
Spatially explicit estimates of N2O emissions from
croplands suggest climate mitigation opportunities from
improved fertilizer management
JAMES S . GERBER 1 , K IMBERLY M . CARLSON1 , 2 , DAV ID MAKOWSK I 3 ,

NATHANIEL D . MUELLER 4 , 5 , I ~NAKI GARC IA DE CORTAZAR -ATAUR I 6 , P ETR HAVL�IK 7 ,

MAR IO HERRERO8 , MAR IE LAUNAY 6 , CHR I ST INE S . O ’CONNELL 1 † , P ETE SM ITH 9 and

PAUL C. WEST1

1Institute on the Environment (IonE), University of Minnesota, St. Paul, MN 55108, USA, 2Department of Natural Resources and

Environmental Management, University of Hawai’i at Manoa 96822, 1910 East West Road, Honolulu, HI, USA, 3INRA,

AgroParisTech, University Paris-Saclay, UMR 211, F-78850 Thiverval-Grignon, France, 4Department of Earth and Planetary

Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA, 5Department of Organismic and Evolutionary

Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA, 6INRA US 1116 AGROCLIM F-84914,

Avignon Cedex 9, France, 7International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, A-2361 Laxenburg,

Austria, 8Commonwealth Scientific and Industrial Research Organisation (CSIRO), St. Lucia, QLD 4067, Australia, 9Institute of

Biological and Environmental Sciences & ClimateXChange, University of Aberdeen, 23 St. Machar Drive, Aberdeen, Scotland

AB24 3UU, UK

Abstract

With increasing nitrogen (N) application to croplands required to support growing food demand, mitigating N2O

emissions from agricultural soils is a global challenge. National greenhouse gas emissions accounting typically esti-

mates N2O emissions at the country scale by aggregating all crops, under the assumption that N2O emissions are lin-

early related to N application. However, field studies and meta-analyses indicate a nonlinear relationship, in which

N2O emissions are relatively greater at higher N application rates. Here, we apply a super-linear emissions response

model to crop-specific, spatially explicit synthetic N fertilizer and manure N inputs to provide subnational account-

ing of global N2O emissions from croplands. We estimate 0.66 Tg of N2O-N direct global emissions circa 2000, with

50% of emissions concentrated in 13% of harvested area. Compared to estimates from the IPCC Tier 1 linear model,

our updated N2O emissions range from 20% to 40% lower throughout sub-Saharan Africa and Eastern Europe, to

>120% greater in some Western European countries. At low N application rates, the weak nonlinear response of N2O

emissions suggests that relatively large increases in N fertilizer application would generate relatively small increases

in N2O emissions. As aggregated fertilizer data generate underestimation bias in nonlinear models, high-resolution N

application data are critical to support accurate N2O emissions estimates.

Keywords: climate change, emissions, flooded rice, greenhouse gas, manure, meta-analysis, N2O, nitrogen, nitrous oxide,

sustainable agriculture

Received 4 January 2016; revised version received 28 March 2016 and accepted 11 April 2016

Introduction

Agriculture accounts for ~20–30% of global greenhouse

gas emissions (Vermeulen et al., 2012) and produces the

majority (~59%) of anthropogenic N2O emissions (Ciais

et al., 2013). Nitrous oxide is a potent greenhouse gas and

is the most important contributor to stratospheric ozone

depletion, with associated negative health impacts (Wolfe

& Patz, 2002), and decreased plant productivity (Sitch

et al., 2007). The largest source of N2O emissions from agri-

culture is synthetic N fertilizer and manure application to

croplands (Syakila & Kroeze, 2011), which is projected to

increase by ~50% from 2000 to 2050 (Alexandratos and

Bruinsma, 2012). Between 2001 and 2011, annual N2O

emissions from synthetic and manure fertilizers increased

by 37% and 12%, respectively (FAO 2014b). Consequently,

reducing N2O emissions from croplands is critical for

addressing climate change and ozone depletion concerns.

N2O is produced from microbially mediated nitrifica-

tion and de-nitrification processes in soils, leading to

emission rates that are modified by diverse climate,

soil, and vegetative conditions, and are highly variable

over time and space (Stehfest & Bouwman, 2006;
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Philibert et al., 2012). These ‘direct’ emissions are dis-

tinct from ‘indirect’ emissions in which N2O is formed

from N volatilized or leached from managed soils (De

Klein et al., 2006), and N2O emissions associated with

land use change (Flynn et al., 2012).

Emission factors (EF) are often used to relate applied

N to N2O emissions across broad spatial scales (De

Klein et al., 2006). For instance, the IPCC Tier 1 default

method for estimating direct N2O emissions from man-

aged soils, hereafter referred to as the ‘linear model’,

predicts that 1% of applied N fertilizer is emitted as

direct N2O emissions (i.e., EF = 0.01) (De Klein et al.,

2006). For flooded or paddy rice, N2O emission rates

are lower because N2O is unstable in the anaerobic con-

ditions of wetland soils (Lal, 2006). Consequently, the

IPCC suggests a lower emissions factor of 0.31% for cal-

culating emissions from paddy rice (De Klein et al.,

2006). Using such linear methods, recent bottom-up

estimates of direct N2O emissions from synthetic N fer-

tilizer application to crops combined with FAOSTAT

estimates of direct N2O emissions due to manure

applied to soils are well constrained, ranging from 1.0

to 1.2 Tg N2O-N yr�1 (Supporting Information).

