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Summary 

Management of resources is often a large-scale task 
addressed using many small-scale interventions. The 
range of scales at which organisms respond to those 
interventions, along with the many outcomes which 
management aims to achieve can make determining the 
success of management complex. Key challenges include 
addressing the interactions and dependencies in space, 
time and among species. Uncertainty often increases 
with scale, and accounting for it usefully is non-trivial. 
Further, considering drivers that may affect outcomes 
but are not under management control is important. 
Environmental flows is an example of management that 
encompasses many of these challenges, and where there 
is a recognised need for managers to integrate 
information about types of ecological responses. Thus, 
there is an opportunity for a new approach to supporting 
decision making surrounding providing water for the 
environment.  

Here, we build and describe a modelling framework to 
address these challenges (eFlowEval). It has the capacity 
to capture best-available knowledge, to scale it in space 
and time, explore interactions among species, compare 
scenarios and account for uncertainty. Thus, it provides a 
basis for including multiple target groups in a common 
system. The framework is readily updateable as new 
information becomes available and can identify where 
data are insufficient to be scientifically robust.  

We demonstrate the eFlowEval framework using 2 very 
different environmental responses: metabolism, which is 
a measure of the energy produced and then used in an 
ecosystem, and suitability for a bird species of interest 

(royal spoonbill Platalea regia). These demonstrations 
are intended to illustrate the capability of the eFlowEval 
framework and so the outputs shown here should not be 
used to assess ecological responses to management. 
Advice from water managers has helped shape the 
outputs that are shown here, attempting to encompass 
those most valuable to aid decision making.  

These demonstrations illustrate the capacity of the 
eFlowEval framework to provide assessments across a 
range of scales, from local wetland to whole of Basin and 
from short time frames (weeks to months) through to 
multi-year assessments. They illustrate the ability to 
scale responses, vary driver-response model types, 
represent uncertainty and compare scenarios. The 
framework’s ability to accommodate variable parameter 
values at different locations and present drivers 
alongside outputs to facilitate transparency is also 
illustrated. 

The eFlowEval framework extends the capacity of 
previous similar models. It allows for interactions among 
species or processes to be incorporated, as well as in 
space and time. A large degree of flexibility is offered by 
the framework, in terms of driver-response model types, 
input data and aggregation methods. Thus, the eFlowEval 
framework provides a mechanism to enhance the 
transparency of environmental watering decision, 
capture institutional knowledge, enhance adaptive 
management and undertake evaluation of the impact of 
environmental watering at a range of spatial and 
temporal scales.  

Key messages 

• We successfully developed a framework, eFlowEval, for the evaluation of impacts of environmental watering 
at a range of scales from individual wetland to Basin scale. 

• Input from water managers has shaped the capability and outputs developed from the framework to 
maximise the utility of the framework. 

• We demonstrate the ability of eFlowEval to scale responses, vary the types of responses included, compare 
scenarios and represent uncertainty. 

• eFlowEval has novel capacity to allow interactions among species and processes, in space and in time, and 
unprecedented flexibility in the types of models, inputs and aggregations that are possible.  

• eFlowEval will enhance transparency in environmental watering decision making, capture institutional 
knowledge, enhance adaptive management and enable evaluation of environmental watering across spatial 
and temporal scales.   
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Key findings 

• The eFlowEval framework provides a transparent basis for evaluating response of multiple target 
groups in a common system and offers the capability to capture and update best-available knowledge 
gained from in-depth research and monitoring.  

• The framework has the capacity to provide assessments across a range of scales, from local wetland 
to whole of Basin, and from short time frames (e.g. weekly/monthly) through to multi-year 
assessments.  

• We incorporated advice from water managers regarding the types and scales of outputs that would 
be of most use, and so have developed example output at a scale and resolution that will be suitable 
for natural resource management. 

• We present 2 demonstrations of the eFlowEval framework to illustrate its functionality, including the 
ability to scale responses from local to Basin scales, vary driver-response model types, represent 
uncertainty, compare scenarios, vary parameters at different locations, present drivers with 
responses and illustrate possible outputs.  

• The eFlowEval framework extends capability compared to other similar models. Specifically, 
functionality to allow interactions among species or processes, in space and in time are novel, as is the 
degree of flexibility in driver-response models, inputs and aggregation methods.  

• The eFlowEval framework provides a mechanism to enhance the transparency of environmental 
watering decisions, capture institutional knowledge, enhance adaptive management and undertake 
evaluation of the impact of environmental watering at a range of spatial and temporal scales. 



 

OVERVIEW OF FLOW-MER  |  iii 

Overview of Flow-MER 

The Commonwealth Environmental Water Holder (CEWH) invests in monitoring, evaluation and research 
activities delivered through an integrated program called the Monitoring, Evaluation and Research (Flow-
MER) Program. This program builds on work undertaken through the Long-Term Intervention Monitoring 
(LTIM) and Environmental Water Knowledge and Research (EWKR) Projects (2014–2019) to monitor and 
evaluate the contribution of Commonwealth water for the environment to environmental outcomes in the 
Murray–Darling Basin. The Flow-MER Program: 

• monitors and evaluates ecological responses to Commonwealth environmental water in 7 Selected 
Areas and at basin-scale using established metrics and methodologies  

• undertakes best-practice science in 7 Selected Areas and at basin-scale to research ecological 
processes and thus improve capacity to understand and predict how ecosystems respond to water 
management  

• demonstrates outcomes from Commonwealth environmental water and documents these via a 
regular reporting schedule and engagement and extension activities  

• facilitates a regular, timely and effective transfer of relevant knowledge to meet the adaptive 
management information requirements of Commonwealth environmental water decision-makers. 

Up-to-date information on and outcomes from the Flow-MER Program are available from the Flow-MER 
website1. 

Flow-MER research 

The Flow-MER Program is the primary means by which the CEWH undertakes research to deliver improved 
methods and a richer evaluation of environmental outcomes from Commonwealth environmental water. 
Flow-MER Research aims to improve basin-scale understanding of the contribution of Commonwealth 
environmental water within and outside of Selected Areas, develop new approaches to evaluating 
outcomes, support adaptive management and develop a richer understanding of ecological processes and 
responses to Commonwealth environmental water.  

The Research Plan has evolved from the LTIM and builds on the EWKR research priorities together with a 
large body of previous work, resulting in 13 research projects: Flow-ecology (BW2), Condition response 
(E2), Non-woody plants (V1), Woody plants (V2), Fish population models (F1), Fish movement (F2), 
Waterbirds (E1), Refugia (BW1), Scaling and condition (E3), Bioenergetics (BW3), Visualisation (CC1), 
Modelling (CC2) and Indigenous engagement (CC3). 

This report is the final report from the Modelling research project (CC2) team. 

 

 
1 https://flow-mer.org.au/ 

https://flow-mer.org.au/
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1 Introduction 

1.1 Challenges in natural resource management 

Management of resources, and particularly water, is inherently a large-scale problem with many small-scale 
interventions (Gawne et al., 2018a). The success of management is often assessed at a range of scales, from 
local to very large. The range of scales at which freshwater systems operate (from metres to 1000s km, 
depending on the process and species) indicates that managers must understand their ability to influence 
those processes with relevant management levers at each scale (van den Belt and Blake, 2015; Soranno et 
al., 2010). Further, the outcomes against which that success is measured are often many, responding to 
different factors and for different reasons, and these outcomes are likely to interact. Thus, determining 
how best to manage for multiple objectives, potentially in multiple locations at multiple times, and then 
determining the success of that management can be highly complex. 

Natural resource managers are often tasked with maintaining the integrity of ecological systems as a whole 
(e.g. ‘restore’ or ‘improve long-term health’ are common words in management planning objectives; see 
DPIE, 2020). Similarly, best-available science is often intended to be the basis for that management (Ryder 
et al., 2010). However, best available science is often developed for individual components of ecosystems 
(e.g. a species of interest) and for one or perhaps a couple of drivers of interest, and under a limited set of 
conditions in space and time. For example, most published studies of environmental flows assess a single 
biotic response in one individual river, often in a single reach (Olden et al., 2014). This presents a mismatch 
between the information available to aid decision making and the decisions that need to be taken. One 
approach to deal with this mismatch is by the use of indicator sites and species (e.g. umbrella species) but 
challenges remain. Indicator species and sites are rarely rigorously chosen (e.g. see Downes, 2010) for a 
discussion on the issues associated with the use of ‘representative’ sites and (Seddon and Leech, 2008) for 
the criteria to select an umbrella species). This lack of rigour potentially results in sub-optimal ecological 
outcomes as approaches intended to simplify decision making obscure variability or fail to adequately 
capture important drivers. 

Addressing the issues of spatial and temporal scale is also non-trivial. Challenges in scaling arise increasingly 
as the connectivity and interdependence of processes increase due to globalisation and large-scale 
environmental change (van den Belt and Blake, 2015). Water management is particularly susceptible to 
issues of scale because of the connectedness of hydrologic processes (van den Belt and Blake, 2015). While 
the connectedness of those hydrological processes is increasingly understood and accounted for in 
management processes, the related biological connectedness (e.g. fish movements and hydrochory in 
plants) is less well understood (Gawne et al., 2018a). Systems are often data poor about how ecosystems 
function at large scales, let alone how they may respond to management actions. There are limited 
opportunities to assess the impact of changes in flow (including managed flows) at large spatial and 
temporal scales (Gawne et al., 2018a). Monitoring of the response to flows is often focused on the effects 
of individual (or a few) short-term events rather than long-term responses (Olden et al., 2014). Ecological 
theory is often also limited at large scales (Heffernan et al., 2014). Thus, our understanding of small scale 
and fast responses is far better developed, but scaling that understanding to catchment and basin scales is 
difficult (e.g. see de Vente and Poesen, 2005) for an example using erosion processes). Nonetheless, our 
large-scale knowledge is constantly updating and improving, so it is necessary to provide mechanisms for 
that knowledge to be incorporated into decision making (Gawne et al., 2018a).  

Another important element that is often overlooked in decision making (or ignored to reduce complexity) is 
that multiple outcomes respond to a range of factors, some of which are under management control, and 
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that these responses will likely interact (Thompson et al., 2018). Best available science and resultant tools 
which focus only on those levers under management control potentially overlook other factors that could 
de-rail management efforts and prevent desired responses from being realised (e.g. impact of feral animals 
on the regeneration of floodplain vegetation following environmental flows). Carefully selecting those 
drivers that are critical to the response of species or processes under management can assist to identify 
interacting factors that should be considered in concert with proposed actions (Lester et al., 2020). 
Interaction among drivers and the species and processes that respond to those drivers is also a casualty to 
simplification (Thompson et al., 2018). Again, this can be warranted but has the potential to obscure the 
mechanisms behind responses and lead to failure of intended management actions. As for any model or 
analysis, parsimony is important, and so the components explicitly included need to be considered carefully 
and relevant covariates included, among species and processes, in space and in time so that the model is 
fit-for-purpose (Lester, 2019). 

Dependence in time has been explored under the term ‘cumulative effects’. Cumulative effects science 
attempts to integrate disturbances to develop an understanding of past, current and future impacts on the 
components of a system (Venier et al., 2021). There is general agreement that cumulative effects science 
be conducted at larger, more holistic scales than most experimental studies allow (Venier et al., 2021). 
Processes occurring at large spatial scales also tend to occur over longer time frames than those at smaller 
scales (Poff et al., 2017). Different species also respond at different rates with short lived species, for 
example, often responding more quickly to environmental change than long lived species (e.g. Couet et al., 
2022). Understanding how the past conditions of an ecosystem, lags in response time and long-term trends 
affect species and processes would greatly enhance our understanding of the likely impact of management 
actions (Thompson et al., 2018). This suggests a need to explore interactions in space and time that has 
been largely lacking to date.  

The inherent variability of ecological systems combined with limited knowledge yields high uncertainty. 
That uncertainty is often unaccounted for in ecological models and decision making, but that does not 
diminish the ability of that uncertainty to affect outcomes in ecological systems (Lester, 2019). Some forms 
of uncertainty can be quantified and explicitly accounted for, while others remain qualitative (Ascough et 
al., 2008). Ignoring uncertainty has real consequences for management and public confidence (Ascough et 
al., 2008) but identifying it provides opportunity – for example, understanding the range of possible 
outcomes and their likelihoods helps plan management actions, communications that identify a range of 
possible responses are more trustworthy, understanding uncertainty enables explicit hypothesis testing of 
other drivers and enables areas requiring further study to be identified and prioritised. Uncertainty tends to 
increase with scale, with the greatest levels of uncertainty associated with catchment or basin-scale 
processes and responses (Gawne et al., 2018a) and so accounting for that uncertainty is increasingly 
important at those large scales.  

