002</td>
<td>3,88</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,0010</td>
<td>4,33</td>
<td>0,95</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

24.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,1</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
24.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

<table>
<thead>
<tr>
<th>Según la cercanía a la faja probable de Inundación</th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Según la Cercanía al Punto de Vaciamiento</th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

24.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Escorrentía Pluvial</th>
<th>Nival</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td>Riesgo</td>
<td>2,40</td>
<td>0,48</td>
<td>0,19</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

24.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse Pihuchén.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO DESDE CENTRO A ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA MURO DESDE ESTRIBO IZQUIERDO</td>
<td>ESPEJO DE AGUA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA</td>
<td>OBRA DE ENTREGA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>EVACUADOR DE CRECIDAS</td>
<td>EVACUADOR DE CRECIDAS</td>
</tr>
<tr>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>CLASIFICACIÓN DE MATERIAL DE CONSTRUCCIÓN</td>
<td>ZONA DE FILTRACIÓN METROS 120-150</td>
</tr>
<tr>
<td>ZONA DE FILTRACIÓN METROS 5-40</td>
<td>SATURACIÓN METROS 1-20 ESTRIBO DERECHO</td>
</tr>
</tbody>
</table>
1. ANTECEDENTES GENERALES

<table>
<thead>
<tr>
<th>Nombre de la presa</th>
<th>Pichuná</th>
<th>Nº de ficha</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propietario</td>
<td>Susana José Ravello</td>
<td>Fecha (núm/aña)</td>
<td>26.09.2009</td>
</tr>
<tr>
<td>BUP Propietario</td>
<td>No exista, está en tránsito</td>
<td>Cumplimiento Art. 291 del Código de Aguas</td>
<td></td>
</tr>
<tr>
<td>Año de construcción</td>
<td>1939</td>
<td>Capacidad</td>
<td>50,000 m³</td>
</tr>
<tr>
<td>Preservación (SG/RO)</td>
<td>NO</td>
<td>Altura del muro</td>
<td>3 m</td>
</tr>
<tr>
<td>Año de regadío</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cauza / Código DGA</td>
<td>Rio Tagañeta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subceza / Código DGA</td>
<td>Estero Lus Cordero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuente del recurso</td>
<td>Enero-Septiembre de Pichuná</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. UBICACIÓN DE PRESA

<table>
<thead>
<tr>
<th>Región</th>
<th>VIentar</th>
<th>Liberador Edén O'Higgins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provincia</td>
<td>Cantaíno</td>
<td>Casarec Chico</td>
</tr>
<tr>
<td>Comuna</td>
<td>Marqueti</td>
<td></td>
</tr>
<tr>
<td>Coordenadas UTM Este Derecho</td>
<td>N= 1,133,335</td>
<td>E= 258,530</td>
</tr>
<tr>
<td>Coordenadas UTM Centro</td>
<td>N= 1,133,335</td>
<td>E= 258,530</td>
</tr>
<tr>
<td>Coordenadas UTM Oeste Izquierdo</td>
<td>N= 1,133,335</td>
<td>E= 258,530</td>
</tr>
<tr>
<td>Datum WGS 84</td>
<td>N= 1,133,335</td>
<td>E= 258,530</td>
</tr>
<tr>
<td>Altitud m.s.n.m</td>
<td>ED = 165, C = 165, B = 165</td>
<td></td>
</tr>
<tr>
<td>Nº Hutí</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>ED= Este</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C= Centro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B= Extrás Izquierdo</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. TIPO DE EMBALSE

Presa de tierra homogénea	X	
Presa de material granular graduado		
Presa de entramados (CFRD)		
Presa de hormigón (gravedad, contrafuerte, arco)		
Presa de RCC		
Otros tipos		

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

<table>
<thead>
<tr>
<th>Altura máxima del muro (definida por resecciones ingenierométricas en caso de no poder medir directamente) (m)</th>
<th>0,00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Profundidad máxima de agua en sector del muro (m)</td>
<td>1,50</td>
</tr>
<tr>
<td>Área estimada a calcular de la presa (m²)</td>
<td>24,000</td>
</tr>
<tr>
<td>Ancho máximo de la orilla (km)</td>
<td>0,15</td>
</tr>
<tr>
<td>Largo de la pared (km)</td>
<td>0,15</td>
</tr>
<tr>
<td>Volumen declarado o proyectoado (millones de m³)</td>
<td>0,035</td>
</tr>
</tbody>
</table>

7. A. CARACTERÍSTICAS DEL MURO

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Ceniza</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspección visual</td>
<td>No</td>
</tr>
<tr>
<td>Toma de muestra del suelo (preferentemente en el centro del muro)</td>
<td>No</td>
</tr>
<tr>
<td>Identificación del punto de toma de muestra</td>
<td>No</td>
</tr>
<tr>
<td>Toma de coordenadas y fotografías del punto muestrado</td>
<td>No</td>
</tr>
<tr>
<td>Coordenadas UTM N= 1,133,335</td>
<td>E= 258,530</td>
</tr>
<tr>
<td>Clasificación del material de construcción</td>
<td>No</td>
</tr>
</tbody>
</table>