Despite the relative ease of applying linear emissions

models to estimate N2O emissions from crops, recent

syntheses of field observations suggest a highly nonlin-

ear response. Specifically, N2O emissions accelerate with

increased N application (Philibert et al., 2012; Kim et al.,

2013; Shcherbak et al., 2014). This ‘superlinear’ response

is likely due to the relatively greater excess N unused by

the crops at higher fertilization levels; this extra N is

available to be emitted as N2O (Van Groenigen et al.,

2010; Kim et al., 2013; Shcherbak et al., 2014). Reduced

uncertainty associated with nonlinear emissions models

is well supported in the literature (Hoben et al., 2011;

Philibert et al., 2012; Shcherbak et al., 2014).

Until recently, subnational crop-specific fertilizer

application data with global coverage have been

unavailable. Such spatially explicit and crop-specific

estimates of fertilizer-derived N2O emissions pinpoint

particularly low- and high-emission locations and crop

types and are therefore vital for addressing these nega-

tive social and environmental impacts of fertilizer use

(Montzka et al., 2011; Reay et al., 2012). Combining non-

linear emissions models with improved accuracy with

spatially resolved fertilizer application rates is a signifi-

cant step toward global and accurate mitigation assess-

ments (Reay et al., 2012; Shcherbak et al., 2014).

Here, we generate relatively accurate and crop-specific

N2O emissions estimates from global croplands. First, we

update a recently developed nonlinear N2O emissions

model (Philibert et al., 2012) by incorporating additional

emissions data sets (Stehfest & Bouwman, 2006; Shcher-

bak et al., 2014), extending the range of N application rates

to 700 kg N ha�1, and differentiating paddy rice. We

develop crop-specific estimates of manure application to

croplands and combine these rates with previously pub-

lished estimates of synthetic N application (Mueller et al.,

2012). With the updated model and N fertilizer applica-

tion rates, we calculate spatially explicit, crop-specific glo-

bal N2O emissions, and contrast these results with the

IPCC Tier 1 linear model. Finally, we identify crops and

regions where small changes in N application would gen-

erate large changes in N2O emissions.

Materials and methods

Nonlinear N2O emissions model and uncertainty
calculations

In the nonlinear ‘NL-N-RR’ model (NLNRR indicates a nonlin-

ear (NL) nitrogen effect (N) random intercept (R) random effect

(R) model, henceforth ‘Philibert model’) of Philibert et al. (2012),

N2O emission rates are estimated from N fertilizer application

rates using an exponential model with random parameters.

Philibert et al. (2012) determined that this type of model per-

forms better than linear models and exponential models with

fixed parameters. The Philibert model was developed from a

dataset of global N2O emissions and N fertilizer application

rates compiled by Stehfest & Bouwman (2006). Yet, the Stehfest

& Bouwman (2006) dataset contains sparse data on high N

application rates (>500 kg N ha�1) and limited experiments

from major global ecosystems (e.g., Mediterranean) and regions

(e.g., China). Moreover, N2O emissions are reduced under con-

tinually flooded conditions such as those typical within rice pad-

dies (De Klein et al., 2006), yet the Philibert model does not

account for such effects. Therefore, we updated the Philibert

model by re-fitting this model to a dataset including experi-

ments compiled by Shcherbak et al. (2014). We thus extended

the experimental dataset from 985 to 1644 datapoints, including

30 experiments with N application rates >500 and ≤700 kg

N ha�1, and 125 experiments conducted in flooded rice.

To include the flooded rice effect, we developed an updated

version of the original model that includes a specific parame-

ter differentiating flooded rice from other crops. The model is

based on the following equation:

Yijk ¼ expða0i þ a1iXij þ bZijÞ þ eijk ð1Þ
Here, Yijk is the N2O emission rate (kg N ha�1 yr�1) measured

at the ith experiment in the dataset (i = 1 . . . 259), for the jth

applied N dose Xij (j = 1 . . . Ni), and the kth replicate (k = 1 . . .

Kij). Zij is a binary variable equal to 1 if the crop is ‘flooded rice’

and equal to zero otherwise, and b is a parameter correspond-

ing to a ‘discount factor’ for N2O emission in flooded rice fields.

The random terms a0i, a1i, and eijk are assumed to be indepen-

dent and normally distributed (as in Philibert et al., 2012):

eijk �Nð0; s2Þ; a0i �Nðl0; r20Þ; a1i �Nðl1; r21Þ ð2Þ
where a0i is the log location-specific background emission, a1i
is the log location-specific applied N effect, eijk is the residual

error term, l0 is the log mean background emission, l1 is the
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log mean applied N effect, and N(l, r2) represents a normal

distribution with mean l and standard deviation r. The stan-

dard deviations r0 and r1 describe the variability of a0i and a1i
across site-years. The values of l0, l1, b, r0, r1, and s were esti-

mated by an approximate maximum likelihood method, with

the nlme statistical package in R (Pinheiro & Bates, 2000), as

described by Philibert et al. (2012). The estimated parameter

values are presented in Table S1. The resulting model, which

we refer to as NLNRR700, and a simpler version without a

discount factor for flooded rice are shown in Fig. S4.

