

Technical assessment of the eReefs biogeochemical (BGC) simulation [gbr4_H2p0_B3p0_Chyd_Dcrt] against observations

*aSkerratt J.H., aMongin M., aBaird M.E., aWild-Allen K.A., b,cRobson B.J., cSchaffelke B., aMargvelashvili N., aSoja-Wozniak M.

* Corresponding author Jennifer.Skerratt@csiro.au

^a CSIRO Oceans and Atmosphere, Castray Esplanade, Hobart 7001, TAS, Australia

^b CSIRO Land and Water, GPO Box 1700, Canberra, 2601, ACT Australia

^c Australian Institute of Marine Science, Cape Cleveland, 4810, QLD, Australia

Summary:

This technical report is a summary of eReef model version: gbr4_H2p0_B3p0_Chyd_Dcrt assessment.

The eReefs model configuration and results used in this paper is available via http://ereefs.info, where it is labelled "GBR4_H2p0_B3p0_Chyd_Dhnd" [GBR4: model grid with approximate 4 km grid resolution, H2p0: hydrodynamic model version 2.0, B3p0: biogeochemical model version 3.0, Chyd: SOURCE catchment model, 2011, Dhnd: deployment in hindcast mode].

A detailed description of the eReef model and assessment of the earlier BGC model (B2p0) is described in Skerratt et al. (2019). Assessment in this report includes comparison with BGC version B2p0 where applicable.

The gbr4 H2p0 B3p0 Chyd Dcrt simulation period is from 1 Dec 2010 to 1 Nov 2018.

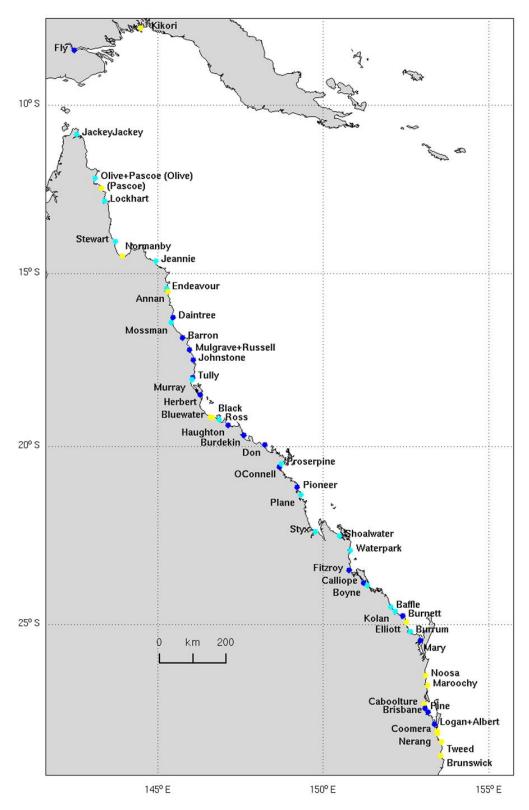
Access to the assessment is from the links in the table of contents. Sites are listed in Figures 1 and 2 and depths in Tables section 8 and 9.

Version Thursday, 4 April 2019

Acknowledgements

eReefs simulations were developed as part of the eReefs project (http://ereefs.org.au/ereefs), a public-private collaboration between Australia's leading operational and scientific research agencies, government, and corporate Australia. Integrated Marine Observing System (IMOS) supplied IMOS mooring data. IMOS is supported by the Australian Government through the National Collaborative Research Infrastructure Strategy and the Super Science Initiative. The Marine Monitoring Program (MMP) managed by the GBR Marine Park Authority, with funding from the Department of the Environment and Energy and co-funding from research partners supplied MMP moorings and triannual water samples that are conducted by the Australian Institute of Marine Science, James Cook University, University of Queensland, Queensland Parks and Wildlife Service, Reef Catchments and community volunteers. We thank our many colleagues involved in developing the eReefs model; particularly Rob Ellis and David Waters for the catchment modelling as part of the Queensland and Australian Government's Paddock to Reef program that is funded by the Queensland Department of Natural Resources and Mines 'Queensland Regional Natural Resource Management Investment Program 2013–2018' with support from the Department of Science, Information Technology, Innovation and the Arts (DSITIA). Particular thanks also to our colleagues: eReefs hydrodynamic modelling team: Mike Herzfeld, John Andrewartha, Philip Gillibrand, Richard Brinkman and Emlyn Jones. Software engineer and architect: Farhan Rizwi. AIMS colleagues: Miles Furnas, David McKinnon and CSIRO colleagues: Ruth Eriksen, Anthony Richardson, Claire Davies and Andy Steven and GBRF associate: Cedric Robillot.

Contents


1.	Abbreviations	
2.	Observational sites	
	River and catchments in eReef model	
	AIMS Marine Monitoring Program and IMOS National Reference Station sites used in eReef model	6
	eReefs sites and depths	
3.	eReefs model	8
	Biogeochemical Model schematic	8
	Model skill metrics description	8
	Parameter tables for gbr4_H2p0_B3p0_Cb	8
4.	AIMS MMP Long Term Monitoring (LTM)	13
	Simulated Chl a assessment against AIMS LTM	13
	Simulated Secchi depth assessment against AIMS LTM	26
	Simulated DIP assessment against AIMS LTM	35
	Simulated NOx assessment against AIMS LTM	48
	Simulated NH4 assessment against AIMS LTM	61
	Simulated DON assessment against AIMS LTM	74
	Simulated DOP assessment against AIMS LTM	87
	Simulated TSS (EFI) assessment against AIMS LTM TSS	100
1.	IMOS/NRS HPLC AIMS	113
	Chl a assessment against simulated Chl a	113
2.	AIMS MMP sensor network	116
	Fluorescence assessment against simulated Chl a	116
	Scatter plot of all MMP sensor network simulate Chl a against Observed fluorescence	123
	Scatter plot of individual MMP sensor network simulate Chl a against Observed fluorescence	124
	Assessment with Simulated Turbidity	125
	Simulated and observed turbidity assessment: (y axis to max extent)	126
	Simulated and observed turbidity assessment at AIMS MMP sites (y axis fixed at 20 NTU)	132
3.	IMOS/NRS fluorescence moorings assessment with Simulated Chl a	138
4.	National Reference Station (NRS) moorings (Yongala and NSI)	145
	Simulated NOx assessment against observations	145
	Simulated NH4 assessment against observations	148
	Simulated DIP against observations	151
5.	Carbon chemistry	154
	Map Wakmatha transect for Carbon Chemistry	154
	Simulated DIC assessment against NRS Yongala	155
	Simulated alkalinity assessment against NRS Yongala North Stradbroke	
	Simulated aragonite assessment against Yongala	159
	Wakmatha transect line for Carbon chemistry assessment	160
6.	Satellite images of MMP NRS and LTM sites	161

1. Abbreviations

AIMS	Australian Institute of Marine Science							
AODN	Australian Ocean Data Network							
B2p0	B2p0: biogeochemical model version 2.0							
B3p0	B3p0: biogeochemical model version 3.0							
CDOM	colour dissolved organic matter							
Chl a	chlorophyll a							
CTD	Conductivity Temperature Depth profiler							
d2	Statistical metric, aka Willmott index (see page 8)							
DIN	dissolved inorganic nitrogen							
DIN	Dissolved inorganic nitrogen (NH3 plus NOx)							
DIP	dissolved inorganic phosphorus							
DOC	dissolved organic carbon							
DON	dissolved organic nitrogen							
DOP	dissolved organic phosphorus							
ENSO	El Niño-Southern Oscillation							
GBR	Great Barrier Reef							
gbr4_H2p0_B3p0_Cb	gbr4 : model grid with approximate 4 km grid resolution, H2p0: hydrodynamic							
80poopooo	model version 2.0, B3p0: biogeochemical model version 3.0, Cb: catchment							
	model baseline version using empirical SOURCE Catchments							
GBRMP	Great Barrier Reef Marine Park							
GBRMPA	Great Barrier Reef Marine Park Authority							
GBRWHA	Great Barrier Reef World Heritage Area							
IMOS	Integrated Marine and Observing System							
Kd(PAR)	light attenuation coefficient							
LTM	AIMS long term monitoring site							
mae	mean absolute error							
mape	mean absolute percentage error							
MMP	AIMS Marine Monitoring Program							
MODIS	Moderate Resolution Imaging Spectroradiometer							
NH3	ammonia							
NOx	nitrate plus nitrite							
NRS	IMOS National reference station within the model grid these are Yongala							
TITLE	(GBRYON) and North Stradbroke Island (GBRNSI)							
NSI	North Stradbroke Island							
NTU	Nephelometric Turbidity Unit							
PON	particulate organic nitrogen							
POP	particulate organic phosphorus							
QA/QC	quality assurance/quality control							
rms	root mean square							
secchi	measurement of water transparency (depth in m)							
TSS	total suspended solids							
Willmott	statistical metric (see page 8)							
vviiiiiiott	יים וויבנווג (אבר page o)							

2. Observational sites

River and catchments in eReef model

- •Rivers and catchment model with hydro flow catchment loads B2p0 and B3p0
- Extra rivers in B3p0 where catchment in as point source loads
- Rivers in hydrodynamic model, some without flow, no catchment model data.

Figure 1 Map of Queensland rivers included in eReef model versions B2p0 and B3p0. Includes extra rivers for B3p0 in light blue

AIMS Marine Monitoring Program and IMOS National Reference Station sites used in eReef model

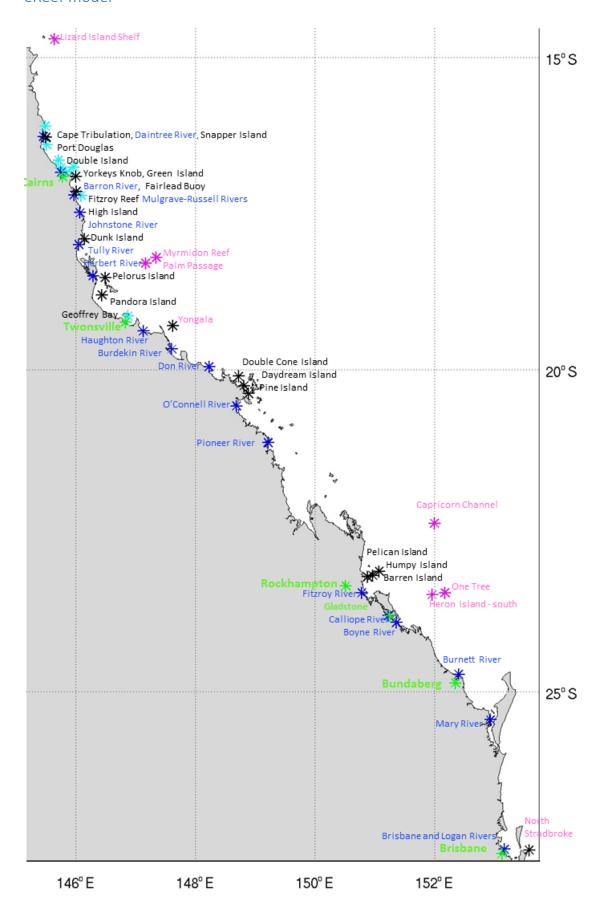


Figure 2 Map of observational sites in this report (black and pink), rivers (blue) and major towns (Green)

eReefs sites and depths

Table 1 Site and model grid depth of the Marine Monitoring Program (MMP) and National Reference Station (NRS) sites (from Skerratt et al., 2019)

MMP and NRS Sites	GBR4 grid depth (m)	Site depth (m)
Barren Island	24	15 - 19
Daydream Island	17	23 - 25
Double Cone Island	17	23 - 31
Dunk Island	9	9 - 10
Fitzroy Island	27	15 - 17
Geoffrey Bay	10	9 - 10
High Island	18	22 - 25
Humpy Island	13	12 - 19
North Stradbroke Island (NSI)	66	65 - 67
Pandora Island	17	13 - 14
Pelican Island	4	9 - 10
Pelorus Island	25	25 - 31
Pine Island	18	20 - 25
Russell Island	20	22 - 24
Snapper Island	22	8 - 11
Yongala	29	26 - 27

Table 2 Site and depths for additional MMP triannual sites or depths (from Skerratt et al., 2019)

AIMS additional Triannual Water	Sam	pling D	enths
Quality sites	Juin	(m)	Сриіз
Cape Tribulation	10		
Snapper Island	10		
Port Douglas	0	15	
Double Island	0	18	
Green Island	0	18	36
Yorkeys Knob	0	8	
Fairlead Buoy	0		
Fitzroy Reef	0	15	
High Island	0	10	20
Russell Island	0	10	20
Dunk Island	5		
Pelorus Island	0	14	28
Double Cone Island	10	23	
Daydream Island	10	23	
Pine Island	0	20	
Barren Island	10		
Humpy Island	0	10	

3. eReefs model

Biogeochemical Model schematic

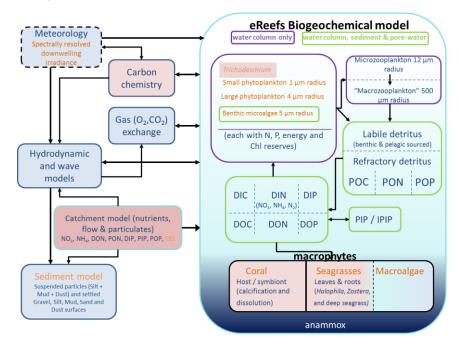


Figure 3.The eReefs modelling system, showing the linkages between hydrodynamic, wave, sediment and the optical and biogeochemical models, as well as the individual linkages within the biogeochemical model. The optically-active components are identified with orange font. The pale red are new processes included for the Great Barrier Reef (adapted from Skerratt et al., 2019

Model skill metrics description

To evaluate model skill, we consider; bias, the root mean square (RMS) error, the mean absolute error (MAE). and the modified Willmott index or 'd2' (Willmott et al., 1985). The Willmott index uses the sum of absolute values.

Model bias assesses whether the simulated variables are under- or over-predicting observed values. The RMS error is a measure of the absolute magnitude of the "error"/square deviation averaged over the time-series. An RMS or MAE of 0 indicates a perfect fit.

The Willmott index of agreement is designed to quantify errors that are unevenly distributed in time or space and reduce the influence of errors during periods of large observed mean or variance. The Willmott index is the ratio of the mean absolute error and the mean absolute deviation about the observed mean and varies between 0 and 1. A value of 1 indicates a perfect match (x = y), and 0 indicates no agreement.

Willmott =
$$1 - [\sum |x - y|] / [\sum |x - \bar{y}|] + (|y - \bar{y}|]$$

where x and y are vectors or arrays of time series data (x = observed, y = modelled).

A Willmott index above 0.7 is regularly obtained for high resolution models with high spatial and temporal observations for physical parameters such as salinity and temperature. In most cases for the eReefs model the salinity and temperature index was \geq 0.8 when compared with observations (Appendix 1 of Herzfeld et al., 2016).

Parameter tables for gbr4 H2p0 B3p0 Cb

The following 4 pages give the parameters used in the model gbr4 H2p0 B3p0 Cb.

Parameter description	Symbol	Units	Value	Reference
Phytoplankton				
Chl-specific scattering coefficient. for microalgae	hnhu	m ⁻¹ (mg Chl a m ⁻³) ⁻¹	0.2	Typical microalgae value, Kirk (1994)
Natural (linear) mortality rate, large phytoplankton	bphy PhyL mL	d-1	0.1	Not attributed
Natural (linear) mortality rate in sediment, large	PhyL_mL_sed	d-1	10	Not attributed Not attributed
phytoplankton	FIIYL_IIIL_Seu	u -	10	Not attributed
Natural (linear) mortality rate, small phytoplankton	PhyS_mL	d ⁻¹	0.1	Not attributed
Natural (linear) mortality rate in sediment, small	PhyS_mL_sed	d d ⁻¹	1	Not attributed
phytoplankton	1 11y3_111L_3ca	u	1	Not attributed
Respiration as a fraction of umax	Plank_resp	none	0.025	Not attributed
Radius of the large phytoplankton cells	PLrad	m	0.000004	Not attributed
Maximum growth rate of PL at Tref	PLumax	d ⁻¹	1.4	CSIRO Parameter Library
Ratio of xanthophyll to chl a of PL	PLxan2chl	mg mg ⁻¹	0.81	CSIRO Parameter Library
Radius of the small phytoplankton cells	PSrad	m	0.000001	Not attributed
Maximum growth rate of PS at Tref	PSumax	d ⁻¹	1.6	CSIRO Parameter Library
Ratio of xanthophyll to chl a of PS	PSxan2chl	mg mg ⁻¹	0.51	CSIRO Parameter Library
Trichodesmium				
DIN conc below which Trichodesmium N fixes	DINcrit	mg N m ⁻³	10	Lower end of Robson et al., (2013) 4-20 mg N m ⁻³
Maximum density of Trichodesmium	p_max	kg m ⁻³	1050	Not attributed
Minimum density of Trichodesmium	p_min	kg m ⁻³	900	Not attributed
Radius of Trichodesmium colonies	Tricho_colrad	m	0.000005	Not attributed
Critical <i>Trichodesmium</i> above which quadratic mortality applies	Tricho_crit	mg N m ⁻³	0.0002	Not used in code
Linear mortality for Trichodesmium in sediment	Tricho_mL	d ⁻¹	0.1	Not attributed
Quadratic mortality for <i>Trichodesmium</i> due to phages in water column	Tricho_mQ	d ⁻¹ (mg N m ⁻³) ⁻¹	0.1	At steady-state, indep. of temp, Tricho_N \sim Tricho_umax / Tricho_mQ = 0.27 / 0.405 = 0.7 mg N m $^{-3}$ \sim 0.1 mg Chl m $^{-3}$
Trichodesmium grazing preference	Tricho_pref	none	0	Not attributed
Radius of <i>Trichodesmium</i> colonies	Tricho_rad	m	0.000005	Not attributed
Sherwood number for the Trichodesmium	Tricho_Sh	none	1	Not attributed
dimensionless				
Maximum growth rate of Trichodesmium at Tref	Tricho_umax	d ⁻¹	0.2	Robson et al., 2013 + Parameter library
Ratio of xanthophyll to chl a of <i>Trichodesmium</i>	Trichoxan2chl	mg mg ⁻¹	0.5	Subramaniam et al. 1999. LO 44:618-627
Microphytobenthos				
Respiration as a fraction of umax	Benth_resp	none	0.025	Not attributed
Radius of the MPB cells	MBrad	m	0.00001	Not attributed
Maximum growth rate of MB at Tref	MBumax	d ⁻¹	0.839	CSIRO Parameter Library
Ratio of xanthophyll to chl a of MPB	MBxan2chl	mg mg ⁻¹	0.81	Not attributed
Natural (quadratic) mortality rate,	MPB_mQ	d ⁻¹ (mg N m ⁻³) ⁻¹	0.0001	SS argument
microphytobenthos, applied in sediment				

