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Research about adaptation of crops to climate change at a regional scale is based on simplifying assumptions
about current and future weather and about farmer management practices. Additionally, the impacts of adapta-
tions are usuallymeasured only in production terms and the feasibility of implementing proposed adaptations is
rarely tested. In this study into adaptations of rice based cropping systems to future climate scenarios in
Telangana, India, all adaptations were generated through participatory engagement, and were field-tested
with local smallholder households in three villages aswell as by cropping system simulation analysis. Adaptation
options were first evaluated for historical climate variability, with outcomes assessed in terms of production,
profitability and environmental consequences before theywere evaluated as climate-smart adaptations tomedi-
um term climate change. In an earlier study, participatory intervention at household level was used to identify
and evaluate new practices. These adaptations to climate variability were then tested with the cropping systems
simulator APSIM on local historical weather data. Here we test the applicability of these adaptations to likely cli-
mate scenarios in 2021–2040 by using and statistically downscaling two contrasting global circulationmodels to
generate contrasting climate change scenarios for each location. Adaptations were simulated with these future
climate data sets and evaluated in terms of their gross margin, yield, yield stability, gross margin stability, global
warming potential, greenhouse gas emissions intensity and, where irrigation treatments were varied, net water
use, irrigation water productivity, contribution to the recharge of aquifers and nitrogen leached from the root
zone. Compared with variability in historic yields the simulated yield changes in 2021–2040 climate scenarios
were modest and their direction was dependent on the global circulation model used. Sustainability polygons
were used to compare historic and future climate scenarios. These polygons clearly showed that adaptation op-
tions mostly resulted in trade-offs between productivity and environmental outcomes and between competing
environmental outcomes. Results that were simulated for historic weather were strongly reflected in the two fu-
ture weather scenarios, leading to the conclusion that participatory action research with smallholder farmers,
coupled with field testing and simulation analysis can produce practical, sustainable and productive adaptations
to climate variability that are also climate smart in that they are robust for future climate scenarios to 2021–2040.
We propose that sustainability polygons may be a useful quantitative tool for analysis of the degree to which ad-
aptations may be regarded as climate smart.
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1. Introduction

Climate change has already impacted agriculture and food produc-
tion (Trenberth, 2011, Lobell et al., 2011, Coumou and Rahmstorf,
2012, Liu and Allan, 2013). Further increases in mean temperature
r Ltd. All rights reserved.
and evapotranspiration; changes in rain patterns; increased variability
both in temperature and rain patterns; changes in water availability;
the frequency and intensity of ‘extreme events’ and sea level rise are
projected by climate models (Rummukainen, 2012, Taylor et al.,
2012). Such changes will continue to have profound impacts on agricul-
ture (Easterling et al., 2007, Gornall et al., 2010, Beddington et al., 2012).
However, climatic impacts on agriculture will be heterogeneous and
ambiguous (Knox et al., 2012) and vulnerability will vary between
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crops and regions and with people‘s socio-economic conditions includ-
ing inequality and oppression (Kates et al., 2012, Dow et al., 2013,
Jayaraman andMurari, 2014). In addition to adapting to gradual climat-
ic changes driven by greenhouse gas emissions farmers must also cope
with year-to-year climate variability (Jayaraman and Murari, 2014).

Effective adaptation of agriculture to climate change will mostly re-
sult in gains to those who take the adaptive action and while govern-
ments can encourage adaptation through investment in research and
development (R&D) and appropriate policy settings, it requires individ-
uals to act. Consequently, adaptation to climate change will at most be
motivated by a medium term outlook such as 5 to 25 years ahead.
Farmers and other stakeholders might adapt to near term climate
change but are unlikely to consider adaptation to longer term timelines
(Kokic et al., 2011 and references cited within). Further, the rate of
change in rural development in smallholder agriculture in South and
Southeast Asia is such that farming beyond 2020 is likely to be compre-
hensively transformed. Additionally, with agricultural livelihoods often
being precarious and climate dependent, adaptations will only be im-
plemented if farmers are convinced that they will provide at least
some immediate gains. In other words, climate change adaptations
can only be contemplated if they are also successful adaptations to cur-
rent climate variability (Robertson and Murray-Prior, 2014). Hence an
important question is: will adaptation to historical climate variability
serve farmers well in a future climate as suggested by Howden et al.
(2007)?

1.1. Climate change projections for India

Climate change projections for India using the CoupledModel Inter-
comparison Project 5 (CMIP5) ensemble found that, by the 2030s, under
a business-as usual representative concentration pathway (between
RCP6.0 and RCP8.5) scenario, mean warming in India relative to prein-
dustrial times is likely to be in the range 1.7–2.0 °C while precipitation
is projected to increase by 4% to 5% compared to the 1961–1990 (histor-
ic) baseline. A trend for increased frequency of extreme precipitation
days (e.g. N40 mm/day) is projected for the 2060s and beyond
(Chaturvedi et al., 2012).

Barnwal and Kotani (2013) observed that while a number of simula-
tion studies using global circulation model (GCM) scenarios predicted
increased rice production in India (Mohandass et al., 1995, Lal et al.,
1998, Rathore et al., 2002, Aggarwal andMall, 2002), other more recent
studies showed negative impacts (Auffhammer et al., 2006, Cline, 2007,
Aggarwal, 2008). An overviewof the IPCC Fifth Assessment report (IPCC,
2013) for India suggests that there is still significant uncertainty about
yield impacts due to the difficulties in understanding and predicting
monsoon behaviour (Jayaraman and Murari, 2014).