7-B. ESTADO DEL MURO Y CALIDAD DE CONSTRUCCIÓN

<table>
<thead>
<tr>
<th>Descripción</th>
<th>Bajo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uniformidad de los taludes</td>
<td>Inexistentes</td>
</tr>
<tr>
<td>Depresiones visibles y cuantificables a lo largo del coronamiento</td>
<td>No</td>
</tr>
<tr>
<td>Grutas visibles y su utilización</td>
<td>No</td>
</tr>
<tr>
<td>Indices de deslizamientos y obstrucciones</td>
<td>No</td>
</tr>
<tr>
<td>Sedimentos que se presentan saturados y altura de saturación</td>
<td>No</td>
</tr>
<tr>
<td>Fissuraciones visibles en talud de agua abajo en el pies</td>
<td>No</td>
</tr>
<tr>
<td>Tipo de revestimiento del muro</td>
<td>Tierra Compesada</td>
</tr>
</tbody>
</table>

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CREECIDAS

| Desde el punto de vista de los instrumentos para el control del caudal vertido: |
|-----------------------------|-------------------------------|
| Vedado frente | X |
| Vedado de retén | X |
| Vedado de campañas | X |
| Desde el punto de vista de la pared donde se produce el vertimiento: |
Vedado de pared homogénea	X
Vedado de pared gradiación	X
Vedado con perfiles hidráulicos	X
Los datos a consultar son:	
Piso de vertedero	Canal en terreno muy pequeño
Material constructivo	Tierra
Estado de conservación y operatividad	En buen estado de conservación, operativo
Dimensiones relevantes (anchura, altura y carga máxima de operación)	Anch: 4,20 mts, Alto: 0,50 mts
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGÜE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>En el metro 40 desde el estribo derecho se ubica la obra de entrega compuesta por una tubería y un canal en dintel que conducen las aguas hasta los prados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mediciones estructurales</td>
<td>0.30 de Ancho por 0.30 de Alto</td>
</tr>
<tr>
<td>Funcionamiento abierto</td>
<td>Operativo</td>
</tr>
</tbody>
</table>

10. CARACTERIZACIÓN DEL CAUCE Y USO DEL SUELO AGUAS ABAJO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Aguas abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caudal natural, terrenos agrícolas, pendiente media 0.9%, ancho medio cauce 4 mts</td>
<td></td>
</tr>
<tr>
<td>Distancia hasta centros poblados medidos por el cauce</td>
<td>0.6 Km.</td>
</tr>
<tr>
<td>Distancia desde centros poblados perpendicular al cauce</td>
<td>0.8 Km.</td>
</tr>
<tr>
<td>Consistencia en las cercanías del tranque</td>
<td>Beba</td>
</tr>
<tr>
<td>Distancia hasta zonas agrícolas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Distancia hasta sectores con infraestructura vial u otra de importancia</td>
<td>0.88 Km.</td>
</tr>
<tr>
<td>Área de riego servida por el tranque analizado</td>
<td>5 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

12. OBSERVACIONES

El tramo agua emba se encuentra muy sucio por lluvias

El muro del embalse en bajo despejo y posee tablas irregulares, en algunos lugares el contorno se ve a veces nueve de retiros

La filtración del tranque se encuentra ubicado bajo la obra de entrega (metro 40) lo que está ubicado en la continuación de la quebrada donde el tranque se lanza. Además se ubica el mayor desarrollo
EMBALSE LA ESPERANZA
ÍNDICE INFORME FINAL

PARTE B: CATASTRO DE EMBALSES

25. EMBALSE LA ESPERANZA
 25.1 Ubicación
 25.2 Características Generales
 25.3 Crecidas Afluentes al Embalse
 a) Características de la cuenca
 b) Estimación de Caudales Máximos Instantáneos
 25.4 Análisis de Estabilidad
 a) Taludes del embalse
 b) Modelación de la presa
 c) Parámetros de resistencia al corte
 d) Resultados gráficos estabilidad de taludes
 e) Factores de seguridad
 25.5 Determinación de Fittraciones
 25.6 Verificación del Oleaje
 25.7 Análisis de Riesgo (Hazop)
 25.8 Álbum Fotográfico y Fichas de Catastro
25. EMBALSE LA ESPERANZA

25.1 Ubicación

El embalse La Esperanza se ubica en la comuna de Marchigue, provincia de Cardenal Caro, en las coordenadas UTM 6.200.007 Norte y 266.241 Este, Datum WGS 84 a una Altitud de 144 m.s.n.m. Se localiza en la cuenca del Río Rapel, subcuenca del Río Tinguiririca y la fuente corresponde al estero La Esperanza.

Al embalse se accede desde Marchigüe hacia el norte por la ruta I-76, aproximadamente 13 km. hasta hacienda La Esperanza, a 1 km del embalse Tierruca y 2,5 km del límite comunal con La Estrella.

En la figura siguiente se presenta el plano de ubicación del embalse.

FIGURA 25.1-1
PLANO DE UBICACIÓN SITIO DE EMBALSE LA ESPERANZA

Fuente: Carta IGM
25.2 Características Generales

El tipo de presa es de tierra homogénea de una capacidad máxima de 0,974 hm³. La altura máxima del muro es de 19,7 m, con una longitud de coronamiento de 250 m y ancho promedio del coronamiento de 6,5 m y borde libre de 1,2 m. El Talud Aguas Arriba es H:V=1,11:1 y el Talud Aguas Abajo es H:V=1,15:1.

El evacuador de crecidas corresponde a un vertedero frontal de caída libre, de ancho medio de 11,6 m, 19,6 m de largo y 6 m de alto. No tiene estructura de control. En buen estado de conservación, operativo. En este momento se están enaltando las paredes laterales.

La obra de entrega corresponde a una tubería de hierro de 300 mm de diámetro controlada por válvula de volante que entrega a 2 tubos de HDPE de 300 m de largo que entregan directamente a canal revestido de dimensiones 1,0 mts de ancho por 0,80 m de profundidad. La obra se encuentra en operación.