Parameter description	Symbol	Units	Value	Reference
Zooplankton				
Growth efficiency, large zooplankton	ZL_E	none	0.426	CSIRO Parameter Library, [0.341 (0.017900) Baird and Suthers, 2007 from Hansen et al (1997) LO 42: 687-704]
Fraction of growth inefficiency lost to detritus, large zooplankton	ZL_FDG	none	0.5	Not attributed
Fraction of mortality lost to detritus, large zooplankton	ZL_FDM	none	1	Not attributed
Natural (quadratic) mortality rate, large zooplankton	ZL_mQ	d ⁻¹ (mg N m ⁻³) ⁻¹	0.012	Not attributed
Diel vertical migration rate of ZL	ZLdvmrate	m d ⁻¹	0	Not attributed
Grazing technique of large zooplankton	ZLmeth	none	rect	Not attributed
Light at which the	ZLpar	mol photons m ⁻² s ⁻¹	1.00E-12	Not attributed
Radius of the large zooplankton cells	ZLrad	m	0.00032	Not attributed
Swimming velocity for large zooplankton	ZLswim	m s ⁻¹	0.003	Not attributed
Maximum growth rate of ZL at Tref	ZLumax	d ⁻¹	1.33	Not attributed
Growth efficiency, small zooplankton	ZS_E	none	0.462	CSIRO Parameter Library [0.3080000 (0.026600) Baird and
,, ,	-			Suthers, 2007 from Hansen et al (1997) LO 42: 687-704]
Fraction of growth inefficiency lost to detritus, small zooplankton	ZS_FDG	none	0.5	Not attributed
Fraction of mortality lost to detritus, small zooplankton	ZS_FDM	none	1	Not attributed
Natural (quadratic) mortality rate, small zooplankton	ZS_mQ	d ⁻¹ (mg N m ⁻³) ⁻¹	0.02	Not attributed
Grazing technique of small zooplankton	ZSmeth	none	rect	Not attributed
Radius of the small zooplankton cells	ZSrad	m	0.000005	Not attributed
Swimming velocity for small zooplankton	ZSswim	m s ⁻¹	0.0002	Not attributed
Maximum growth rate of ZS at Tref	ZSumax	d ⁻¹	4	Not attributed
Coral				
Quadratic mortality rate of coral polyp	CHmort	(g N m ⁻³) ⁻¹ d ⁻¹	0.01	Not attributed
Nitrogen-specific area of coral polyp density	CHpolypden	m2 g N ⁻¹	2	Not attributed
Fraction of Host death translocated.	CHremin	-	0.5	Not attributed
Max. growth rate of Coral at Tref	CHumax	d ⁻¹	0.05	Not attributed
Linear mortality rate of Zooxanthellae	CSmort	d ⁻¹	0.04	Not attributed
Radius of the Zooxanthellae	CSrad	m	0.000005	Not attributed
Fraction of Zooxanthellae growth to Host.	CStoCHfrac	-	0.9	Gustafsson et al. (2013) Ecol. Mod. 250: 183-194
Max. growth rate of Zooxanthellae at Tref	CSumax	d^{-1}	0.4	Not attributed
Maximum daytime net coral calcification	k_day_coral	mmol C m ⁻² s ⁻¹	0.0132	Anthony et al. (2013), Biogeosciences 10:4897-4909, Fig 5A: 50, 50, 35 55 mmol m ⁻² h ⁻¹ for Acropora aspera n=4
Grid scale to reef scale ratio	CHarea	m m ⁻¹	0.1	Not attributed
Maximum night time net coral calcification	k_night_coral	mmol C m ⁻² s ⁻¹	0.0069	Anthony et al. (2013), Biogeosciences 10:4897-4909, Fig 5A: 20, 30, 20, 30 mmol m ⁻² h ⁻¹ for Acropora aspera n=4
Rate coefficient for plankton uptake by corals	Splank	m d ⁻¹	3	Ribes (2003), PARAMETER library analysis; Ribes and Atkinson (2007) Coral Reefs 26: 413-421

Parameter description	Symbol	Units	Value	Reference
Consumer and Manualtan				
Seagrass and Macroalgae				
Half-saturation of SG N uptake in SED	SG_KN	mg N m ⁻³	420	Lee and Dunton (1999) 1204-1215. Table 3 Zostera
Half-saturation of SG P uptake in SED	SG_KP	mg P m ⁻³	96	Gras et al. (2003) Aquatic Botany 76:299-315. Thalassia testudinum.
Natural (linear) mortality rate, seagrass	SG_mL	d ⁻¹	0.03	Fourquean et al.(2003) Chem. Ecol. 19: 373 ⁻³ 90. Thalassia leaves with one component decay
Critical shear stress for SG loss	SG_tau_critical	N m^{-2}	1	NESP project
Time-scale for critical shear stress for SG loss	SG_tau_efold	S	43200	NESP project
Half-saturation of SGD N uptake in SED	SGD_KN	mg N m ⁻³	420	Not attributed
Half-saturation of SGD P uptake in SED	SGD_KP	mg P m ⁻³	96	Not attributed
Natural (linear) mortality rate, aboveground SGD	SGD_mL	d ⁻¹	0.06	NESP project
Critical shear stress for SGD loss	SGD_tau_critical	N m ⁻²	1	NESP project
Time-scale for critical shear stress for SGD loss	SGD_tau_efold	S	43200	NESP project
Fraction (target) of SGD biomass below-ground	SGDfrac	-	0.25	Duarte (1999) Aquatic Biol. 65: 159-174, Halophila ovalis.
Nitrogen-specific leaf area of SGD	SGDleafden	m^2 g N^{-1}	1.9	Halophila ovalis: leaf dimensions from Vermaat et al. (1995)
Compensation irradiance for Halophila	SGDmlr	mol m ⁻²	1.5	NESP project
Sine of nadir Deep Segrass canopy bending angle	SGDorient	-	1	No source
Natural (linear) mortality rate, belowground SGD	SGDROOT_mL	d ⁻¹	0.004	NESP project
Maximum depth for Halophila roots	SGDrootdepth	m	-0.05	NESP project
Halophila seed biomass as fraction of 63 % cover	SGDseedfrac	-	0.01	Not attributed
Time scale for seagrass translocation	SGDtransrate	d ⁻¹	0.0333	Loosely based on Zostera marine Kaldy et al., 2013 MEPS 487:27-39
Maximum growth rate of SGD at Tref	SGDumax	d ⁻¹	0.4	x2 nighttime, x2 for roots.
Fraction (target) of SG biomass below-ground	SGfrac	-	0.75	Babcock (2015) Zostera capricornii
Half-saturation of SGH N uptake in SED	SGH_KN	mg N m ⁻³	420	Not attributed
Half-saturation of SGH P uptake in SED	SGH_KP	mg P m ⁻³	96	Not attributed
Natural (linear) mortality rate, seagrassH	SGH_mL	d ⁻¹	0.06	Fourquean et al.(2003) Chem. Ecol. 19: 373 ⁻³ 90.Thalassia leaves with one component decay
Critical shear stress for SGH loss	SGH_tau_critical	N m ⁻²	1	NESP project
Time-scale for critical shear stress for SGH loss	SGH_tau_efold	S	43200	NESP project
Fraction (target) of SGH biomass below-ground	SGHfrac	-	0.5	Babcock 2015, Halophila ovalis
Nitrogen-specific area of seagrass leaf	SGHleafden	m2 g N ⁻¹	1.9	Halophila ovalis: leaf dimensions from Vermaat et al. (1995)
Compensation irradiance for SG	SGHmlr	mol m ⁻²	2	Not attributed
Sine of nadir Halophila canopy bending angle	SGHorient	-	1	No source
Natural (linear) mortality rate, seagrassH	SGHROOT mL	$d^{\text{-}1}$	0.004	Fourguean et al. (2003) Chem. Ecol. 19: 373-390. Thalassia roots with one component decay
Maximum depth for Halophila roots	SGHrootdepth	m	-0.08	Roberts (1993) Aust. J. Mar. Fresh. Res. 44:85-100.
Halophila seed biomass as fraction of 63 % cover	SGHseedfrac	-	0.01	Not attributed
Time scale for seagrass translocation	SGHtransrate	d ⁻¹	0.0333	Loosely based on Zostera marine Kaldy et al., 2013 MEPS 487:27-39
Maximum growth rate of SGH at Tref	SGHumax	d ⁻¹	0.4	x2 night-time, x2 for roots.
Nitrogen-specific area of seagrass leaf	SGleafden	m2 g N ⁻¹	1.5	Zostera capricornia: leaf dimensions Kemp et al (1987) Mar Ecol. Prog. Ser. 41:79-86.
Compensation irradiance for SG	SGmlr	mol m ⁻²	4.5	Not attributed
SGorient	SGorient		0.5	Not attributed
Natural (linear) mortality rate, seagrass	SGROOT_mL	d ⁻¹	0.004	Fourquean et al. (2003) Chem. Ecol. 19: 373-390. Thalassia roots with one component decay
Maximum depth for Zostera roots	SGrootdepth	m	-0.15	Roberts (1993) Aust. J. Mar. Fresh. Res. 44:85-100.
Seagrass seed biomass as fraction of 63 % cover	SGseedfrac	-	0.01	No source
Time scale for seagrass translocation	SGtransrate	d ⁻¹	0.0333	Loosely based on Zostera marine Kaldy et al., 2013 MEPS 487:27-39
Maximum growth rate of SG at Tref	SGumax	d-1	0.4	x2 nighttime, x2 for roots.
Natural (linear) mortality rate, macroalgae	MA mL	d ⁻¹	0.01	Not attributed
Nitrogen-specific area of macroalgae leaf	MAleafden	u m² g N⁻¹	1	Not attributed
Maximum growth rate of MA at Tref	MAumax	d ⁻¹	1	Not attributed
Mayillalli Riowth Late of MA at 1161	IVIAUIIIdX	u	1	NOT ALTIBULEU

Parameter description	Symbol	Units	Value	Reference
- urameter accomption	7111801		- arac	
Biogeochemistry				
Reference temperature	Tref	Deg C	20	CSIRO Parameter Library
Temperature coefficient for rate parameters	Q10	none	20	CSIRO Parameter Library
Nominal rate of TKE dissipation in water column	TKEeps	m ² s ⁻³	0.000001	Not attributed
Atmospheric CO2	xco2 in air dum	ppmv	396.48	Mean 2013 at Mauna Loa: htttrp://co2now.org/current-co2/co2-now/
Wavelengths of light	Light_lambda	nm	Various*	Approx. 20 nm resolution with 10 nm about 440 nm. PAR (400-700) is integral of bands 2-22 (290 310 330
wavelengths of light	Ligitt_iaitibua	11111	various	350 370 390 410 430 440 450 470 490 510 530 550 570 590 610 630 650 670 690 710 800)*
Nominal N:Chl a ratio in phytoplankton by weight	NtoCHL	g N (g Chl a)-1	7	Represents a C:Chl ratio of 39.25, Baird et al. (2013) Limnol. Oceanogr. 58: 1215-1226.
Concentration of dissolved N2	N2	mg N m ⁻³	2000	Robson et al. (2013)
Fraction of labile detritus converted to refractory detritus	F_LD_RD	none	0.19	Not attributed
Fraction of labile detritus converted to dissolved organic matter	F_LD_DOM	none	0.1	Not attributed
fraction of refractory detritus that breaks down to DOM	F_RD_DOM	none	0.05	Not attributed
Breakdown rate of labile detritus at 106:16:1	r_DetPL	d ⁻¹	0.04	Not attributed
Breakdown rate of labile detritus at 550:30:1	r_DetBL	d ⁻¹	0.001	Not attributed
Breakdown rate of refractory detritus	r_RD	d ⁻¹	0.001	Not attributed
Breakdown rate of dissolved organic matter	r_DOM	d ⁻¹	0.0001	Achieves approx. SS of global ocean at 20 C.
Oxygen half-saturation for aerobic respiration	KO_aer	mg O m ⁻³	256	Not attributed
Maximal nitrification rate in water column	r_nit_wc	d ⁻¹	0.1	Not attributed
Maximal nitrification rate in water sediment	r_nit_sed	d ⁻¹	20	Not attributed
Oxygen half-saturation for nitrification	KO_nit	mg O m ⁻³	500	Not attributed
Rate at which P reaches adsorbed/desorbed equilibrium	Pads_r	d ⁻¹	0.04	Not attributed
Freundlich Isothermic Const P adsorption to TSS in water column	Pads_Kwc	mg P kg TSS ⁻¹	30	Not attributed
Freundlich Isothermic Const P adsorption to TSS in sediment	Pads_Ksed	mg P kg TSS ⁻¹	74	Not attributed
Oxygen half-saturation for P adsorption	Pads_KO	mg O m ⁻³	2000	Not attributed
Exponent for Freundlich Isotherm	Pads_exp	none	1	Not attributed
Maximum denitrification rate	r_den	d ⁻¹	0.8	Not attributed
Oxygen half-inhibition of denitrification rate	KO_den	mg O m ⁻³	10000	Not attributed
Rate of conversion of PIP to immobilised PIP	r_immob_PIP	d ⁻¹	0.0012	Not attributed
Sediment-water diffusion coefficient	EpiDiffCoeff	m ² s ⁻¹	3.00E-07	Not attributed
Thickness of diffusive layer	EpiDiffDz	m	0.0065	Not attributed
age tracer growth rate per day	ageing_decay	d ⁻¹	1	Not attributed
age tracer decay rate per day outside source	anti_ageing_decay	d ⁻¹	0.1	Not attributed
net dissolution rate of sediment without coral	dissCaCO3_sed	mmol C m ⁻² s ⁻¹	0.001	Anthony et al. (2013), Biogeosciences 10:4897-4909, Fig 5E: $-1 2 3 6$ mmol m ⁻² h ⁻¹
DOC-specific absorption of CDOM at 443 nm	acdom443star	m ² mg C ⁻¹	0.00013	Not attributed
Minimum carbon to chlorophyll ratio	C2Chlmin	wt/wt	20	Not attributed
swr scaling factor	SWRscale	none	1	Not attributed
Bleaching ROS threshold	ROSthreshold	-	5.00E-04	Not attributed
increased breakdown fraction DetrP to DOP	r_RD_NtoP	-	2	Not attributed
increased breakdown fraction DOMP to DIP	r_DOM_NtoP	-	1.5	Not attributed

4. AIMS MMP Long Term Monitoring (LTM)

Simulated Chl a assessment against AIMS LTM

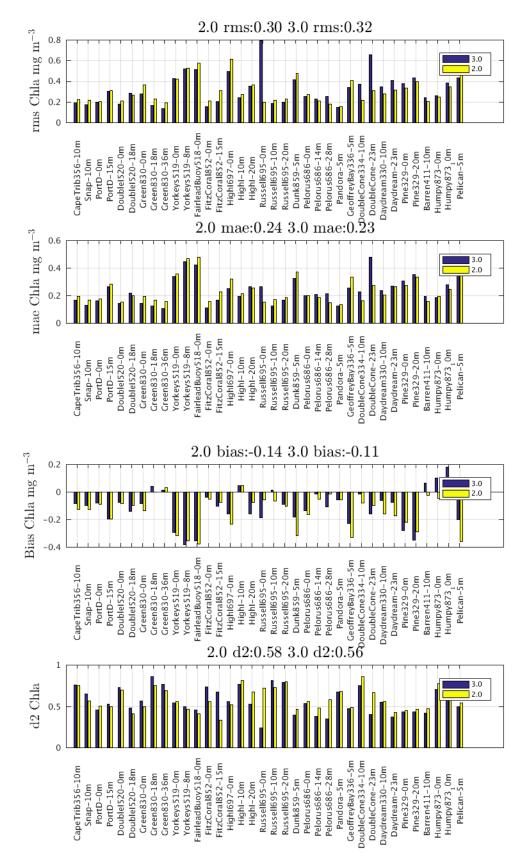
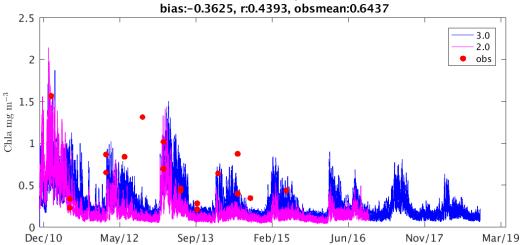
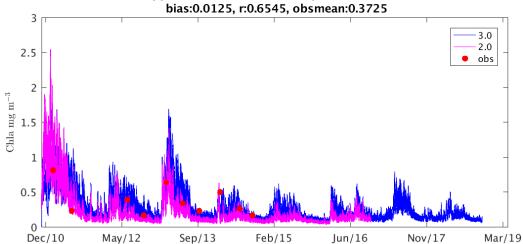
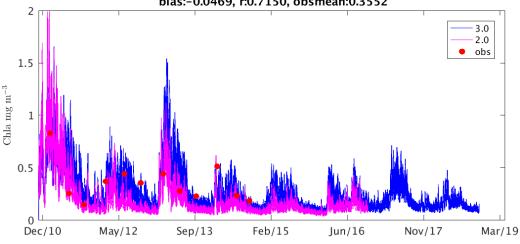
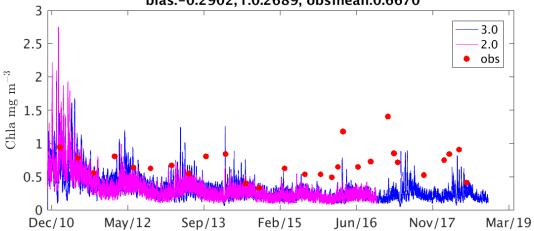
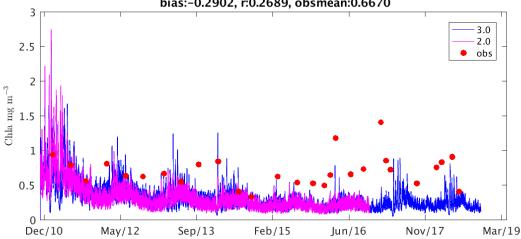
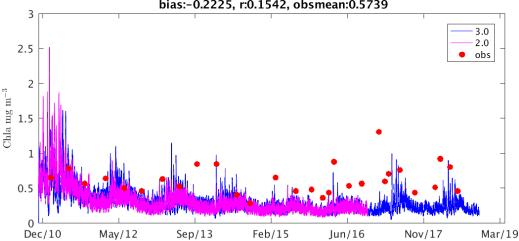