1.2. Case study villages

The three case study villages are located in three districts in the
Telangana state (formally part of Andhra Pradesh) in south India: Wa-
rangal, in the Central Telangana agro climatic zone and Nalgonda and
Mahabubnagar in the Southern Telangana Zone. Paddy rice, cotton,
and to a lesser degree maize are the key kharif (monsoon) crops in
these villages. Paddy rice is grown under irrigated conditions mostly
using groundwater pumped from bore-wells. Cotton and maize are
mostly grown as rainfed crops. The average holding size in the area is
around 2 ha with predominantly smallholder farmers. The villages
were selected to reflect the considerable variation in natural endow-
ments for agriculture. Bairanpalli (Warangal district) is a village with
better soil and water resources, while Gorita (Mahabubnagar district),
and Nemmani (Nalgonda district) are villages with more limited re-
sources.More details about the study villages and about the participato-
ry approach taken to developing adaptations to climate variability are
provided in Hochman et al. (2017). Briefly, participatory intervention
commenced with discussions between researchers, farmers and NGOs
about climate related issues in the rice based farming systems in the
study villages. These discussions were used to identify new practices
that could provide more adaptive and robust responses to climate vari-
ability. The suggested adaptationswere then implemented in participa-
tory on-farm experiments. Fields demonstrating these adaptationswere
monitored and resultswere discussedwith participating farmers at reg-
ular ‘Climate Club’ village meetings. Crop and soil data from these fields
were used to locally parameterise the cropping systems simulator
APSIM. Local adaptation options that were trialled in the villages were
then simulated using local soil and long term historical weather data.
In each of the case studies, a number of adaptations thatwere developed
and implemented in the villages were shown through simulation to be
successful alternatives to current practice in terms of agricultural pro-
duction, stability of yields and resource use efficiency. These adaptations
are further examined in this study for their suitability to future climate
projections.

1.3. Using simulation models

Dynamic, process-based crop and cropping system simulation
models are commonly used in studies of climate change impact and
risk (Tubiello and Ewert, 2002, Challinor et al., 2009, White et al.,
2011, Angulo et al., 2013). The APSIM model (Keating et al., 2003,
Holzworth et al., 2014) was chosen for this study for a number of rea-
sons. Recent work has demonstrated that APSIM-Oryza is a reliable
tool for simulating rice based cropping systems in South and South
East Asia (Gaydon et al., 2017) and more specifically in the study area
in India (Hochman et al., 2017). Importantly, APSIM was also chosen
due to itsManagermodule's capability to closelymimic farmermanage-
ment decision logic and subsequent actions.

APSIM captures the CO2 enrichment effects on photosynthesis via
modifiers of radiation use efficiency (RUE). Transpiration is a function
of daily DM increment multiplied by transpiration efficiency (TE)
which depends on vapour pressure deficit (vpd) and CO2-level. Actual
transpiration and photosynthesis are limited if available soil water is in-
sufficient to meet transpiration demand. In APSIM-Maize RUE's sensi-
tivity to CO2 is described by a user-defined input ratio while in APSIM-
Oryza, CO2 response is simulated at the leaf-level and both the initial
light-use efficiency of a single leaf and the CO2 assimilation rate at
light saturation are sensitive to CO2 with a mimic of rubisco kinetics
simulated hourly and scaled up over sunlit and shaded leaves to canopy
assimilation (Jansen, 1990).

The APSIM model has been applied for over a decade to assess the
impacts of climate change as well as adaptation and mitigation strate-
gies. It has been used to determine climate change impacts for various
region and crop combinations with analysis extended beyond crop pro-
duction to consider environmental indicators of cropping systems as
well to explore the abatement of greenhouse gas (GHG) emissions
through reduced N2O emissions and/or increased soil organic seques-
tration (Holzworth et al., 2014). Although APSIM's simulation of soil C
balance (and hence emissions) has been validated in a number of stud-
ies in both flooded (Gaydon et al., 2012b) and non-flooded soil environ-
ments (Huth et al., 2010), the model makes no attempt to segregate
gaseous C losses from soil organic matter cycling between carbon diox-
ide (CO2) andmethane (CH4). This necessitates additional consideration
of the global warming impact of simulated C-emissions when the
cropping system is alternately flooded and non-flooded (such as a
rice-wheat system), due to the different global warming potential of
CO2 and CH4 (25 times the global warming potential of CO2 for same
mass).

1.4. Climate smart agriculture (CSA)

An emerging concept for dealing with multiple aspects of climate
change is Climate Smart Agriculture (FAO, 2013; Campbell et al.,
2014). Climate-smart agricultural practices are those which aspire to
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contribute towards three outcomes: i. Sustainable and equitable in-
creases in agricultural productivity and incomes; ii. Greater resilience
of food systems and farming livelihoods (i.e. greater adaptive capacity);
and iii. Reduction of greenhouse gas emissions associated with agricul-
ture. However, at the practice level there is still a need to underpin the
CSA conceptwith robust criteria to determinewhether practices are in-
deed climate smart or not, as otherwise the concept risks becoming a
catch-all for any new agricultural technologies (Neufeldt et al., 2013;
Rosenstock et al., 2016). We adopt the need for adaptations to meet
the three above outcomes, using criteria derived as outputs from simu-
lation modeling to more systematically evaluate how well these adap-
tations meet all three dimensions of CSA. We apply these criteria to a
number of adaptations derived from the related study (Hochman et
al., 2017) that combined simulation with a participatory framework
for developing and testing locally relevant adaptations to climate vari-
ability in three villages in semi-arid tropical India.

2. Methods

The research described in this paper was conducted in the context
of a broader integrated research program investigating adaptation to
climate change in South and Southeast Asian smallholder rice based
cropping systems (The Adaptation to Climate Change in Asia program
– ACCA; Roth and Grünbühel, 2012).