Environmental flows are an example of management that encompasses the challenges identified. 
Environmental objectives, along with the associated social and economic objectives, for freshwater 
ecosystems are not currently being met, given increasing demand and the impacts of climate change 
globally (Vörösmarty and Sahagian, 2000), suggesting a need to continue to improve management practices 
and understanding. Basin-wide management is required due to the connectivity inherent in river basins and 
the dependence of downstream processes and communities on upstream management (Gawne et al., 
2018a). Much institutional knowledge exists at small scales to establish relationships between 
environmental conditions and outcomes, and water managers are already exploring opportunities for 
incorporating large scale processes in their management practices (e.g. CEWO 2017) and monitoring 
programs (Gawne et al., 2018a). There is a recognised need for managers to integrate information across 
types of ecological responses, drawing disparate responses together in a holistic manner. Thus, opportunity 
is ripe for a new approach to supporting decision making surrounding providing water for the environment.  
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1.2 Benefits of a new approach 

Fundamentally, a solution to the issues associated with modelling outcomes at a basin scale include i) a 
framework that can be scaled, such that the outcomes of environmental water can be explored across the 
Basin, ii) considering outcomes over one or more years and iii) comparing scenarios such as climate change 
or watering with no watering. It should be suitable for representing the flow response of species, processes 
or habitats and be able to relate those to the relevant management objectives, but also incorporate drivers 
that are not under direct managerial control (e.g. climate) so as to understand the likelihood of other 
factors influencing outcomes (Walker et al., 2002). A model should be based on relationships that are well 
understood such that there is sufficient knowledge available to describe those relationships and where 
relevant evidence is documented such that relationships are robust and results can be replicated (Grimm et 
al., 2014). The model also needs to be representative of the range of flow requirements and responses of 
biota and processes in water-dependent ecosystems, recognising that the expected outcomes of 
environmental watering can be nested in time and space (Gawne et al., 2018a). Finally, model outcomes 
need to be consistent, so that assessment of ecological outcomes accounts for any biases in methodological 
approach, scale of application or scenarios considered (Grimm et al., 2014). These types of considerations 
have shaped other large-scale programs, including in the Murray-Darling Basin (e.g. Sustainable Rivers 
Audit; Norris et al., 2001). 

The benefits of such an approach, scientifically and to guide management, are many. When developed in 
consultation with managers, this approach offers a mechanism to capture the institutional knowledge and 
mental models that are the norm in much natural resource management. Such mental models often 
incorporate years of experience and local expertise, but understanding is not captured explicitly and can 
lack transparency and repeatability (Greca and Moreira, 2000). Where culturally appropriate, Indigenous 
knowledge systems can be included to provide greater influence on decision-making than is currently usual 
(Tengö et al., 2014). An approach such as eFlowEval offers a repository for such institutional and local 
knowledge and model outcomes can be validated against that knowledge through the use of hindcasting, 
for example.  

Natural resource management often relies on ‘best available science’ for decision making (Ryder et al., 
2010). It is necessary to make decisions immediately, or within short time frames, and it is not possible to 
wait for a scientific consensus as to how best to proceed. Adaptive management, or learning by doing, is a 
common method for incremental improvement and learning during this process (Williams, 2011). The use 
of models (or frameworks such as eFlowEval) to assist with adaptive management provide a mechanism for 
including specific hypothesis testing in the adaptive management cycle – thus providing a mechanism for 
improving scientific understanding as a result of management actions (Williams, 2011) and also enabling 
implementations of the framework to be incrementally updated as knowledge and data availability 
improve.  

Such an approach also has the advantage of enabling disparate knowledge to be combined in a standard 
and comparable way. Managers are tasked with achieving many objectives in space and time (e.g. those in 
the long-term watering plans for the Murray–Darling Basin2 and it can be difficult to identify synergies and 
trade-offs. Having a single repository for disparate knowledge (e.g. potentially including Indigenous and 
local knowledge; Tengö et al., 2014) and a transparent mechanism for scaling responses reduces the ad-hoc 
nature of decisions and enables natural resource managers to more easily grasp the big picture across 
groups, responses and locations. Similarly, the single repository enables explicit understanding of how 
small-scale interventions affect larger-scale outcomes and uncertainty to be quantified (or acknowledged) 
(Gawne et al., 2018a). Hindcasting can be used for evaluation purposes (i.e. what was the benefit derived 

 
2 environment.nsw.gov.au/topics/water/water-for-the-environment/planning-and-reporting/long-term-water-plans 

https://csiroau.sharepoint.com/sites/BasinScaleMERProject989/Shared%20Documents/Research%20Program/2022%20Final%20Research%20Reports/CC2%20Modelling/environment.nsw.gov.au/topics/water/water-for-the-environment/planning-and-reporting/long-term-water-plans
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from the use of environmental watering) while forecasting can aid planning and, in some cases, enable the 
use of environmental watering to be optimised. 

1.3 Objectives 

Here, we build and describe a modelling framework (eFlowEval) to flexibly scale and integrate responses to 
environmental flows. Our framework provides the capability to capture best-available knowledge gained 
from in-depth research and monitoring, to scale it in space and time, explore interactions among species, 
compare scenarios and to account for uncertainty, providing the basis for including multiple target groups 
in a common system. We have aimed to ensure that it is able to be readily updated as new knowledge 
becomes available and that outputs are at a scale and resolution useful for natural resource management. 
In addition, it also identifies where data are insufficient to be scientifically robust.  

We demonstrate our eFlowEval framework using 2 very different types of environmental responses: 
metabolism, based on a quantitative regression model of gross primary productivity and ecosystem 
respiration, and suitability for a bird species of interest (royal spoonbill Platalea regia), using a threshold 
model. In developing these demonstrations, we do not suggest that the specific response models used are 
definitive – they were selected to enable the demonstration of the features of the eFlowEval framework. 
We identify where modifications have been made that would possibly make specific findings from those 
models less robust ecologically and we caution against using those specific outputs for decision making 
purposes. Instead, the demonstrations are intended to illustrate the approach, including outputs that 
target management needs, such as evaluation, scenario comparison and planning at multiple scales. 

We used the Murray–Darling Basin (the Basin) as a test case for the development of the eFlowEval 
framework. The Basin is Australia’s largest river system, covering an area of more than 1 million km2; and 
supports 50% of Australian irrigated agriculture production, 2.2 million people and a diverse mosaic of 
habitats and species (Hart et al., 2021). Due to a range of stressors including water abstraction and habitat 
loss, the water-dependent ecosystems of the Basin have declined through time (Hart et al., 2021). In 
response, Australian Governments developed the Murray-Darling Basin Plan (‘Basin Plan’), which seeks to 
optimise social, economic, cultural and environmental outcomes via integrated water management across 
jurisdictions (Gawne et al., 2018a). Under the Basin Plan, long-term adaptive management frameworks 
have been developed, including the monitoring of outcomes and evaluation of actions to assess their 
contribution to achievement of Basin Plan objectives (Hart et al., 2021). As a result, there is a legislative 
requirement for natural resource managers to be assessing the impact of their actions at the basin scale.  

The Basin operates as a partially connected and integrated system that supports meta-populations and 
ecosystem function across broad areas in space. The Basin is hydrologically connected, but with large 
variability relative to similar rivers elsewhere (McMahon et al., 2007) which can be obscured via the 
reporting of averages (e.g. average annual flow; Stewardson et al., 2021). Nevertheless, hydrology is the 
primary management lever in the Basin, with the purchase of water and its use to support environmental 
outcomes (‘environmental flows’) a key plank in the Basin Plan management strategy (MDBA, 2011). 
Understanding of the flow regimes required to support environmental values at a basin scale is based on 
the cumulative impacts of anthropogenic change, usually established from monitoring at smaller scales 
(Frissell et al., 1986; Gawne et al., 2018b; Englund and Cooper, 2003). Thus, there is a need for tools and 
frameworks to assist with the scaling and aggregation of such small-scale monitoring data to the larger 
spatial and temporal scales at which decision-making occurs (Gawne et al., 2018a). 
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2 eFlowEval framework 

To meet our objectives, we developed the eFlowEval framework to accept disparate data sources, process 
those data to be appropriate as inputs to ecological response models, enabling scaling, integration and 
characterisation of uncertainty and to present outcomes in a manner relevant for management use cases 
(Figure 2.1). 

 

Figure 2.1 eFlowEval framework illustrating the input spatial layers of drivers to be used as inputs for ecological 
response models for species or processes of interest 
Those models can be included in a variety of formats, including threshold and regression models as demonstrated below. Modelled 
outcomes are derived from scaled and integrated local scale outputs, with uncertainty captured and scenario model comparison 
possible. These outputs are designed to be used for evaluation of the impact of environmental watering and to assist with planning 
watering and other management actions. 

2.1 Framework components 

2.1.1 Response models 

At its core, eFlowEval utilises driver-response models. To enable consideration of multiple ecological 
responses of interest, we recommend the use of simple ecological response models focused on factors that 
have the potential to limit population growth or suitability (e.g. strictures and promoters framework; 
(Lester et al., 2020) to capture critical responses without adding greatly to complexity and processing times. 
This approach is also well suited to the common situation of low information when modelling at large scale 
– for example, it is rare that detailed population dynamics models (or the input data for them) are available 
at such large scale. However, eFlowEval has been designed to take any driver-response model (e.g. 
regression or other) where drivers are available at an appropriate scale. 

The development of driver-response models is intended to be external to eFlowEval. Instead, eFlowEval 
incorporates existing models and uses them in a consistent and repeatable manner. Thus, the driver-
response models can be developed or guided by experts in those particular responses, while the eFlowEval 
provides the consistent framework for those models and their outputs. This structure enables flexibility in 
the development of those driver-response models as well as ensuring that the framework is updatable as 
new models are developed or existing models are improved.  
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2.1.2 Base polygons and driver data 

The choice of driver-response model determines the type and nature of the required input data. For 
example, in one of the demonstrations below, gross primary productivity is a function of air temperature 
and inundation, so those are the datasets required as input for that application of eFlowEval. The intention 
of eFlowEval, to provide input at broad spatial and temporal scales to assist with natural resource 
management planning and evaluation, leads us to an emphasis on datasets available at those broad scales 
(e.g. satellite imagery). eFlowEval can either house static layers of input data or point to cloud repositories 
of data updated regularly and so use the most recent dataset available.  

The eFlowEval framework incorporates driver input data into a common format based on meaningful 
polygons. Using meaningful polygons enables the later integration and scaling of responses to categories 
that are relevant for management decisions. In the demonstrations below, those meaningful polygons are 
derived from habitat mapping for the relevant region (Australian National Aquatic Ecosystem Classification 
Framework [ANAE]; Brooks et al., 2014) because environmental watering decisions often target specific 
habitat types. However, other classification systems can be used to identify those polygons. Using 
meaningful polygons as the base unit of modelling provides several advantages over uniform gridded data 
such as rasters, primarily because polygons vary in size and shape. Large areas of similar conditions can be 
captured in a single large polygon that would otherwise require many raster cells, while areas where 
conditions change rapidly in space can be represented by numerous small polygons. Thus, this approach 
yields a spatial scale for the modelling that flexibly responds to the scale at which relevant conditions 
change. Moreover, large areas of the Basin may not be relevant to modelling aquatic outcomes, and so the 
use of polygons allows those to be ignored, yielding vast reductions in necessary processing power. 

Input data to eFlowEval other than the base polygons can include many formats, including polygons, 
rasters, points, and other types. Once incorporated, it is usual for raw datasets to need to be processed to 
constitute the input variables needed to act as drivers for the response models. Typically, this consists of 
incorporating them into the base polygons using some mathematical aggregation function (e.g. rasters 
often will use an area-weighted mean). Polygons may also be used to split the base polygons if interactions 
are important. eFlowEval has flexible processing capacity to develop relevant statistics including weighted 
means, rolling averages, time since particular events and custom statistics such as depth above a threshold, 
for example. 

These statistics and variables are then used as inputs to the selected response model(s). Responses are 
produced for each at the level of the individual polygons. Furthermore, eFlowEval has the capacity to 
include interactions among response models. So, it is possible for a bird response model to rely on a fish 
response model (as a food resource, for example) as well as a tree response model (as nesting habitat, for 
example). This dependency is possible based on previous time steps or the current timestep.  

2.1.3 Results scaling and presentation 

Local outcomes are produced as close as possible to the scale of the process, provided the meaningful 
polygons are chosen carefully. At a minimum, this could be daily outputs at the scale of individual polygons. 
These results are then able to be scaled to management-relevant scales. Again, eFlowEval enables flexible 
approaches to scaling, so that appropriate metrics can be used to achieve that scaling including means, 
sums and others including custom statistics. This flexibility is important because different approaches will 
be appropriate in different cases. For example, in the demonstration below, maximum inundation extent 
over a 2-month time step is an input variable. Scaling using a mean would be inappropriate given that 
maximum inundation variable, and so a maximum in space and time is used instead. Scaling metrics are 
thus able to be selected on a case-by-case basis and to be tailored to different response models and 
different goals for the eFlowEval application.  
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In addition to the capability to scale outcomes, eFlowEval has the ability to handle multiple scenarios and 
compare outputs across scenarios, as well as other comparisons. Outputs have been developed to be useful 
for management evaluation of actions, planning and simulation of plausible future states. Ideally, there 
would be a link between the response models and feedback from management actions to continue to 
improve the ability of eFlowEval to adequately represent the best-available knowledge base and meet 
specific management needs. 

A detailed description of the framework architecture can be found in Appendix A, providing additional 
details as to the development and application at each step, along with a link to the relevant code.  

2.2 Rationale for the eFlowEval approach 

The rationale for developing the eFlowEval framework in this way was based on creating a process-based 
but simple approach. Using process-based response models provides a robust basis for extrapolation to 
areas outside the spatial and temporal resolution of the data used initially to develop the response model 
(Yates et al., 2018). This extrapolation, to larger spatial scales such as a Basin scale, as well as through time 
(both the past and plausible futures) were key requirements for eFlowEval. 

One of the demonstrations below utilises a strictures and promoters approach to developing a response 
model (Lester et al., 2020). This approach seeks to identify dependencies throughout the life cycle of 
species of interest. It relies on identifying possible inhibiting (strictures) and supporting (promoters) factors, 
emphasising the need to support and protect all life history stages to achieve environmental objectives 
such as population maintenance or growth (Lester et al., 2020). Initially, strictures models can be quite 
simple (e.g. threshold based) minimising computation times, but the driver-response units can be updated 
to be as complex as data permit. Maintaining simple models has advantages beyond simple data 
availability, though; complex models can be difficult to interpret, and interactions quickly become 
erroneous even if the individual model components are well supported (Lindenschmidt, 2006).  