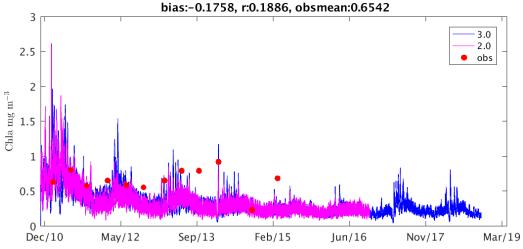
Figure 4 Metrics for Long Term Monitoring sites Chlorophyll assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

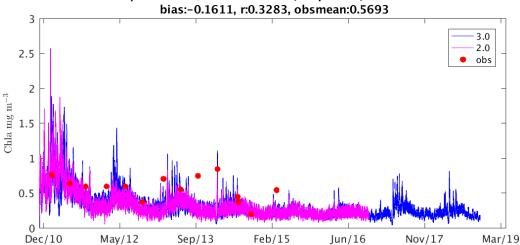

Pelican_5m 3.0 d2:0.49, mape:57.4, rms:0.4306 bias:-0.2007, r:0.2329, obsmean:0.6437 Pelican_5m 2.0 d2:0.54, mape:56.6, rms:0.4907

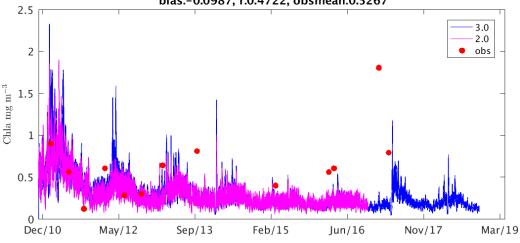

Humpy873_10m 3.0 d2:0.63, mape:86.7, rms:0.3797 bias:0.1801, r:0.5769, obsmean:0.3725
Humpy873_10m 2.0 d2:0.70, mape:55.6, rms:0.3449 bias:0.0125, r:0.6545, obsmean:0.3725

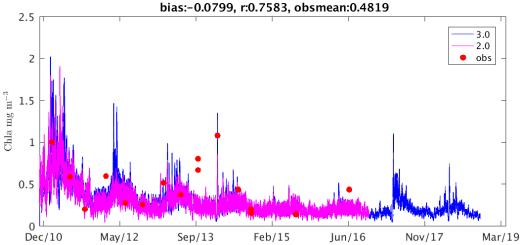

Humpy873_0m 3.0 d2:0.70, mape:58.6, rms:0.2604 bias:0.1022, r:0.6019, obsmean:0.3552 Humpy873_0m 2.0 d2:0.77, mape:49.0, rms:0.2437 bias:-0.0469, r:0.7150, obsmean:0.3552

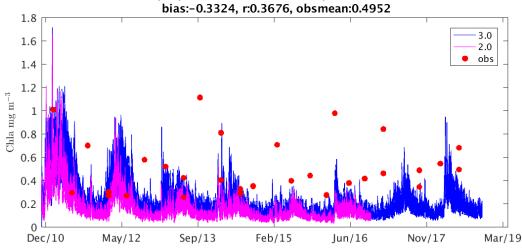

Pine329_20m 3.0 d2:0.43, mape:47.1, rms:0.4310 bias:-0.3495, r:0.1346, obsmean:0.7053 Pine329_20m 2.0 d2:0.46, mape:46.7, rms:0.3931 bias:-0.2902, r:0.2689, obsmean:0.6670

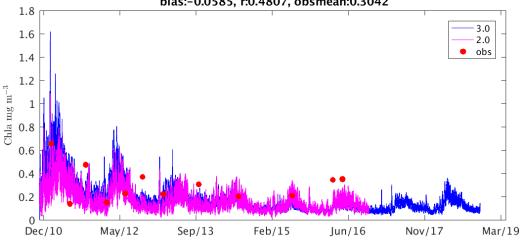

Pine329_20m 3.0 d2:0.43, mape:47.1, rms:0.4310 bias:-0.3495, r:0.1346, obsmean:0.7053 Pine329_20m 2.0 d2:0.46, mape:46.7, rms:0.3931 bias:-0.2902, r:0.2689, obsmean:0.6670

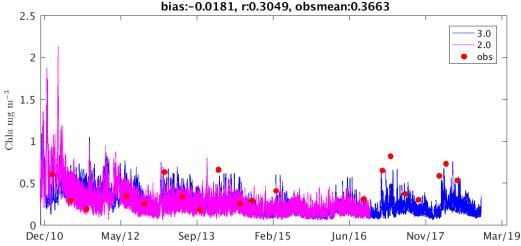

Pine329_0m 3.0 d2:0.43, mape:44.9, rms:0.3781 bias:-0.2824, r:0.0450, obsmean:0.6195 Pine329_0m 2.0 d2:0.45, mape:43.6, rms:0.3312 bias:-0.2225, r:0.1542, obsmean:0.5739

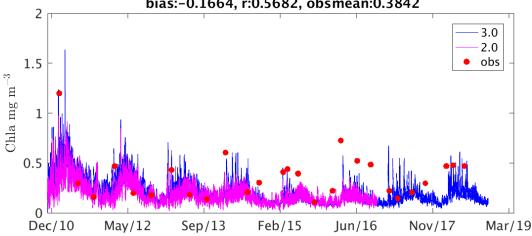

Daydream_23m 3.0 d2:0.37, mape:40.5, rms:0.4067 bias:-0.0757, r:0.2319, obsmean:0.6542 Daydream_23m 2.0 d2:0.42, mape:39.6, rms:0.3114

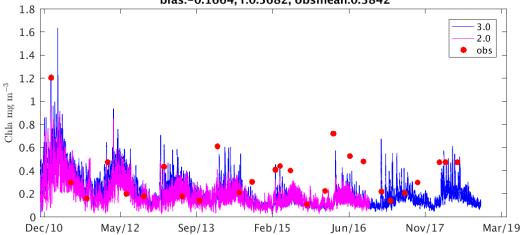

Daydream330_10m 3.0 d2:0.55, mape:35.5, rms:0.3463 bias:-0.0645, r:0.4642, obsmean:0.5693 Daydream330_10m 2.0 d2:0.56, mape:31.6, rms:0.2735

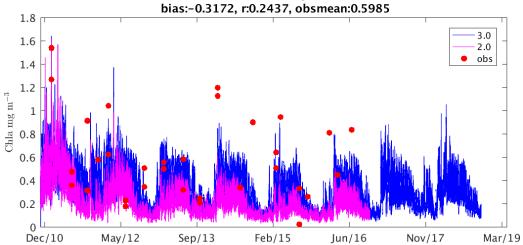

DoubleCone_23m 3.0 d2:0.40, mape:73.9, rms:0.6570 bias:-0.1586, r:0.1348, obsmean:0.6454 DoubleCone_23m 2.0 d2:0.66, mape:58.4, rms:0.3045 bias:-0.0987, r:0.4722, obsmean:0.5267

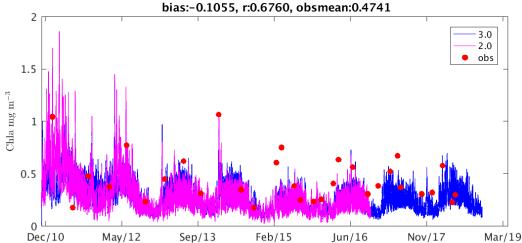

DoubleCone334_10m 3.0 d2:0.75, mape:38.2, rms:0.3694 bias:-0.0143, r:0.6830, obsmean:0.4819
DoubleCone334_10m 2.0 d2:0.86, mape:30.5, rms:0.2147

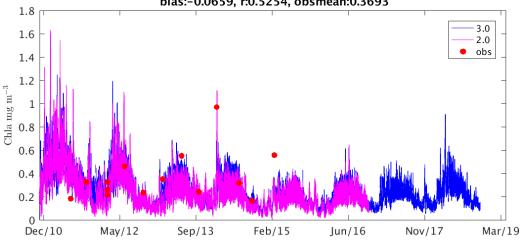

GeoffreyBay336_5m 3.0 d2:0.47, mape:45.2, rms:0.3352 bias:-0.2301, r:0.2093, obsmean:0.5021 GeoffreyBay336_5m 2.0 d2:0.49, mape:63.0, rms:0.4065

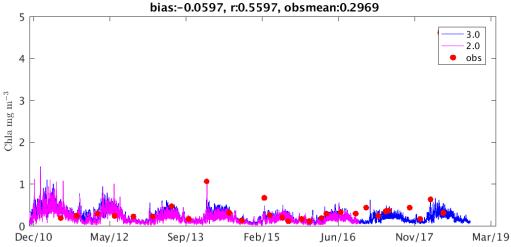

Pandora_5m 3.0 d2:0.67, mape:44.4, rms:0.1451 bias:-0.0578, r:0.4694, obsmean:0.3042 Pandora_5m 2.0 d2:0.68, mape:51.8, rms:0.1546 bias:-0.0585, r:0.4807, obsmean:0.3042

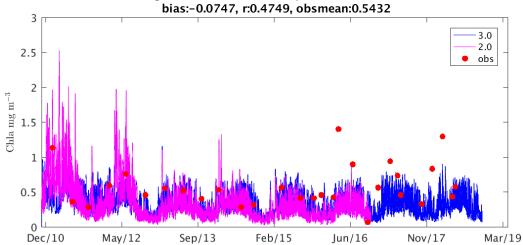

Pelorus686_28m 3.0 d2:0.34, mape:49.0, rms:0.2530 bias:-0.1116, r:-0.1585, obsmean:0.4373
Pelorus686_28m 2.0 d2:0.57, mape:41.1, rms:0.1740

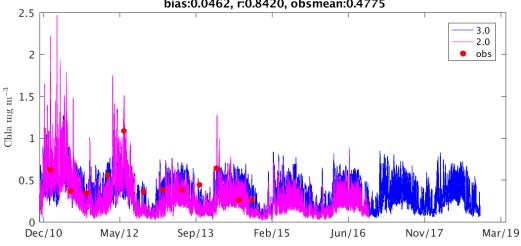

Pelorus686_0m 3.0 d2:0.53, mape:49.4, rms:0.2533 bias:-0.1378, r:0.3643, obsmean:0.3693 Pelorus686_0m 2.0 d2:0.55, mape:43.0, rms:0.2692 bias:-0.1664, r:0.5682, obsmean:0.3842

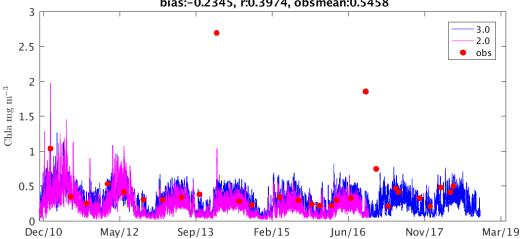

Pelorus686_0m 3.0 d2:0.53, mape:49.4, rms:0.2533 bias:-0.1378, r:0.3643, obsmean:0.3693 Pelorus686_0m 2.0 d2:0.55, mape:43.0, rms:0.2692 bias:-0.1664, r:0.5682, obsmean:0.3842

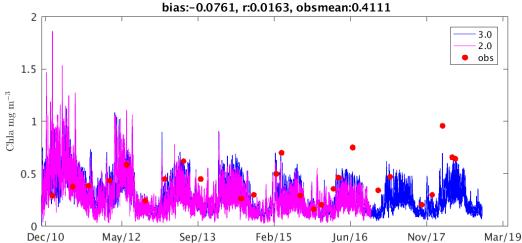

Dunk859_5m 3.0 d2:0.39, mape:104.4, rms:0.4133 bias:-0.1841, r:0.0841, obsmean:0.5985 Dunk859_5m 2.0 d2:0.46, mape:82.8, rms:0.4714

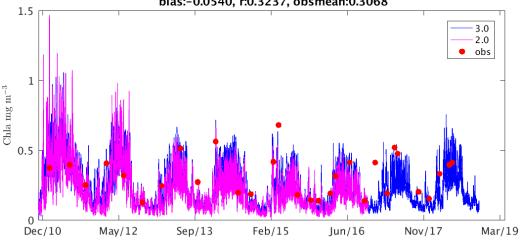

Russell695_20m 3.0 d2:0.78, mape:43.3, rms:0.1924 bias:-0.0913, r:0.6808, obsmean:0.4548 Russell695_20m 2.0 d2:0.79, mape:49.3, rms:0.2258 bias:-0.1055_r0.6760_obsmean:0.4741

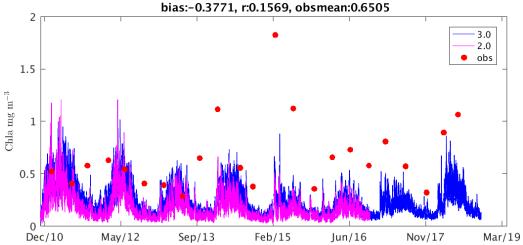

Russell695_10m 3.0 d2:0.81, mape:43.1, rms:0.1847 bias:0.0116, r:0.6360, obsmean:0.3693 Russell695_10m 2.0 d2:0.72, mape:53.6, rms:0.2122 bias:-0.0659, r:0.5254, obsmean:0.3693

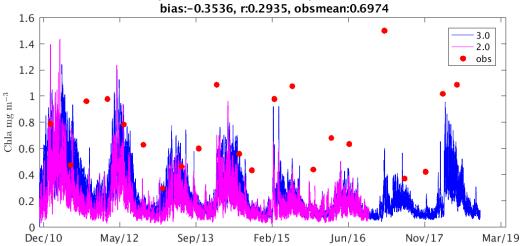

Russell695_0m 3.0 d2:0.24, mape:45.5, rms:0.7935 bias:-0.1895, r:0.2573, obsmean:0.4599 Russell695_0m 2.0 d2:0.71, mape:56.4, rms:0.1937

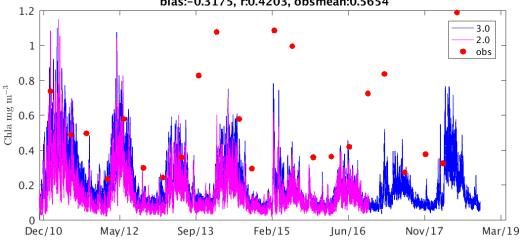

Highl_20m 3.0 d2:0.53, mape:44.2, rms:0.3529 bias:-0.1602, r:0.2936, obsmean:0.5876 Highl_20m 2.0 d2:0.67, mape:48.1, rms:0.3618

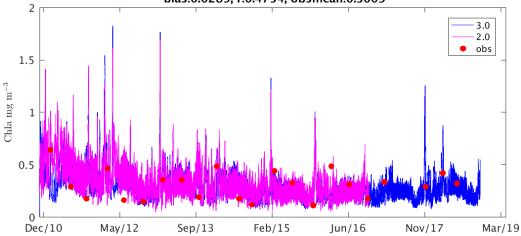

Highl_10m 3.0 d2:0.76, mape:40.6, rms:0.2359 bias:0.0434, r:0.6409, obsmean:0.4775 Highl_10m 2.0 d2:0.81, mape:44.6, rms:0.2709 bias:0.0462, r:0.8420, obsmean:0.4775

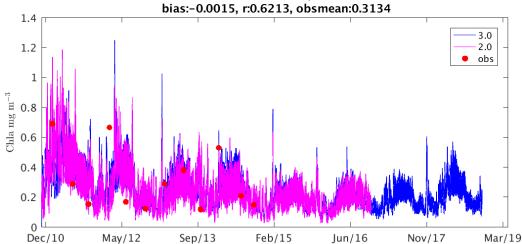

Highl697_0m 3.0 d2:0.56, mape:39.1, rms:0.4900 bias:-0.1606, r:0.4649, obsmean:0.5063
Highl697_0m 2.0 d2:0.51, mape:47.7, rms:0.6122 bias:-0.2345, r:0.3974, obsmean:0.5458