2.1. Cropping systems simulation

The cropping system model APSIM was used with APSIM-Oryza
(Bouman and van Laar, 2006, Gaydon et al., 2012a, 2012b) to simulate
rice, with APSIM-Maize (Carberry and Abrecht, 1991) to simulate
maize crops and with APSIM-Ozcot (Hearn, 1994) to simulate cotton.
All simulations in this study were based on local parameterization
that was established for the study villages as described in the earlier
paper (Hochman et al., 2017). The study locations Bairanpalli in
Warangal district Nemmani in Nalgonda district and Gorita in
Mahbubnagar district are also described in greater detail in Hochman
et al. (2017).

2.2. Global warming potential (GWP) and greenhouse gas intensity
(GHGI) calculations

GWP outputs from APSIM (7.5) were calculated in units of CO2

equivalents (CO2 eq) calculated over a 100-year time horizon. Over
this period the radiative forcing potentials assumed relative to CO2

were 298 for N2O and 25 for CH4 (IPCC, 2007). The contribution of
change in soil CO2 to GWP was calculated from the difference in soil
total carbon in the top 30 cm soil (as per the Kyoto protocol) from
start of crop to end of crop. The APSIM variable used is carbon_tot()
which is output as kg C/ha. This value is multiplied by the molecular
weight ratio 3.664 (CO2:C) to convert to CO2.

The contribution of CH4 to GWP was calculated for ponded rice
crops. TheAPSIMvariable C_atm (output as kgC/ha) emissions is calcu-
lated as the sum of emissions from fom, biom, hum and residue pools
from soil layers to 30 cm depth. This value is calculated each day a
pond is present. At end of crop, the final c_atm value is multiplied by
the molecular weight ratio 1.336 to convert to CH4 and further multi-
plied by 25 to convert to CO2 equivalents.

The contribution of N2O to GWP was calculated using the
N2O_atm() variable from the top 30 cm soil layers (output as
kg N/ha) summed from start to end of crop. This value is multiplied
by the molecular weight ratio 1.57 to convert to N2O and further mul-
tiplied by 298 to convert to CO2 equivalents.

For cotton and maize crops GWP is the mean of the sum of CO2

emissions plus N2O emissions (CH4 emissions are assumed to be negli-
gible) per ha per season. For paddy rice crops GWP is the mean of the
sum of CO2 emissions plus CH4 emissions plus N2O emissions. For all
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crops GWP is expressed as (kg CO2 eq/ha/season). GHGI is the mean of
the sumof CO2 emissions plus CH4 (for paddy rice crops) plusN2O emis-
sions per ha per kg of yield. It is expressed as (kg CO2 eq/ha/kg yield).

Changes were also made to the default soil.xml file.

• Denitrification rate coefficient (kg soil/mg C per day) dnit_rate_coeff
was changed from default 0.0006 to 0.001379 (Huth et al., 2010,
Thorburn et al., 2010).

• N2O losses from nitrification was “switched on” dnit_nitrf_loss was
changed from default 0.0 to 0.002

• dnit_k1 was adjusted according to soil texture in the top 30 cm of the
soil. For clay (all Bairanpalli and Gorita and Nemmani rice soils)
dnit_k1 was set to 25.1. For Alfisols and Ultisols used to grow cotton
and maize crops in Gorita and Nemmani dnit_k1 was set to 8.5. This
valuewas arrived at after comparing simulatedmaizeN2O values pro-
duced with different dnit_k1 values to observed ranges of values
a)

c)

e)

Fig. 1. Comparison of historical and future climate scenarios for averagemonthly rainfall (mm;
averagemaximumdaily temperature (°C) at c)Warangal and d)Mahabubnagar and averagem
Blue lines and columns represent the observational record (1978–2009); green represents EC
2040).
found by Linquist et al. (2015). The derived dnit_k1 value is consistent
with values suggested by Del Grosso et al. (2000) for comparable soil
types.

2.3. Climate data and future climate scenarios

The baseline data set used daily historic weather data (1978–2009)
recorded in Indian Meteorology Department (IMD) weather stations
in close proximity to the case study villages. For future climate projec-
tions we used the linear, mixed-effect state-space (LMESS) method to
generate location specific projections to 2021–2040 (Kokic et al.,
2011), drawing on historical data for the case study locations and
using outputs from two contrasting Global Circulation models
(ECHAM5 for a relatively cooler and GFDL CM2.1 for a relatively hotter
future climate) under the A2 SRES emissions scenario (approximately
b)

d)

f)

whiskers show standard deviation above themean) at a)Warangal and b)Mahabubnagar,
inimum daily temperatures (°C) at e)Warangal and f)Mahabubnagar in Telangana, India.
HAM5 projection (2021–2040) while red represents the GFDL CM2.1 projection (2021–
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equivalent to representative concentration pathway RCP6) to 2021–
2040.

The LMESS methodology was applied as described in Kokic and
Crimp (2011). A multivariate state-space modeling approach was used
to establish empirical relationships between GCM variables and loca-
tion-specific climate. In so doing, wemaintained important information
regarding local observed trends and variability but also introduced im-
portant drivers of change from the GCMs. The state-space approach
was used to jointly model quantiles of rainfall and temperature at
monthly level, then a bootstrap simulation procedure (Efron, 1982)
based on quantile matching was used to simulate future daily climate
(Kokic et al., 2011). APSIM climate files also require solar radiation, va-
pour pressure and evapotranspiration. These variables where predicted
from rainfall and temperature using empirical relationships based on
NCEP reanalysis climate data for locations close to each climate station.
This approach ensures that the future simulated climate is coherent
across variables temporally, and displays distributional characteristics
highly consistent with point level climate data.

2.4. Adaptation strategies

Three of the four adaptations that were tested in Hochman et al.
(2017) were found suitable for managing climate variability. These
three adaptations were further tested in this study as adaptations to
two contrasting medium term climate change scenarios in the same
locations.