Emissions were averaged over site-years using the esti-

mated values of the model parameters reported in Table S1.

To analyze uncertainty and generate a confidence interval (CI)

for the N2O emissions model, we first sampled values for the

parameters l0, l1, b in the probability distribution of their esti-

mators (Table S1). For each sample of parameter values, we

then generated mean values of N2O emissions by averaging

over the distribution describing site-year variability (i.e.,

Nðl0; r20Þ and Nðl1; r21Þ ). We repeated this process 20 thou-

sand times to determine the 5th and 95th percentiles of the

resulting distribution of N2O emissions estimates.

Flooded rice distribution data

Rice cultivation consists of three major water management

strategies: irrigated, rainfed, and upland. Irrigated and rain-

fed, or ‘flooded’, rice fields typically emit less N2O in response

to additional N application compared to other crops and

upland or ‘dry’ rice (Akiyama et al., 2005). Thus, differentiat-

ing between flooded and dry rice is essential to generate accu-

rate crop-specific N2O emissions estimates. To estimate the

irrigated fraction of total rice harvested area, we used the

MIRCA2000 dataset (Portmann et al., 2010), which includes

monthly irrigated and rainfed rice growing areas, and maxi-

mizes consistency with the cropland data of Monfreda et al.

(2008). For each of the 402 spatial units in the dataset, we calcu-

lated the fraction of irrigated area compared to total area (irri-

gated + rainfed) and then applied these fractions to the

(Monfreda et al., 2008; Portmann et al., 2010) dataset. Doing so,

we find that in 2000, 59% of rice harvested area was irrigated.

Within the remaining nonirrigated fraction (41%), we fur-

ther divided rice into upland and rainfed systems. Huke &

Huke (1997) present a comprehensive assessment of rice culti-

vation types across monsoon Asia, excluding Japan, circa

1990. We ingested these data into a vector-based GIS database

and converted them to 5 arc-min raster data for analysis. We

used the ratio of upland rice to the deep water plus rainfed

area to assess the relative proportion of upland rice in each

nonirrigated grid cell fraction. In regions not covered by Huke

& Huke (1997), we applied the mean upland proportion from

regions for which data are available. Overall, we find that 93%

of total 2000 era rice harvested area is flooded.

Crop-specific synthetic N fertilizer data

The crop-specific synthetic N fertilizer dataset utilized for this

study was compiled by Mueller et al. (2012) and provides esti-

mates of synthetic N fertilizer application rates by crop circa

2000 (1997–2003). Data include national fertilizer consumption

(across all crops), subnational consumption (across all crops),

national crop-specific application rates, and subnational crop-

specific application rates. These data were sourced from the

UN Food and Agricultural Organization, fertilizer industry

associations, fertilizer research institutes, and national agricul-

tural or statistical agencies.

Crop-specific manure application data

For manure N inputs, we used gridded livestock manure maps

(Herrero et al., 2013), which represent 5 arc-min resolution esti-

mates of pig, bovine meat, bovine milk, poultry, and sheep/

goat manure production circa 2000. To calculate the fraction of

total manure production applied to croplands, we used man-

ure management data. These data consist of livestock-specific,

regional estimates of manure management across livestock

systems for bovines and sheep/goats (Robinson et al., 2011),

and across smallholder and industrial systems for poultry and

pigs (Herrero et al., 2013). We computed the mass of manure

N applied to croplands (NA, kg yr�1):

NA ¼ N � FMS � 1� FMSOð Þ � 1� FLossMSð Þ ð3Þ
where N is total nitrogen produced (kg yr�1), FMS is the frac-

tion of total manure managed, FMSO is the fraction of managed

manure destined to other uses (e.g., production of biogas),

and FLossMS is the fraction of managed manure N lost (e.g.,

through volatilization and leaching; Table S6).

We assumed that manure is applied only within the 5 arc-

min grid cell in which it was produced, and computed man-

ure application rate (kg ha�1 yr�1) by dividing NA by crop

harvested area (Monfreda et al., 2008).

In some regions, estimated manure application rates are

extremely high due to the large number of animals relative to

cropland area. As an estimate of the upper-bound of manure

applied to croplands in such situations, we capped total man-

ure application at 700 kg N ha�1, which exceeds the 99th per-

centile of the global manure application rate. For leguminous

crops, we allowed manure application until total N applied

(synthetic + manure) reached the 99th percentile of the global

synthetic N application rate to the crop in question. We

assumed a maximum combined synthetic + manure N appli-

cation rate of 700 kg N ha�1. To estimate manure applied to

individual crops, we multiplied these capped manure applica-

tion rates by crop harvested area.