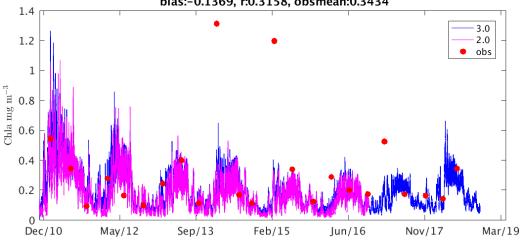

FitzCoral852_15m 3.0 d2:0.67, mape:38.7, rms:0.2004 bias:-0.1040, r:0.5337, obsmean:0.4375 FitzCoral852_15m 2.0 d2:0.33, mape:57.0, rms:0.3094 bias:-0.0761 r0.0163 obsmean:0.4111

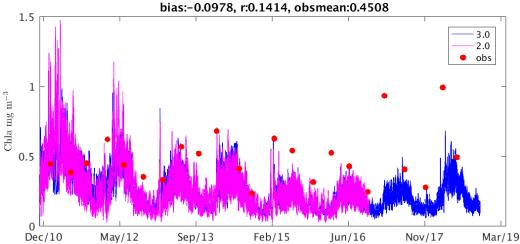

FitzCoral852_0m 3.0 d2:0.73, mape:34.9, rms:0.1509 bias:-0.0408, r:0.5372, obsmean:0.3179 FitzCoral852_0m 2.0 d2:0.56, mape:48.2, rms:0.2106 bias:-0.0540, r:0.3237, obsmean:0.3068

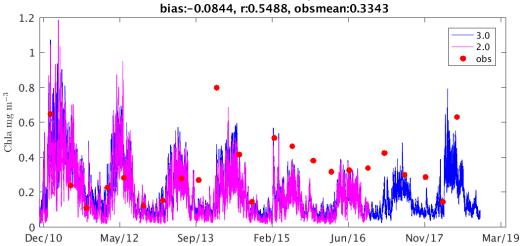

FairleadBuoy518_0m 3.0 d2:0.45, mape:59.8, rms:0.5110 bias:-0.3551, r:0.2555, obsmean:0.6679 FairleadBuoy518_0m 2.0 d2:0.41, mape:71.6, rms:0.5717

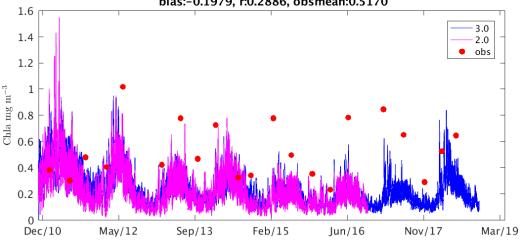

Yorkeys519_8m 3.0 d2:0.49, mape:56.1, rms:0.5174 bias:-0.3840, r:0.2652, obsmean:0.7386 Yorkeys519_8m 2.0 d2:0.46, mape:65.4, rms:0.5216 bias:-0.3536 r0.2935 obsmean:0.6974


Yorkeys519_0m 3.0 d2:0.54, mape:53.4, rms:0.4271 bias:-0.2961, r:0.3067, obsmean:0.5731 Yorkeys519_0m 2.0 d2:0.55, mape:60.2, rms:0.4192 bias:-0.3175, r:0.4203, obsmean:0.5654

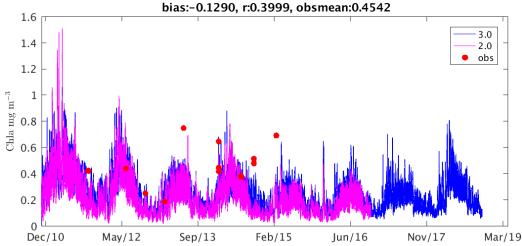

Green830_36m 3.0 d2:0.77, mape:42.6, rms:0.1302 bias:0.0132, r:0.5727, obsmean:0.3083 Green830_36m 2.0 d2:0.68, mape:59.7, rms:0.1901 bias:0.0289, r:0.4754, obsmean:0.3009

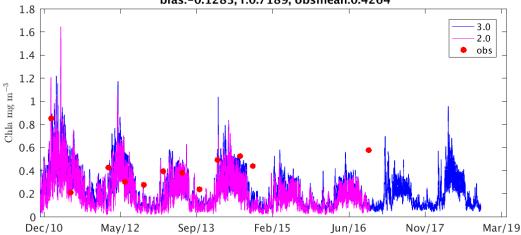

Green830_18m 3.0 d2:0.86, mape:42.7, rms:0.1654 bias:0.0400, r:0.7804, obsmean:0.3134 Green830_18m 2.0 d2:0.75, mape:47.9, rms:0.2277


Green830_0m 3.0 d2:0.56, mape:34.2, rms:0.2756 bias:-0.0867, r:0.5624, obsmean:0.3272 Green830_0m 2.0 d2:0.49, mape:39.2, rms:0.3629 bias:-0.1369, r:0.3158, obsmean:0.3434


DoubleI520_18m 3.0 d2:0.47, mape:41.5, rms:0.2813 bias:-0.1438, r:0.1947, obsmean:0.4878 DoubleI520_18m 2.0 d2:0.41, mape:42.0, rms:0.2617

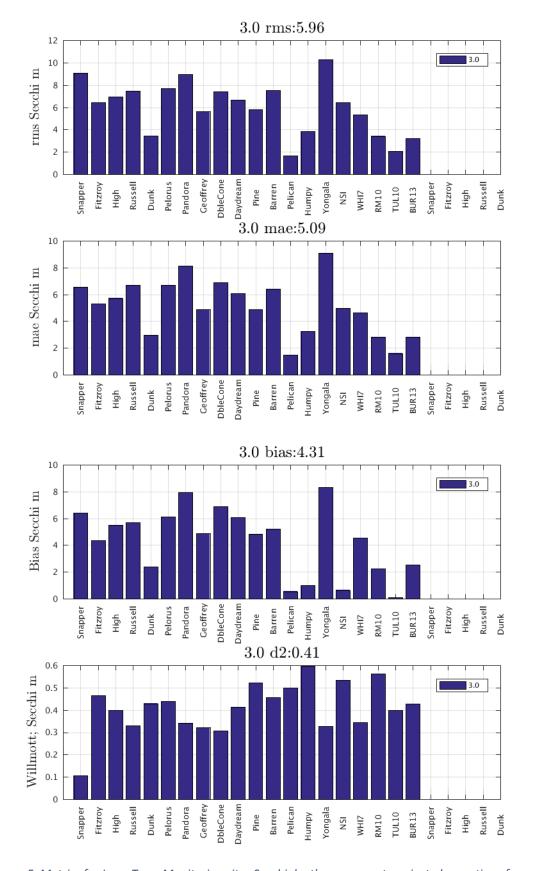
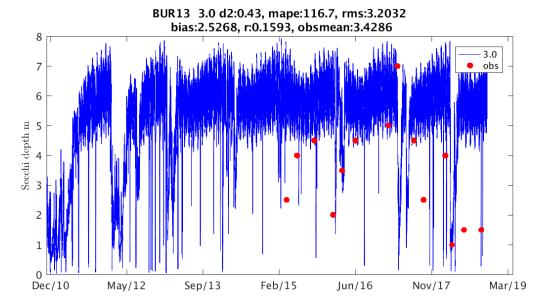
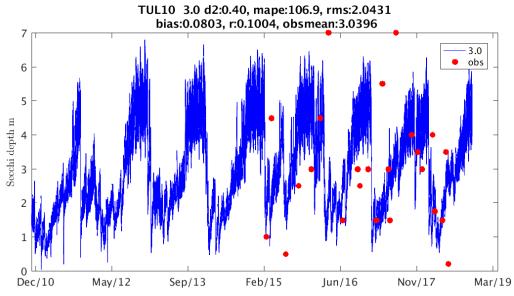
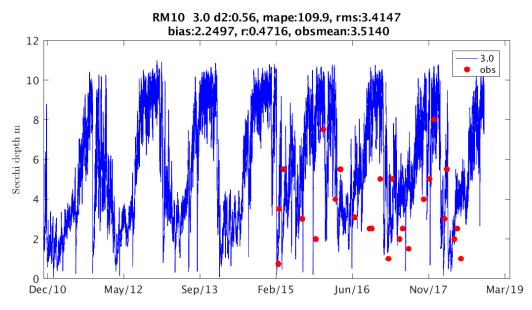
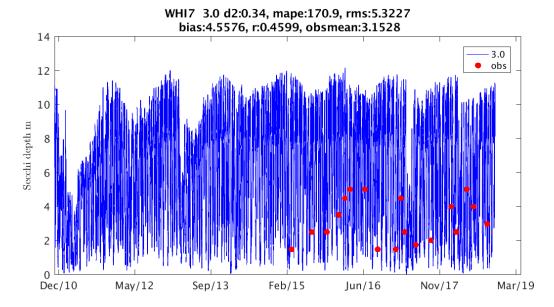
DoubleI520_0m 3.0 d2:0.73, mape:38.8, rms:0.1774 bias:-0.0768, r:0.5786, obsmean:0.3393 DoubleI520_0m 2.0 d2:0.70, mape:38.4, rms:0.2068 bias:-0.0844 rt0.5488 obsmean:0.3343

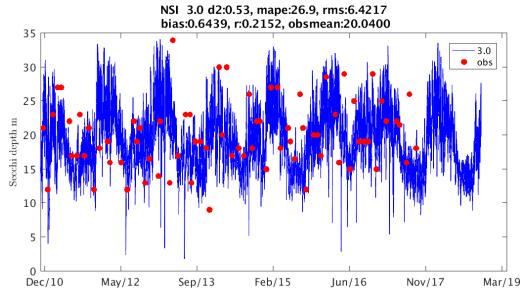

PortD_15m 3.0 d2:0.52, mape:49.4, rms:0.3023 bias:-0.1985, r:0.2759, obsmean:0.5346 PortD_15m 2.0 d2:0.49, mape:55.9, rms:0.3097 bias:-0.1979, r:0.2886, obsmean:0.5170

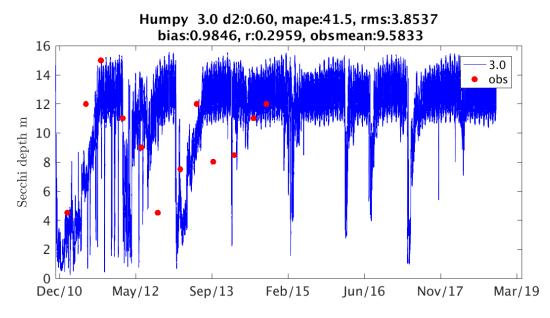

PortD_0m 3.0 d2:0.46, mape:48.8, rms:0.1924 bias:-0.0837, r:0.1316, obsmean:0.3356 PortD_0m 2.0 d2:0.50, mape:55.0, rms:0.2010

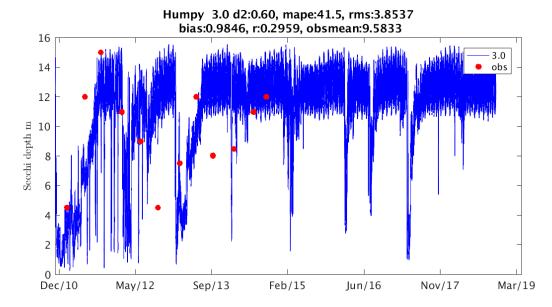
Snap_10m 3.0 d2:0.65, mape:26.6, rms:0.1679 bias:-0.0996, r:0.5499, obsmean:0.4542 Snap_10m 2.0 d2:0.56, mape:35.5, rms:0.2152

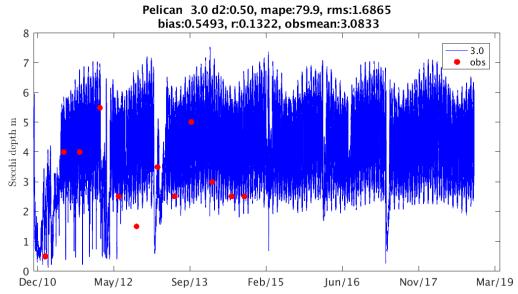
CapeTrib356_10m 3.0 d2:0.76, mape:44.0, rms:0.1922 bias:-0.0840, r:0.6408, obsmean:0.4264 CapeTrib356_10m 2.0 d2:0.75, mape:46.9, rms:0.2214 bias:-0.1283, r:0.7189, obsmean:0.4264

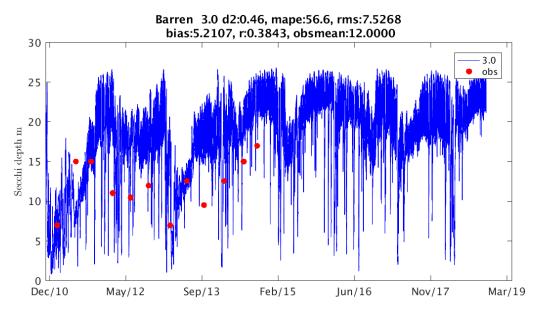






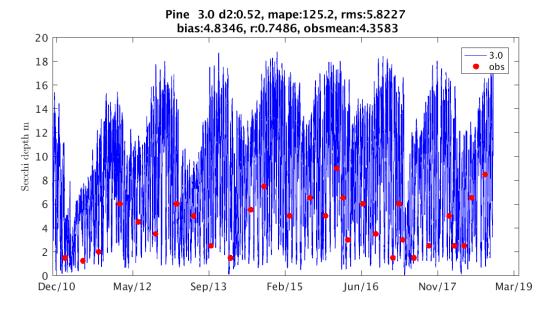

Figure 5 Metrics for Long Term Monitoring sites Secchi depth assessment against observations for model version 3p0, d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