2.4.1. Adaptation 1. Sowing rules
The sowingwindow for rainfed crops such as cotton andmaize is be-

tween June 1 and July 17. While there is no generally accepted farmer
practice with regards to when farmers sow rainfed crops, some farmers
will sow these crops as soon as the monsoon season breaks locally (de-
fined as two consecutive days where rainfall exceeds 2.5 mm). Given
this sowing window, four main variations to the sowing rule were
explored:

1. The 2 day rule: sow at ‘onset of monsoon’ following the IMD's defini-
tion (i.e. 2 consecutive days in which daily rainfall ≥2.5 mm)

2. The 50mm rule: sowwhen cumulative rainfall ≥50mm(accumulat-
ed over up to 4, 7, 10 or 14 days)

3. The 75mm rule: sowwhen cumulative rainfall ≥75mm(accumulat-
ed over up to 4, 7, 10 or 14 days)

4. The soil moisture rule: sowwhen soil moisture in top 15 cm is at 50%
of the soil's plant available water capacity (PAWC) in Vertisols
Table 2
The percent of years in which crops are not sown or in which sown crops fail when various so
trasting historic climate (1978–2009) with future climate projections using the GFDL CM2.1 (2

Sowing rule Observed Weather GFDL CM2.1

Not sown (%) Cotton fails (%) Maize fails (%) Not sown (%)

2 day 0.01 16.1 18.8 0.0
75 mm in 4 days 43.8 0.0 0.0 45.0
75 mm in 7 days 37.5 0.0 0.0 20.0
75 mm in
10 days

28.1 0.0 0.0 15.0

75 mm in
14 days

25.0 0.0 0.0 10.0

75 mm 9.7 0.0 0.0 10.0
50 mm in 4 days 15.6 0.0 3.7 5.0
50 mm in 7 days 9.4 0.0 6.9 5.0
50 mm in
10 days

9.4 3.4 3.4 5.0

50 mm in
14 days

9.4 6.9 6.9 5.0

50 mm 3.1 16.1 16.1 5.0
Soil moisture 9.4 0.0 3.4 5.0

1 For each climate scenario by crop combination bold numbers indicates rules with pareto-o
(hereafter referred to as black soils) or at 66% of PAWC in Alfisols
and Ultisols (hereafter referred to as red soils).
These four sowing rules were evaluated, using baseline and future

climate scenarios, in terms of their grain yields (t/ha), yield stability
(CV of yield), gross margins (INR/ha; 1 USD ~ 65 Indian Rupees) based
on data from a survey of household costs and prices received), gross
margin stability (CV of GM), their Global Warming Potential (GWP;
kg CO2 equivalence/ha/season) and their Greenhouse Gas Intensity
(GHGI; intensity of carbon (kg CO2 equivalence/kg yield).

2.4.2. Adaptation 2. Strategic irrigation of rainfed crops
The common farmer practice is to grow cotton and maize as rainfed

crops. Strategic irrigation of cotton and maize crops was deployed ac-
cording to the rule: apply 50 mm when soil moisture falls below 50%
of PAWC subject to -

1. at least 14 days between irrigations
2. maximum of 3 irrigations per season
3. for cotton start irrigations after 30 days after sowing (DAS) and stop

at 120 DAS
4. for maize start irrigations after 14 DAS and stop at 21 days after

anthesis
The soil moisture sowing rule was used for both rainfed and strate-

gically irrigated options and for all three climate scenarios. The strategic
irrigation adaptation was evaluated relative to purely rainfed crops,
using baseline and future climate scenarios, in terms of their grain yields
(t/ha), yield stability (CV of yield), grossmargins (INR/ha) based on data
from a survey of household costs and prices received), grossmargin sta-
bility (CV of GM), and their GWP (kg CO2 equivalence/ha/season) and
GHGI (kg CO2 equivalence/kg yield).

2.4.3. Adaptation 3. Reduced rice area for strategic irrigation of rainfed
crops

This adaptation combines the two adaptations discussed above into
an integrated, whole farm management package. Options investigated
for sourcing water for strategic irrigation of rainfed crops from reduced
paddy area varied by household type and particularly by farm size. We
considered 3 representative households: 1. A small farm with 5 acres
(2 ha) of which 2 acres were paddy and 3 acres were cotton; 2. A medi-
um farm with 8 acres (3.2 ha) of which 2 acres were paddy and 6 acres
were cotton; 3. A large farmwith 15 acres (6.5 ha) ofwhich3 acreswere
paddy and 12 acreswere cotton. For all farm typeswe assumed ricewas
ponded to 5 cm depth with daily irrigation as required to maintian the
pondand rainfed cotton or rainfed maize using the starting soil water
sowing rules as the current farmer practice. A minimum of half an
wing rules are applied to cotton and maize crops grown on black soils at Bairanpalli con-
021–2040) and ECHAM5 (2021–2040) models.

ECHAM5

Cotton fails (%) Maize fails (%) Not sown (%) Cotton fails (%) Maize fails (%)

35.0 40.0 0.0 20.0 20.0
0.0 0.0 45.0 0.0 0.0
0.0 0.0 20.0 0.0 0.0
0.0 0.0 15.0 0.0 0.0

0.0 0.0 10.0 0.0 0.0

0.0 5.6 10.0 0.0 5.6
0.0 5.3 5.0 0.0 0.0
0.0 5.3 5.0 0.0 0.0
0.0 5.3 5.0 0.0 0.0

10.5 10.5 5.0 5.3 5.3

10.5 10.5 5.0 5.3 5.3
0.0 5.3 5.0 0.0 0.0

ptimal outcomes.