In developing the framework, we recognised the need to integrate across multiple scales to allow for 
multiple potential uses of the framework. Multiple dimensions were of importance – in space, through time 
and among species. Much has been written about the need to scale in space and time to adequately utilise 
small-scale monitoring data for large-scale decision making (e.g. Gawne et al., 2018a) but less focus has 
been given to the need to integrate across species and processes (although such interactions are modelled 
in ecosystem models, for example; Geary et al., 2020). Many ecological models instead incorporate 
multiple species as independent entities (e.g. existing tools for the Murray-Darling Basin such as the Murray 
Flow Assessment Tool, Young et al. 2003), and Ecological Elements (Overton et al., 2014) or model 
assemblages and communities as single units (e.g. using alternative stable states; Lester and Fairweather, 
2011) which do not allow for interactions, synergies and trade-offs in the responses of multiple species to 
be explored. This is a common limitation in the ability to manage systems for sets of interacting species and 
assemblages. As a result, we sought to include the ability for multiple response models to interact in space 
and time.  

To integrate in space and time, initially, we were largely focused on the challenges associated with 
developing capability at a basin scale over multiple years, but discussions with natural resource managers 
to workshop possible use cases and explore early outputs highlighted the benefits of smaller scales, for 
individual wetlands or wetland complexes, and at scales of weeks to months. As a result, we expanded our 
focus to span the scales of interest. 

When undertaking extrapolation in space and time, we calculated ecological responses locally and then 
scaled those outcomes, rather than scaling inputs and processing overall. Non-linearities in response are 
highly likely at large scales (e.g. catchments and basins) where many ecosystem functions respond at 
multiple scales (DeFries et al., 2004). These non-linearities can create large biases (i.e. Jensen’s inequality; 
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Ruel and Ayres, 1999). Calculating responses locally enables us to model at the scale at which the relevant 
ecological processes vary (Yates et al., 2018). This is usually local, and is likely determined by the 
environment, as well as the life history and characteristics of the species in question. From here, there are 
established methods to scale in space and time (e.g. Englund and Cooper, 2003). Similarly, we created the 
ability to increase the resolution of the models to respond to the scale of the process or response in 
question. Responses are modelled at the spatial and temporal scale most relevant to that response and 
based on the input data used to calculate it. This approach, rather than a fixed grid for spatial resolution, 
for example, minimises the computational power required for the model – a key consideration for large-
scale models that include multiple species and processes.  

While hydrology is the primary management lever in the Basin for achieving environmental outcomes, the 
species and processes of interest often response to multiple interacting drivers, including but not limited 
to, hydrology (Poff and Zimmerman, 2010). As a result, we explicitly account for multiple interacting drivers 
including those that are not able to be actively managed. This approach is effectively the same as including 
covariates in statistical models. In the demonstration below for metabolism, for example, both inundation 
and temperature are drivers. This enables us to identify how drivers interact, whether management actions 
are likely to succeed or fail given (and sometimes because of) those interactions and where simulated 
responses are unrealistic, giving us the opportunity to identify additional drivers that may be affecting 
outcomes. As for the species response models, we suggest keeping the number of drivers included small to 
limit complexity. Nonetheless, we have developed the capability to increase the complexity of interactions 
and the number of drivers as needed and as appropriate data and knowledge are available.  

Thus, we have developed a modelling framework that takes a consistent approach to handling and 
processing driver data, specifying responses, assessing those responses and then calculating and scaling 
outcomes. The specifics for each response can vary to reflect knowledge regarding that species or process – 
while we seek consistency in the basic structure and methods, vegetation does not respond to the same 
drivers as fish, for example (and certainly not in the same way) and so flexibility is a key part of the 
approach. 
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3 eFlowEval capability demonstration 

We have developed 2 demonstrations of eFlowEval to illustrate the capability of the framework as 
developed. We selected demonstrations specifically to illustrate elements of that capability, focusing on 
the application of eFlowEval to support management decision making, planning and evaluation. The 
demonstrations span a range of management outcomes and response types. They are intended to illustrate 
the framework’s flexibility and its ability to shape disparate input data and response types to a common 
format. An additional outcome is the ability to identify where desired outputs are not possible and why. 
This will inform future monitoring and research when those outputs are critical to supporting decision 
making. 

It is important to note that the response models that underpin these demonstrations have been modified 
to enable their use in eFlowEval, and so are not reliable estimates of ecological responses. For example, 
these demonstrations should not be used to estimate kg O2 of gross primary productivity based on the 
figures provided. The reliance on bimonthly maximum inundation and simple regressions precludes the use 
of results in that way. Instead, these demonstrations illustrate the importance of ongoing work to develop 
appropriate driver-response models and that existing models may need additional development to be 
appropriate for use by a framework such as eFlowEval, which is focused on integration and extrapolation. 

Additional detail regarding the development of the demonstrations, including the driver-response models 
used, are given in Appendix B. 

3.1 Targeting local scales in space and time: wetland metabolism 
demonstration 

Management decisions such as those regarding environmental watering decisions are often made at local 
spatial scales (e.g. individual wetland or groups of wetlands) for the weeks or months ahead. Event 
planning and decisions targeting specific ecological goals in important locations are both likely to occur at 
this local scale. eFlowEval models processes as close to the scale at which they occur as allowed by the 
data, and so has the capacity to illustrate both driver and responses at the smallest scales within the 
datasets (Figure 3.1). 

The regression models used here for gross primary productivity (GPP) and ecosystem respiration (ER; refer 
to Appendix B for model details) define quantitative relationships between the drivers and the outcomes. 
Here, those drivers include those able to be influenced by managers (i.e. inundation extent) and those that 
are outside management control (i.e. temperature). The inclusion of both provides managers with the 
capacity to understand how factors outside their control (here temperature) may alter the impact of a 
specific action (e.g. changing inundation). Further, the inclusion of seasonality and catchment terms can 
help assess the effect of altering the timing or location of water delivery.  

An R/Shiny application linked to the model outputs enables users to identify times of interest for the spatial 
scale and location of their choice (Appendix D). This provides the capacity for users to interact with the 
data, explore trends of interest or investigate specific events in the past that may have similarity to a likely 
future event, or a desired outcome.  
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Figure 3.1 Example of drivers (top row) and predicted outcomes (bottom) for wetland metabolism in individual 
wetlands within the Werai Forest 
The modelled period is the 2 months preceding 1 November 2016, and reflect the maximum inundation extent during that period, 
as that is the scale of the inundation dataset. A Shiny app has been developed to allow users to select the 2-month period of 
interest and update the outputs in a browser. 

Annual summaries are also often useful for management reporting (Figure 3.2). For this demonstration, we 
have generated those summaries by summing the metabolic activity for each wetland over all the 
bimonthly periods of a water year to generate total yearly metabolic activity (calculated at the maximum 
inundation extent of each period). Other methods of combining through time (e.g. means) are also possible 
where appropriate.  

Comparing across multiple years illustrates the effect of warmer wetter years (e.g. 2016) where both gross 
primary productivity and ecosystem respiration were relatively high compared with cooler drier years (e.g. 
2015, 2017). The local scale also enables hotspots of productivity to be identified. 
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Figure 3.2-GPP and ER for each wetland in the Werai Forest summed over bimonthly inundation predictions for 3 
water years to yield total metabolic activity for the year (at the maximum inundation extent in each bimonthly 
period) 

More quantitative visualisations than maps can show the expected metabolic activity across all wetlands, as 
well as the uncertainty around those estimates. For example, in Figure 3.3, we see that the majority of 
wetlands contribute no metabolic activity, while others are responsible for a disproportionate share. 
Prediction intervals are large, but we can be confident that some wetlands are cycling 100–1000 kg O2 at 
maximum inundation extents. This understanding may assist managers to pinpoint productivity hotspots in 
space and time to enable investigation of drivers in those hotspots, or to target actions to those locations.  
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Figure 3.3 GPP (green, positive values) and ecosystem respiration (purple, negative values) in kg O2 produced (or 
respired, if negative), represented as bars for each of 1,163 ANAE wetlands in Werai forest in the 2 months ending 
2016-11-01 
Grey lines are 95% prediction intervals for each wetland, indicating uncertainty in the predictions of metabolic activity due to 
temperature and inundation. Black roughly horizontal line is net metabolism and indicates that those wetlands with appreciable 
metabolism were heterotrophic during this period. Because bar heights represent metabolic contributions of individual wetlands, 
the areas under the curves represent the total metabolic output of all wetlands in the Werai forest.  

3.2 Targeting catchment and basin scales in space and time: wetland 
metabolism demonstration 

While local scale outputs are highly relevant for informing individual watering decisions or targeting 
particular wetland complexes, long-term and broad-scale planning and evaluation are also needed (e.g. to 
describe the effect of environmental watering under the Murray-Darling Basin Plan; Gawne et al., 2018a). 
Often, such planning and evaluation will mean that it is desirable to be able to report ecological response 
for periods of a year or more or across broad areas like catchments or basins. eFlowEval offers the 
functionality to aggregate local-scale results to those larger scales (Figure 3.4). 

A range of visualisation options are available within eFlowEval. Maps are easy to grasp, present broad 
patterns well and put data in a geographic context that many managers and the public should find intuitive 
(e.g. top panels, Figure 3.4). Maps easily enable managers to assess where environmental water is (or is 
not) having an effect. One clear advantage of this approach is to identify catchments that are 
disproportionately important for the ecological response of interest or areas of the basin that tend to 
respond in concert. Maps are also extremely powerful communication tool for a broader audience. 

Maps, however, have limitations. They are necessarily limited in the precision at which data can be 
reported, particularly when there is a very large range of values. In the examples here, discrete colour bins 
prevent identifying precise values and lump catchments into groups while providing bounds on their values. 
Continuous colour ramps are another possibility, that would yield different colours in every catchment but, 
while the values represented are more precise, they are more difficult to assess other than a general 
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impression of relatively high or low. Other sorts of graphs (e.g. lines, bars, or scatterplots) are better at 
more rigorous assessment and comparison of the values.  

We illustrate one option here with a bar chart of inundation and metabolism for each catchment (e.g. 
middle panel, Figure 3.4), showing values of each with more precision and allowing visualization of 
differences between catchments that have the same colour on the map. This visualization provides 
managers with the ability to better assess small but potentially important differences.  

Another option are line charts, and particularly timeseries, which can show the trajectory of values (e.g. 
bottom panel, Figure 3.4). We illustrate this here for the maximum inundation and metabolism summed 
over the whole of the Basin, where we can see that some values (ecosystem respiration, in particular) 
respond differently across years. This sort of approach is also particularly important for identifying 
temporal trends, as might be the case in assessing the net effect of climate change across the Basin.  

 

Figure 3.4 Aggregated inputs (mean temperature and maximum inundation volume) and outputs (GPP and ER) 
across space and time for the period of 2014 to 2019 water years 
Spatial aggregation is done by averaging (temperature) or taking the sum of the maximum (Inundation, GPP, ER) of all wetlands in 
each catchment in the Basin at each timestep. Temporal aggregation is done by calculating the same statistic for the full 5-year 
period. Maps at top represent the inputs and outputs within each catchment, but the large range of values across catchments hides 
nuance. Bar charts (middle) can better capture small differences between catchments. Spatially aggregating to the basin scale 
instead of catchments shows the timeseries of total inundation and metabolism over the five years aggregated in upper panels. 
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Timeseries can illustrate trends for the whole Basin (e.g. bottom panel, Figure 3.4), but managers are also 
likely to need to understand how catchments might differ through time, perhaps to see whether different 
areas of the Basin are being more or less affected by changing climate. Once again, maps can provide at-a-
glance striking results that accentuate the geographic differences as well as temporal change (e.g. top 
panel, Figure 3.5). To investigate these outcomes with more nuance, line timeseries could be produced for 
a selected set of catchments (e.g. bottom panel, Figure 3.5) or, indeed, all catchments, allowing managers 
to assess whether the catchments respond similarly through time. Matching such detailed outputs with 
maps (as shown here) provides the benefit of each sort of visualisation of how conditions change through 
the Basin in time. 

 

Figure 3.5 Timeseries of ecosystem respiration in each catchment within the Basin represented as maps (top) and a 
more traditional line graph (bottom) 
Similar plots could be produced for all inputs and outputs with eFlowEval if desired. 

3.3 Scenario modelling: wetland metabolism demonstration 

A powerful tool for management planning is the ability to simulate ecological response to plausible 
scenarios. These can simulate the effect of proposed management actions (e.g. adding environmental 
water) or unmanaged environmental changes (e.g. changes in temperature due to climate change). 
Scenarios can also be used to visualise trajectories of change, either retrospectively (e.g. warming in the 
Northern Basin) or prospectively (e.g. onward climate shifts in temperature, inundation or changes in 
environmental water allocation or management). The eFlowEval functionality described above can be used 
to produce such scenarios showing either broad-scale patterns with maps (Figure 3.6) or specific 
comparisons using line and bar charts (Figure 3.7). 
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Figure 3.6 Demonstration of baseline temperature and inundation, along with scenarios of uniformly increasing 
temperature by 2 degrees C and inundation volumes by 10% 
This is a demonstration of how results could look, and how they can be useful for management, not a representation of realistic 
changes in either inundation or temperature. Results are for the aggregated water years 2014-2019. 
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Figure 3.7 Scenario comparisons of GPP for a selected subset of catchments 
Timeseries (left) and bar plots (right) provide more quantitative discrimination of differences between scenarios and catchments 
than may be visible with chloropleth maps. 