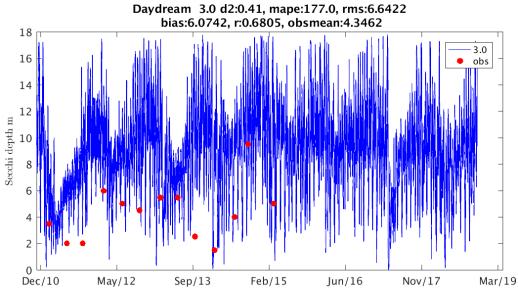


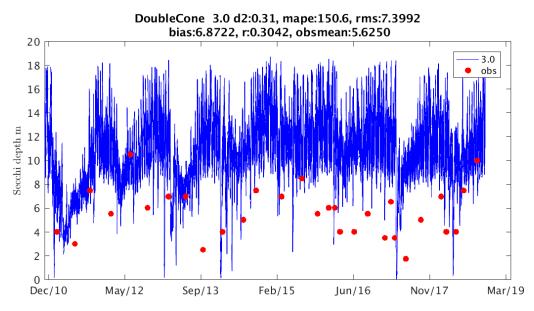


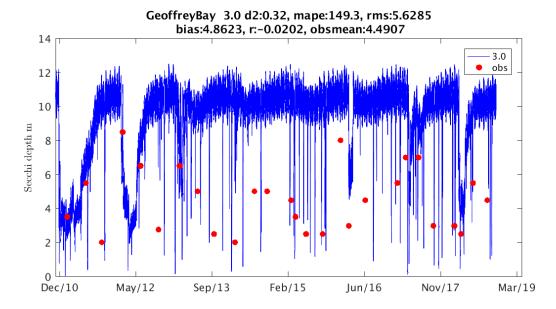


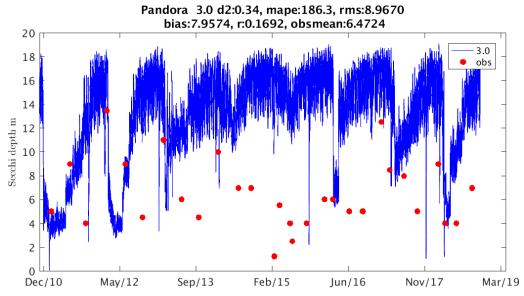


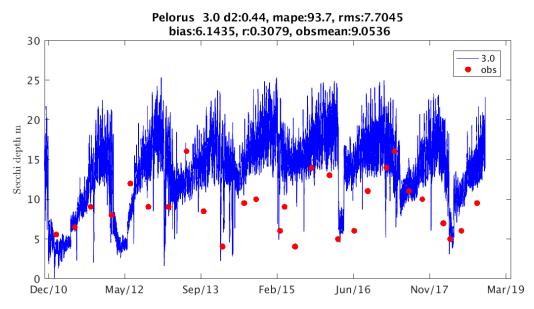


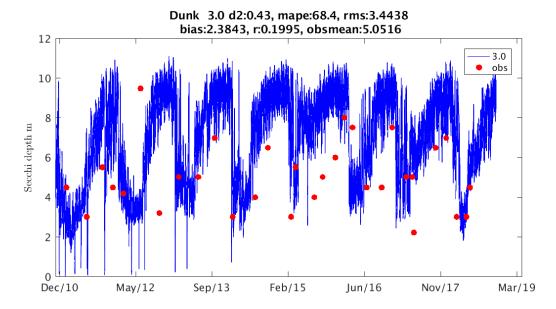


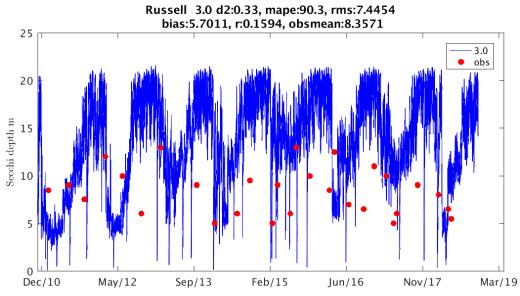


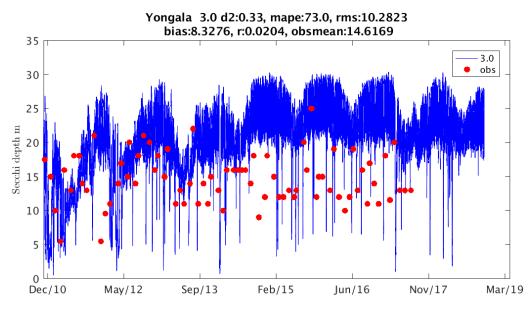


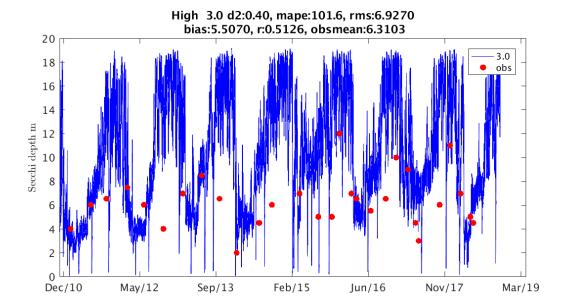


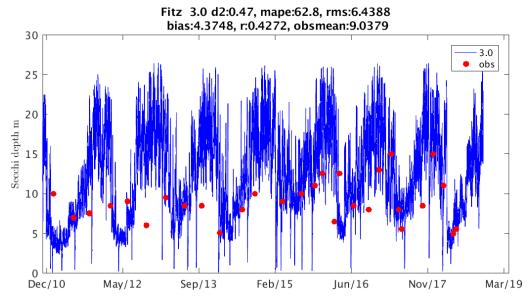












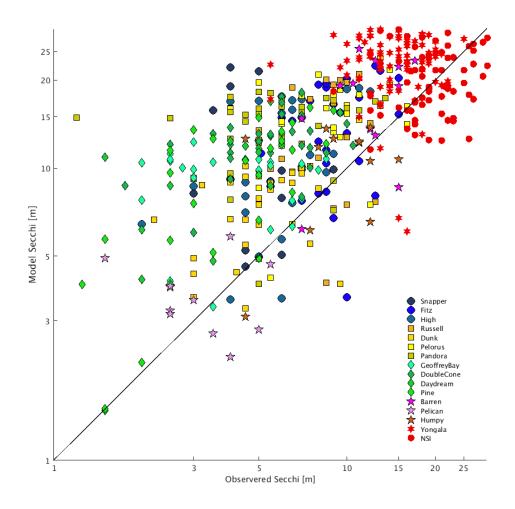
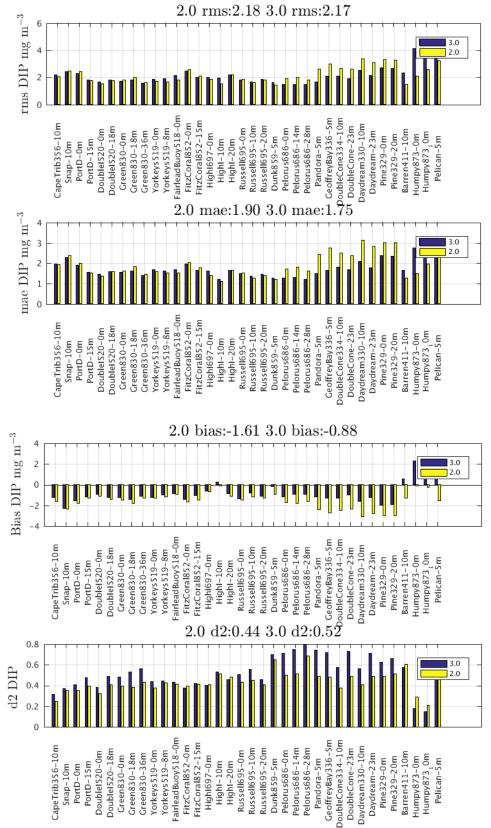
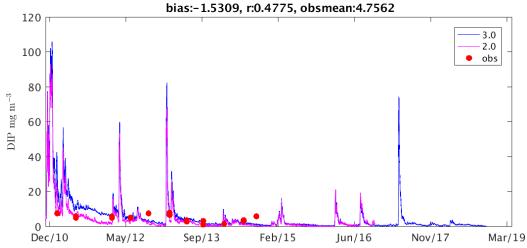
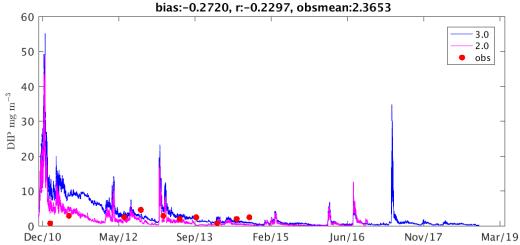
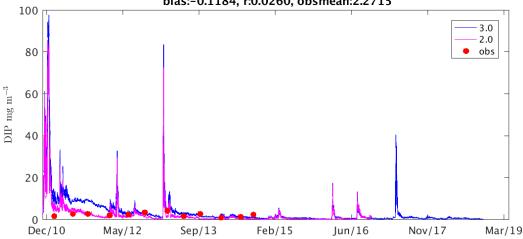




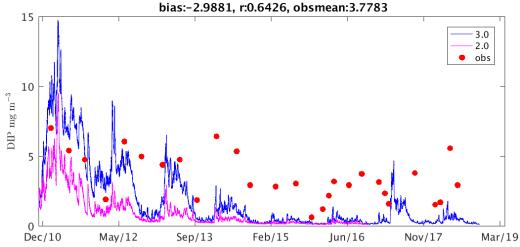
Figure 6 Scatter plot of observed Secchi for long Term Monitoring sites and NRS sites (Yongala and North Stradbroke) assessment against simulated Secchi for model version 3p0

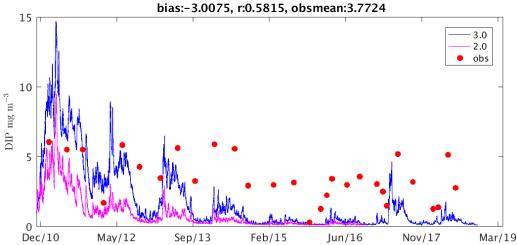


7 Metrics for Long Term Monitoring sites DIP assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

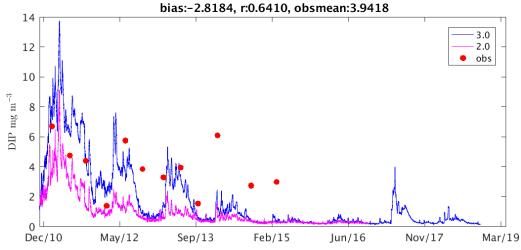

Pelican_5m 3.0 d2:0.52, mape:60.1, rms:4.4336 bias:0.9543, r:0.5008, obsmean:4.7562 Pelican_5m 2.0 d2:0.62, mape:57.9, rms:3.2174

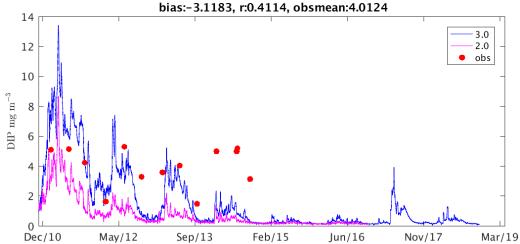
Humpy873_10m 3.0 d2:0.15, mape:220.4, rms:4.2733 bias:1.7741, r:-0.2305, obsmean:2.3653 Humpy873_10m 2.0 d2:0.20, mape:136.1, rms:2.5691

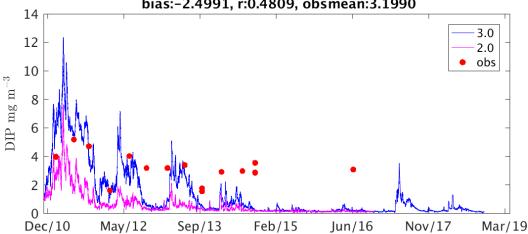

Humpy873_0m 3.0 d2:0.18, mape:136.5, rms:4.1244 bias:2.2803, r:0.1179, obsmean:2.2715 Humpy873_0m 2.0 d2:0.29, mape:68.9, rms:2.1009 bias:-0.1184, r:0.0260, obsmean:2.2715

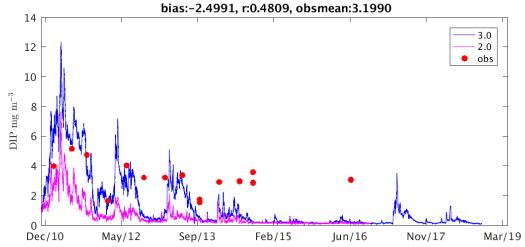

Barren411_10m 3.0 d2:0.58, mape:67.9, rms:2.3439 bias:0.5380, r:0.6883, obsmean:2.1001 Barren411_10m 2.0 d2:0.61, mape:67.6, rms:1.4913

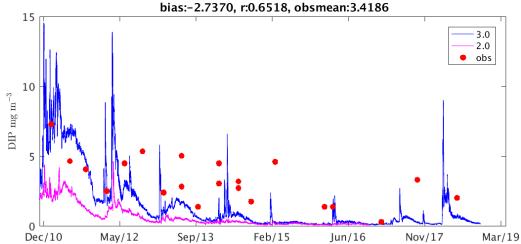
bias:-1.2843, r:0.6697, obsmean:2.1001 40 3.0 35 2.0 obs 30 25 $\rm DIP~mg~m^{-3}$ 20 15 10 5 0 Sep/13 Dec/10 May/12 Feb/15 Jun/16 Nov/17 Mar/19

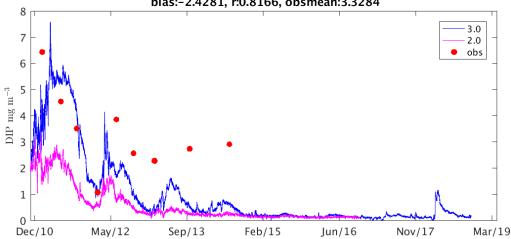

Pine329_20m 3.0 d2:0.66, mape:71.0, rms:2.6551 bias:-1.9380, r:0.6373, obsmean:3.5062 Pine329_20m 2.0 d2:0.51, mape:81.7, rms:3.2758 bias:-2.9881 r0.6426, obsmean:3.7783

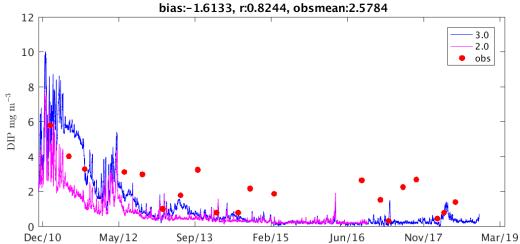

Pine329_0m 3.0 d2:0.63, mape:71.6, rms:2.6900 bias:-1.9750, r:0.6078, obsmean:3.4935 Pine329_0m 2.0 d2:0.48, mape:80.9, rms:3.2962 bias:-3.0075 rt.0.5815 obsmean:3.7724

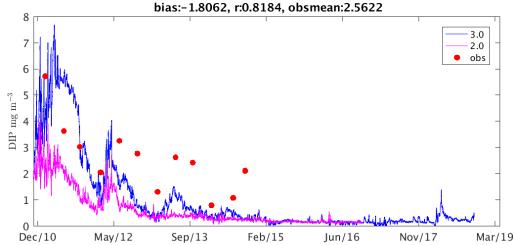

Daydream_23m 3.0 d2:0.71, mape:49.9, rms:2.1620 bias:-1.2492, r:0.6306, obsmean:3.9418 Daydream_23m 2.0 d2:0.49, mape:71.8, rms:3.0820

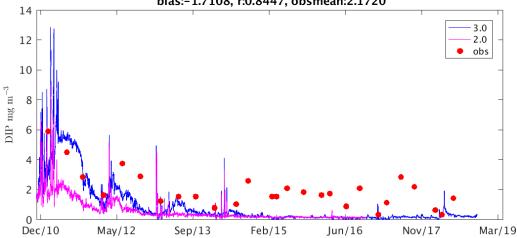

Daydream330_10m 3.0 d2:0.56, mape:52.1, rms:2.5075 bias:-1.5843, r:0.4367, obsmean:4.0124 Daydream330_10m 2.0 d2:0.41, mape:78.0, rms:3.3453

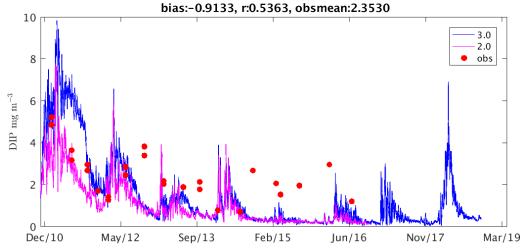

DoubleCone334_10m 3.0 d2:0.57, mape:59.0, rms:2.0945 bias:-1.2781, r:0.6372, obsmean:3.1990 DoubleCone334_10m 2.0 d2:0.38, mape:79.5, rms:2.6785 bias:-2.4991, r:0.4809, obsmean:3.1990

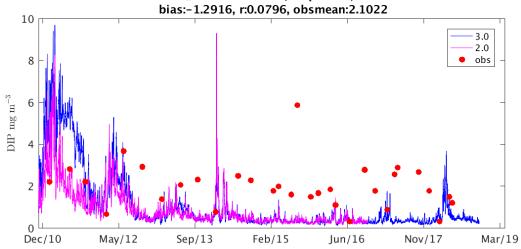

DoubleCone334_10m 3.0 d2:0.57, mape:59.0, rms:2.0945 bias:-1.2781, r:0.6372, obsmean:3.1990 DoubleCone334_10m 2.0 d2:0.38, mape:79.5, rms:2.6785

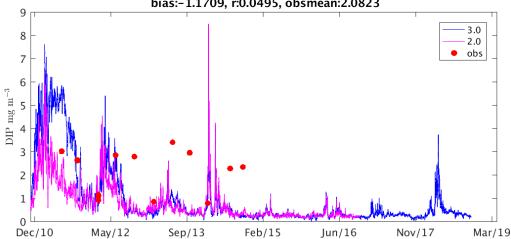

GeoffreyBay336_5m 3.0 d2:0.71, mape:51.1, rms:2.0757 bias:-1.2867, r:0.6263, obsmean:3.2645 GeoffreyBay336_5m 2.0 d2:0.48, mape:81.8, rms:2.9963

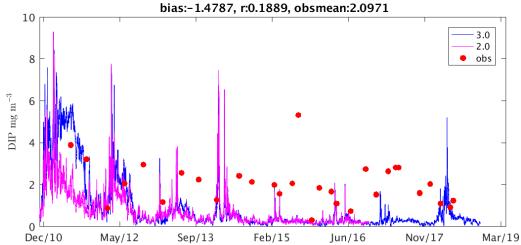

Pandora_5m 3.0 d2:0.74, mape:47.5, rms:1.6856 bias:-1.1941, r:0.7463, obsmean:3.3284 Pandora_5m 2.0 d2:0.49, mape:73.8, rms:2.6102 bias:-2.4281, r:0.8166, obsmean:3.3284


Pelorus686_28m 3.0 d2:0.79, mape:56.4, rms:1.4723 bias:-0.9280, r:0.7673, obsmean:2.1467 Pelorus686_28m 2.0 d2:0.69, mape:66.9, rms:1.7906

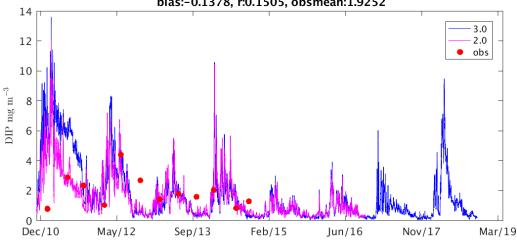

Pelorus686_14m 3.0 d2:0.75, mape:54.8, rms:1.4622 bias:-0.9590, r:0.7311, obsmean:2.5622 Pelorus686_14m 2.0 d2:0.51, mape:72.0, rms:1.9891 bias:-1.8062_rr0.8184_obsmean:2.5622

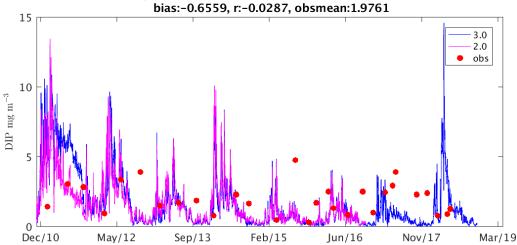

Pelorus686_0m 3.0 d2:0.71, mape:72.1, rms:1.4860 bias:-1.1856, r:0.7430, obsmean:1.9342 Pelorus686_0m 2.0 d2:0.50, mape:81.2, rms:1.9110 bias:-1.7108, r:0.8447, obsmean:2.1720

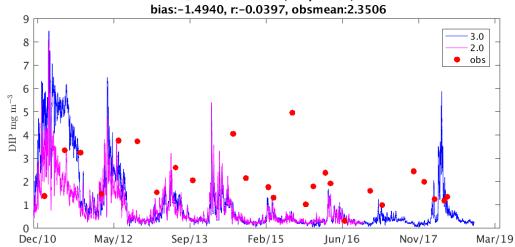

Dunk859_5m 3.0 d2:0.70, mape:57.6, rms:1.6308 bias:-0.1835, r:0.5943, obsmean:2.3530 Dunk859_5m 2.0 d2:0.65, mape:56.3, rms:1.4147

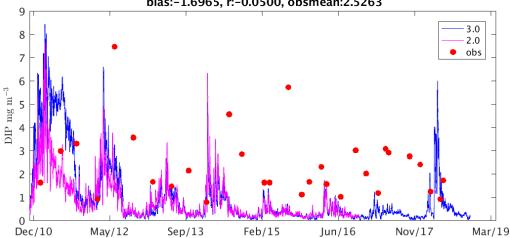

Russell695_20m 3.0 d2:0.46, mape:64.6, rms:1.8396 bias:-1.0928, r:0.1808, obsmean:1.9928 Russell695_20m 2.0 d2:0.40, mape:62.9, rms:1.8190 bias:-1.2916, r:0.0796, obsmean:2.1022