En la figura siguiente se presenta una imagen satelital del sitio de embalse.

FIGURA 25.2-1
IMAGEN SATELITAL EMBALSE LA ESPERANZA
Vista panorámica Embalse La Esperanza
25.3 Crecidas Afluentes al Embalse

a) Características de la cuenca

La cuenca del embalse La Esperanza tiene como fuente al estero La Esperanza, el cual no posee control fluviométrico, por lo tanto, para determinar los caudales de crecidas asociados a distintos periodos de retorno se usaron métodos indirectos basados en relaciones precipitación – escorrentía.

La cuenca en estudio tiene una superficie de 6,83 km². En la figura y cuadro siguiente se visualizan las características principales de la cuenca.

FIGURA 25.3-1
CUENCA EMBALSE LA ESPERANZA
CUADRO 25.3-1
PARÁMETROS MORFOLÓGICOS CUENCA

SUPERFICIE (ha)	Total	682,8
	Pluvial	682,8
PERÍMETRO (m)	Total	18.840,0
	Pluvial	18.840,0
ALTURA CUENCA (msnm)	Máxima	292,9
	Mínima	139,6
	Diferencia	153,2
PENDIENTE MEDIA (%)	Cuenca	7,4
	Cauce	5,6
LONGITUD CAUCE (km)	Total	6,23
	Desde centro de gravedad	3,12
CENTROIDE CUENCA	UTM E	264.764
	UTM N	6.198.910
	Altura (msnm)	186,2
CENTRO DE GRAVEDAD CAUCE	UTM E	264.747
	UTM N	6.199.249
	Altura (msnm)	167
DATUM	WGS 84	

b) Estimación de Caudales Máximos Instantáneos

➤ Tiempo de Concentración

Para estimar el tiempo de concentración (tc) se utilizó la fórmula del California División of Highways and Public Works de EEUU, Giandotti, y otras cuyas expresiones se señalan a continuación.

Fórmula de California:

\[t_c = 0.95 \left(\frac{L^3}{H_{\text{máx}}} \right)^{0.385} \]

Fórmula de Giandotti:

\[t_c = \frac{4 \cdot \sqrt{A} + 1.5 \cdot L}{0.8 \sqrt{H_{\text{g}}}} \text{ (hrs); con } \frac{L}{5.4} \leq t_c \leq \frac{L}{3.6} \]

Fórmula de Ventura - Heras: \(t_c = 0.05 \cdot \frac{\sqrt{A}}{J} \)

Fórmula de Témez:

\[t_c = 0.3 \cdot \left(\frac{L}{J^{0.4}} \right)^{0.75} \]
Donde:

\[
L = \text{Longitud del cauce principal en km.}
\]

\[
H_{\text{máx}} = \text{Diferencia de cota entre el punto más alto de la cuenca y el punto de descarga, expresada en m.}
\]

\[
A = \text{Área cuenca en km}^2.
\]

\[
J = \text{Pendiente del cauce (%).}
\]

\[
H_g = \text{Diferencia entre la cota media de la cuenca y el punto de salida expresada en m.}
\]

TIEMPO DE CONCENTRACIÓN

<table>
<thead>
<tr>
<th>Embalse</th>
<th>Tiempo de Concentración (h)</th>
<th>Valor Adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>California</td>
<td>Giandotti</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>1,13</td>
<td>3,63</td>
</tr>
</tbody>
</table>

Precipitaciones Máximas

Para determinar las precipitaciones máximas en 24 h se siguió la metodología propuesta en el estudio "Precipitación Máxima en 1, 2 y 3 Días. Dirección General de Aguas. Ministerio de Obras Públicas, 1991".

COEFICIENTES DE DURACIÓN, PRECIPITACIONES MÁXIMAS EN 24 H EN T=10 AÑOS Y ZONA ASOCIADA AL COEFICIENTE DE FRECUENCIA

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>Zona CD</th>
<th>CD en Tc</th>
<th>Pp(24 h,T=10)</th>
<th>Zona CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Esperanza</td>
<td>Rapel</td>
<td>0,135</td>
<td>90</td>
<td>Cachapoal</td>
</tr>
</tbody>
</table>

Caudales de Crecidas

Fórmula Racional Modificada

En este método el caudal máximo es proporcional a la lluvia de diseño y al tamaño de la cuenca pluvial. El caudal máximo se calcula utilizando la siguiente expresión:

\[
Q(T) = \frac{C(T) \cdot I_{tc}^T \cdot Ap}{3,6}
\]

Donde:

- \(Q(T)\) Caudal generado en la cuenca en \(m^3/s\)
- \(C(T)\) Coeficiente de Escoorrentia
- \(I_{tc}^T\) Intensidad de la precipitación para \(t\) igual al tiempo de concentración \(tc\) en \(mm/h\)
- \(Ap\) Área pluvial de la cuenca tributaria \(km^2\).