We estimate 7.8 Tg of manure N applied to crops, which

represents ~9% of the 86.3 Tg total N applied in the form of

synthetic and manure fertilizer. This estimate is substantially

smaller than other year 2000 estimates of manure N applied to

crops (c.f., 17.3 Tg, Liu et al., 2010) due to our use of more

refined animal- and region-specific management factors

describing the proportion of manure applied to crops (full dis-

cussion in the Supporting Information).

Response to marginal change in application rates

To identify crops and locations where altering N application

rates would have a disproportionate effect on N2O emissions,
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we calculated the incremental N2O emissions change in

response to a small change in N application. Specifically, we

computed the change in total N2O emissions due to a uniform

additive incremental change in applied N. This calculation

was carried out with high-resolution numerical differentia-

tion. For conceptual clarity, we express results in terms of a

marginal but finite N application rate change of +1 kg N ha�1.

Sensitivity analysis

We performed several sensitivity analyses. First, we quanti-

fied the impact of changes to the upper limit of N applica-

tion in experimental data by examining total global

emissions when the model was fit to datasets where the

upper limit ranged from 500 to 700 kg N ha�1. Second, we

compared global direct emissions estimates estimated with

our newly developed model to those derived from the

Philibert model. Finally, as assumptions of homogeneous fer-

tilizer application rates can lead to underestimation bias for

emissions estimates based on a superlinear model such as

ours, we explored sensitivity to subregional scale fertilizer

application rate heterogeneity. Specifically, we constructed

randomized fertilizer application datasets such that each

pixel within the application rate dataset was a Gaussian ran-

dom variable with a mean value equal to the sum of syn-

thetic and manure N application, and a standard deviation

equal to a constant multiple of the mean value. Resulting

negative N application rates were set to 0, N application val-

ues >700 kg N ha�1 were retained, but emissions estimates

were calculated using the emissions factor corresponding to

applied N = 700 kg ha�1.

Model intercomparison

We compared emissions outcomes from our differentiated

nonlinear to alternative models – the linear IPCC Tier 1 model,

and the nonlinear model of Shcherbak et al. (2014) – by apply-

ing these models to our fertilizer application dataset.

Results

In 2000, we estimate 0.66 Tg N2O-N (CI 0.56 to 0.78 Tg

N2O-N) total global direct N2O emissions associated

with 86.3 Tg of N applied to crops (78.5 Tg synthetic N

and 7.8 Tg manure N, Fig. 1), at a global mean fertilizer

application rate of ~68 kg N ha�1. These N2O emis-

sions are highly concentrated, with 50% of emissions

sourced from only 13% of the global cultivated area

(Fig. 2).

Implied nonlinear emissions factors

While the global mean nonlinear emissions factor is

0.77%, implied emissions factors are influenced by the

magnitude and variance of N application rates, and

therefore differ greatly among crops and regions.

Wheat cropping generates 0.14 Tg N2O-N, more N2O

than any other crop, and has a mean emissions factor of

0.82%. While maize receives 19% less total N fertilizer

than wheat, higher N application rates generate an

emissions factor of 0.91%, and maize’s 0.12 Tg N2O-N

emissions are only 10% less than wheat. Potato is pro-

duced with mean N application rates of 98 kg ha�1,

2.6% lower than those of maize, but has an emissions

factor of 0.94% that is 3% higher due to more heteroge-

neous N application rates (Table 3). Soybean, a legumi-

nous crop that fixes much of its own N and therefore

requires relatively little N fertilizer input (mean of

29 kg ha�1 globally), has the lowest emissions factor of

top crops (excluding flooded rice) at just 0.65%.

N2O emissions vary widely across countries and

regions (Table 2). China is the leading N2O emitter

(0.20 Tg N2O-N, 31% of global emissions), followed by

India and the United States. Emissions factors in these

countries are 0.80%, 0.62%, and 0.84%, respectively.

Although Western Europe’s total emissions are lower

than emissions in Asia and North America, the region

has a mean emissions factor of 0.95% and hosts the two

countries with the highest global emissions factors

(Netherlands EF = 2.4%, Belgium EF = 2.3%). Some

countries within low emission regions have very high

intensities; for example, Egypt has an average fertilizer

application rate of 199 kg N ha�1, with crop-specific

rates >400 kg N ha�1 on 6.3% of cultivated area, result-

ing in a mean national emission factor of 1.34%. In con-

trast, Eastern Europe and sub-Saharan Africa share the

lowest implied emission factor of all global regions, just

0.69%.

As a result of highly heterogeneous N2O emissions

rates across crops and regions, some crop-country com-

binations produce particularly high or low total emis-

sions (Table 1). Maize and wheat cultivation in the

United States and China produces 21% of total global

N2O emissions. As vegetable and fruit cultivation fre-

quently requires high N fertilizer inputs, vegetable and

melon production in China generates 4.5% of total glo-

bal N2O emissions. China’s paddy rice, on the other

hand, is the leading crop-country consumer of N fertil-

izer (receiving 6.3 Tg) but contributes only 3.0% of total

global direct N2O emissions from croplands.