While results can be presented at large spatial scales (e.g. Basin scale as shown above), parallel 
visualisations can also be done at relevant local scales (Figure 3.8). The ability to simulate ecological 
response under a range of scenarios would be extremely useful for local water managers to target 
particular outcomes and compare potential alternative actions. In addition, it can assist with understanding 
likely future trajectories for regions of high conservation status, for example. Finally, local scale scenario 
modelling is likely to add to our ability to understand and investigate relationships in the model, as this is 
the scale where management knowledge is best developed, and anomalous results are most likely to be 
identified, leading to opportunities to refine the underlying driver-response models.  

 

Figure 3.8 Scenario comparisons for each wetland in the Werai forest 
Colours show difference in production from the baseline scenario (top left). As above, scenarios are defined by a uniform 
temperature increase of 2oC or inundation increase of 10%. Values are aggregated over the water year ending 2016-06. 
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3.4 Assessing critical strictures in life cycles: royal spoonbill 
demonstration 

Capturing dependencies in ecological response is fundamental to ensuring that management decisions 
have the intended impact. Dependencies can occur in the life histories of species of interest (e.g. nesting 
can be supported to allow fledging but, if juveniles are unable to successfully forage, then they will not 
recruit to the adult population), in space (e.g. adults must have access to suitable foraging locations within 
a certain distance from breeding locations to enable them to feed chicks in the nest) or through time (e.g. 
suitable foraging habitat for juveniles must follow suitable breeding habitat in sequence to be useful). 
Failure to consider and capture such dependencies is one possible explanation for increasing evidence that 
short-term success does not always lead to long-term gain (e.g. high nest survival in royal spoonbills has not 
arrested adult population decline; McGinness et al., 2019; Kingsford et al., 2012). 

Dependencies among life history stages and in space and time can be captured using the eFlowEval 
framework. Here we demonstrate those for the breeding and foraging stages for royal spoonbill, using a 
strictures and promoters approach to identify critical thresholds (Appendix C; Lester et al., 2020). Lester et 
al. (2020) set out a large number of strictures for waterbirds, using royal spoonbill as an example. Here we 
focus on a subset of those which are best supported by current knowledge and are thought to be most 
critical, and particularly those that are water driven. How well this subset captures critical life-history 
processes is as yet untested but is sufficient for the purposes of this demonstration. 

Breeding habitat is identified as occurring within ANAE types that are known to support breeding based on 
an analysis of breeding event records (McGinness et al., 2020). Conditions suitable for breeding occur when 
those polygons are inundated to a depth of between 0.5 and 1.5 m for a minimum of 6 months (assessed as 
a minimum of 3 bimonthly inundation periods using the same inundation data layer as for the metabolism 
demonstration). Inundation needed to occur during the breeding season, which was implemented 
differently for the Northern and Southern Basin due to observed variation in breeding, where the breeding 
season in the Northern Basin was September to April inclusive and October to March in the Southern Basin. 
For a wetland complex to be identified as being likely to support a breeding event within the 
demonstration, a minimum area of that wetland needs to meet all strictures as a hurdle to assuming 
initiation of a breeding event. Here, for demonstration purposes, that has been set at 70% of the maximum 
area in the available record (1988–2020) that meets the inundation requirements for breeding. This is 
intended to represent the hurdle of sufficient suitable habitat within a wetland needing to be available 
before a breeding event commences. 

Foraging habitat was also limited to ANAE types that are known to support foraging. These were defined as 
suitable for foraging when they were less than 0.4 m deep with no constraints on timing of availability and 
less than 10 km from a breeding site (i.e. for use during breeding events). It is recognised that feeding 
associated with breeding can also occur in the wetland complex supporting the breeding event, but 
inclusion of nearby sites enabled demonstration of the spatial look-around function within eFlowEval. This 
demonstration occurs at the scale of wetland complexes (i.e. groups of ANAE polygons that are known to 
support breeding events). 

We demonstrate the ability of the eFlowEval framework to capture dependencies among life-history stages 
and in space using 3 wetlands in the Southern Basin: Koondrook and Perricoota Forests, Millewa Forest and 
Werai Forest. These wetlands have previously been suitable for breeding by royal spoonbill. Based on the 
strictures described above, we calculated the area of suitable breeding habitat for the period of 2013 to 
2017 (Figure 3.9).  
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Figure 3.9 Area of breeding habitat for royal spoonbill within 3 selected wetlands in the Southern Basin 
For each of 3 wetlands identified as suitable breeding habitat in the Southern Basin, the area of suitable breeding habitat for the 
period of 2013–2017. The area is a sum across individual polygons that have met the required strictures. 

To assess the initiation of a breeding event, the area of breeding habitat available in each year for each 
wetland was compared against a minimum threshold, set at 70% of the maximum extent of suitable habitat 
in the historical record. This converts the continuous measurement of area shown for selected years in 
Figure 3.9 to a binary assessment of a likely breeding event initiated (Figure 3.10).  

 

Figure 3.10 Years when the total area of inundated habitat within the 3 selected wetlands passing the required 
strictures, exceeded the required minimum threshold for breeding 
For each of 3 wetlands identified as suitable breeding habitat for royal spoonbill in the Southern Basin, the years in which 70% of 
the maximum area observed historically for breeding exceeds the required strictures described in text are shown in light blue. The 
maximum area observed historically is assessed based on the available record of inundation (1988–2020) and captures the 
maximum area which meets the inundation requirement for breeding in that timeframe. 

To incorporate feeding requirements, for each of those 3 wetlands, a kernel with a 10-km radius was then 
constructed. Within that kernel, the area of suitable foraging habitat was then identified through time. 
Figure 3.11 illustrates the foraging habitat within the breeding wetland (a), the kernel around that breeding 
wetland in which suitable foraging habitat may be found (b) and then the total foraging habitat for the 
wetland, combining within-wetland and the additional habitat in that foraging kernel (c). The amount of 
foraging habitat within that kernel is illustrated in Figure 3.12. As for initiation of breeding events, a 
threshold was required to describe sufficient available foraging habitat. Here that was set at 5% of the 
historical maximum extent, for demonstration purposes. Little information is available regarding a likely 
true value for that threshold in this system (McGinness, pers. comm.). 
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Figure 3.11 Total foraging habitat available for breeding wetlands within the wetland itself (a), within 10 km of each 
wetland (b) and then combined (c) 
For each of 3 wetlands identified as suitable breeding habitat in the Southern Basin, the area of suitable foraging habitat within a 
10-km radius has been identified. In this example, the additional area of foraging habitat within 10 km is minimal and insufficient to 
change the colour displayed in (c). 

 

Figure 3.12 Area of foraging habitat available within 10 km of each wetland 
For each of 3 wetlands identified as suitable breeding habitat in the Southern Basin, the area of suitable foraging habitat within a 
10-km radius has been identified (ha). 

Finally, requirements for foraging are combined with the earlier breeding initiation requirements to 
illustrate wetlands that were likely to be able to support successful royal spoonbill breeding across the 
available record (1988 to 2020) (Figure 3.13). We stress that these outputs are for the purposes of 
illustrating the capability of the eFlowEval framework, rather than intended to be an accurate assessment 
of breeding success. 
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Figure 3.13 Suitability of 3 wetlands to support royal spoonbill breeding based on habitat requirements for breeding 
and foraging 
For each of 3 wetlands identified as suitable breeding habitat in the Southern Basin, whether there is sufficient area (i.e. above the 
specified thresholds) for both breeding and foraging, indicating areas of likely breeding success through time. 
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4 Representing uncertainty 

Dealing with uncertainty in frameworks such as eFlowEval can be fraught. Assessment of uncertainty is an 
important but often overlooked aspect of model development. Many models do not explicitly present the 
associated uncertainty and this can create the erroneous impression that they are precise, which can lead 
to suboptimal decisions relying on that precision (Chatfield, 2001). All models are uncertain and that 
uncertainty can take multiple forms (Ascough et al., 2008). There are 3 types of uncertainties relevant to 
ecosystem management: unknowable outcomes arising from complex and dynamic systems; poor or 
deficient understanding of physical or ecological principles upon which the model is based; and poor data 
quality, sampling bias and analytical errors (Christensen et al., 1996; Hilborn and Stearns, 1987). Some 
types of uncertainty are able to be quantified or characterised, such as sampling error and modelling error 
(e.g. associated with regression used here) or stochastic uncertainty (e.g. uncertainty associated with what 
the weather will be for the next year; Ascough et al., 2008). However, there are also sources of error that 
are unquantifiable and unmeasured, such as missing data or assumptions in model development.  

Mathematical constructs can also present challenges. For example, at such large scales, the number of 
individual data points in any application is so large as to invoke the law of large numbers. Under that 
scenario, the effect is for uncertainty to disappear if dealt with naively by assuming the uncertainties are 
independent. This situation is not reflective of our level of confidence in the estimates, partly because of 
the lack of independence among the data points. Alternatively, simply propagating maximum possible 
uncertainty through time and space (by assuming uncertainty is perfectly correlated) can lead to estimates 
that are so broad as to also be effectively meaningless, especially for management purposes and decision 
support. Thus, careful consideration is required to deal with and represent uncertainty. 

There are multiple ways to attempt to capture uncertainty in a meaningful and useful manner. Sampling 
and modelling error can be calculated and incorporated. This approach is relevant for the estimation of 
terms in process-based models or for the regressions used here for the wetland metabolism 
demonstration, for example, which can then be illustrated as prediction intervals (e.g. Figure 4.1, Figure 
4.2) (Chatfield, 2001). For stricture-based models, error can be estimated at the level of each stricture, or in 
rates of change.  

Confidence intervals are a common way to express uncertainty but are also dependent on sample sizes and 
so shrink with very large sample sizes such as those used here. This dependence on sample size is because 
confidence intervals assess confidence in an estimated statistic (e.g. regression fit or mean), not the range 
of potential data values. In contrast, prediction intervals provide a range between which the real values are 
likely to occur with some probability (Chatfield, 2001). So, by illustrating prediction intervals, we can show 
the range of potential outcomes to better assess what happened (or might happen) across a landscape. 
This approach is valuable both for evaluation, where we might want to ask what the likely metabolic 
activity was as a result of past conditions, or for future forecasting. In both cases, we use prediction 
intervals because we are interested in the plausible range of metabolism values, not the quality of the 
relationship between temperature, volume, and metabolism. 
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Figure 4.1 Estimated metabolism given temperature and inundation volume for wetlands in the Werai forest 
(middle panels), with lower and upper 95% prediction intervals in top and bottom panels, respectively 
Because these are prediction intervals, not confidence intervals, they mean that 95% of the time we would expect the true 
metabolic activity to be between them for these temperatures, with the most likely outcome shown in the middle panels. The 
modelled period is the 2 months preceding 1 November 2016, and reflect the maximum inundation extent during that period, as 
that is the scale of the inundation dataset. 

Once calculated, these sampling and modelling errors can be propagated in space and time. Each individual 
wetland has a prediction and as a prediction interval that captures 95 % of the potential outcomes based 
on the temperature and inundation. When these predictions are spatially aggregated to the catchment (or 
other larger scale), the overall prediction interval for the catchment requires additional information – the 
magnitude and distance of how errors are autocorrelated. Do model outputs for many nearby wetlands all 
‘miss’ in the same direction (i.e. are they all too high or too low)? How nearby and by how much? In the 
absence of this information, we can only assess 2 extreme and unrealistic endmembers – either all 
wetlands are independent and so, where a given wetland falls in the prediction interval, it has no bearing 
on its neighbours, or all wetlands in the catchment are perfectly correlated and so, all wetlands in the 
entire catchment are always at the same percentile in the prediction interval. The former case yields 
effectively no uncertainty (due to the law of large numbers) and the latter unrealistically wide ranges for 
uncertainty (e.g. Figure 4.2). A Bayesian approach incorporating autocorrelation and uncertainty would 
then produce more realistic uncertainty estimates because, if one wetland was close to the lower 95 % 
prediction limit, say, then others around it are likely to be low as well. Similarly, summarising uncertainty 
through time relies on understanding how errors are correlated through time. At the moment, these 
correlations are unknown for the demonstration case of wetland metabolism but could be measured in the 
future.  
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Figure 4.2 Predictions (bars) and 95% prediction intervals (black lines) for each catchment with perfectly correlated 
errors 
With independent errors, the law of large numbers means that the prediction intervals are undetectable - the mean prediction is 
the nearly identical whether all wetlands are at their separate mean predictions, or if they independently vary within their separate 
prediction intervals. The intervals may appear smaller and more symmetrical than expected, but this is because of the use of a log 
y-axis.  

Whether or not uncertainty can be quantified or propagated, a common issue with management-relevant 
data is that there are often some locations or situations where a relationship is better established than 
others. Extending beyond those locations requires (more) extrapolation. Thus, there is a trade-off – 
including the whole basin requires accepting greater model uncertainty, but it can be done. In contrast, if 
managers are not willing to make that trade, better predictions are available, but only for a subset of 
catchments. This trade-off and associated uncertainty changes can be visualised explicitly by limiting 
outputs to areas where data are more available (e.g. catchments for which wetland metabolism regressions 
have been specifically parameterised) or where colour intensity could be used as a qualitative indication of 
the uncertainty associated with the estimates (e.g. paler colours could indicate more uncertainty; Figure 
4.3). Note, however that this is only one of many potential sources of uncertainty in these predictions, with 
others described in this box also relevant. 