La intensidad de la precipitación va a estar asociada al periodo de retomo \(T\) y a una duración igual al tiempo de concentración de la cuenca pluvial.
Relación de Verni y King Modificada

La relación de Verni y King modificada permite determinar los caudales de crecidas sobre la base de la precipitación media sobre la cuenca y el área aportante a ella, mediante la siguiente expresión:

\[Q(T) = C(10) \frac{C(T)}{C(T = 10)} \cdot 0,00618 \cdot (P_{24}^T)^{1,24} \cdot (Ap)^{0,88} \]

Donde:
- \(C(T) \) Coeficiente empírico para diferentes períodos de retorno
- \(P_{24}^T \) Precipitación máxima en 24 h y periodo de retorno T años
- \(Ap \) Área pluvial (km²)

CAUDAL MÁXIMO EXPRESIONES RACIONAL Y VERNI - KING

<table>
<thead>
<tr>
<th>EMBALSE</th>
<th>Período de retorno</th>
<th>C escorrentia</th>
<th>Zona CF</th>
<th>CF</th>
<th>Pp (T, tc)</th>
<th>Q(T) V-K</th>
<th>Q(T) Racional</th>
</tr>
</thead>
<tbody>
<tr>
<td>La Esperanza</td>
<td>T=2</td>
<td>0,47</td>
<td>Cachapoal</td>
<td>0,6</td>
<td>8,6</td>
<td>2,7</td>
<td>9,0</td>
</tr>
<tr>
<td></td>
<td>T=5</td>
<td>0,60</td>
<td>Cachapoal</td>
<td>0,9</td>
<td>11,5</td>
<td>3,9</td>
<td>15,3</td>
</tr>
<tr>
<td></td>
<td>T=11</td>
<td>0,68</td>
<td>Cachapoal</td>
<td>1,0</td>
<td>13,1</td>
<td>6,6</td>
<td>19,8</td>
</tr>
<tr>
<td></td>
<td>T=15</td>
<td>0,73</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>14,3</td>
<td>7,9</td>
<td>23,1</td>
</tr>
<tr>
<td></td>
<td>T=20</td>
<td>0,77</td>
<td>Cachapoal</td>
<td>1,1</td>
<td>15,1</td>
<td>9,0</td>
<td>25,8</td>
</tr>
<tr>
<td></td>
<td>T=25</td>
<td>0,80</td>
<td>Cachapoal</td>
<td>1,2</td>
<td>15,7</td>
<td>9,7</td>
<td>27,8</td>
</tr>
<tr>
<td></td>
<td>T=50</td>
<td>0,87</td>
<td>Cachapoal</td>
<td>1,3</td>
<td>17,5</td>
<td>12,2</td>
<td>33,8</td>
</tr>
<tr>
<td></td>
<td>T=100</td>
<td>1</td>
<td>Cachapoal</td>
<td>1,5</td>
<td>19,4</td>
<td>15,8</td>
<td>43,0</td>
</tr>
</tbody>
</table>

Análisis Regional de Crecidas (Método DGA-AC)

Corresponde a una metodología realizada en el estudio "Análisis de Eventos Hidrometeorológicos Extremos en el País, Caudales Máximos y Mínimos" AC Ingenieros Consultores Ltda., para estimar caudales máximos de crecidas, en base a curvas de frecuencias regionales establecidas para zonas hidrológicamente homogéneas.

Donde:
- \(Q_{10} \) Caudal medio diario máximo con periodo de retorno de 10 años (m³/s)
- \(P_{24}^{T=10} \) Precipitación diaria máxima de período de retorno 10 años (mm)
- \(Ap \) Área Pluvial de la cuenca (km²)

\[Q_{10} = 5,42 \cdot 10^{-8} \cdot (P_{24}^{T=10})^{3,432} \cdot (Ap)^{0,915} \]
\[Q(T) = \alpha \cdot \frac{Q(T)_{\text{max}}}{Q(10)} \cdot Q10 \]

En donde \(Q(T) \), corresponde al caudal instantáneo máximo según el período de retorno \(T \) y \(\alpha \) toma el valor de 1,19.

FACTORES DE CAUDAL

<table>
<thead>
<tr>
<th>T (años)</th>
<th>(Q(T) / Q(10))</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0,42</td>
</tr>
<tr>
<td>5</td>
<td>0,74</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>1,14</td>
</tr>
<tr>
<td>20</td>
<td>1,29</td>
</tr>
<tr>
<td>25</td>
<td>1,39</td>
</tr>
<tr>
<td>50</td>
<td>1,72</td>
</tr>
<tr>
<td>75</td>
<td>1,94</td>
</tr>
<tr>
<td>100</td>
<td>2,1</td>
</tr>
</tbody>
</table>

CAUDAL MÁXIMOS INSTANTÁNEO MÉTODO DGA-AC

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Q) instantáneo máximo (T), DGA-AC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>0,80</td>
</tr>
</tbody>
</table>

Extrapolación de caudales

Finalmente, los caudales máximos instantáneos de crecidas, considerados de acuerdo al análisis de los resultados de las expresiones y dando prioridad a la seguridad, sin sobrestimar, son los encontrados por medio de la expresión de Verni-King, extrapolando para periodos de retorno de 200, 500 y 1000 años, los caudales indicados son los siguientes.

CAUDAL MÁXIMO INSTANTÁNEO EXTRAPOLADO T AÑOS.

<table>
<thead>
<tr>
<th>NOMBRE EMBALSE</th>
<th>CAUDALES MÁXIMOS EXTRAPOLADOS (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T=200</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>17,08</td>
</tr>
</tbody>
</table>
25.4 Análisis de Estabilidad

a) Taludes del embalse

Para el análisis de estabilidad de taludes se ha considerado la geometría actual de cada embalse, la que fue obtenida en visitas a terreno efectuadas durante los meses de Agosto y Noviembre de 2009. En el siguiente cuadro se entregan las medidas geométricas, tanto para el talud aguas arriba como aguas abajo.

b) Modelación de la presa

Se considera una presa de tierra homogénea conformada por una arena arcillo limosa, cuya geometría se presenta en el esquema siguiente.