Disproportionate N2O emissions responses

A uniform addition of 1 kg N ha�1 across global crop-

lands generates mean additional emissions of

0.0080 kg N2O-N ha�1 (Fig. 3). While this global

response is similar to the additional 0.0089 kg N2O-N

ha�1 derived using linear emissions factors, some

regions show disproportionate responses including

China (0.014 kg N2O-N per kg N applied, 42% greater

© 2016 John Wiley & Sons Ltd, Global Change Biology, 22, 3383–3394
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than the global average) and sub-Saharan Africa

(0.0061 kg N2O-N per kg N applied, 23% less than the

global average). Regional responses within countries

(Table S10) can vary greatly. For example, Shandong

and Hunan provinces in China have differential

response rates of 0.0161 and 0.0076 kg N2O-N kg�1 N

applied, respectively.

Sensitivity analysis

The 18% increase in emissions associated with the 95th

percentile model parameters (0.78 Tg N2O-N) com-

pared to mean emissions (0.66 Tg N2O-N) provides a

basis of comparison with other sources of uncertainty.

Notably, this same increase in emissions can also be

Fig. 1 Combined synthetic fertilizer and manure nitrogen (N) application rates to croplands circa year 2000. N application is depicted

as harvested area-weighted mean of N from synthetic fertilizer (Mueller et al., 2012) and manure (Herrero et al., 2013) and does not

include manure application to pasture. Areas without 2000-era N fertilizer are shown in gray. Manure application to crops was calcu-

lated based on regional livestock management data from Herrero et al. (2013). Arrow on right hand side of color bar indicates satura-

tion of values greater than 300 kg N ha�1.

Fig. 2 Nitrous oxide (N2O) emissions response to application of nitrogen (N) fertilizer circa year 2000. Total direct N2O emissions were

calculated using a nonlinear method that differentiates flooded rice from other crops and are displayed as a harvested area-weighted

average over 171 crops (Monfreda et al., 2008). Crop-specific N application rates account for both synthetic fertilizer (Mueller et al.,

2012) and manure (Herrero et al., 2013). Units are kg N2O-N per harvested hectare. Arrow on right hand side of color bar indicates satu-

ration of values greater than 2.5 kg N2O-N ha�1.
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obtained by assuming fertilizer application rate hetero-

geneity at the subregional scale with a coefficient of

variation (CV) of 54%. To further quantify the scale of

impact of fertilizer application rate inhomogeneity: if

N2O emissions for the United States were calculated

after aggregation of crop-specific fertilizer application

rates to the national level, total emissions derived from

our nonlinear NLNRR700 model would be 0.077 Tg

N2O-N instead of 0.090 Tg, an underestimation of 16%.

In contrast, increasing the maximum fertilizer appli-

cation rate to 800 kg N ha�1 generates a 0.02% increase

in total N applied, and with an assumption of constant

EF beyond N application rates of 700 kg ha�1, we find

a 1.0% increase in total N2O emissions. Therefore, our

results are relatively insensitive to our choice of a maxi-

mum N application rate of 700 kg N ha�1. Excluding

manure N inputs, we find global direct N2O emissions

of 0.57 Tg. This implies a 15% increase in direct N2O

emissions in response to manure application, which

adds 10% to total N application beyond synthetic N.

Model intercomparison

Emissions estimates calculated using the nonlinear

model developed here are generally lower than results

from the linear model. Our global emissions factor is

0.77, which is 14% lower than the mean global emis-

sions factor of 0.89 calculated with the linear model.

Even greater differences are apparent among regions

(Table 1, Fig. 4). In China, where N application

averages 158 kg ha�1, our nonlinear N2O emissions

estimate is 6% lower than the linear estimate (Table 2).

In contrast, extremely low N application rates

(11–42 kg ha�1) throughout most of sub-Saharan

Africa, Eastern Europe, and Latin America lead to N2O

emissions ~26–31% lower than assessed with the linear

approach (Table 3). However, in administrative units

with very high N application rates, the nonlinear model

occasionally estimates higher N2O emissions. For exam-

ple, China’s provincial N2O emissions estimates range

from 6% greater (Hubei, Jiangsu, Napp ~210 kg ha�1)

to 15% lower (Heilongjiang, Napp = 114 kg ha�1) than

linear predictions (Table S3).

Discussion

By pinpointing crops and regions associated with dis-

proportionately high or low N2O emission levels, non-

linear models such as the one developed and applied

here offer the potential for identifying emission mitiga-

tion priorities, as well as locales where additional N

application would be highly beneficial, increasing

yields and reducing the emissions intensity of agricul-

ture (Verg�e et al., 2007; Tubiello et al., 2013; West et al.,

2014). For example, Shandong province in China emits

~4% of global cropland N2O, yet comprises just 1% of

crop harvested area. Reducing N application rates by

5% in this province would cut provincial crop N2O

Fig. 3 Nitrous oxide (N2O) emissions response to application of nitrogen (N) fertilizer circa year 2000. Change in total direct N2O emis-

sions (kg N2O-N emissions per harvested hectare) in response to an incremental change in N application rate (kg N per cultivated hec-

tare, including synthetic fertilizer (Mueller et al., 2012) plus manure (Herrero et al., 2013) inputs) across harvested area for 171 global

crops (Monfreda et al., 2008). N2O emissions were calculated using a nonlinear method that differentiates flooded rice from other crops,

and change is displayed as a harvested area-weighted average over 171 crops. Arrow on right hand side of color bar indicates satura-

tion of values greater than 2.5 kg N2O-N ha�1.
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emissions by 9% and global crop N2O emissions by

0.35%. In contrast, increasing N fertilizer application by

5% over sub-Saharan Africa would increase N2O emis-

sions by just 2.7%. In sum, we bring greater accuracy to

subglobal estimates of N2O emissions associated with

N fertilizer application to croplands.