The eFlowEval framework is able to represent uncertainty in each of these ways. At present, we provide 
demonstrations for a very limited set (e.g. wetland metabolism with and without a catchment term) 
because the data and information to enable more sophisticated treatments of uncertainty do not exist (e.g. 
the scale and level of autocorrelation among catchments). Despite this, we are still able to provide useful 
estimates of the degree of certainty that exists for the various outputs, to ensure that is transparent and 
able to be accounted for in decision making processes. 
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Figure 4.3 Estimated metabolism given temperature and inundation volume for all catchments in the Murray–
Darling Basin, shaded to indicate confidence in the estimates 
More vibrant colours are used for only those catchments for which data were available to parameterise regression models, while 
faded colours indicate catchments with extrapolated predictions.  
The level of certainty regarding estimates is higher for individual catchments used for regression parameterisation. The modelled 
period is the 2 months preceding 1 November 2016, and reflect the maximum inundation extent during that period, as that is the 
scale of the inundation dataset. The regression models used differ between the vibrant and faded catchments. For catchments with 
vibrant colours, each catchment-specific regression is used. In catchments with faded colours, a global regression without a 
catchment term is used. Refer to Appendix B for additional detail.  
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5 Discussion 

We successfully developed a modelling framework to enable the flexible scaling and integration of 
responses to environmental flows. The eFlowEval framework provides a transparent basis for evaluating 
response of multiple target groups in a common system and offers the capability to capture and update 
best-available knowledge gained from in-depth research and monitoring. The framework has the capacity 
to provide assessments across a range of scales, from local wetland to whole of basin, and from short time 
frames (e.g. weekly/monthly) through to multi-year assessments. We have incorporated advice from water 
managers regarding the types and scales of outputs that would be of most use, and so have developed 
example output at a scale and resolution that will be suitable for natural resource management. 

Across the 2 demonstrations presented, we illustrate the functionality of the eFlowEval framework. The 
metabolism demonstration illustrates the range of spatial and temporal scales at which eFlowEval outputs 
can be generated. This involved developing the capability to scale responses from the local scale at which 
processes occur (e.g. at the scale of meaningful polygons or smaller) to larger scales (Gawne et al., 2018a). 
Scaling responses in this way necessarily increases uncertainty as scales become larger because of the 
range of ecological processes responding to multiple scales (DeFries et al., 2004), but the eFlowEval 
framework can represent that uncertainty either quantitatively or qualitatively. The use of prediction 
intervals ensures that any quantitative estimates of uncertainty will be realistic and focused on the range of 
likely values, rather than the uncertainty associated with the underlying model estimates (Chatfield, 2001).  

Feedback from water managers suggested that the range of scales was useful across multiple management 
goals – across evaluation and planning, scales from local to basin were relevant. For example, one feature 
that was suggested by water managers was the value in matching information about drivers as well as the 
environmental responses themselves. Thus, we developed a presentation option including those drivers. 
We illustrated other presentation options as well. Many others are possible and could be developed to suit 
specific use cases and are best developed in collaboration with the intended end users. 

The metabolism demonstration illustrated the ability of eFlowEval to assess quantitative responses and to 
compare responses across scenarios of plausible futures. These could include different future climates or 
different options for watering actions, or other natural resource management (e.g. as per Lester and 
Fairweather, 2011). Further capability, to develop synthetic outcomes from the environmental response, 
are also possible. For example, gross primary productivity and ecosystem respiration are able to be 
converted into a measure of heterotrophy/autotrophy for each polygon (not shown), and other processing 
of responses to variables of interest are possible. These could include measures designed to be readily 
interpreted by the general public (e.g. gross primary productivity could be converted to equivalent 
numbers of cows fed or equivalent hamburgers to assist with communication).  

The royal spoonbill demonstration illustrates different capability in the eFlowEval framework. The driver-
response model was a contrast to that presented in the metabolism demonstration. There, a quantitative 
regression model linked drivers to primary productivity and respiration. Here, for royal spoonbill, a life-
history based threshold approach was used, based on the strictures and promoters framework (Lester et 
al., 2020). This type of driver-response model is extremely parsimonious – incorporating the critical 
thresholds that are most likely to affect environmental outcomes at each life history stage. The risks 
associated with using such an approach are associated with ensuring that the most appropriate thresholds 
are identified and included to maximise the likelihood of outcomes occurring as modelled. For example, 
previous thresholds identified by experts have not matched those selected in a subsequent data-derived 
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identification of drivers (Lester, 2019), so caution is warranted. However, the focus of eFlowEval is in the 
use of existing driver-response models, rather than in their development.  

The royal spoonbill demonstration also illustrated some of the novel capability of the eFlowEval framework 
compared with other similar tools. In particular, the ability to include areal look-arounds (e.g. identifying 
whether there is suitable foraging habitat surrounding breeding sites) is new capability, as is the ability to 
include multi-scale driver polygons. The demonstration also included the ability to include different 
parameters at different locations (e.g. different windows for breeding to occur in the North and South of 
the Basin), as well as incorporates a minimum area threshold for the initiation of a breeding event, or for 
available foraging habitat.  

The eFlowEval framework offers a number of other improvements on similar previous efforts. The 
framework has been developed to include significant levels of flexibility in the types of driver-response 
relationships, inputs, aggregation and comparison methods possible. The focus on capturing the most 
important drivers across life history maximises the likelihood that limiting factors will be identified without 
unduly increasing model complexity or computational requirements (Lester et al., 2020). The scaling 
method is robust, given that outputs (rather than drivers) are scaled and aggregation methods have been 
selected with care (noting that the scaling inherently incorporates uncertainty; Englund and Cooper, 2003). 
The ability to include inter-dependence across species, time steps and spatial locations means that the 
framework does not assume independence across those components – an assumption that we know is 
false but one that is common in ecological models to support natural resource management (Lester et al., 
2020). Thus, important and realistic interactions can be explicitly included and effects accounted for. The 
eFlowEval framework also provides unprecedented flexibility to investigate patterns from local scales at 
which processes occur to the whole of basin.  

One of the potential advantages of such a framework is that it provides the ability to capture institutional 
knowledge. Many decisions in natural resource management are made by local managers with extensive 
experience in a particular location (e.g. a wetland or wetland complex) and that expertise may not be 
captured (Hilborn, 1992). This creates risk of a loss of institutional knowledge should that experienced local 
manager move on and also tends to result in a lack of transparency if the rationale for decisions is not 
captured, regardless of the success of the action (Hilborn, 1992; Greca and Moreira, 2000). A framework 
like eFlowEval, if implemented carefully, can be a repository for that institutional knowledge and create 
transparency and repeatability in decision making. The implementation of the framework could occur via a 
two-way exchange of knowledge, where initial driver-response models are developed using best-available 
science that is then validated against the expertise of local managers. Enabling side-by-side comparison of 
drivers and responses enables users to better visualise how outcomes arise, enabling direct interface with 
expert opinion and making the model itself transparent for its users. This would also enable local 
idiosyncrasies in response to be incorporated to minimise uncertainty arising from factors not explicitly 
modelled. Developed in this way, models are more likely to be accepted and trusted by practitioners but 
also more likely to adequately represent responses (Lester et al., 2020). This means that models such as an 
implementation of the eFlowEval framework could provide new insights into what might happen under a 
given set of conditions and, importantly, why, enabling explicit hypotheses about mechanisms to be tested 
(Sutherland, 2006).  

The results shown here are not intended to provide projections of metabolism or bird outcomes per se. The 
driver-response models used (particularly for metabolism) have been adapted to enable them to be used as 
demonstrations of eFlowEval (Appendix B, Appendix C). One of the outcomes of approaching the 
demonstration in this way is that it highlights the utility of the framework to demonstrate elements of our 
ecological understanding that are missing and assist in the direction of future data collection (Lester, 2019; 
Polasky et al., 2011). For example, quantitative estimates of uncertainty are not possible to provide without 
understanding the autocorrelation of errors in space and time. Similarly, the inundation input data (as a 
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maximum extent on a bimonthly timestep) limit our ability to estimate total metabolism. This is because 
there is not a method to estimate total metabolism in space and time from a maximum extent. So, we 
report the maximum metabolism associated with that maximum inundation over the aggregated unit (i.e. 
time or space). The outputs are therefore constrained and are, perhaps, less useful to managers than total 
metabolism would be, but still provide a value that can be compared in space and time. Thus, the outcome 
represents best available science at this time and is preferable than no providing an outcome until data 
deficiencies are addressed (e.g. by finer resolution inundation data or explicit relationships developed 
between total metabolism and maximum bimonthly inundation extent; Ryder et al., 2010). Furthermore, 
identifying which information would be needed to improve our ability to project responses would be a key 
output from the framework as it is implemented.  

Future work could extend the application of the framework to assessing differences relative to a 
counterfactual of no environmental watering, for example. Counterfactuals are scenarios that are the same 
as the scenario of interest in the absence of the policy choice (so here would exclude environmental water; 
Thomas and Koontz, 2011). Counterfactuals enable the testing of putative causal mechanisms, and also 
evaluation of management actions (Thomas and Koontz, 2011).  

Another development could allow the creation of an ability to identify sequences in the past with similar 
flow events, or to construct future environmental flow delivery; this would enhance the decision-making 
focus of the tool, moving it towards a tool capable of actively assisting decision-making at a range of scales 
from local to basin-wide. Then, for example, managers would be able to determine whether the most 
appropriate watering actions in a wet year were the same as those in a dry year, or if strategies that were 
the most favourable under the current climate would continue to be so under a drier future climate. 
Strategies that involved watering for a particular biotic group (e.g. fish) could be assessed for identifying 
synergies across groups. Other questions that could be addressed using this approach include: 

• What difference does environmental water make compared to a scenario without those flows (i.e. the 
counterfactual)? 

• What flow management strategies provide the best outcomes? 

• What are the potential impacts of climate change and extreme events? 

The framework could then form part of an adaptive management cycle by: formalising conceptualisations 
of system processes; creating and testing hypotheses from known environmental outcomes; aiding 
decision-making for future environmental water allocation; and identifying where knowledge and data 
collection can be improved (Lester et al., 2020; Sutherland, 2006). 
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6 Conclusion and recommendations 

6.1 Contribution to Flow-MER objectives 

The development of a common framework for linking environmental outcomes to hydrology provides a 
mechanism for evaluating the outcomes of management across the Flow-MER Themes and Selected Areas. 
The modelling framework enables extrapolation from Selected Areas to unmonitored locations and enables 
transitioning from considering outcomes at local scales to the basin scale. The framework facilitates 
comparisons across taxonomic groups to articulate specific relationships and responses, enabling the 
identification of potential synergies for environmental water use. Key questions that could be addressed by 
implementation of this framework could include: 

• What are the likely outcomes of Commonwealth environmental water in monitored and non-
monitored areas considering a range of biota and their needs? 

• How can environmental outcomes be evaluated at a basin scale, considering both local and basin-
scale outcomes? 

• How can the benefits of environmental watering be communicated to a range of audiences? 

6.2 Recommendations 

We recommend that the eFlowEval framework be implemented for a broader number of species or 
processes. Additional development, in collaboration with water managers, would continue to enhance the 
utility of the framework. Additional functionality, enabling users to identify sequences in the hydrologic 
record that share characteristics with forecast conditions, to enable different methods of environmental 
flow delivery to be compared and to add bespoke environmental flow delivery. Integration of the eFlowEval 
framework implementation with other visualisation products from Flow-MER would also be desirable.
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 Model platform and data 

The eFlowEval framework provides a general platform for assessing ecological and other outcomes at the 
basin scale by providing a consistent modelling approach and platform to incorporate data, assess response 
and scale, and present results. To achieve these outcomes, the framework has a defined series of steps that 
puts the necessary data into standardised formats and follows a consistent workflow. The workflow 
specifies a response model, creates standardised driver data, feeds that data to the model to assess 
predicted responses, and then typically aggregates those responses in space and time and presents results. 

An essential feature of the framework is the ability to compare scenarios (e.g., compare to counterfactual 
or predict future outcomes under different conditions). These scenarios typically involve using the 
modelling capacity in the framework in parallel with different sets of inputs representing the scenarios. The 
different scenarios would run through the framework separately, yielding outcome results in the standard 
framework format, which are then compared to each other. 

A.1 Base polygons and driver data 

Driver-response models identify the necessary input data, based on the best-available system knowledge. 
Driver data should be available at the basin scale, or the largest scale at which the model is intended to be 
run. Driver data can include many formats, e.g. spatio-temporal rasters of temperature, point records of 
rainfall or flow at gauging stations, or inundation extent polygons. For consistency between workflows data 
type is standardised by merging formats into a standard set of base polygons, to which additional driver 
data is attached. 

Using polygons as the base of the framework at the local scale provides several advantages. First, the shape 
and size of polygons are flexible, and so they can be both detailed and data-efficient. When conditions 
change over short distances, small polygons can capture those changes, while large polygons can be used 
when conditions are broadly similar. Flexible shapes allow them to reflect landscape characteristics, rather 
than a rigid grid structure. Further, large areas can be outside polygons entirely, avoiding the need to 
process areas of the basin unaffected by watering or irrelevant to the groups of interest.  

Here, the examples use ANAE wetland polygons (Brooks, 2021) as these represent wetland habitat types, 
however any polygon may be used. ANAE polygons delineate water-influenced areas and capture other 
characteristics of those areas, and these wetland types are used throughout MER and beyond as covariates 
for many ecological responses. Wetland polygons and their attributes were obtained from the ANAE (v3) 
(Brooks, 2021), and the ANAE geodatabase (Brooks, 2017) was used to obtain catchment and basin 
polygons and other relevant information. Minor processing was performed on the ANAE data. First, LTIM 
(Long-term intervention monitoring) catchments were exported after removing the Northern Basin polygon 
to ensure the basins do not overlap. Second, the ANAE wetland polygons were intersected with the Koppen 
climate classifications to investigate interactions between ANAE type and climate. Finally, the ANAE 
polygons were intersected with catchment boundaries to allow processing and analysis in distinct 
catchments. The resulting polygons were geohashed to create unique identifiers and formed the basis for 
all further analysis.  