Los datos geométricos característicos son:

- Altura: 19,7 m
- Ancho coronamiento: 6,5 m
- Borde libre: 1,2 m
- Talud Aguas Arriba: H : V= 1,11 : 1
- Talud Aguas Abajo: H : V= 1,15 : 1

c) Parámetros de resistencia al corte

Para el análisis de estabilidad se consideraron los parámetros de resistencia al corte indicados en el cuadro siguiente.

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>Angulo de fricción (°)</th>
<th>Cohesión (t/m²)</th>
<th>Peso unitario seco (t/m³)</th>
<th>Peso unitario saturado (t/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muro presa</td>
<td>26</td>
<td>2,5</td>
<td>1,80</td>
<td>2,00</td>
</tr>
<tr>
<td>Arcilla Limo Arenosa</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Resultados gráficos estabilidad de taludes

El análisis de estabilidad de ambos taludes de la presa se realizó con el programa de computación SLIDE desarrollado por la empresa Norte Americana Rocscience. Este programa utiliza una modelación seudo estática del problema permitiendo utilizar diferentes metodologías para el cálculo (Jambú, Bishop, Spencer, entre otros). Se analizó tanto el talud aguas arriba como el talud aguas abajo.

Para el análisis, se consideró las propiedades estratigráficas detectadas en terreno. El estudio de estabilidad considera los siguientes estados de carga:

<table>
<thead>
<tr>
<th>Talud Agua Arriba</th>
<th>Estático</th>
<th>Con Agua</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td>Talud Agua Abajo</td>
<td>Estático</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sísmico</td>
<td>Con Agua</td>
</tr>
<tr>
<td></td>
<td>Sin Agua</td>
<td></td>
</tr>
</tbody>
</table>

A continuación se muestran los resultados gráficos obtenidos con el programa computacional SLIDE.

FIGURA 25.4-1
TALUD AGUAS ARRIBA - ESTÁTICO CON AGUA
FIGURA 25.4-2
TALUD AGUAS ABAJO - ESTÁTICO CON AGUA

FIGURA 25.4-3
TALUD AGUAS ARRIBA - SÍSMICO CON AGUA
FIGURA 25.4-4
TALUD AGUAS ABAJO - SÍSMICO CON AGUA

FIGURA 25.4-5
TALUD AGUAS ARRIBA - ESTÁTICO SIN AGUA
FIGURA 25.4-6
TALUD AGUAS ABAJO - ESTÁTICO SIN AGUA

FIGURA 25.4-7
TALUD AGUAS ARRIBA - SÍSMICO SIN AGUA
e) Factores de seguridad

Los factores de seguridad obtenidos para los casos analizados fueron:

CUADRO 25.4-2
FACTORES DE SEGURIDAD DE TALUDES

<table>
<thead>
<tr>
<th>Análisis con embalse lleno</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas Arriba</td>
<td>Aguas Abajo</td>
<td>Aguas Arriba</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>1,573</td>
<td>1,222</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Análisis con embalse seco</th>
<th>Factor de seguridad 1,5</th>
<th>Factor de seguridad 1,1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estático</td>
<td>Sísmico $kh=0,12g$</td>
<td></td>
</tr>
<tr>
<td>Aguas arriba</td>
<td>Aguas abajo</td>
<td>Aguas arriba</td>
</tr>
<tr>
<td>La Esperanza</td>
<td>1,290</td>
<td>1,188</td>
</tr>
</tbody>
</table>
25.5 Determinación de Filtraciones

Para determinar la filtración del tranque se ha utilizado el Método de Lane, el cual señala que la longitud de filtración compensada \((L')\) de la sección transversal de una cortina o muro es igual, a la suma de las longitudes verticales de filtración \((Lv)\) más un tercio de la suma de las longitudes de filtración horizontales \((1/3 \cdot Lh)\).

\[
L' = \frac{1}{3} \cdot Lh + Lv
\]

Se consideran como distancias verticales y horizontales las que tienen una inclinación mayor de 45° y menor de 45°, respectivamente.

El criterio de Lane señala que no se producen filtraciones si se cumple que:

\[
L' \geq C' \cdot h
\]

Para el caso del tranque \textit{La Esperanza}, se tiene:

\(Lh\) (m)	51,0	Longitud horizontal en la base del tranque o embalse.
\(Lv\) (m)	0	Longitud vertical en la base del tranque o embalse.
\(C'\)	1,70	Coeficiente de filtración que depende del tipo de material del embalse
\(h\) (m)	18,48	Carga hidráulica efectiva. La carga hidráulica efectiva sobre la estructura se obtiene como la diferencia de carga hidráulica entre aguas abajo y aguas arriba

De acuerdo con el criterio de Lane, en este caso \textbf{NO} se cumple la relación, por lo tanto, \textbf{SI} existe riesgo de filtraciones, según se detalla en la tabla siguiente.

<table>
<thead>
<tr>
<th>Embalse</th>
<th>(Lh)</th>
<th>(Lv)</th>
<th>(L')</th>
<th>(Ht)</th>
<th>(bl)</th>
<th>(h)</th>
<th>(C')</th>
<th>((C' \cdot h))</th>
<th>Cumple Condición</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA ESPERANZA</td>
<td>51,0</td>
<td>0</td>
<td>17,01</td>
<td>19,7</td>
<td>1,2</td>
<td>18,48</td>
<td>1,70</td>
<td>31,4</td>
<td>(L' \geq C' \cdot h)</td>
</tr>
</tbody>
</table>

25.6 Verificación del Oleaje

La altura de oleaje se refiere al nivel sobre la superficie libre máxima que alcanza una ola después de reventar sobre el talud de aguas arriba durante una tormenta \((h_{ole})\). Para efectos de cálculo se emplearon los criterios de Stevenson, Molitor, Creager y Bureau of Reclamation.
Se adjunta la planilla de cálculo de la revancha para el embalse La Esperanza.