Our results illustrate how refined empirical models

of biogeochemical relationships require resolved data

inputs to generate accurate predictions. Recently avail-

able subnational synthetic fertilizer and manure distri-

bution data, coupled with a sophisticated emissions

model, demonstrate that N2O emissions rates are

unevenly distributed across the world’s croplands.

Future models must be constrained by a greater

diversity and quantity of field studies, which are still

lacking in certain regions such as the tropics (Stehfest &

Bouwman, 2006; Montzka et al., 2011; Reay et al., 2012;

Shcherbak et al., 2014).

Comparison to previous estimates of N2O emissions from
global croplands

Total year 2000 global N2O emissions of 0.66 Tg N2O-N

(CI 0.56 to 0.78 Tg N2O-N) generated from cropland

synthetic and manure N inputs to our nonlinear model

are substantially lower than previous global assess-

ments that applied linear emissions factors to synthetic

N application rates and suggest direct N2O emissions

ranging from 0.8 to 1.0 Tg N2O-N (Bouwman, 1996; De

Klein et al., 2006; Verg�e et al., 2007; Flynn & Smith,

2010; Tubiello et al., 2013). As our aggregate global esti-

mate includes emissions generated from manure N

inputs, the reduced emissions produced from our

model are particularly striking, and are lower for three

main reasons. First, unlike these previous global stud-

ies, we account for reduced N2O emission rates from

paddy rice, which leads to substantially lower total

emissions in both linear and nonlinear approaches; for

example, using a linear model with differentiated rice

emissions lowers estimated N2O-N from 0.86 Tg N2O-

N to 0.77 Tg N2O-N (Table S2). Second, compared to

linear emissions factors, the negative-concave model fit

to an improved experimental dataset suggests reduced

emissions at lower fertilizer application rates, and 78%

of N fertilizer was applied at rates where linear mod-

eled emissions exceed nonlinear modeled emissions

(below 135 kg ha�1 for flooded rice, 197 kg ha�1 for

other crops). Third, the underestimation bias incurred

Table 1 Emissions factor (EF) and N2O response (kg N2O-N emitted per kg N applied, d(N2O)/dN) for the top ten crop/country

combinations by total applied synthetic and manure N fertilizer (Gg, Table 1a), and the top ten crop/country combinations by

applied N rate (kg ha�1, Table 1b). We exclude crop/country combinations receiving <0.25% of total applied synthetic fertilizer and

manure N. China flooded rice appears in both Table 1a and b. An extended version of this table is presented as Table S10 in the Sup-

plementary online dataset.

Country Crop

Total N Application

Gg

Mean N Application Rate

kg ha�1

Linear EF

%

Nonlinear EF

%

d(N2O-N)/dN

0.01 kg kg�1

Table 1a

China Rice, flooded 5407 183 0.31 0.36 0.56

United States Maize 4665 159 1.00 0.92 1.30

China Wheat 4517 171 1.00 0.93 1.35

China Maize 4321 176 1.00 0.94 1.39

India Rice, flooded 3283 84 0.31 0.28 0.35

India Wheat 3005 114 1.00 0.80 1.01

United States Wheat 1770 79 1.00 0.74 0.87

China Rapeseed 1139 160 1.00 0.90 1.29

Indonesia Rice, flooded 997 98 0.31 0.28 0.36

Pakistan Wheat 933 114 1.00 0.79 1.01

Table 1b

Egypt Maize 290 355 1.00 1.59 3.53

Egypt Wheat 259 258 1.00 1.17 2.09

Italy Maize 239 228 1.00 1.14 1.88

France Maize 388 220 1.00 1.14 1.84

Pakistan Sugarcane 216 210 1.00 1.03 1.64

Pakistan Cotton 576 194 1.00 0.98 1.51

Germany Wheat 456 184 1.00 1.04 1.53

China Rice, flooded 5407 183 0.31 0.36 0.56

China Cotton 792 180 1.00 0.94 1.41

China Maize 4321 176 1.00 0.94 1.39
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by negative-concave models of N2O emissions when

used with spatially aggregated N fertilizer application

data (Philibert et al., 2012; Davidson & Kanter, 2014)

leads these estimates to be conservatively low.

Limitations

The emission estimates reported here exclude indirect

emissions from leaching and volatilization, which com-

prise ~26% of total N2O emissions associated with N

application to croplands (FAO 2014a). While our

findings combine a nonlinear model of direct N2O

emissions with crop-specific maps of N application,

except for complex biogeochemical models, there is no

analogous level of sophistication for estimating indirect

N2O emissions associated with N fertilizer application.