The eFlowEval platform includes several methods to add additional environmental drivers as attributes to 
the polygons. These additions return polygon datasets with some relevant value for the environmental 
driver (e.g. temperature) in each polygon, potentially at many timesteps. Briefly, raster data is intersected 
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with the polygons to calculate an area-weighted statistic (e.g., mean, maximum) that accounts for the area 
of each raster pixel that intersects the polygon. Incorporating data from other polygons proceeds similarly 
with area-weighted statistics on the intersection, though the platform also has the capability to split 
polygons to generate a new set of base polygons incorporating information from both sets if interactions 
are thought to be important. Point data (e.g. gauged rainfall) can simply be matched to polygons, and 
statistics calculated across the points if multiple fall in a polygon. Whether incorporated from other 
polygons, points, or rasters, the platform provides the ability to define custom functions for these statistics, 
for example the volume of inundation greater than 10cm depth or rolling windowed operations such as 
time since last temperature above 30 C. In many cases, the data being integrated into the base polygons 
will be timeseries (e.g., daily surface temperatures). In that case, output polygons with the integrated data 
attributes are generated at that same timestep. 

Incorporating driver data into the base polygons yields a standard data format (polygons with driver data), 
but necessarily requires different processing for different data. Each response model will identify a specific 
set of drivers, possibly using different base data or data transformations. Moreover, different input data 
will have different formats and may require different statistics to aggregate into the base polygons. Thus, 
each set of input data has a unique processing script, though all follow a consistent workflow. In other 
words, eFlowEval takes a consistent approach to the processing of the drivers, while allowing flexibility for 
the specific drivers to reflect theme knowledge. 

In use, the input data and base polygons are read in and given matching coordinate systems. Functions for 
how to aggregate into the polygons are defined, which include standard statistics (e.g., mean, maximum) or 
custom based on particulars of the response model (e.g., depths over a threshold). These functions can also 
include temporal rolling, capturing quantities including time since inundation or maximum temperatures 
over a specific timeframe. The base polygons and input datasets are then divided into multiple chunks 
(typically 100 per catchment) with the statistics calculated in parallel. The output is a dataset of base 
polygons with the appropriate calculated values of the input data in each, often at many timesteps. These 
are then fed into the response model. 

A.2 Driver-response model 

Much like the data input process, the driver-response model assessment involves a consistent workflow, 
but each driver-response model must be developed individually, given their different driver data and 
responses to it. The specification of the response models proceeds in consultation with Theme experts to 
translate best-available ecological knowledge for responses to environmental drivers into functions that 
can be assessed with available driver data. These response models are typically strictures and promoters, 
but can be statistical (e.g. the metabolism example) or more complex process-based models. The 
development of these driver-response models is discussed in detail in Appendix B (metabolism 
demonstration) and Appendix C (waterbird demonstration). 

In use, the eFlowEval framework reads in the relevant driver data in the standardised format and uses the 
specified response models to calculate a response for each polygon at each timestep. The responses are 
then stored in the same polygon structure. In other words, this is a spatio-temporally explicit model with 
spatial units defined by polygons. By representing the responses in the same standard data structure, the 
responses themselves can be interdependent and multi-staged. For example, in the case of strictures and 
promoters, one life stage might respond to temperature, while the next life stage responds to inundation 
and the presence of the first life stage at some earlier time point (e.g. seed set requires previous successful 
germination and a growth period).  

To achieve dependencies between life stages or other species often involves further calculation of derived 
values in the response model. Indeed, dependencies often involve treating previous responses as drivers 
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for subsequent responses. By continuing to use the base polygons, the processing and analysis workflow 
remains consistent despite differences in the calculations done to reflect each response model or 
dependencies between response models. These calculations and derived datasets follow the same 
consistent approach as the original driver data, with the outcomes being some function (possibly user-
defined) of the set of data in base polygons. These might include both ‘snapshot’ measures (stricture 
passing at each point in time) or rolling calculations on previous life stages to capture quantities like days 
since germination. As with the data processing, these response models perform many calculations at the 
scale of the base polygons at many timesteps, and so are broken into many chunks and run in parallel, 
yielding sets of output values in each base polygon and timestep. 

A.3 Results processing 

The outputs from the driver-response model are the simplest form of result from the eFlowEval framework, 
representing predicted outcomes at each polygon and timestep. The eFlowEval framework provides several 
next steps with these results. First, the standard results format allows for consistent and general extensions 
and development of new result presentations. Second, eFlowEval provides some standardised types of 
results presentations, including mapping, various quantitative plotting options, and tables. Finally, 
aggregation of the results to management-relevant spatial and temporal scales, combined with scenario 
comparisons, provide critical results interpretation. 

A.4 Aggregation 

In some cases, results are useful at the local scale (i.e., individual base polygons) when assessing the 
outcomes for a small area of the basin, as illustrated in the text for metabolism in the Werai forest and bird 
breeding. In this case, the response model outcome data can be accessed directly and plotted as maps or 
other graphical or tabular forms. In most cases, however, the eFlowEval framework will be used to assess 
outcomes at larger spatial and temporal scales, and so outcomes must be scaled up (aggregated) 
appropriately. 

The eFlowEval framework provides a consistent method to scale up from base polygons to large spatial 
units such as whole water catchments and basins (e.g., the Murray–Darling Basin). To achieve this, larger 
polygons of interest are identified, and all outputs from the base polygons are aggregated into the larger 
polygons. Similar to the ability to choose and define functions for inputting driver data into base polygons, 
the aggregation function can be defined, which should differ based on the values inside the base polygons. 
For example, if the base polygons contain a total inundation volume or metabolic output, then the simple 
sum of those polygons within the larger polygon would yield the total wetland inundation or metabolic 
output in the catchment. However, if we desire a mean at the catchment scale (e.g., mean temperature in 
wetlands across the catchment), the mean should be calculated weighted by the areas of the base 
polygons. The aggregation outputs and a set of variable values in the new, larger polygons, typically at a set 
of timepoints, very similar to the base polygon outputs.  

Aggregation may also occur across a temporal scale, for example, to combine daily outputs into water years 
or other scales relevant to management decisions. The consistent process for this aggregation is to provide 
a set of timepoints defining the breaks between time sections, and a function to calculate on all the 
polygons within that time period. The temporal aggregation can be conducted on the base polygons or 
after a spatial aggregation to larger polygons. In either case, the result is contained within the same set of 
polygons, now aggregated to the new coarser time units. 

In both spatial and temporal aggregation, the results are aggregated, never the inputs (driver data). This 
allows us to model ecological processes as close to the scale at which they occur as possible and minimises 
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the impact of Jensen’s inequality. For example, if we model bird breeding as dependent on inundation in 
every wetland across a catchment and then calculate the total breeding in the catchment, the answer will 
be much different (and more correct) than if we calculated breeding output at the mean inundation level 
over all wetlands in the catchment.  

A.5 Results presentation 

The eFlowEval framework provides standard functionality to generate maps and graphics in a consistent 
way. These outputs form a set of default outputs, though the details of these presentations should be 
modified for different responses, for example changing scales or colour ramps. 

All themes use similar standard plot types (e.g. maps, bar charts, timeseries plots), but the particular plots 
differ between them, depending on what is being plotted. For example, a map of metabolic output needs 
to handle very different values and accentuate different comparisons than a map of bird breeding. 
However, a set of plots can be largely standardised within themes. The approach we have taken with 
eFlowEval is to provide a consistent set of plot types generally, and then define consistently-defined plots 
within theme to achieve comparisons between plots, maintain colour choices, etc. These plots are built 
using plotting functions for consistency and called in Rmarkdown notebooks for final adjustments and 
presentation (with examples throughout the text). These outputs apply to local results and to larger spatial 
scales post-aggregation.  

Maps are a natural output format, as nearly all the data and results are spatial, consisting of variable values 
in polygons. The eFlowEval framework provides mapping capability as static maps, zoomable interactive 
html maps, gifs, and Shiny apps. In general, these maps present both driver and response data, to illustrate 
the reason why responses occurred. They are also useful for showing differences between scenarios or 
uncertainty, as seen in the text. They will typically need to be adjusted for a given set of outputs, 
particularly colour ramps that best represent the range of values and the types of variables. These settings 
are developed in plotting functions, which then auto-apply them to each desired set of maps. 

Most data and outputs are spatio-temporal, and so outputs are developed to present results through time. 
These may be static maps at different time points, gifs, or interactive Shiny apps with selectable time 
periods. Beyond mapping, plotting capability is developed to provide timeseries of the variables, either on a 
per-polygon basis or further aggregated to the basin-scale. These sorts of presentation can be ideal for 
visualising quantitative changes though time or between locations, particularly if they are too small to be 
effectively captured by a chloropleth map. For any particular set of outcomes, decisions need to be made 
about the scaling applied, including simply presenting the data or relativising to a baseline (as may be 
necessary with very large differences in values between catchments, for example). These plots are also 
developed within plotting functions, and enable maintaining consistent plot ‘look’, including colour ramps, 
with maps and other figures. 

Additionally, consistent methods for scenario comparisons have been developed. At the simplest, these 
include side-by-side maps or other plots of the data for the different scenarios. More analytically, the 
eFlowEval framework provides a standard set of capabilities to directly compare outputs between 
scenarios, including differences or relative changes in values between them in point, line, and bar charts. 
The structure of these comparisons are made consistent by the framework, while providing the flexibility to 
define the most relevant comparisons. These can then be plotted and presented in various ways paralleling 
other results, including maps, bar graphs, and timeseries, as seen in the text. 
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 Metabolism demonstration 

Metabolism data was applied to the model, using knowledge gained from a regression of metabolic rates 
on temperature and seasonality, developed by the Food Webs and Water Quality theme (Ryder et al., 2021, 
Darren Giling, pers. comm). The relationship found in the Food Webs and Water Quality theme is based on 
in-stream metabolism sensors, using water temperature measurements from the same sensors and flow 
volume calculated from gauges (Ryder et al., 2021).  

Here, we demonstrate eFlowEval for wetlands across the Murray–Darling Basin (the Basin), using a similar 
regression. This approach uses different input data, namely remotely sensed temperature and inundation, 
in order to reach the basin-scale and analyse wetland conditions instead of in-stream. We identify sources 
of increased uncertainty in these new relationships. This approach demonstrates the framework and 
achieves basin-scale outcomes, while acknowledging that the values for metabolic rates are highly 
uncertain without additional research into models for wetland metabolism.  

B.1 Data inputs 

To establish the relationships used here, instead of in-stream temperatures at monitoring locations, we 
obtained remotely-sensed surface temperatures across the Basin, acquired from NASA MODIS (Wan et al., 
2015) for the period 1 Jan 2014 to 31 Dec 2020, which are raster grids at 1km resolution and daily 
timesteps.  

To allow predictions across all Basin wetlands based on temperature, the surface temperature raster was 
used to calculate an average temperature in each ANAE polygon in the Basin on each day using an area-
weighted mean for the raster intersections. We calculate the area-weighted mean because pixels that 
intersect polygon edges will not have their full area contained within the polygon, and so their contribution 
to the polygon-average temperature should be down-weighted. This process, like nearly all processing 
steps operating on the full set of ANAE polygons in the Basin, is intended to run on an HPC system, where it 
is broken up into 100 pieces within each catchment to run in parallel. The subsequent outputs are then re-
combined into files containing all ANAEs in each catchment. 

Metabolic rates are defined per-litre, and we are interested in predicting aquatic metabolism. Thus, we 
include inundation data to provide the volume of water in each wetland. The best-available data at the 
basin scale gives maximum inundation extent during 2-month periods in 30 m rasters (Teng, 2021). This 
dataset was used to find the inundation volume and the maximum inundation extent for each ANAE 
polygon for each 2-monthly period. The analyses for metabolism required the simple volume of inundation, 
and so the inundation data were incorporated into the base ANAE polygons by calculating the area-
weighted sum of inundation volume for the pixels intersecting each polygon. As with temperature, the 
area-weighting is included to account for the varying amounts by which pixels intersect the edges of the 
polygons. Processing is intended to run on the HPC for many parallel chunks with concatenated output. 

To predict metabolism from temperature given inundation, we developed a regression of metabolism on 
temperature. This regression used the temperature data from MODIS, which were spatially matched with 
the locations and dates of the metabolic sensor data collected during LTIM and MER from the CEWH’s 
Monitoring Data Management System. These operations yielded a spatial point dataframe with columns for 
date, location, metabolic values, temperature, and catchment for each datapoint in the MER metabolism 
sensor file. Additionally, the in-stream temperature data from the sensors themselves were retained, in 
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order to assess differences between regressions using in-stream versus remotely sensed temperatures. 
Data were excluded from the sensor at 1km upstream Wynburn Escape because the sensor location 
coordinates were incorrect and so could not be correctly matched to either temperature data or 
catchment. Following this data matching, we developed regressions similar to those from the Food Webs 
and Water Quality theme. 