LA ESPERANZA
CÁLCULO DE REVANCHA POR OLEAJE

Determinación de la Altura de la Ola

<table>
<thead>
<tr>
<th>Línea N°</th>
<th>Alfa</th>
<th>Cos(α)</th>
<th>Cos^2(α)</th>
<th>Distancia m</th>
<th>Dist. * Cos^2(α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>266</td>
<td>0,1653</td>
</tr>
<tr>
<td>2</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>333</td>
<td>0,2069</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>335</td>
<td>0,2082</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>352</td>
<td>0,2187</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>345</td>
<td>0,2144</td>
</tr>
<tr>
<td>6</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>454</td>
<td>0,2821</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>812</td>
<td>0,5046</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>1,0000</td>
<td>1,0000</td>
<td>875</td>
<td>0,5437</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>0,9945</td>
<td>0,9891</td>
<td>588</td>
<td>0,3654</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>0,9781</td>
<td>0,9568</td>
<td>616</td>
<td>0,3828</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0,9511</td>
<td>0,9045</td>
<td>572</td>
<td>0,3554</td>
</tr>
<tr>
<td>12</td>
<td>24</td>
<td>0,9135</td>
<td>0,8346</td>
<td>421</td>
<td>0,2616</td>
</tr>
<tr>
<td>13</td>
<td>30</td>
<td>0,8660</td>
<td>0,7500</td>
<td>401</td>
<td>0,2492</td>
</tr>
<tr>
<td>14</td>
<td>36</td>
<td>0,8090</td>
<td>0,6545</td>
<td>372</td>
<td>0,2311</td>
</tr>
<tr>
<td>15</td>
<td>42</td>
<td>0,7431</td>
<td>0,5523</td>
<td>456</td>
<td>0,2833</td>
</tr>
</tbody>
</table>

Suma 13,5109 Suma 3,8340

Fetch o longitud de acción del viento (F)

\[
F = 0,284 \text{ millas} \\
F = 456,68 \text{ m}
\]

Velocidad del Viento
\[
v = 50 \text{ mph} \\
v = 22,35 \text{ m/s}
\]

Fórmulas Empíricas

<table>
<thead>
<tr>
<th>Altura</th>
<th>pie</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stevenson</td>
<td>2,57</td>
<td>0,7831</td>
</tr>
<tr>
<td>Molitor</td>
<td>2,41</td>
<td>0,7347</td>
</tr>
<tr>
<td>Creager</td>
<td>1,20</td>
<td>0,3667</td>
</tr>
<tr>
<td>Bur. of Rec.</td>
<td>3,11</td>
<td>0,9487</td>
</tr>
</tbody>
</table>

Altura Máxima de Ola 0,95 m
De acuerdo a las mediciones realizadas en terreno con huinchía, y que corresponde a la
revancha mínima en relación a la cota máxima de aguas identificada, que para el caso de
este embalse es de 1,20 m, se tiene que la altura de la ola no superaría esta revancha.

25.7 Análisis de Riesgo (HAZOP)

Tal como se expuso en el Capítulo 7 de la metodología, el riesgo de falla se define por la
relación:

\[R = p \times V \times E \]

Con:

- \(p \): probabilidad de ocurrencia del evento
- \(V \): Vulnerabilidad del evento
- \(E \): Potencialidad de falla ocasionada por el evento

Para este análisis se consideran 3 tipos de evento: Riesgo por sino, riesgo por escorrentía, y
riesgo por piping. El riesgo del embalse corresponde al mayor riesgo individual. Los valores
"p" y "V" son independientes por evento, y el valor "E" es idéntico para todos los eventos.

25.7.1 Evento Sísmico

Para efectos de análisis se considera que el sismo de diseño tiene una probabilidad de
ocurrencia de 1 en 25 años o 0,04, que ha sido la frecuencia típica para grandes sismos en
la zona central del país. En el siguiente cuadro se muestra el valor de la variable V para el
evento sísmico considerado.

<table>
<thead>
<tr>
<th>Vaciamiento en función de la traza de la falla</th>
<th>(\text{Riesgo } p)</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>No se registra falla para el evento dado</td>
<td>0,05</td>
<td></td>
</tr>
<tr>
<td>La falla se localiza en el talud de aguas abajo</td>
<td>0,05 a 0,40</td>
<td>0,3</td>
</tr>
<tr>
<td>La falla pasa por el coronamiento</td>
<td>0,40 a 0,75</td>
<td></td>
</tr>
<tr>
<td>La falla pasa por el talud de aguas arriba sobre la línea de aguas máximas</td>
<td>0,75 a 0,95</td>
<td></td>
</tr>
<tr>
<td>La falla pasa bajo la línea de aguas máximas (*)</td>
<td>0,95</td>
<td></td>
</tr>
</tbody>
</table>

25.7.2 Evento de Escorrentía

Para determinar la falla frente a eventos de escorrentía se determina en primer lugar la
capacidad efectiva de evacuación de crecidas, evaluada como la capacidad de evacuación
multiplicada por 3 coeficientes de capacidad, coeficientes cuyo cálculo se indica:
Calidad de construcción

<table>
<thead>
<tr>
<th></th>
<th>C1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra de hormigón armado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra de albañilería</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra de tierra</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Estado de conservación