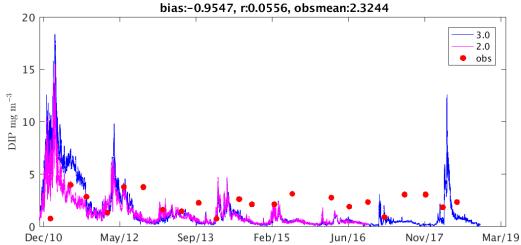

Russell695_10m 3.0 d2:0.56, mape:62.3, rms:1.6678 bias:-0.8214, r:0.3468, obsmean:2.0823 Russell695_10m 2.0 d2:0.45, mape:56.8, rms:1.5992 bias:-1.1709, r:0.0495, obsmean:2.0823

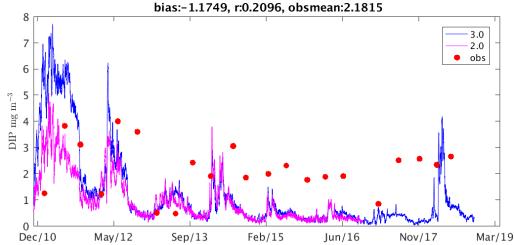

Russell695_0m 3.0 d2:0.50, mape:69.6, rms:1.8138 bias:-1.3396, r:0.3225, obsmean:2.0215 Russell695_0m 2.0 d2:0.43, mape:67.5, rms:1.8771

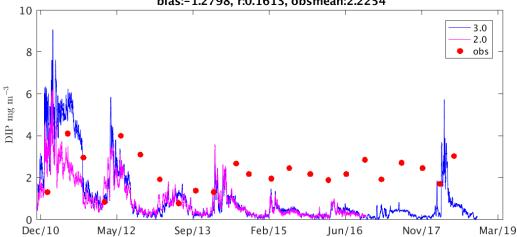

Highl_20m 3.0 d2:0.46, mape:67.9, rms:2.1781 bias:-0.8446, r:0.1746, obsmean:2.4529 Highl_20m 2.0 d2:0.48, mape:59.6, rms:2.1851


Highl_10m 3.0 d2:0.53, mape:95.9, rms:1.9546 bias:0.2291, r:0.2843, obsmean:1.9252 Highl_10m 2.0 d2:0.51, mape:85.6, rms:1.5082 bias:-0.1378, r:0.1505, obsmean:1.9252

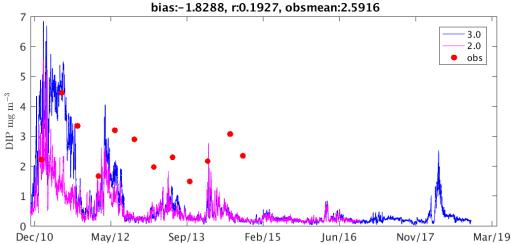

Highl697_0m 3.0 d2:0.40, mape:84.1, rms:2.0173 bias:-0.6394, r:0.0219, obsmean:1.9810 Highl697_0m 2.0 d2:0.40, mape:75.5, rms:1.8426

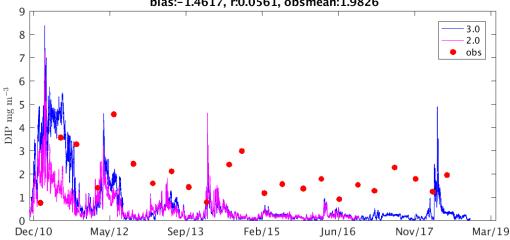

FitzCoral852_15m 3.0 d2:0.42, mape:76.2, rms:2.0131 bias:-1.0795, r:0.0756, obsmean:2.1317 FitzCoral852_15m 2.0 d2:0.41, mape:72.4, rms:2.1002 bias:-1.4040, r=0.0397, obsmean:3.3506

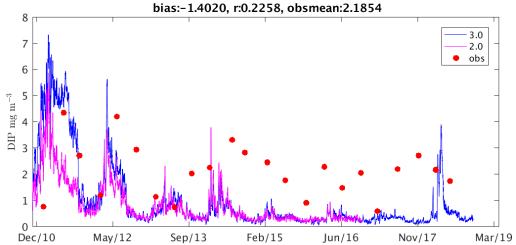

FitzCoral852_0m 3.0 d2:0.37, mape:79.3, rms:2.4476 bias:-1.4403, r:0.0394, obsmean:2.3769 FitzCoral852_0m 2.0 d2:0.39, mape:76.0, rms:2.5651 bias:-1.6965, r:-0.0500, obsmean:2.5263

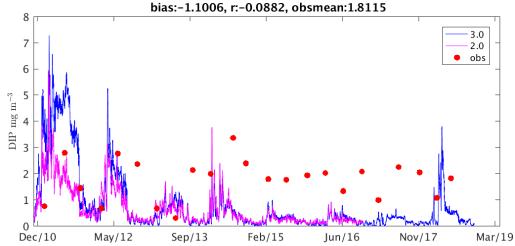

FairleadBuoy518_0m 3.0 d2:0.43, mape:88.5, rms:2.1537 bias:-0.8519, r:0.1135, obsmean:2.3035 FairleadBuoy518_0m 2.0 d2:0.42, mape:82.8, rms:1.7984

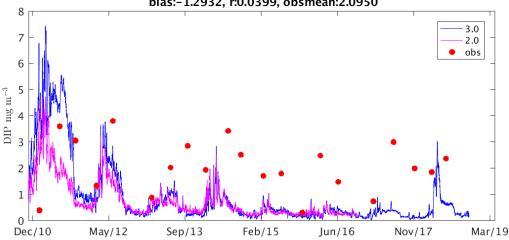
Yorkeys519_8m 3.0 d2:0.44, mape:82.3, rms:1.9025 bias:-0.9954, r:0.1730, obsmean:2.1810 Yorkeys519_8m 2.0 d2:0.43, mape:75.1, rms:1.6567 bias:-1.1749_r0.2096_obsmean:2.1815

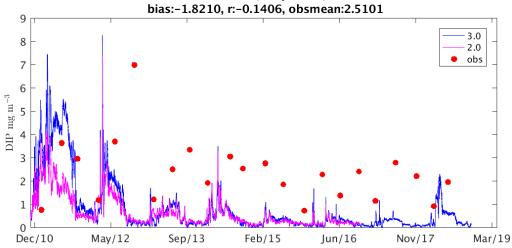

Yorkeys519_0m 3.0 d2:0.44, mape:79.9, rms:1.8592 bias:-1.2355, r:0.2365, obsmean:2.2547 Yorkeys519_0m 2.0 d2:0.37, mape:73.2, rms:1.7175 bias:-1.2798, r:0.1613, obsmean:2.2254

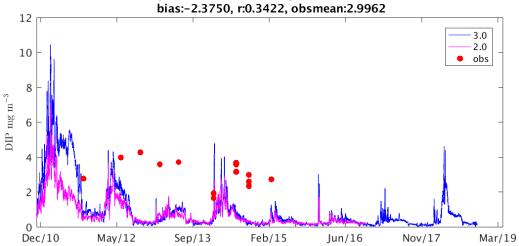

Green830_36m 3.0 d2:0.56, mape:65.1, rms:1.5962 bias:-1.1311, r:0.4758, obsmean:2.1052 Green830_36m 2.0 d2:0.43, mape:69.4, rms:1.6013


Green830_18m 3.0 d2:0.53, mape:66.2, rms:1.8024 bias:-1.4328, r:0.5535, obsmean:2.5916 Green830_18m 2.0 d2:0.38, mape:68.8, rms:2.0202 bias:-1.8288, r:0.1927, obsmean:2.5916


Green830_0m 3.0 d2:0.48, mape:87.5, rms:1.7146 bias:-1.2327, r:0.2975, obsmean:1.9229 Green830_0m 2.0 d2:0.39, mape:81.9, rms:1.8257 bias:-1.4617, r:0.0561, obsmean:1.9826


DoubleI520_18m 3.0 d2:0.49, mape:83.0, rms:1.7888 bias:-1.2322, r:0.2824, obsmean:2.1176
DoubleI520_18m 2.0 d2:0.41, mape:72.2, rms:1.7771


Doublel520_0m 3.0 d2:0.38, mape:96.1, rms:1.6505 bias:-0.9586, r:0.0324, obsmean:1.7727 Doublel520_0m 2.0 d2:0.32, mape:79.7, rms:1.5164 bias:-1.1006 r=0.0882, obsmean:1.8115


PortD_15m 3.0 d2:0.48, mape:108.5, rms:1.7973 bias:-1.1596, r:0.1849, obsmean:2.0684 PortD_15m 2.0 d2:0.39, mape:88.4, rms:1.7539 bias:-1.2932, r:0.0399, obsmean:2.0950

PortD_0m 3.0 d2:0.41, mape:89.7, rms:2.2945 bias:-1.5586, r:0.0518, obsmean:2.3577 PortD_0m 2.0 d2:0.35, mape:80.9, rms:2.4268

Snap_10m 3.0 d2:0.37, mape:76.4, rms:2.4100 bias:-2.2861, r:0.3779, obsmean:2.9962 Snap_10m 2.0 d2:0.35, mape:78.5, rms:2.4860 bias:-2.3750, r0.3422, obsmean:2.9962

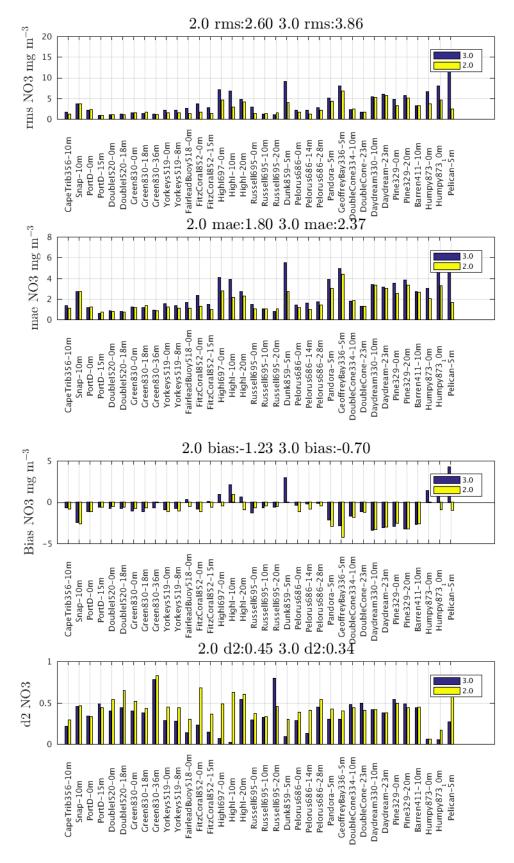


Figure 8 Metrics for Long Term Monitoring sites NO3 assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

Pelican_5m 3.0 d2:0.27, mape:463.2, rms:15.8783 bias:4.2269, r:0.6679, obsmean:1.8209 Pelican_5m 2.0 d2:0.78, mape:91.0, rms:2.3327

bias:-1.0179, r:0.7157, obsmean:1.8209

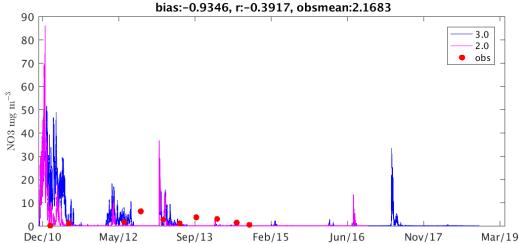
150

50

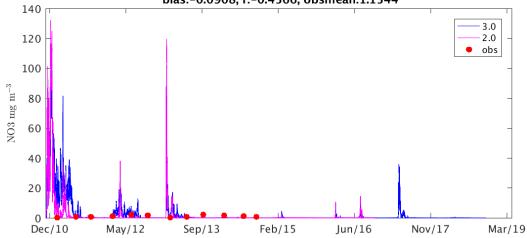
Dec/10

May/12

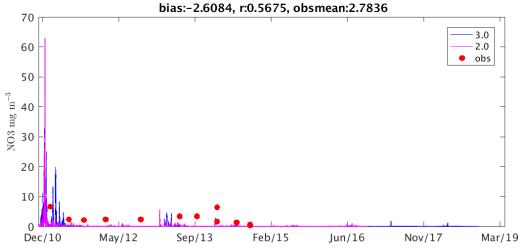
Sep/13

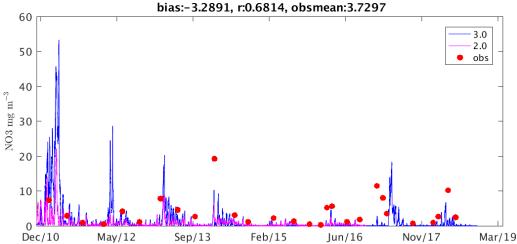

Feb/15

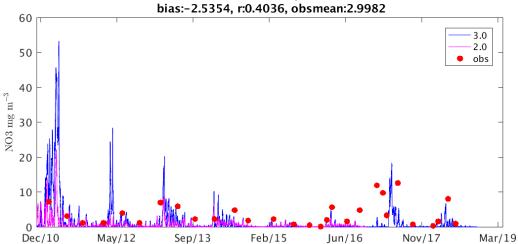
Jun/16

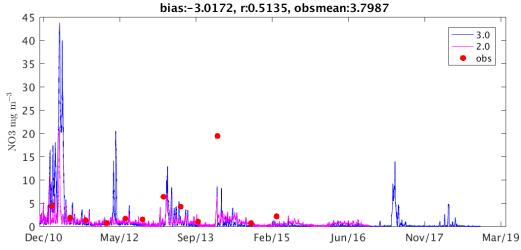

Nov/17

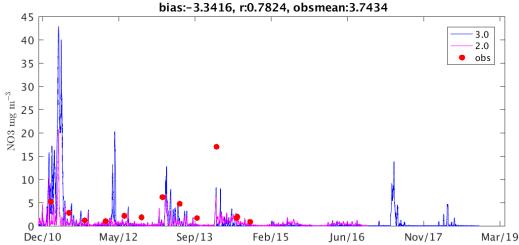
Mar/19

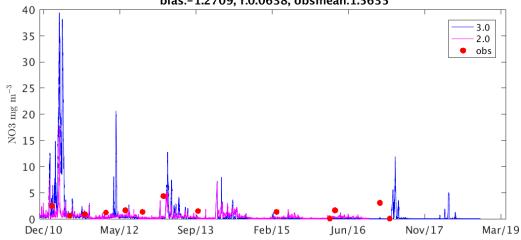

Humpy873_10m 3.0 d2:0.05, mape:1749.5, rms:7.9106 bias:0.9358, r:-0.4230, obsmean:2.1683
Humpy873_10m 2.0 d2:0.17, mape:906.1, rms:4.5475


Humpy873_0m 3.0 d2:0.06, mape:1394.5, rms:6.5672 bias:1.3937, r:-0.2983, obsmean:1.1544 Humpy873_0m 2.0 d2:0.06, mape:768.7, rms:3.5890 bias:-0.0908, r:-0.4566, obsmean:1.1544

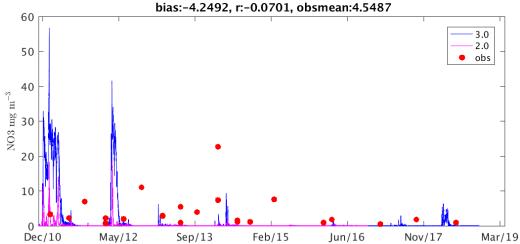

Barren411_10m 3.0 d2:0.44, mape:96.7, rms:3.2380 bias:-2.6796, r:0.5995, obsmean:2.7836
Barren411_10m 2.0 d2:0.45, mape:94.2, rms:3.1538

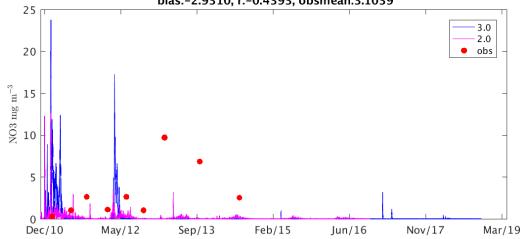

Pine329_20m 3.0 d2:0.49, mape:87.2, rms:5.6015 bias:-3.2316, r:0.2042, obsmean:4.1014 Pine329_20m 2.0 d2:0.44, mape:85.1, rms:5.0701 bias:-3.2891 r0.6814 obsmean:3.7297


Pine329_0m 3.0 d2:0.54, mape:91.2, rms:4.7214 bias:-2.9330, r:0.3001, obsmean:3.7608 Pine329_0m 2.0 d2:0.49, mape:78.8, rms:3.2404


Daydream_23m 3.0 d2:0.38, mape:70.0, rms:5.9701 bias:-3.1180, r:-0.0331, obsmean:3.7987 Daydream_23m 2.0 d2:0.38, mape:56.5, rms:5.7215

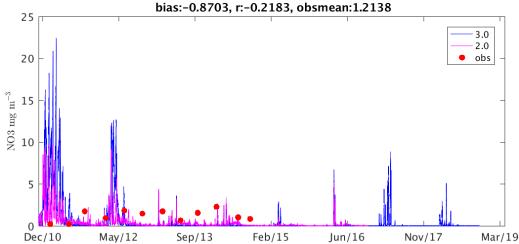
Daydream330_10m 3.0 d2:0.41, mape:88.8, rms:5.3704 bias:-3.3853, r:0.0920, obsmean:3.7434 Daydream330_10m 2.0 d2:0.41, mape:83.4, rms:5.2331