Because there is greater excess N unused by the crops

at higher fertilization levels (Van Groenigen et al., 2010;

Kim et al., 2013; Shcherbak et al., 2014), it is possible

that indirect N2O emissions increase in a superlinear

Fig. 4 Crop-specific N application and associated direct nitrous oxide (N2O-N) emissions estimated by a linear and nonlinear model.

(a) Total applied N in synthetic fertilizer and manure; (b) N2O-N emissions calculated using the linear or IPCC Tier I model; (c) N2O-N

emissions calculated using the nonlinear NLNRR700 model developed here. Histograms are normalized such that the area of each bar is

proportional to the fraction of total N applied (a) or N2O-N emitted (b,c). The top 10 crops, ranked in each subfigure by applied N (a),

and emitted N2O-N (b,c) are shown in color, while all remaining crops are displayed in gray. ‘Vegetables’ refers to ‘vegetables, not else-

where specified’ as defined by FAO.
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manner as well. More sophisticated models of indirect

emissions could also help to reconcile top-down and

bottom-up N2O emissions budgets (Griffis et al., 2013).

Another limitation is our use of a single model for

all crops (except rice), climates, and management prac-

tices. Because different crops have different N uptake

characteristics, this could lead, a priori, to biases which

would preclude comparisons of model-predicted

direct N2O emissions between crops. However, less

than half of all global N applied to croplands is

removed in harvested crop products (West et al., 2014;

Zhang et al., 2015). Thus, with approximately 50 times

as much excess N as N2O-N, differing N uptake rates

do not by themselves preclude comparison among

crop types. Moreover, climate and crop management

are important controls on N2O fluxes from soils

(Stehfest & Bouwman, 2006; Berdanier & Conant, 2011;

Aguilera et al., 2013), yet our models do not account

for such variation.

Of course, our quantitative results depend on the

methods applied to construct synthetic fertilizer and

manure datasets, the particular form of the nonlinear

model, and associated parameter values (FAO, 2012;

Philibert et al., 2012; Shcherbak et al., 2014). Despite

these limitations, dataset and model uncertainties are

expected to have largely local influence without alter-

ing regional differences in N application, which are

well established and may vary by several orders of

magnitude (Vitousek et al., 2009).

Finally, the bias associated with aggregated fertilizer

data is inherent to superlinear models such as ours,

and will lead this method to underestimate emissions.

The coefficient of variation of the subregional hetero-

geneity in N application rate required to achieve the

same increase in N2O emissions as using the 95th per-

centile model parameters is 54%. This provides one

measure of how much accuracy is needed in fertilizer

application rate data so that implied fertilizer rate

homogeneity is not a dominant source of uncertainty.

Improved monitoring and compilation of N application

rates, and their variation, at a high spatial resolution

will allow improved assessment of spatially explicit

Table 2 N2O emissions by country for top 25 countries in terms of total N application. ‘Linear EF’ is the emissions factor (EF)

calculated using the IPCC Tier I linear method [0.31% for flooded rice, 1% for all other crops], ‘Nonlinear EF’ is total direct EF

calculated using the nonlinear NLNRR700 model developed in this article. d(N2O)/dN is the incremental change in N2O emission

associated with an incremental change in N application on all harvested area in units of kg N2O-N/100 kg N. An extended version

of this table is presented as Table S7 in the Supplementary online dataset.

Country

Total N Application

Gg

Mean N Application Rate

kg ha�1

Linear EF

%

Nonlinear EF

%

d(N2O-N)/dN

0.01 kg kg�1

World 86329 68 0.89 0.77 0.80

China 25627 158 0.85 0.80 1.14

India 12031 65 0.81 0.62 0.70

United States 10852 83 0.99 0.84 0.92

Pakistan 2414 122 0.96 0.89 1.07

Indonesia 2142 69 0.68 0.56 0.65

France 1937 109 1.00 0.95 1.10

Brazil 1872 38 0.96 0.70 0.69

Canada 1703 49 1.00 0.74 0.76

Germany 1579 128 1.00 1.02 1.24

Turkey 1405 69 1.00 0.75 0.83

Mexico 1239 73 0.99 0.72 0.83

Vietnam 1232 109 0.60 0.59 0.70

Spain 1189 81 0.99 0.79 0.89

Russian Federation 1128 14 1.00 0.62 0.63

Egypt 1104 199 0.93 1.34 1.94

Bangladesh 1088 75 0.48 0.39 0.47

Thailand 1041 58 0.62 0.53 0.54

Australia 975 42 1.00 0.70 0.72

Poland 949 78 1.00 0.77 0.87

Italy 872 94 0.97 0.85 0.97

Iran Islamic Republic 803 64 0.96 0.70 0.78

United Kingdom 716 124 1.00 0.92 1.15

Uzbekistan 603 126 0.98 0.82 1.07

Ukraine 580 21 1.00 0.62 0.65

Philippines 539 43 0.78 0.58 0.60
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N2O emissions. We emphasize that while emissions

estimates from linear models are insensitive to the

degree of fertilizer data aggregation, nonlinear models

require spatially explicit, crop-specific fertilizer data

(Fig. S3, Table S5).