<table>
<thead>
<tr>
<th></th>
<th>C2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obra en óptimo estado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Obra en estado regular, con dudas de operatividad</td>
<td>0,8</td>
<td></td>
</tr>
<tr>
<td>Obra en mal estado, no confiable</td>
<td>0,6</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Calidad del canal de descarga

<table>
<thead>
<tr>
<th></th>
<th>C3</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal revestido en hormigón</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Canal en mampostería o albañilería irregular</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Canal en tierra</td>
<td>0,7</td>
<td></td>
</tr>
<tr>
<td>No existe canal de descarga</td>
<td>0,1</td>
<td></td>
</tr>
</tbody>
</table>

Capacidad evacuación: 94,4 m³/s
Coeficiente capacidad 0,36
Capacidad efectiva 33,98 m³/s

Posteriormente, la capacidad efectiva se compara con las crecidas asociadas a diferentes periodos de retorno, tal como fue determinado en el estudio hidrológico, y se asignan vulnerabilidades según el siguiente cuadro:

<table>
<thead>
<tr>
<th>Tabulación de probabilidades</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q af < Q normal máx</td>
<td>0,05</td>
</tr>
<tr>
<td>Q normal máx < Q af < Q max. último</td>
<td>0,05 a 0,95</td>
</tr>
<tr>
<td>Q af > Q max. último</td>
<td>0,95</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Probabilidad Ocurrencia</th>
<th>Crecida Pluvial (m³/s)</th>
<th>Vulnerabilidad</th>
<th>Crecida Nival (m³/s)</th>
<th>Vulnerabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,01</td>
<td>17,08</td>
<td>0,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,002</td>
<td>20,18</td>
<td>0,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
<tr>
<td>0,0010</td>
<td>22,52</td>
<td>0,05</td>
<td>0,00</td>
<td>0,00</td>
</tr>
</tbody>
</table>

25.7.3 Evento de Piping

Para el evento de piping se tiene que la probabilidad de ocurrencia viene dada por:

<table>
<thead>
<tr>
<th>Período de servicio</th>
<th>Riesgo "p"</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Menor a 1 año</td>
<td>0,95</td>
<td></td>
</tr>
<tr>
<td>Entre 1 y 50 años</td>
<td>0,95 a 0,05</td>
<td>0,05</td>
</tr>
<tr>
<td>Mayor que 50 años</td>
<td>0,05</td>
<td></td>
</tr>
</tbody>
</table>

Por otra parte, la vulnerabilidad asociada al piping está dada por:
Riesgo de piping según situación del muro	Riesgo "p"	Valor adoptado
Sin humedad al pie | 0,05 |
Saturación abajo del muro | 0,05 a 0,10 |
Saturación del pie | 0,10 a 0,20 |
Filtración | 0,20 a 0,95 | 0,2
Si existe sistema de drenaje | 0 |
Si el material es cohesivo | 0,05 |

25.7.4 Potencialidad de Falla

La potencialidad de falla viene dada por:

Según la cercanía a la faja probable de Inundación

<table>
<thead>
<tr>
<th></th>
<th>E1</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro de la faja de inundación</td>
<td>0,50 a 1,0</td>
<td>1</td>
</tr>
<tr>
<td>Fuera de la faja de inundación</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

Según la Cercanía al Punto de Vaciamiento

<table>
<thead>
<tr>
<th></th>
<th>E2</th>
<th>Valor adoptado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentro del cauce secundario en que se encuentra el embalse</td>
<td>0,8 a 1,0</td>
<td>0,9</td>
</tr>
<tr>
<td>En el cauce que recibe al anterior, sin ser un cauce importante</td>
<td>0,5 a 0,8</td>
<td></td>
</tr>
<tr>
<td>En un cauce mayor</td>
<td>0,05 a 0,5</td>
<td></td>
</tr>
</tbody>
</table>

El valor de los daños aguas abajo viene dado por el mayor valor entre los factores E1 y E2:

<table>
<thead>
<tr>
<th>Daños hacia aguas abajo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efecto</td>
<td>1,0</td>
</tr>
</tbody>
</table>

25.7.5 Riesgo

Combinando los factores previamente definidos, se tiene que

<table>
<thead>
<tr>
<th>Riesgo Sismo</th>
<th>Riesgo Esorrentía</th>
<th>Riesgo Piping</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pluvial</td>
<td>Nival</td>
</tr>
<tr>
<td>Riesgo</td>
<td>1,20</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Tal como se indicó en el Capítulo 7, el riesgo por piping solo es válido cuando el embalse está recién construido, por lo que no se considera para efectos de riesgo. De esta manera el riesgo de esta obra está dado por el riesgo mayor, que en este caso corresponde al riesgo sísmico.

25.8 Álbum Fotográfico y Fichas de Catastro

A continuación se adjunta el álbum fotográfico correspondiente y la ficha que recoge la información del catastro del Embalse La Esperanza.
<table>
<thead>
<tr>
<th>VISTA MURO DESDE ESTRIBO DERECHO</th>
<th>VISTA MURO DESDE ESTRIBO IZQUIERDO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VISTA TALUD AGUAS ARRIBA</td>
<td>ZONA DESLIZAMIENTO CON PROTECCIÓN</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>OBRA DE ENTREGA</td>
<td>OBRA DE ENTREGA</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. ANTECEDENTES GENERALES

Nombre de la presa: La Esperanza
NUT Propietario: 78.791.770.4
Año de construcción: 1986
Superficie de ingeniería (ha): 4
Año de reparación: 2002
Corriente / Código DGA: Río Rapel
Saludable / Código DGA: Río Trigueros
Fuente del riego: Estero La Esperanza
Nº de ficha: 25
Fecha (domiciliación): 05-10-2009
Compromiso Art. 294 del Código de Aguas
Capacidad: 10.500 m3
Altura del muro: 9 m