Baseline 

future

climate

ECHAM5 
climate

GFDL CM2.1 
future climate

Fig. 2. Comparison of yield, gross margin, yield stability, gross margin stability, global
warming potential and greenhouse gas intensity of cotton crops grown using the IMD 2
day sowing rule and the remaining two sowing rules with optimal trade-offs between
sowing opportunity and seedling failure at Bairanpalli for a) baseline climate (1978–
2009), b) ECHAM5 future climate (2021–2040) and c) GFDL CM2.1 future climate
(2021–2040). Blue lines represent IMD 2 day sowing rule, red lines represent 50 mm in
7 days sowing rule and green lines represent soil moisture sowing rule. Ranges for each
variable are shown in parentheses.
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acre of ricewas retained in adaptation scenarios to allow self-sufficiency
for a family of up to 5 people. A summary of the treatments for each
farm type is provided in Table 1.

All the options in Table 1 were simulated for red and black soil types
at the three villages using historical weather data (1978–2009) and out-
puts representing 2021–2040 scenarios from the two contrastingGlobal
Circulation models ECHAM5 and GFDL CM2.1. Simulation outputs in-
cluded yields; netwater used; soil carbon status; soil nitrate leached be-
yond the root zone; and nitrous oxide emissions. Gross margins were
calculated using cost and income data collected from the representative
case study households. Post simulation analysis enabled the calculation
of gross margins and this enabled the calculation of average gross mar-
gins and stability, represented by the coefficient of variation (CV) of
gross margins.

2.5. Are adaptations climate smart?

In considering how climate-smart competing adaptations are, the
outputs listed in the paragraph above are represented as sustainability
polygons (Ten Brink et al., 1991, Moeller et al., 2014). These polygons
allow for an integrated graphic representation of multiple sustainability
indicators. They are designed to provide a holistic visual summary of
how sustainable (or climate-smart) competing adaptation practices
are. Each sustainability indicator is represented by a relative value
from 1 to 0 where 1 is the most desirable outcome (highest or lowest
depending on context, e.g. highest GM or lowest GWP. For a desirable
attribute (e.g. GM) the relative sustainability value for any adaptation
is calculated as the value of the adaptation divided by the value calculat-
ed for the highest among the competing adaptation options. For an un-
desirable attribute (e.g. GWP) the sustainability value of an adaptation
is calculated by dividing the lowest value among competing adaptations
by the value of that adaptation.

Using sustainability polygons, in which sustainability indicators are
presented in a polygon, assuming equal weighting for all indicators,
two criteria are applied to assess whether an adaptation is climate
smart. First, the adaptation for which all the indicators are higher than
the baseline can be considered climate smart and as a win-win in all re-
spects. Ideally themost climate smart practice will have all values close
to 1.0. However, inmany cases, only some indicators are higher than the
baseline, requiring a trade-off between the indicators. In this case a sec-
ond criterion is the area of the polygon, where the polygon for themost
climate-smart practice would encompass the largest area. In the second
case, choice of which adaptation is the most climate-smart may require
subjective weighting of the various sustainability indicators by various
stakeholders. Relative weighting of indicators is essentially subjective
but might be informed by the importance assigned to each indicator
as well as by the range of values that each indicator displays. We there-
fore also display on the sustainability polygons the range of absolute
values for each of the sustainability indicators.

3. Results

The observational weather data for the three Indian villages
(Bairanpalli, Nemmani and Gorita) were sourced from nearby weather
stations (Warangal, Nalgonda and Mahbubnagar respectively). The
data spanned the period from 1978 to 2009.Missing data (16% of obser-
vations inWarangal and 10% in Mahbubnagar) were in-filled with IMD
gridded data. A comparison between the two villages' minimum and
maximum temperatures and rainfall during themonsoon season is pro-
vided in Fig. 1.Warangal (Fig. 1a) tends to bewetter thanMahbubnagar
(Fig. 1b) in thefirst half of the kharif season (June to August) but drier in
September and October. It is warmer throughout the season with the
difference being greater in the minimum temperatures (Fig. 1c,d,e,f).
Data for the third village (Nemmani) were intermediate between the
other two and are not shown here for the sake of brevity (for a compre-
hensive set of results see the Accessory Publication). Both GCMs project
future climate scenarios for 2021–2040 with warmer minimum tem-
peratures than the historical record. Only the GDFL CM2.1 model pro-
jects warmer maximum temperatures, especially in July and August.
Only small changes are projected for rainfall with both models
projecting a wetter June for both locations with less consistent monthly
changes projected for the remainder of the season. Overall, for Waran-
gal and Mahbubnagar in 2021–2040, the climate projections of the
GFDL CM2.1 model are warmer, especially in their maximum tempera-
tures, than the climate projected by ECHAM5 (Fig. 1).

3.1. Adaptation 1. Sowing rules

3.1.1. Avoiding seedling losses
With both ECHAM5 and GFDL CM2.1 predicting higher future rain-

fall in June, the likelihood of a sowing opportunitywas higher for almost
all sowing rules in both villages. For historical weather data (1978–
2009) on a black soil at Bairanpalli the 2 day sowing rule ensured a sow-
ing opportunity in all years, however, it also resulted in seedling failures
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in 16.1% of years for cotton and 18.8% of years for maize. Of the remain-
ing sowing rules the two with optimal trade-offs between sowing op-
portunity and seedling failure for cotton are the 50 mm in 7 days and
the soil moisture sowing rules. Formaize, the two sowing ruleswith op-
timal trade-offs between sowing opportunity and seedling failure are
the 75 mm and the soil moisture sowing rules. For a future (2012–
2040) Bairanpalli climate generated with the GFDL CM2.1 model, the
2 day sowing rule ensured a sowing opportunity in all years. However,
it also resulted in seedling failures in 35% of years for cotton and 40%
of years for maize. Of the remaining sowing rules there were four with
optimal trade-offs between sowing opportunity and seedling failure
for cotton and maize: 50 mm in 4 days, 50 mm in 7 days, 50 mm in
10 days and the soil moisture rule. For a future (2012–2040) Bairanpalli
climate generated with the ECHAM5 model, the 2 day sowing rule en-
sured a sowing opportunity in all years. However, it also resulted in
seedling failures in 20% of years for both cotton and maize. Of the re-
maining sowing rules there were four with optimal trade-offs between
sowing opportunity and seedling failure for cotton andmaize: 50mm in
4 days, 50 mm in 7 days, 50 mm in 10 days and the soil moisture rule
(Table 2). Similar resultswere observed for the red soil in Gorita (Acces-
sory Publication Table 1).