B.2 Response model 

Regressions were developed for both log(GPP) (gross primary production) and log(ER) (ecosystem 
respiration), capturing the relationships identified by (Ryder et al., 2021). Model selection (likelihood ratio 
tests where models with nested terms were considered, otherwise AIC (Akaike Information Criterion)) was 
used to choose between several potential models for each dependent variable. In all cases temperature (in 
degrees C) was included. Additional terms considered were the daysAwayFromWaterYear (a continuous 
measure of seasonality), ValleyName (catchment), and bimonthlyPeriod (capturing seasonality in discrete 
chunks matching the inundation data). Water Year was included as a random intercept to capture 
differences between years. The seasonality term daysAwayFromWaterYear is defined as the number of 
days (in either direction) a data point is from the water year breakpoint (July 1), and so has a maximum of 
183 in a normal year, equating to Jan 1. This construction was chosen to maximise information and power 
after extensive testing against other options, including day of year (to capture differences between spring 
and autumn, for example) and various discretisations, including bimonthly to match the inundation data. 
Seasonality is clearly correlated with temperature (ρ = 0.81), but also captures other seasonal effects such 
as insolation, life cycles, agricultural practices, etc. Most combinations of the independent variable terms, 
along with interactions between temperature and ValleyName and temperature and the seasonality 
measures were considered. Note, however, that our primary goal here was demonstration, and so we 
sought to produce a reasonable model of metabolism given the data available, not necessarily to find the 
best possible metabolism model. For both log(GPP) and log(ER), the best fit models included temperature, 
daysAwayFromWaterYear, ValleyName, and the interactions temperature* daysAwayFromWaterYear and 
temperature*ValleyName, and included the WaterYear random factor. Estimates for each term in these 
models, along with 95% confidence intervals and p-values are given in Table B.1 and Table B.2. 

Table B.1 Predictors of log (GPP) for best-fit model 
Includes terms for temperature (tempC), catchment (ValleyName), seasonality (daysAwayFromWaterYear)and the interactions 
tempC*daysAwayFromWaterYear and tempC*ValleyName. WaterYear included as random effect to capture unspecified 
differences between years. Marginal R2 is the R2 for the fixed effects alone, while conditional is R2 for the full model. 

Predictors Estimates CI p 

(Intercept) -2.66 -4.07 – -1.26 <0.001 

tempC 0.08 0.04 – 0.11 <0.001 

daysAwayFromWaterYear 0.01 0.01 – 0.01 <0.001 

ValleyName [EdwardWakool] 1.71 0.31 – 3.12 0.017 

ValleyName [Goulburn] 1.5 0.10 – 2.91 0.036 

ValleyName [Lachlan] 2.21 0.80 – 3.61 0.002 

ValleyName [LowerMurray] 0.94 -0.50 – 2.37 0.2 

ValleyName [Murrumbidgee] 1.54 0.12 – 2.96 0.034 

ValleyName [Warrego] 1.8 0.17 – 3.42 0.03 

tempC * daysAwayFromWaterYear 0 -0.00 – -0.00 <0.001 

tempC * ValleyName [EdwardWakool] -0.05 -0.08 – -0.01 0.016 
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Predictors Estimates CI p 

tempC * ValleyName [Goulburn] -0.05 -0.08 – -0.01 0.013 

tempC * ValleyName [Lachlan] -0.05 -0.09 – -0.01 0.009 

tempC * ValleyName [LowerMurray] -0.03 -0.07 – 0.01 0.115 

tempC * ValleyName [Murrumbidgee] -0.05 -0.09 – -0.02 0.006 

tempC * ValleyName [Warrego] -0.04 -0.08 – -0.00 0.046 

Random Effects 
  

s2 0.38 
  

t00 wateryear 0.01 
  

ICC 0.03 
  

N wateryear 7 
  

Observations 8447 
  

Marginal R2 / Conditional R2         0.296 / 0.320 
 

 

Table B.2 Predictors of log(ER) for best-fit model 
Includes terms for temperature (tempC), catchment (ValleyName), seasonality (daysAwayFromWaterYear)and the interactions 
tempC*daysAwayFromWaterYear and tempC*ValleyName. WaterYear included as random effect to capture unspecified 
differences between years. Marginal R2 is the R2 for the fixed effects alone, while conditional is R2 for the full model. 

Predictors Estimates CI p 

(Intercept) -1.73 -3.57 – 0.11 0.065 

tempC 0.06 0.01 – 0.11 0.011 

daysAwayFromWaterYear 0 0.00 – 0.00 <0.001 

ValleyName [EdwardWakool] 1.68 -0.16 – 3.51 0.073 

ValleyName [Goulburn] 2.15 0.31 – 3.99 0.022 

ValleyName [Lachlan] 2.74 0.90 – 4.57 0.003 

ValleyName [LowerMurray] 0.02 -1.85 – 1.89 0.983 

ValleyName [Murrumbidgee] 0.77 -1.09 – 2.63 0.419 

ValleyName [Warrego] 1.79 -0.27 – 3.85 0.088 

tempC * ValleyName [EdwardWakool] -0.04 -0.09 – 0.01 0.09 

tempC * ValleyName [Goulburn] -0.06 -0.11 – -0.01 0.011 

tempC * ValleyName [Lachlan] -0.06 -0.11 – -0.02 0.009 

tempC * ValleyName [LowerMurray] -0.03 -0.08 – 0.02 0.286 

tempC * ValleyName [Murrumbidgee] -0.05 -0.10 – 0.00 0.056 

tempC * ValleyName [Warrego] -0.05 -0.10 – 0.00 0.067 

Random Effects 
  

s2 0.62 
  

t00 wateryear 0.04 
  

ICC 0.05 
  

N wateryear 7 
  

Observations 8447 
  

Marginal R2 / Conditional R2         0.260 / 0.300 
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These models use surface temperature from MODIS and not in-stream temperature captured by the same 
sensors as metabolism, in order to gain spatial generality. We tested the impact of this shift, as it has the 
potential to increase uncertainty. Model performance is very similar to models using the in-stream 
temperatures (For GPP, surface temp: conditional R2 = 0.32, RMSE = 0.61; in-stream temp: conditional R2 = 
0.35, RMSE = 0.60. For ER, surface temp: conditional R2 = 0.30, RMSE = 0.78; in-stream temp: conditional R2 
= 0.32, RMSE = 0.77). Accepting this slightly poorer performance trades off with the value to basin-scale 
modelling of having temperature data for all locations in the Basin, rather than only at monitoring points. It 
still must be acknowledged, however, that while the fits are close at these measured locations, there will 
be other sources of bias from extrapolating to unmonitored areas. 

The chosen models are difficult to visualise, due to the number of fixed effects and interaction terms. The 
top panels of Figure B.1 and Figure B.2 show the relationship between temperature and metabolism in the 
raw data points for each catchment, coloured by the daysAwayFromWaterYear variable to indicate 
seasonality. For the model fits (bottom panels in Figure B.1 and Figure B.2), the relationship between 
temperature and metabolism in each catchment are shown, with separate panels for the fit near the 
beginning and end of the water year (daysAwayFromWaterYear = 0), and another for the middle of the 
water year (daysAwayFromWaterYear = 184), noting that the predictions shift continuously from one to the 
other (and back again) throughout the year. 

 

Figure B.1 Data points for log(GPP) and temperature from in-stream sensors (top panels) for each catchment, 
coloured by the days away from July 1. Bottom panels: best-fit models and 95% CI for the relationship between 
log(GPP) and temperature in each catchment near July 1 
(Day 0- the end of one water year and start of the next) and near Jan 1 (Day 184, the middle of a water year). Days away from 
water year is a continuous variable, and so only the endpoints are shown. 
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Figure B.2 Data points for log(ER) and temperature from in-stream sensors (top panels) for each catchment, 
coloured by the days away from July 1. Bottom panels: best-fit models and 95% CI for the relationship between 
log(ER) and temperature in each catchment near July 1 
(Day 0- the end of one water year and start of the next) and near Jan 1 (Day 184, the middle of a water year). Days away from 
water year is a continuous variable, and so only the endpoints are shown 

In addition to the best fit models, other options were also saved and moved forward to capture different 
sorts of uncertainty due to the limitations of available data. First, the regressions developed here only 
contained data from the subset of catchments with metabolic sensors (Murrumbidgee, Goulburn, Lachlan, 
Edward Wakool, Lower Murray, Warrego, Barwon Darling). Predictions in catchments without sensors are 
possible if we accept the additional uncertainty that comes from extrapolating beyond the spatial locations 
provided by the metabolic data. To do this, we developed a version of the model that dropped the Valley 
and temp*Valley terms. This model is used for the uncertainty characterisation in 4 Representing 
uncertainty, particularly Figure 4.3. Next, the inundation data is available only at the 2-monthly scale, and 
so the daily metabolism data (and daily predictions) cannot be exactly matched. One option (which we used 
throughout the text, because it maintains as much information as possible at each stage of the framework) 
is to find those daily predictions, and then temporally average them into bimonthly units. However, it is 
also possible to simply obtain the predictions based on regressions including a bimonthly temperature 
instead of the daily. We retained these models, but do not present them in this report.  

For each regression model, the model objects were saved, and were then used for predictions of metabolic 
output across wetlands in the basin (or the subset of catchments for which the model was parameterised). 
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B.3 Predicting metabolism 

The regression developed here defines a relationship between metabolic rates (in mg O2 L-1 Day-1) and 
surface temperature. We use this regression to predict the log(GPP) and log(ER) per litre in each ANAE 
wetland from their daily average temperatures (area-weighted from raster, as described above). In addition 
to the predicted value, 95% prediction intervals (PI) are also included, as these provide the plausible range 
of values for metabolic rates given that temperature. Predicted metabolism is found using regressions with 
and without a Valley term and for log(GPP) and log(ER). Predictions from the model with the Valley term 
are NA for catchments other than those with sensor data, while the model without the Valley term 
produces numeric predictions for all ANAEs in the basin. The predicted values and prediction intervals are 
saved together for all ANAE wetlands, but separately for each model. 

As described in the text, we used prediction intervals instead of confidence intervals (CI) because we are 
interested in describing the range of metabolic rates, not confidence in the best regression fit. Note, 
however, that there are additional sources of uncertainty, most notably the extrapolation of relationships 
defined in flowing water to wetlands. As a consequence, these ranges represent the PI only if those 
extrapolations hold, and the true PI, given additional qualitative and unmeasured sources of uncertainty, is 
likely to be larger.  

The per-litre rates predicted from temperature represent the metabolic potential for each wetland, but 
water is needed for that aquatic metabolism to occur. Thus, we multiply these rates by the inundation 
volume to obtain total predicted metabolism for each wetland. Note that ‘potential metabolic output’ is 
itself a potentially powerful measure, as it indicates the metabolic output that could be achieved if a 
wetland were inundated, and so may be quite useful for planning. Because the inundation data is the 
maximum inundation extent for 2-monthly periods, the daily per-litre predictions are first scaled to the 2-
monthly timesteps to match. This process involves loading the predicted daily per litre metabolic rates in 
each ANAE wetland for each of the four models and assigning each date to a matching bimonthly time-
period from the inundation dataset. Then, the mean of those daily per-litre values are taken over the 2 
months to best represent metabolic rates during that period. Other statistics are possible, but without 
additional knowledge of the inundation sequence, the mean captures as much information as possible 
about the temperature sequence during the 2 months. 

The regression predicts log(GPP) and log(ER), and so before taking the bimonthly mean, the antilog of the 
daily predictions of log(GPP) and log(ER) are calculated. This transformation is necessary to calculate mean 
GPP and ER, rather than their logs, as that would imply a multiplicative (geometric) average. While GPP and 
ER may be related to multiplicative processes (e.g., phytoplankton dynamics), the goal here is to 
characterise production and respiration in a wetland, and so we should average the values on the 
arithmetic scale. This process yields predictions for each ANAE that are still in per-litre units, they have just 
been scaled to the 2-monthly timestep. 

Finally, these predicted mean bimonthly metabolic rates are multiplied by the maximum inundation volume 
in each polygon to obtain the predicted metabolic rates at maximum inundation extent. Because these 
predictions are at the maximum inundation extent, they almost certainly overestimate total production in 
that period. Thus, we must take care in interpreting these values or in further analyses and transformations 
to acknowledge that we are comparing maxima, not averages. 

B.4 Spatial aggregation 

As described in the text, presentation and interpretation of results will often best match management 
needs if scaled from the individual ANAE wetlands to larger spatial contexts (e.g., catchments or the whole 
basin). In the metabolism demonstration, 3 levels of spatial scaling are demonstrated: none (i.e., individual 
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ANAE wetlands), the catchment, and the basin. When aggregated to larger scales, we used the LTIM valleys 
polygons and Murray–Darling Basin boundary polygon included in ANAE v2 (Brooks et al., 2014). Briefly, 
each ANAE wetland is assigned to a larger-scale polygon based on location, and then relevant statistics are 
calculated. Aggregation to larger areas can consider many different potential statistics (e.g., minima, 
maxima, means). The choice of these aggregation functions should match both the desired use of the 
aggregated data as well as the nature of the data, with both sums and means demonstrated in the text. 
Note that although input data may also be aggregated for visualisation, aggregated inputs are not used for 
the modelling, as that could generate large errors due to nonlinear responses. 

The sum over each catchment of the predicted metabolism in each ANAE wetland is used to aggregate GPP 
and ER. This gives the total metabolic activity for each catchment at the maximum inundation extent in the 
2-month period. Note that this is not the predicted total metabolism over that period, because we only 
know maximum inundation extent. If we want to consider the potential metabolic activity (from only 
temperature, without knowing whether or not there was water present), we could calculate an area-
weighted sum or mean of the raw daily predictions before multiplying them by inundation. 

The input data (inundation and surface temperature) was also aggregated for clearer comparison with the 
outcomes. Surface temperature is aggregated using the area-weighted mean surface temperature of the 
ANAE wetlands in each catchment. Inundation volume is aggregated using the sum of inundation volume 
across all ANAE wetlands in each catchment. This sum gives the total volume of inundated wetland in each 
catchment at the maximum inundation extent during a 2-month period.  