2. UBICACIÓN DE PRESA

Región: VI del Libertador Bío Bío / Valdivia
Provincia: Cardenal Caro
Comuna: Metchi
Coordenadas UTM Este/Derecho: E= 236 154
Coordenadas UTM Norte: N= 7 200 947
Altitud m.s.n.m. (ED = 143, G = 144, Ei = 144)
Nº Isla: ED= Isla Derecho
G= Isla Izquierda
Ei= Isla Izquierda

3. USO O DESTINO DEL EMBALSE

Riego: X
Generación de energía
Manejo de aguas potables
Balsas
Sedimentación
Control de crecidas
Recuperación
Otros usos

4. TIPO DE EMBALSE

Presas de tierra homogénea: X
Presas de material gravalesgraduada
Presas de embocaduras (DEP): 20
Presas de hormigón (gravales, contrafuerte, arco)
Presas de RCC
Otros tipos

5. GEOMETRÍA DE LA PRESA

Longitud del corrienteamiento (m): 220
Ancho del corrienteamiento (m): ED = 8,0, G = 7,5, Ei = 4,1
Desarrollo del talud aguas abajo (m): 30,0
Revancha mínima en relación a la cota máxima de agua conocida (m): 1,2

6. ESTIMACIÓN CAPACIDAD MÁXIMA DEL EMBALSE

Altura máxima del muro (definida por relaciones hidrúulicas en caso de no poder medir dividimiento) (m): 10,70
Densidad máxima de agua en seco del muro (m): 18,0
Área estimada de cálculo de la presa (m2): 2 101 612
Ancho máximo de la corriente (m): 0,71
Largo de la corriente (m): 0,71
Volumen declarado o proyectado (millones de m3): 0,074

7. A. CARACTERÍSTICAS DEL MURO

Toma de muestra del suelo (preferentemente en el centro del muro)
Toma de coordenadas y fotografías del punto muestrario
Clasificación del material de construcción (clasificación según tabla)

8. CARACTERÍSTICAS OBRAS EVACUADOR DE CRECIDAS

Por su localización en relación a la estructura principal
Ventileros frentales: X
Ventileros laterales
Ventileros de campa
V. VISITA LOCALIZACIÓN Y ESTRUCTURA DEL VENTILADOR

Desde el punto de vista de los instrumentos para el control del caudal vertido:
Ventileros laterales, ojos ciegos
Ventileros cortavientos por campa

Desde el punto de vista de la sección por la cual se da el vertimiento:
Rectangulares
Irregulares
Triángulares
Circulares

Los datos a conocer son:
Tipo de ventilador
Ventilador de caída libre
Material constructivo: Hormigón
Estado de conservación y operatividad: En buen estado de conservación, operativo. En este momento se están reparando las paredes laterales
Dimensiones relevantes (ancho, altura y carga máxima de apertura): Largo: 21,12 mts, Ancho Total: 11,80 mts, Largo: 19,1, Alt: 9,0 mts
9. CARACTERÍSTICAS OBRAS DE ENTREGA Y DESAGUE DE FONDO

<table>
<thead>
<tr>
<th>Tipo de estructura</th>
<th>Salida a canal. Tubería de foso de 50 cm de diámetro cerrilístico por válvula de volante que entrega a 2 tubos de filo de 300 mts de largo que entregan directamente o canal revocado de dimensiones 1,0 mts de ancho por 0,68 mts de profundidad.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medidas estructurales</td>
<td>Tubería fija y Tubo HPFE 32 cm diámetro. Canal: 1,0 x 0,8.</td>
</tr>
<tr>
<td>Funcionamiento actual</td>
<td>Operativo.</td>
</tr>
</tbody>
</table>

16. CARACTERÍZACION DEL CAUCE Y USO DEL SUELO

<table>
<thead>
<tr>
<th>Tipo de cauce natural o artificial</th>
<th>Agua abajo del embalse, tipo de terreno, pendiente media y ancho medio del cauce.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Canal en fijas, terrenos agrícolas, pendiente media 2% ancho medio 2,5 mts.</td>
<td></td>
</tr>
<tr>
<td>Distancia hacia corrientes pobladas meditación por el cauce</td>
<td>55.74 Kms.</td>
</tr>
<tr>
<td>Distancia desde corrientes periféricas al cauce</td>
<td>15.7 Kms.</td>
</tr>
<tr>
<td>Densidad de población en las cercanías del embalse</td>
<td>Baja - Media</td>
</tr>
<tr>
<td>Distancia hacia zonas agrícolas</td>
<td>Adyacente</td>
</tr>
<tr>
<td>Distancia hacia sectores con infraestructura vital o de importancia</td>
<td>0,17 Kms.</td>
</tr>
<tr>
<td>Área de riesgo servida por el tranque analizado</td>
<td>150 ha</td>
</tr>
</tbody>
</table>

11. MONOGRAFÍA

Planta del riego (forma y dimensiones) | Sección transversal del riego en la zona con menor revancha y con mayor revancha, indicando sus taludes

Croquis de la obra de evacuación y dimensiones (planta) | Croquis de la obra de evacuación y dimensiones (elevación)

Croquis de la obra de Toma y dimensiones (planta) | Croquis de la obra de Toma y dimensiones (elevación)

12. OBSERVACIONES

El encorcho del tranque fue puesto en el año 2002 a modo de reparación de este