For both Gorita and Bairanpalli, those sowing rule adaptations that
were most successful in reducing the risk of seedling failure at the
smallest cost in terms of missed sowing opportunities under the histor-
ical climate scenario were also among the most successful adaptations
under both the ECHAM5 and GFDL CM2.1 scenarios for 2021–2040.
For both villages, the value of these adaptations was increased when
compared with the increased risk of failure associated with the alterna-
tive ‘2 day start’ rule.
a)

c)

Fig. 3. Seed cotton yield response (probability of exceedance) of crops sown using the soil moist
at Bairanpalli, c) rainfed crops at Gorita, d) crops grownusing strategic irrigation atGorita. Blue l
2040) while red represents the GFDL CM2.1 projection (2021–2040).
3.1.2. Sustainability polygons
The simulated effects of implementing different sowing rules (2 day

rule against the two rules with the most optimal sowing opportunity
versus crop failure trade-offs) on the long-termmean values of six sus-
tainability indicators: yield, gross margin (GM), yield stability, GM sta-
bility, GWP and GHGI of cotton and maize crops grown in Bairanpalli
are represented as sustainability polygons in Fig. 2.

For cotton crops in Bairanpalli using observed weather data, the
2 day rule had lower sustainability indicator values than the soil mois-
ture and the 50 mm in 7 days rules which were approximately equal
to each other for all indicators. In particular the yield stability indicator,
the yield indicator, the GM and the GM stability indicators had values in
the range of 0.70 to 0.83.While the GWP indicators were very close and
the GHGI indicator was lower for the 2 day rule due to lower yields (Fig.
2, baseline climate). For cotton crops in Bairanpalli using future
ECHAM5 generated weather data, the 2 day rule had lower sustainabil-
ity indicator values than the soil moisture and the 50mm in 7 days rules
which were approximately equal to each other for all indicators. The
same indicators that were lower for the 2 day rule in the observed
weather data simulations were even lower for the ECHAM5 scenario
(Fig. 2, ECHAM5). Similarly, for cotton crops in Bairanpalli using future
GFDL CM2.1 scenario, the 2 day rule becomes even less sustainable for
each of the indicators except GWP (Fig. 2, GFDL CM2.1).

For maize crops in Bairanpalli using observed weather data, the
2 day rule had lower sustainability indicator values than the soil mois-
ture and the 75 mm rules. The 75 mm rule had higher indicators than
the soilmoisture rule, particularly for the yield stability andGM stability
indicators. While the GWP indicator was about the same for the three
rules, the GHGI indicator for the 2 day rule was around 0.6 due to
b)

d)

ure sowing rule for a) rainfed crops at Bairanpalli, b) crops grown using strategic irrigation
ines represent historical record (1978–2009); green represents ECHAM5projection (2021–
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Fig. 4. Comparison of yield, gross margin, yield stability, gross margin stability, global
warming potential and greenhouse gas intensity of rainfed and strategically irrigated
cotton crops grown using the soil moisture sowing rule at Bairanpalli for 1) baseline
climate (1978–2009), 2) ECHAM5 future climate (2021–2040) and 3) GFDL CM2.1
future climate (2021–2040). Blue lines represent rainfed crops, red lines represent
strategically irrigated crops. Ranges for each variable are shown in parentheses.
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lower yields. Similar results were observed when using future ECHAM5
generated weather data. When using future GFDL CM2.1 weather data,
the 2 day rule becomes less sustainable for each of the indicators except
GWP which is marginally lower for the 2 day rule. Indicator for the soil
moisture and the 75 mm rules become close to equal (Accessory Publi-
cation Fig. 2).

Similar results were observed for cotton and maize crops in Gorita
(Accessory Publication Figs. 3 and 4) and Nemmani (Accessory Publica-
tion Fig. 5).
Fig. 5. Gross margin (blue bars) and net water use (irrigation-recharge, red dots) for
adaptation options used on small farms at Gorita growing rice and cotton for 1) baseline
climate (1978–2009), 2) future climate ECHAM5 (2021–2040) and 3) future climate
GFDL CM2.1 (2021–2040).
3.2. Adaptation 2. Strategic irrigation of rainfed crops

3.2.1. Yield Probabilities
Strategic irrigation of cotton crops in the case study villages in-

creased the yield probability distribution throughout the entire range
of yield outcomes. In particular, the probability of yields exceeding
2 t/ha in Gorita and 3 t/ha in Bairanpalli was dramatically increased.
This trend was true for the historical record as well as the ECHAM5
and GFDL CM2.1 scenarios for 2021–2040.

For both rainfed and strategically irrigated cotton in Bairanpalli the
yields under the ECHAM5 scenario were stochastically dominant over
the baseline projections over the whole yield range. The GFDL CM2.1
scenario in Bairanpalli was intermediate between the baseline and
ECHAM5 scenarios. For both rainfed and strategically irrigated cotton
crops in Gorita, yields projected for ECHAM5 and GFDL CM2.1 scenarios
for 2021–2040 were stochastically dominant over the baseline scenario
(Fig. 3).