B.5 Plotting and figures 

Investigating ANAE wetlands directly can be beneficial at times, particularly for assessing local outcomes. 
Although all wetlands are modelled, examining the outcomes is only practical for small subsets of the 
wetlands in the Basin. To do so, a relevant set of wetland polygons can be selected and viewed as-is. The 
Werai forest demonstration (described in this report) is an example of this approach. As all wetlands within 
the chosen region are viewed individually, no spatial aggregation occurs, only spatial clipping of the 
wetland datasets. For the Werai example, a boundary for the Werai Ramsar site is used to clip the full set of 
ANAE wetlands (both input and output data, i.e., temperature, inundation, GPP, and ER) for plotting. The 
mapped inputs and outputs are also developed into a Shiny app with user-selectable time periods to 
visualise the relationship between temperature, inundation, and metabolism at different time points 
(Appendix D). Local scale plots are consistently labelled, coloured, and scales adjusted for consistency with 
a set of plotting functions. The plots themselves are built in a notebook for final production, taking 
advantage of the notebook format’s ability to preserve the output. 

Basin-scale plotting proceeds in a very similar way, using the aggregated data instead of the individual 
wetlands. The same set of plotting functions are used, which now establish basin-relevant standard scalings 
and temporal aggregations. The approach of using plotting functions allows establishing standardised 
colour scales, holding plot dimensions and colour maps consistent across plots, and allows a consistent look 
to all the plots. Plots themselves are again generated in a notebook for ease of visualisation and 
production. A shiny app is also developed for the basin scale outcomes (Appendix D). 

Both local and basin-scale plotting examine outcomes derived from the historical record of temperatures 
and inundation, as well as outcomes from demonstration scenarios. Scenario plots can be presented on 
their own, or calculations can be performed to visualise them relative to baseline. 
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B.6 Scenarios 

One of the primary benefits of the eFlowEval framework is the assessment and comparison of different 
scenarios, whether those are around management actions, climate, or some other change. This capacity is 
demonstrated in the metabolism example. However, as no pre-established scenarios were available, 3 
simple scenarios were developed to allow the demonstration of the process of running and comparing 
scenarios in the eFlowEval framework. The scenarios considered are a temperature increase of 2 °C, an 
increase of 10% in inundation, and a combination of the two. These scenarios are purely for demonstration 
purposes and should not be taken to be representative of expected change in the basin or potential 
management actions. For one, they are highly simplistic, neither temperature change nor inundation shifts 
will occur uniformly over the Basin. Further, temperature and inundation will interact, which is not 
captured here. 

Scenario specification may occur at different points in the process, and so we demonstrate 2 potential 
methods. First, we created a temperature scenario with a uniform 2°C increase. To demonstrate the 
situation where a scenario is specified in the initial input data, we added 2°C to the temperatures 
immediately on reading in the original raster data. Subsequent processing was unmodified from the 
temperature data (averaging into ANAE polygons, use for predicting metabolism, aggregation, plotting). 
This approach parallels what we would expect if we received something like climate scenarios. 

Second, we developed a scenario with a uniform 10% increase in inundation volume. To demonstrate 
specifying the scenario later in the process, we added 10% to the inundation in every ANAE wetland. This 
was done to approximate the situation where a manager might like to change the e-water delivery to a 
certain area. As with temperature, further processing exactly paralleled the baseline analyses, from 
multiplying by the predicted metabolic potential through the plotting. 

The key aspect for comparing scenarios occurs at the very end of the framework, after all scenarios 
(including baseline or counterfactual) have produced outputs. All scenario processes are carried through in 
parallel, and then during the analysis and plotting phase they are compared to each other to assess how 
the different scenarios change potential outcomes. These outcomes can be compared using the same 
plotting functions as before, with plots simply positioned next to each other. The eFlowEval framework also 
includes additional plotting functionality to build similar plots based on differences or relative differences 
between scenarios, which is made possible by the consistent output formats of the framework. Additional 
scenario-specific plots are available to compare scenarios quantitatively in barcharts or timeseries (see 
text).  
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 Waterbird demonstration 

To demonstrate the how the eFlowEval framework can be implemented for mobile organisms we selected 
the Royal Spoonbill (Platalea regia) as the target species. The Royal spoonbill was chosen because it is 
dependent on water for much of its lifecycle (Figure C.1), they nest in colonies, and have distinctive 
behavioural strategies that lend themselves to threshold requirements (Lester et al., 2020).  

We worked with expert Heather McGinness to establish 1) the most important life-history stages, 2) the 
most important strictures applying to each life-history phase, and 3) a defensible value for that 
stricture/threshold. These were then compared to the available datasets that could be used to assess 
whether or not the strictures were met over time. We focused on water dependent strictures, as water is 
the primary management-relevant driver. Triggering a breeding event and maintaining suitable conditions 
for laying and survival of the young to fledging where considered to be the most critical stages. The 
availability of foraging resources within the natal wetland and the surrounding areas is important to 
support the raising of young.  

C.1 Data and stricture processing 

The royal spoonbill strictures depend on inundation characteristics (e.g. timing and spatial distribution) and 
how these overlay with vegetation communities (e.g. nesting habitat). The dataset underpinning the 
demonstration is the bimonthly maximum inundation dataset created by Teng (2021) at CSIRO, and also 
used for the inundation demonstration. This dataset provides 30m rasters with depth at the maximum 
inundation extent over a bimonthly timestep. These were processed into ANAE polygons using custom 
aggregation functions giving the area of each polygon meeting the depth requirements for breeding or 
foraging. The result was 2 sets of polygons, one for each activity, containing values for relevant inundation 
areas for 197 bimonthly timesteps (1988–2020). Strictures based on meteorological phenomena, such as 
large, rapid changes in temperature and heavy rainfall, could be implemented from Basin-wide datasets, 
but this is not part of the demonstration. There is evidence to suggest these play a significant role in 
spoonbill mortality (per comm. Heather McGinness). 

The general approach for strictures was to evaluate whether conditions were met for the inundation values 
in each polygon giving a true (‘1’) or false (‘0’) values for each. Taking the product across all strictures and 
time steps within an activity period (e.g. breeding season) yields a total pass/fail measure for that period. 
The resulting value, zero or one, was then multiplied by the inundation area of each polygon such that all 
polygons failing to meet strictures are set to zero and those that pass retain an inundation area.  

Birds are mobile, and so some strictures include values relevant to a wetland complex, rather than single 
wetlands. For example, breeding events require favourable conditions across a larger area, and foraging 
can occur some distance from the nest site. In these cases, wetland complexes were defined from RAMSAR 
sites and spatial buffers to capture nearby wetlands. Inundation areas of polygons with passing strictures 
contained within each wetland complex were summed and compared to wetland-scale thresholds. 
Combining these wetland-scale strictures gave us an estimate of whether a breeding event was likely each 
year by wetland complex (true/false). 
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C.2 Stricture definitions 

Strictures driving breeding success included vegetation type and water depth, timing and distribution. 
Breeding requires water depths of between 0.5 and 1.5m. This stricture was implemented in the processing 
of bimonthly inundation dataset into the breeding ANAE polygons by defining a custom aggregation 
function that calculated area inundated given water depth was within the acceptable range. Some ANAE 
vegetation types have attributes, such as nesting sites, that support breeding. McGinness et al. (2020) 
ranked the ANAE types according to the frequency of nesting events recorded (Table C.1). We implemented 
the vegetation-dependence stricture by using this list to filter the ANAE to those that are suitable for 
nesting when flooded. Inundation must last for a least 6 consecutive months within the breeding season, 
which is between October and March in the Southern Basin and August and April in the Northern Basin. To 
realise these seasonality and duration strictures we calculated a rolling sum of areas within a 6-month 
window (3 bimonthly timesteps) and selected those that ended in March. This end date limits the 
applicability of the demonstration to the Southern Basin, though it is possible to create a more complex 
function that assesses whether a wetland is in the Northern or Southern Basin and adjusts the end date 
accordingly. Initiation of a breeding event requires inundation across large parts of a wetland complex, not 
just a single ANAE polygon, so we calculated a total area inundated in the complex. For demonstration 
purposes we used threshold of area equal to 70% of the maximum historical inundation meeting breeding 
strictures to implement the total inundation area stricture. Some analysis has been done on amount of 
instream discharge that initiates breeding events but given that our inundation datasets are spatial rather 
that point based, they did not translate (Bino et al., 2014; Brandis et al., 2018). For successful breeding, all 
of these strictures must be met (e.g. each gives a value of 0 or 1, and they are multiplied to determine 
breeding success, which is then used to calculate area of successful breeding). 

Foraging strictures included vegetation type, water depth and spatial distribution relative to the wetland 
complex, and were implemented as described for breeding, with some modification to the details due to 
different needs in the different life stages. Specifically, foraging requires depths below 0.4 m to facilitate 
the wading technique of the spoonbill. Vegetation types for foraging also differ from those needed for 
breeding and were also drawn from McGinness et al. (2020). Foraging can occur beyond the bounds of the 
habitat complex so when summing total available foraging area we implemented a 10 km look-around, 
which reflects the maximum distance spoonbill travel (Figure 3.11). The additional area was not significant 
for the Warrego forest wetlands, but may be for other wetlands, or species with larger ranges. For this 
demonstration, the available area had to be greater than 5% of historical maximum forage area to pass the 
stricture.  

For a successful breeding event, all of these strictures must be met (e.g. birds must successfully breed and 
then forage enough to keep those chicks alive to fledge). Each individual stricture gives a value of 0 or 1, 
and they are multiplied to determine success, which is then used to calculate area of successful breeding. 
The outcome is an overall estimate of whether a breeding event was likely for each wetland complex in 
each year, and the area over which it occurred (Figure 3.9).  



 

APPENDIX C WATERBIRD DEMONSTRATION|  43 

 
Figure C.1 Royal spoonbill habitat requirements (adapted from McGinness et al. 2020)  

 

Table C.1 Top breeding and foraging habitat types for Royal spoonbill in the Murray–Darling Basin 
The uppermost entry has the most recorded breeding or foraging observations. Any ANAE in these types was counted as success in 
the Vegetation stricture, while those in others were classed as failures.  

Breeding Foraging  

Lp1.1: Permanent lake Lp1.1: Permanent lake 

F1.2: River red gum forest riparian zone or floodplain Pp2.2.2: Permanent sedge/grass/forb marsh 

Pp4.2: Permanent wetland Pt3.1.2: Clay pan 

Pp2.1.2: Permanent tall emergent marsh Pp4.2: Permanent wetland 

Pp2.2.2: Permanent sedge/grass/forb marsh Pt2.2.2: Temporary sedge/grass/forb marsh 

Pt1.1.2: Temporary river red gum swamp F1.2: River red gum forest riparian zone or floodplain 

Pt1.8.2: Temporary shrub swamp Pt2.1.2: Temporary tall emergent marsh 

Rt1.4: Temporary lowland stream F1.8: Black box woodland riparian zone or floodplain 

F2.2: Lignum shrubland riparian zone or floodplain F1.4: River red gum woodland riparian zone or floodplain 

F1.8: Black box woodland riparian zone or floodplain Etd1.3.3: Tide dominated estuary 

F2.4: Shrubland riparian zone or floodplain Rt1.4: Temporary lowland stream 

Pt3.1.2: Clay pan Pt1.2.2: Temporary black box swamp 

Lt1.1: Temporary lake Pt2.3.2: Freshwater meadow 

F1.4: River red gum woodland riparian zone or floodplain F1.12: Woodland riparian zone or floodplain 

Pt2.2.2: Temporary sedge/grass/forb marsh Pt1.6.2: Temporary woodland swamp 

Pt2.3.2: Freshwater meadow Rp1.4: Permanent lowland stream 

Rp1.4: Permanent lowland stream Pt1.1.2: Temporary river red gum swamp 
 

Pt4.1: Floodplain or riparian wetland 
 

Lt1.1: Temporary lake 
 

Pp2.1.2: Permanent tall emergent marsh 
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Breeding Foraging   
F1.10: Coolibah woodland and forest riparian zone or 
floodplain 

 
Etd1.2.1: Tide dominated saltmarsh 

 
F2.2: Lignum shrubland riparian zone or floodplain 

 
F2.4: Shrubland riparian zone or floodplain 

 
Lsp1.1: Permanent saline lake 

 
Lst1.1: Temporary saline lake 
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 Shiny app 

Shiny apps are an ideal way to allow some user interaction with data analyses in R or python. Here, we 
have developed demonstration Shiny apps for our Werai metabolism example and for Basin-scale 
outcomes (Figure D.1 and Figure D.2, respectively). The user can select the bimonthly period of interest and 
the app fetches the driver data (volume of inundation and temperature) in each polygon and presents it as 
a map above the predicted values of GPP (gross primary productivity) and ER (ecosystem respiration). This 
approach allows the user to examine time periods of interest and compare the predicted outcomes for 
different temperature and inundation conditions that occurred during the modelled period (2014-2020). 
The values from the eFlowEval model sit atop fully zoomable basemaps using Leaflet, providing useful 
spatial context. 

 

Figure D.1 Example screenshot of Shiny app presenting drivers and predicted metabolic responses for each wetland 
in the Werai forest 
The pictured data matches Figure 3.1 but users can select any bimonthly period for which there is data from the dropdown menu, 
and all maps re-populate. Driver and prediction data are plotted on top of zoomable basemaps, of which there are several choices 
including some with topography or streetmaps.  
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Figure D.2 Example screenshot of basin-scale Shiny app, with drivers and predicted outcomes scaled to catchment 
and aggregated across 2-monthly periods to the water year 
As with the local example, the user can choose a water year to examine from a dropdown menu and all maps will repopulate. Maps 
are zoomable and draggable and have a choice of basemaps. 

The developments here are 2 of many potential uses for Shiny’s interface to allow user interaction. Many 
additional opportunities exist, such as allowing the user to select scenarios to compare or degrees of 
uncertainty. Implementation would proceed in consultation with water managers about the most useful 
direction. 
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