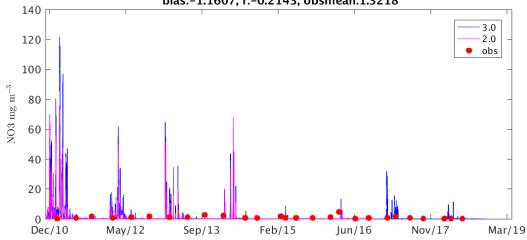

DoubleCone_23m 3.0 d2:0.49, mape:78.3, rms:1.6977 bias:-1.1957, r:0.2328, obsmean:1.5676 DoubleCone_23m 2.0 d2:0.41, mape:76.9, rms:1.6603 bias:-1.2709, r:0.0638, obsmean:1.5635


DoubleCone334_10m 3.0 d2:0.48, mape:86.2, rms:2.3105 bias:-1.7163, r:0.4151, obsmean:2.0549 DoubleCone334_10m 2.0 d2:0.44, mape:83.3, rms:2.4648

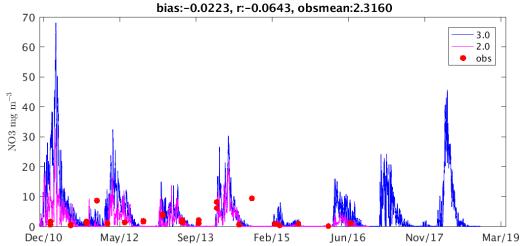
bias:-1.8359, r:0.4988, obsmean:2.0549 40 3.0 35 2.0 obs 30 25 $\rm NO3~mg~m^{-3}$ 20 15 10 5 0 Dec/10 May/12 Sep/13 Feb/15 Jun/16 Nov/17 Mar/19

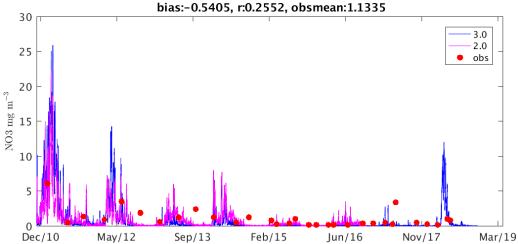
GeoffreyBay336_5m 3.0 d2:0.30, mape:119.3, rms:7.9536 bias:-2.8808, r:-0.0450, obsmean:4.2282 GeoffreyBay336_5m 2.0 d2:0.40, mape:92.5, rms:6.7874

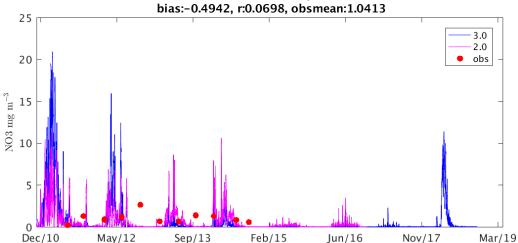

Pandora_5m 3.0 d2:0.30, mape:342.3, rms:4.9838 bias:-2.1844, r:-0.3308, obsmean:3.1039 Pandora_5m 2.0 d2:0.42, mape:93.3, rms:4.2381 bias:-2.9310, r:-0.4393, obsmean:3.1039

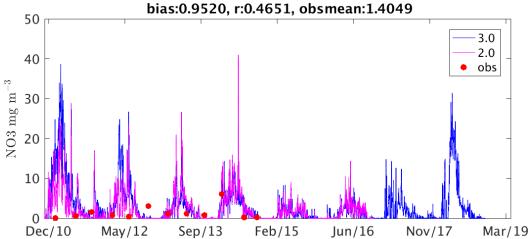

Pelorus686_28m 3.0 d2:0.45, mape:199.3, rms:2.7353 bias:-0.1555, r:0.3491, obsmean:1.3843 Pelorus686_28m 2.0 d2:0.54, mape:72.8, rms:2.1121

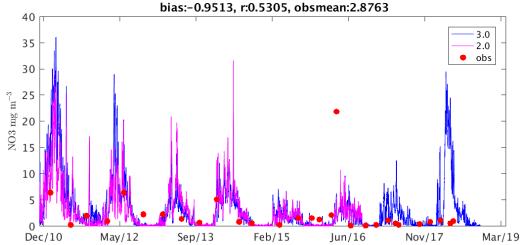
bias:-0.4446, r:0.6411, obsmean:1.6470 30 3.0 2.0 25 obs 20 $\rm NO3~mg~m^{-3}$ 15 10 5 0 Feb/15 Dec/10 May/12 Sep/13 Jun/16 Mar/19 Nov/17

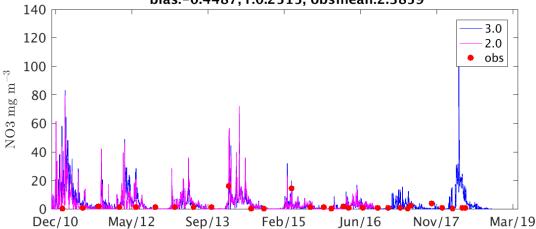

Pelorus686_14m 3.0 d2:0.12, mape:384.5, rms:2.1355 bias:-0.2636, r:-0.5484, obsmean:1.2138 Pelorus686_14m 2.0 d2:0.41, mape:84.2, rms:1.1510 bias:-0.8703 r:-0.2183 obsmean:1.2138

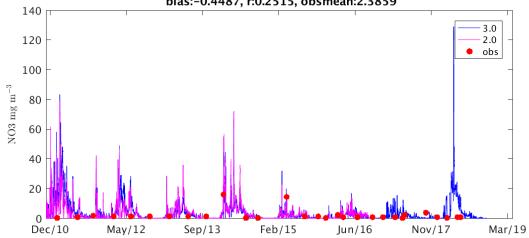

Pelorus686_0m 3.0 d2:0.28, mape:136.0, rms:2.0423 bias:-0.3503, r:-0.0325, obsmean:1.1362 Pelorus686_0m 2.0 d2:0.38, mape:80.0, rms:1.5936 bias:-1.1607, r:-0.2143, obsmean:1.3218

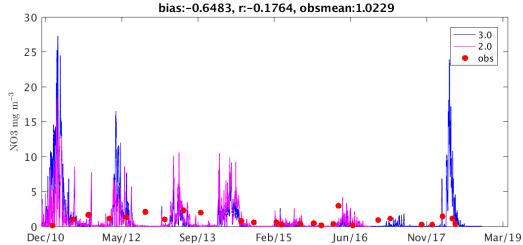

Dunk859_5m 3.0 d2:0.09, mape:513.9, rms:9.0890 bias:2.9842, r:-0.1698, obsmean:2.3160 Dunk859_5m 2.0 d2:0.30, mape:198.9, rms:3.9263

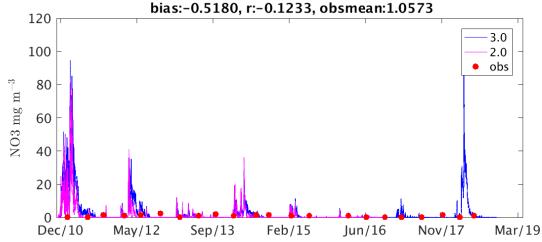

Russell695_20m 3.0 d2:0.80, mape:90.9, rms:1.0418 bias:-0.5843, r:0.7304, obsmean:1.0395 Russell695_20m 2.0 d2:0.45, mape:118.0, rms:1.5485

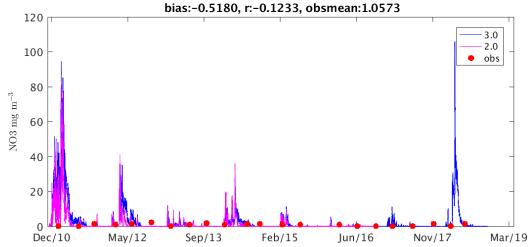

Russell695_10m 3.0 d2:0.32, mape:134.6, rms:1.1518 bias:-0.6778, r:-0.1952, obsmean:1.0413 Russell695_10m 2.0 d2:0.33, mape:97.1, rms:1.3502

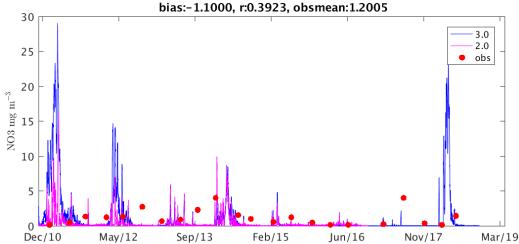

Highl_10m 3.0 d2:0.02, mape:1080.1, rms:6.7554 bias:2.0861, r:-0.2585, obsmean:1.4049 Highl_10m 2.0 d2:0.62, mape:475.3, rms:2.8124

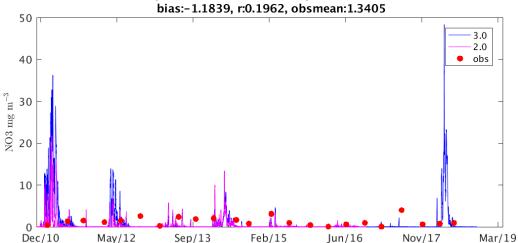

Highl_20m 3.0 d2:0.54, mape:330.6, rms:4.7201 bias:0.6523, r:0.3286, obsmean:2.1869 Highl_20m 2.0 d2:0.60, mape:211.4, rms:4.1357

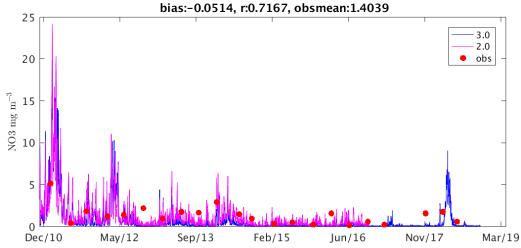

Highl697_0m 3.0 d2:0.07, mape:767.3, rms:6.9776 bias:0.9008, r:-0.1369, obsmean:1.9928 Highl697_0m 2.0 d2:0.49, mape:379.6, rms:4.5492 bias:-0.4487, r:0.2515, obsmean:2.3859

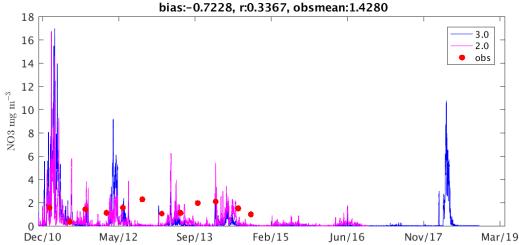

Highl697_0m 3.0 d2:0.07, mape:767.3, rms:6.9776 bias:0.9008, r:-0.1369, obsmean:1.9928 Highl697_0m 2.0 d2:0.49, mape:379.6, rms:4.5492 bias:-0.4487, r:0.2515, obsmean:2.3859

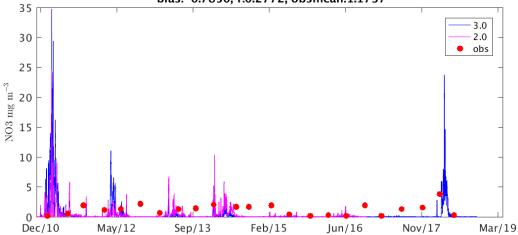

FitzCoral852_15m 3.0 d2:0.15, mape:339.3, rms:2.6590 bias:0.0909, r:-0.0821, obsmean:0.9622 FitzCoral852_15m 2.0 d2:0.36, mape:174.2, rms:1.2471

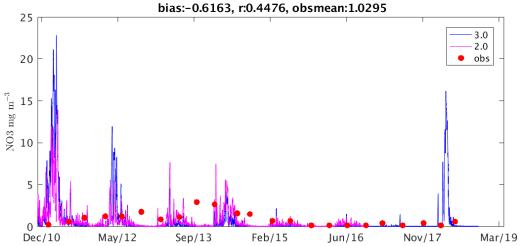

FairleadBuoy518_0m 3.0 d2:0.14, mape:287.7, rms:2.5812 bias:0.3047, r:-0.2208, obsmean:0.9832 FairleadBuoy518_0m 2.0 d2:0.30, mape:114.4, rms:1.2965

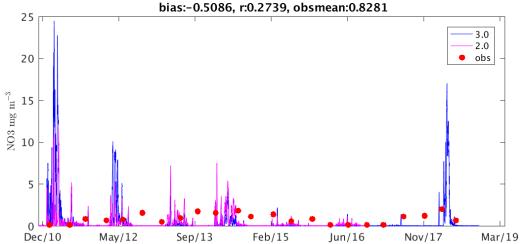

FairleadBuoy518_0m 3.0 d2:0.14, mape:287.7, rms:2.5812 bias:0.3047, r:-0.2208, obsmean:0.9832 FairleadBuoy518_0m 2.0 d2:0.30, mape:114.4, rms:1.2965

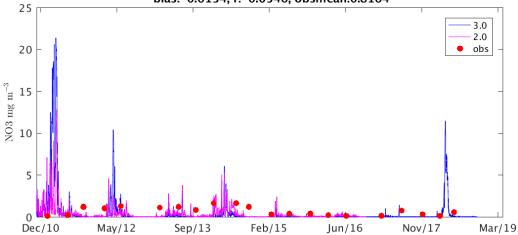

Yorkeys519_8m 3.0 d2:0.27, mape:275.7, rms:2.0435 bias:-0.7598, r:-0.2275, obsmean:1.2110 Yorkeys519_8m 2.0 d2:0.44, mape:85.2, rms:1.4456 bias:-1.1000, r0.3923, obsmean:1.2005

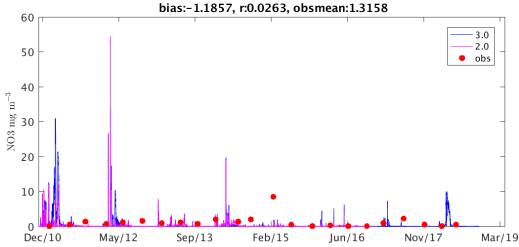

Yorkeys519_0m 3.0 d2:0.28, mape:161.5, rms:2.1247 bias:-0.9196, r:-0.1978, obsmean:1.3327 Yorkeys519_0m 2.0 d2:0.45, mape:83.6, rms:1.4347

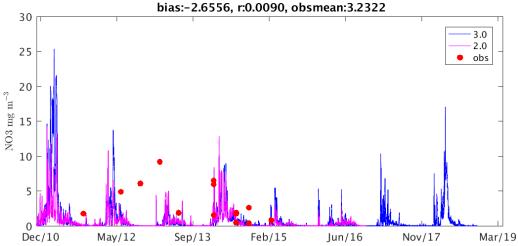

Green830_36m 3.0 d2:0.78, mape:79.5, rms:1.0963 bias:-0.7076, r:0.7112, obsmean:1.3384 Green830_36m 2.0 d2:0.83, mape:83.3, rms:1.0803

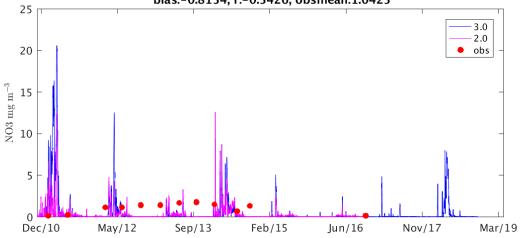

Green830_18m 3.0 d2:0.37, mape:77.3, rms:1.3029 bias:-1.1600, r:0.1396, obsmean:1.4280 Green830_18m 2.0 d2:0.43, mape:84.4, rms:1.5618 bias:-0.7228 rt0.3367 obsmean:1.4280


Green830_0m 3.0 d2:0.40, mape:125.6, rms:1.4871 bias:-1.1001, r:-0.2343, obsmean:1.2316 Green830_0m 2.0 d2:0.52, mape:86.4, rms:1.3991 bias:-0.7850, r:0.2772, obsmean:1.1737


DoubleI520_18m 3.0 d2:0.44, mape:88.8, rms:1.0965 bias:-0.7440, r:-0.0741, obsmean:0.8782 DoubleI520_18m 2.0 d2:0.64, mape:70.8, rms:1.0140


Doublel520_0m 3.0 d2:0.40, mape:109.8, rms:1.0354 bias:-0.7818, r:-0.3071, obsmean:0.8739 Doublel520_0m 2.0 d2:0.54, mape:92.8, rms:0.9328 bias:-0.5086, r0.2739, obsmean:0.8281


PortD_15m 3.0 d2:0.48, mape:78.9, rms:0.7965 bias:-0.6062, r:0.1459, obsmean:0.7116 PortD_15m 2.0 d2:0.44, mape:87.8, rms:0.8419 bias:-0.6154, r:-0.0546, obsmean:0.8164


PortD_0m 3.0 d2:0.34, mape:87.0, rms:2.0542 bias:-1.1574, r:-0.0697, obsmean:1.2266 PortD_0m 2.0 d2:0.33, mape:79.9, rms:2.2013

Snap_10m 3.0 d2:0.45, mape:74.2, rms:3.6532 bias:-2.5124, r:-0.0263, obsmean:3.2322 Snap_10m 2.0 d2:0.46, mape:72.4, rms:3.7206

CapeTrib356_10m 3.0 d2:0.21, mape:311.3, rms:1.5911 bias:-0.6762, r:-0.4876, obsmean:1.0425 CapeTrib356_10m 2.0 d2:0.29, mape:163.9, rms:1.2029 bias:-0.8154, r:-0.5426, obsmean:1.0425