Baseline 
climate

ECHAM5 
future climate

GFDL CM2.1 
future climate

Fig. 6. Comparison of gross margin, global warming potential, irrigation, irrigation water
productivity, GM stability, greenhouse gas intensity, aquifer recharge and N leached for
each of the adaptation options used on small farms at Gorita growing rice and cotton for
1) baseline climate (1978–2009), 2) future climate ECHAM5 (2021–2040) and 3) future
climate GFDL CM2.1 (2021–2040). Blue lines represent current practice, red lines option
1, green lines option 2, purple lines option 3 and orange lines option 4. Ranges for each
variable are shown in parentheses.
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3.2.2. Sustainability polygons
When comparing sustainability polygons across the three climate

scenarios (baseline climate, ECHAM5 future climate andGFDLCM2.1 fu-
ture climate) for cotton crops at Bairanpalli (Fig. 4) similar results were
obtained regardless of the climate scenario: seed cotton yields, gross
margin, and GHGI all improved by strategic irrigation while yield stabil-
ity, GM stability and GWP were marginally worse with strategic irriga-
tion. However, it should be noted that this slightly increased
instability is around a much higher mean. For maize in Bairanpalli (Ac-
cessory Publication Fig. 8) sustainability indicators for grain yield, GM,
yield stability and GM stability were improved under the three climate
scenarios with themost dramatic improvements being in yield stability
andGM stability. However, GWP andGHGIwere increased in all climate
scenarios.

A comparison of sustainability polygons for the three climate scenar-
ios for both cotton and maize crops in Gorita (Accessory Publication
Figs. 9 and 10) shows that all sustainability indicators for the strategic
irrigation adaptation, with the exception of a relatively small increase
in GWP that was more than compensated for in GHGI, were superior
for each of the three climate scenarios.

3.3. Adaptation 3. Reduced rice area for strategic irrigation of rainfed crops

3.3.1. For the small farm in Gorita
Growing rice and cotton under the baseline climate scenario, current

practice produced a mean annual gross margin of 32,266 INR/ha, a net
water use of 106.9 mm/ha/yr and a water productivity (expressed as
GM per mmof net water used) of 302 INR/mm. Adaptation option 3 re-
sulted in the highest average annual GM of 79,998 INR/ha at the ex-
pense of a less sustainable net water usage of 130.1 mm/ha/yr but a
higher water productivity of 615 INR/mm. Adaptation option 4 resulted
in a slightly reduced average annual GM of 79,200 INR/ha but a much
lower net water use of 74.6 mm/ha/yr resulting in a higher water pro-
ductivity of 1061 INR/mm. Similar results were observed for the two fu-
ture (2021–2040) climate scenarios ECHAM5 and GFDL CM2.1 (Fig. 5).

Comparisons of the sustainability polygons for the different adapta-
tion options for small farms growing rice and cotton crops at Gorita
using the baseline climate (1978–2009) and the future climate scenari-
os for 2021–2040 generated with the ECHAM5 and GFDL CM2.1models
are presented in Fig. 6. For the baseline climate, the current practice is
least sustainable in terms of its gross margin, gross margin stability,
GWP, GHGI, irrigation water used and irrigation water productivity. It
is however the most sustainable in terms of aquifer recharge and
leached nitrogen. Adaptation option 4 is most sustainable in terms of
the amount of irrigation water used, irrigation water productivity
GWP and GHGI and is intermediate for grossmargin stability and for ni-
trogen leached. It is however least sustainable for groundwater re-
charge. Adaptation option 3 is superior to option 4 in its gross margin
stability and recharge. However, it is less sustainable in terms of the ir-
rigation amount, irrigation water productivity, GWP and GHGI. Adapta-
tion options 1 and 2 tend to be intermediate between the current
practice and adaptation option 3. While the absolute values of the sus-
tainability indicators vary with climate scenarios, the relative positions
of the sustainability indicators remained the same (Fig. 6).

3.3.2. For the large farm in Gorita
Under the baseline climate scenario, current practice produced a

mean annual gross margin of 48,484 INR and a net water use of
24.3 mm/ha/yr resulting in a water productivity of 1996 INR/mm.
Each adaptation option increased both average annual GM and net
water usage (each 7 mm increasing GM by 10,000 INR). Adaptation op-
tion 5 resulted in the highest annual GM of 95,279 INR/ha and the
highest net water use of 54.0 mm/ha/yr resulting in a lower water pro-
ductivity of 1769 INR/mm. Similar results were observed for the two fu-
ture (2021–2040) climate scenarios ECHAM5 and GFDL CM2.1 (Fig. 7).
Comparison of the sustainability polygons for the different adapta-
tion options for large farms growing rice and cotton crops in Gorita
using the baseline climate (1978–2009) and the future climate scenari-
os for 2021–2040 generated with the ECHAM5 and GFDL CM2.1models
are presented in Fig. 8. For the baseline climate scenario, aswith theme-
dium farm, the current practice for the large farm is least sustainable in
terms of its gross margin, gross margin stability, GWP, GHGI, irrigation
water used and irrigation water productivity. It is however the most
sustainable in terms of aquifer recharge and leached nitrogen. Adapta-
tion option 5 is most sustainable in terms of gross margin achieved,
gross margin stability, the amount of irrigation water used, irrigation
water productivity, GWP, GHGI, and nitrogen leached. It is however
the least sustainable in terms of groundwater recharge and the amount
of nitrogen leached. Adaptation options 1 to 4 are intermediate relative
to current practice and adaptation option 5.While the absolute values of
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the sustainability indicators varywith climate scenarios, the relative po-
sitions of the sustainability indicators remained the same (Fig. 8).