Policy implications

The nonlinear, crop-specific emissions model devel-

oped and applied here indicates that increased fertilizer

application is not strongly coupled to increased N2O

emissions at low N application rates, a major opportu-

nity given increased crop production necessary to meet

growing food demand (Foley et al., 2011; Tilman et al.,

2011). Other research indicates that in areas with low N

application rates, small fertilizer additions generate the

most substantial yield improvements; in other words,

yield response curves are also nonlinear (Sanchez &

Sanchez, 2010; Vermeulen et al., 2012). Thus, our results

suggest that sub-Saharan Africa and parts of Eastern

Europe – areas with fertilizer N application rates less

than half of those in China – would realize the most

favorable yield to N2O emissions trade-offs from addi-

tional N application. Conversely, small reductions in

fertilizer application in high N input regions such as

Eastern China and the Nile delta may yield substan-

tially reduced N2O emissions (West et al., 2014). These

findings are consistent with N balance analyses indicat-

ing that more equitable allocation of N fertilizer across

space generates large reductions in excess N (Mueller

et al., 2014). Balancing the positive benefits of N inputs

for crop production with the negative impacts of excess

N on ecosystem function and human health is critical

for remaining within planetary boundaries with respect

Table 3 N2O emissions for 30 major crops. ‘Linear EF’ is the emissions factor (EF) calculated using the IPCC linear method [0.31%

for flooded rice, 1% for all other crops], ‘Nonlinear EF’ is total direct EF calculated using the nonlinear NLNRR700 model developed

in this article. d(N2O)/dN is the incremental change in N2O emission associated with an incremental change in N application on all

harvested area in units of kg N2O-N/100 kg N. An extended version of this table is presented as Table S9 in the Supplementary

online dataset.

Crop

Total N Application

Gg

Mean N App Rate

kg ha�1

Linear EF

%

Nonlinear EF

%

d(N2O-N)/dN

0.01 kg kg�1

Wheat 16784 81 1.00 0.82 0.90

Maize 13648 101 1.00 0.91 1.03

Flooded rice 13585 97 0.31 0.32 0.38

Cotton 3004 99 1.00 0.85 0.99

Barley 2977 55 1.00 0.79 0.80

Rapeseed 2644 108 1.00 0.87 1.04

Soybean 2162 29 1.00 0.66 0.68

Potato 1885 98 1.00 0.94 1.04

Vegetable (other) 1834 126 1.00 0.93 1.16

Sugarcane 1822 93 1.00 0.81 0.95

Mixed grass 1813 28 1.00 0.83 0.70

Forage (other) 1192 67 1.00 0.77 0.83

Sweet potato 1039 116 1.00 0.90 1.09

Sorghum 993 26 1.00 0.71 0.67

Groundnut 814 37 1.00 0.72 0.71

Nonflooded rice 789 73 1.00 0.76 0.85

Bean 764 31 1.00 0.66 0.68

Sunflower 729 36 1.00 0.74 0.71

Coffee 718 72 1.00 0.80 0.86

Maize for 716 49 1.00 0.96 0.83

Apple 674 126 1.00 0.97 1.18

Sugar beet 673 111 1.00 0.94 1.10

Oats 617 47 1.00 0.74 0.75

Alfalfa 580 29 1.00 0.68 0.68

Banana 593 149 1.00 1.43 1.70

Tomato 558 152 1.00 1.17 1.49

Oil palm 536 56 1.00 0.73 0.78

Grape 487 70 1.00 0.80 0.85

Mango 466 140 1.00 0.92 1.21

Watermelon 458 156 1.00 1.04 1.39
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to N management (Rockstr€om et al., 2009; de Vries

et al., 2013).

Due to the underestimation bias associated with non-

linear models as applied to aggregated data, we suggest

the linear model remains a relevant method for estimat-

ing global N2O emissions when it is possible to separate

out fertilizer applied to irrigated rice. However, only

the use of a nonlinear model combined with spatially

explicit and crop-specific N application rate data allows

for the policy-relevant determination of how emissions

factors vary spatially and between crops.

Policies encouraging increased N use in regions with

low N application rates and cutbacks in N use in high

application rate regions might be accompanied by pro-

motion of field-scale efficiency practices – such as alter-

ing the rate, timing, and placement of fertilizer

(Stehfest & Bouwman, 2006; Philibert et al., 2012;

Venterea et al., 2012) or introduction of nitrification

inhibitors (Akiyama et al., 2009). Such policies have

well-documented environmental (Smith et al., 2008;

Ravishankara et al., 2009; Reay et al., 2012), health

(Wolfe & Patz, 2002; De Klein et al., 2006), and eco-

nomic (Pellerin et al., 2013) benefits, and researchers

have explored reducing emissions via application pro-

tocols (Millar et al., 2010) and market mechanisms

(Rosas et al., 2015). Strategies aimed at mitigating N2O

emissions must consider the field-level relationships

among management, emissions, and yields, and also

rely on addressing socio-economic factors that are, at

present, poorly understood (Zhang et al., 2015).

Accurate N2O emission models coupled with spatially

explicit, crop-specific N application data support

development of GHG mitigation policies that influence

farm-level outcomes.
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