Similar observations were made for the medium rice-cotton farm in
Gorita (Accessory Publication Figs. 23 and 29) as well as when maize
substituted cotton in the cropping system (Accessory Publication Figs.
26, 32, 37 and 42) and when the same treatments were applied at
Bairanpalli (Accessory Publication Figs. 12, 14, 17, 19, 22, 25, 28, 31,
34, 36, 39 and 41) and Nemmani (Accessory Publication Figs. 13,
16,18,21,24, 27, 30, 33, 35, 38, 40 and 43).
Fig. 7. Gross margin (blue bars) and net water use (irrigation-recharge, red dots) for
adaptation options used on large farms at Gorita growing rice and cotton for 1) baseline
climate (1978–2009), 2) future climate ECHAM5 (2021–2040) and 3) future climate
GFDL CM2.1 (2021–2040).
4. Discussion

It is noteworthy, though not surprising given the expected rate of cli-
mate change to 2021–2040 (Chaturvedi et al., 2012), that the projected
changes from either GCM models are relatively modest (Fig. 1). This is
reflected in seed cotton yield potential for both the rainfed and strategi-
cally irrigated crops where the differences in the distributions of simu-
lated yields between the historical record, the ECHAM5 and the GFDL
CM2.1 scenarios was small relative to the range of yield outcomes due
to year to year variability (Fig. 3). The presence of both positive and neg-
ative yield consequences depending on future climate scenario and vil-
lage reflects and reinforces earlier ambiguities about medium term
Baseline 
climate

ECHAM5 
future climate

GFDL CM2.1 
future climate

Fig. 8. Comparison of gross margin, global warming potential, irrigation, irrigation water
productivity, GM stability, greenhouse gas intensity, aquifer recharge and N leached for
each of the adaptation options used on large farms at Gorita growing rice and cotton for
1) baseline climate (1978–2009), 2) future climate ECHAM5 (2021–2040) and 3) future
climate GFDL CM2.1 (2021–2040). Dark blue lines represent current practice, red lines
option 1, green lines option 2, purple lines option 3, orange lines option 4 and light blue
lines option 5. Ranges for each variable are shown in parentheses.
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consequences of climate change as reported by Barnwal and Kotani
(2013).

We found the sustainability polygons to be a useful means of
assessing how climate smart the adaptations are. The sustainability
polygons for sowing rules for cotton andmaize in Bairanpalli and Gorita
tend to show for each of the three climate scenarios that the adaptations
to climate variabilitywhich improved yield outcomes tended to also im-
prove the whole set of sustainability outcomes. Applying criterion one
(i.e. all indicators greater than baseline), this is a climate smart win-
win (×6) situation for yield and yield stability, gross margin and gross
margin stability, reduced GWP and GHGI (Fig. 2).

The strategic irrigation of rainfed crops was a somewhat ambiguous
adaptation with some trade-offs between sustainability indicators in
the baseline climate scenario (Fig. 4). However, taking the area under
the polygons (i.e. the second criterion) it is still possible to establish
that strategic irrigation is a climate smart practice. However, to the ex-
tent that these adaptations were climate smart for the baseline climate,
they maintained their relative positions for the future climate scenarios
(Fig. 4).

The sustainability polygons for adaptations involving reduced rice
area for strategic irrigation of rainfed crops demonstrated clear trade-
offs between sustainability indicators. With this adaptation, the current
practice was most sustainable in terms of the amount of nitrogen
leached from the root zone and the amount of recharge beyond the
root zone for each farm type. However, based on the area of the polygon,
this option was invariably least sustainable in terms of overall gross
margin, gross margin stability, the amount of water used for irrigation,
irrigation water productivity, as well as GWP and GHGI. The same
trade-off applied to each of the three climate scenarios. Here too,
while there is no option that can consistently fulfil the three aspirations
of climate-smart agriculture, the choice of trade-offs remains the same
for the three climate scenarios.

The greater recharge consistently observed for the current practice is
a consequence of more irrigation being applied across the whole farm
and this effect is offset by the overall lower netwater used in this option.
Another consequence of reduced rice area adaptations is that more N is
leached as a consequence of increased N leaching from the root zone of
supplementally irrigated cotton and maize crops. However, the differ-
ence in N leached between the various treatments is relatively small
(2–10 kg/ha/yr). Unless N leaching becomes a major sustainability
issue it is likely that most stakeholders would agree that one of the
lower rice area options is overall most sustainable. The observation
that adaptation to historical climate variability also held for future cli-
mate scenarios, when viewed through thewider sustainability perspec-
tive, applied to the three adaptations considered in this study. In other
words, for the three villages and three adaptations in this study,
adapting to climate variability proved to be climate smart. This is en-
couraging given that the adaptations ranged from the simple sowing
rule adaptation to the more transformative adaptation involving re-
duced rice irrigation area to enable strategic irrigation of rainfed crops.

5. Conclusions

This paper examines the performance of farmer tested adaptations
to climate variability (baseline climate) against two contrasting scenar-
ios ofmedium termclimate change by deployingup to eight sustainabil-
ity indicators that are consistent with the aspirations of ‘climate-smart
agriculture’. The indicators chosen have implications for food security,
for economic viability, for maintaining the water resource and for re-
ducing greenhouse gas emission intensity. We found the sustainability
polygons to be a useful tool to systematically and quantitatively assess
whether adaptations are climate smart. On balance, we conclude that
the adaptations studied meet the criteria for climate smart practices in
that they sustainably increased agricultural productivity and incomes;
improved the resilience of food systems; improved farming livelihoods
and reduced greenhouse gas emissions in current and future climate
scenarios. Our results also show that irrespective of the climate scenario,
we can sometimes expect adaptations to result in trade-offs between
different desirable outcomes. The implication of this finding is that
farmers and policy makers will need to prioritise or weight the various
sustainability indicators.

The finding that the impacts of climate change scenarios for 2021–
2040 are variable and small in comparison with existing climate vari-
ability does not imply that longer term climate change is unimportant.
However, given that farmers are more likely to adapt to current climate
variability, the assumption that such adaptations will hold for medium
term climate change was found to hold true for adaptations tested in
this study.
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