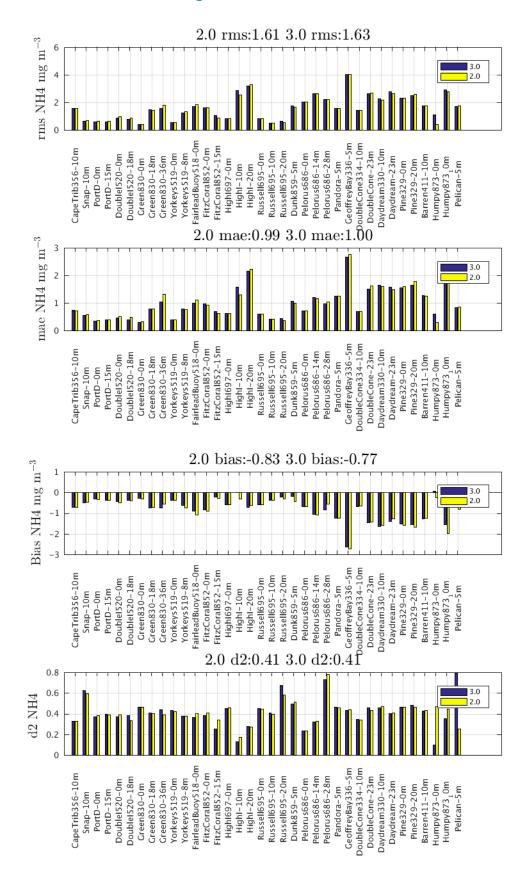
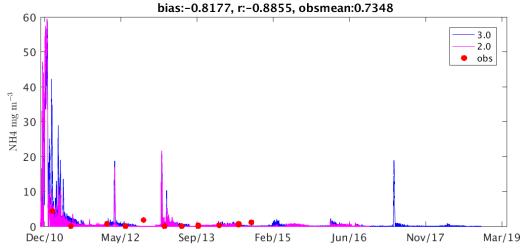
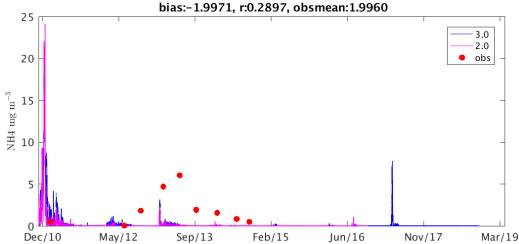
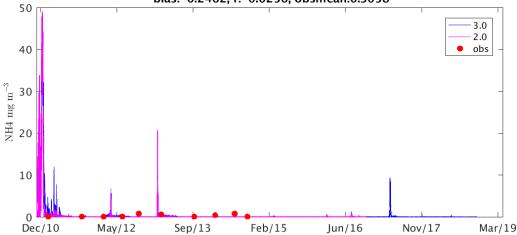
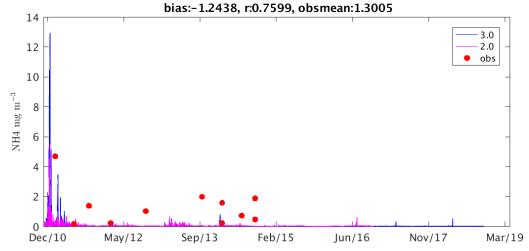
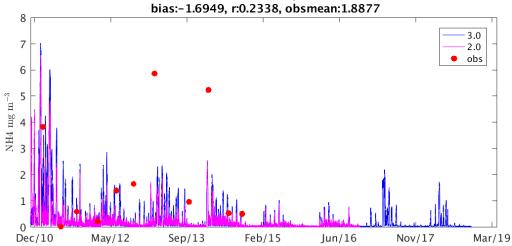
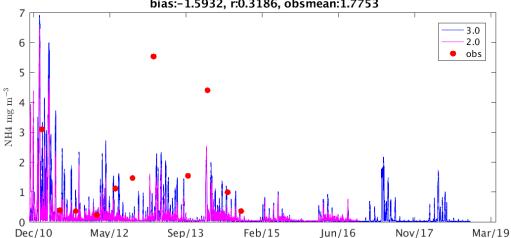




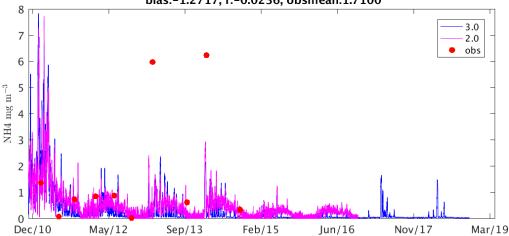
Figure 9 Metrics for Long Term Monitoring sites NH4 assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

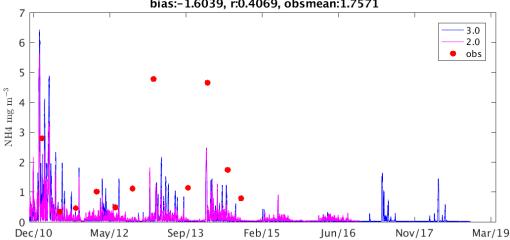

Pelican_5m 3.0 d2:0.79, mape:89.0, rms:1.6907 bias:0.0103, r:0.8810, obsmean:0.7348 Pelican_5m 2.0 d2:0.25, mape:94.7, rms:1.7502

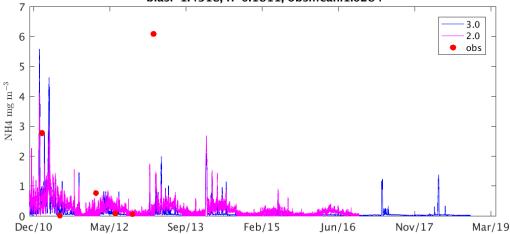

Humpy873_10m 3.0 d2:0.35, mape:237.6, rms:2.8912 bias:-1.5584, r:-0.2555, obsmean:1.9960 Humpy873_10m 2.0 d2:0.44, mape:127.5, rms:2.7663 bias:-1.9971 r0.2897 obsmean:1.9960

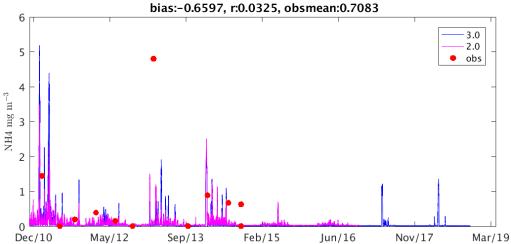

Humpy873_0m 3.0 d2:0.10, mape:220.2, rms:1.0706 bias:0.0604, r:-0.3076, obsmean:0.3058 Humpy873_0m 2.0 d2:0.47, mape:150.5, rms:0.4175 bias:-0.2462, r:-0.0256, obsmean:0.3058

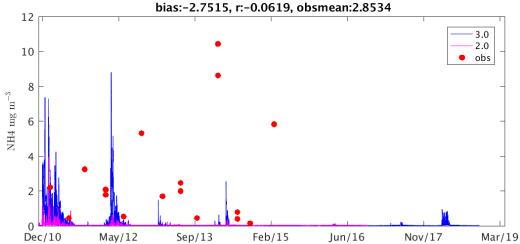

Barren411_10m 3.0 d2:0.42, mape:94.3, rms:1.7634 bias:-1.2681, r:0.8369, obsmean:1.3005
Barren411_10m 2.0 d2:0.43, mape:89.4, rms:1.7239

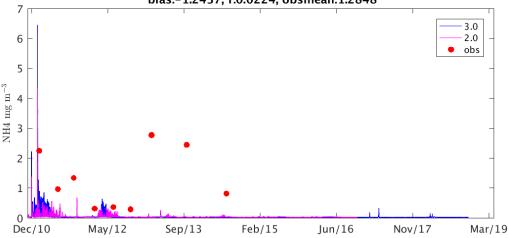

Pine329_20m 3.0 d2:0.48, mape:79.9, rms:2.5048 bias:-1.5693, r:0.2186, obsmean:1.8877 Pine329_20m 2.0 d2:0.46, mape:86.9, rms:2.5896 bias:-1.6949 r:0.2338 obsmean:1.8877

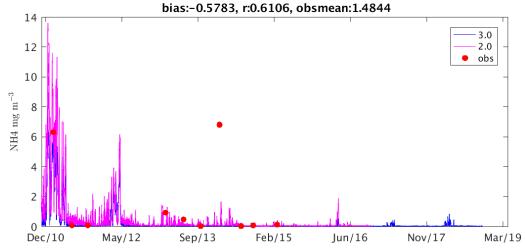

Pine329_0m 3.0 d2:0.46, mape:80.5, rms:2.2893 bias:-1.5255, r:0.1459, obsmean:1.7753 Pine329_0m 2.0 d2:0.46, mape:77.7, rms:2.3135 bias:-1.5932, r:0.3186, obsmean:1.7753

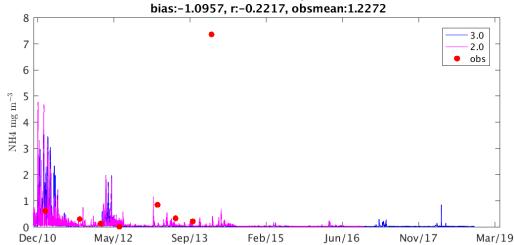

Daydream_23m 3.0 d2:0.40, mape:156.4, rms:2.7555 bias:-1.3964, r:-0.1885, obsmean:1.7100 Daydream_23m 2.0 d2:0.40, mape:202.2, rms:2.6217 bias:-1.2717, r:-0.0236, obsmean:1.7100

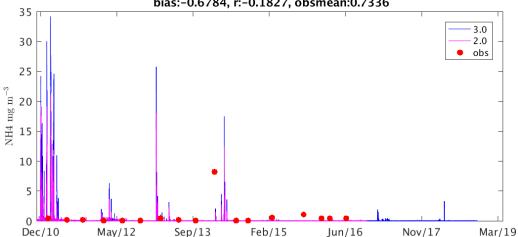

Daydream330_10m 3.0 d2:0.46, mape:87.4, rms:2.2432 bias:-1.6369, r:0.0997, obsmean:1.7571 Daydream330_10m 2.0 d2:0.47, mape:84.3, rms:2.1857 bias:-1.6039, r:0.4069, obsmean:1.7571


DoubleCone_23m 3.0 d2:0.46, mape:69.5, rms:2.6340 bias:-1.4751, r:0.1709, obsmean:1.6284 DoubleCone_23m 2.0 d2:0.43, mape:124.8, rms:2.6627 bias:-1.4318, r:-0.1811, obsmean:1.6284

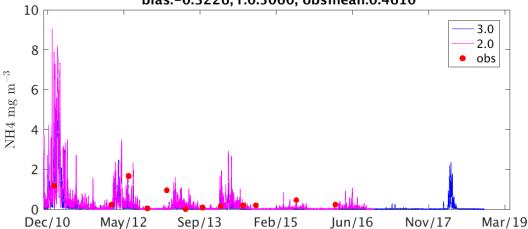

DoubleCone334_10m 3.0 d2:0.34, mape:91.1, rms:1.4248 bias:-0.6778, r:0.2137, obsmean:0.7083 DoubleCone334_10m 2.0 d2:0.34, mape:98.6, rms:1.4186


GeoffreyBay336_5m 3.0 d2:0.43, mape:84.7, rms:4.0163 bias:-2.6494, r:-0.1036, obsmean:2.8534 GeoffreyBay336_5m 2.0 d2:0.44, mape:92.7, rms:4.0303 bias:-2.7515 r=0.0619 obsmean:2.8534

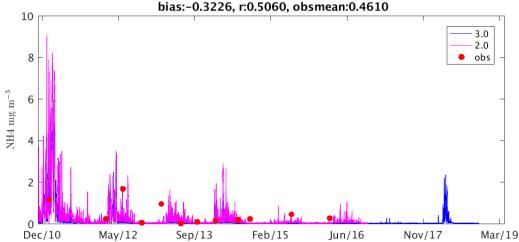

Pandora_5m 3.0 d2:0.46, mape:95.1, rms:1.5375 bias:-1.2436, r:0.3630, obsmean:1.2848 Pandora_5m 2.0 d2:0.46, mape:94.1, rms:1.5451 bias:-1.2437, r:0.0224, obsmean:1.2848


Pelorus686_28m 3.0 d2:0.73, mape:200.4, rms:2.1900 bias:-0.8486, r:0.6116, obsmean:1.4844 Pelorus686_28m 2.0 d2:0.78, mape:456.6, rms:2.1931

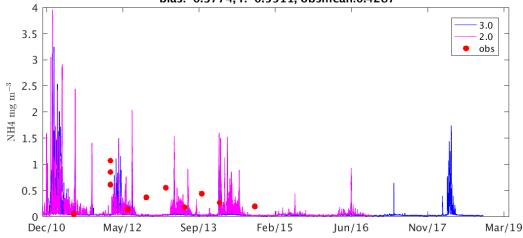
Pelorus686_14m 3.0 d2:0.32, mape:149.6, rms:2.6190 bias:-1.0504, r:-0.1395, obsmean:1.2272 Pelorus686_14m 2.0 d2:0.33, mape:168.4, rms:2.6108 bias:-1.0957 r:-0.2217 obsmean:1.2272

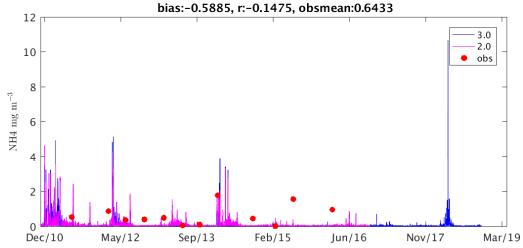


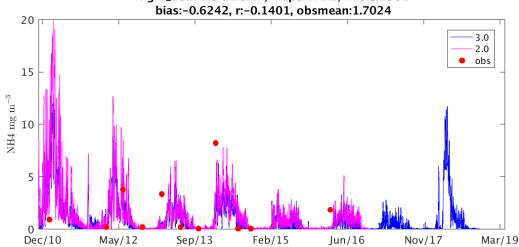
Pelorus686_0m 3.0 d2:0.23, mape:86.6, rms:2.0129 bias:-0.6792, r:-0.1596, obsmean:0.7336 Pelorus686_0m 2.0 d2:0.23, mape:93.8, rms:2.0119 bias:-0.6784, r:-0.1827, obsmean:0.7336

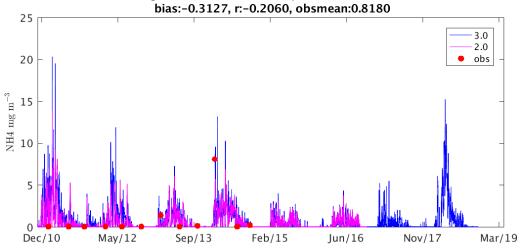


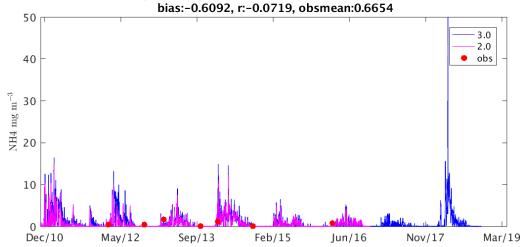
Russell695_20m 3.0 d2:0.67, mape:87.2, rms:0.6295 bias:-0.2208, r:0.4974, obsmean:0.4610 Russell695_20m 2.0 d2:0.58, mape:112.0, rms:0.5415

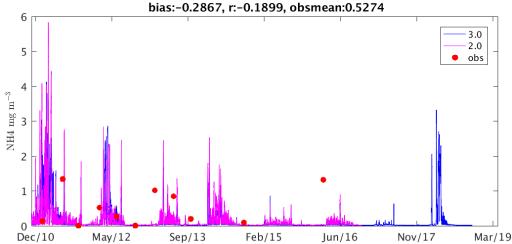

bias:-0.3226, r:0.5060, obsmean:0.4610

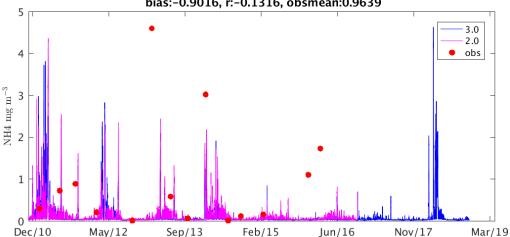

Russell695_20m 3.0 d2:0.67, mape:87.2, rms:0.6295 bias:-0.2208, r:0.4974, obsmean:0.4610 Russell695_20m 2.0 d2:0.58, mape:112.0, rms:0.5415


Russell695_10m 3.0 d2:0.40, mape:117.4, rms:0.5050 bias:-0.3828, r:-0.4052, obsmean:0.4287 Russell695_10m 2.0 d2:0.39, mape:112.8, rms:0.5058 bias:-0.3774, r:-0.5511, obsmean:0.4287

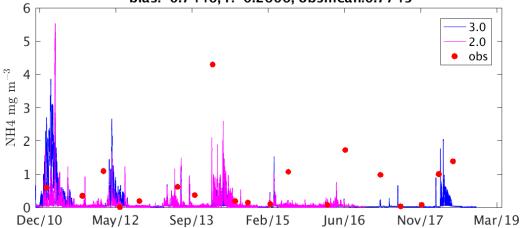

Russell695_0m 3.0 d2:0.45, mape:79.9, rms:0.8126 bias:-0.6032, r:-0.1053, obsmean:0.6433 Russell695_0m 2.0 d2:0.45, mape:82.2, rms:0.8045


Highl_20m 3.0 d2:0.28, mape:440.4, rms:3.1876 bias:-0.7305, r:-0.1468, obsmean:1.7024 Highl_20m 2.0 d2:0.27, mape:472.2, rms:3.2901 bias:-0.6242, r:-0.1401, obsmean:1.7024

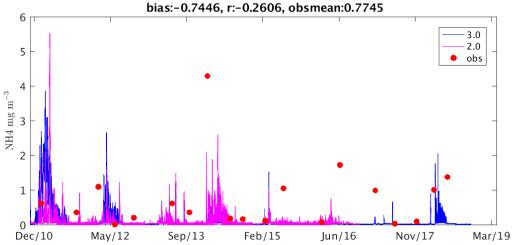

Highl_10m 3.0 d2:0.12, mape:74.1, rms:2.8698 bias:-0.0183, r:-0.1929, obsmean:0.8180 Highl_10m 2.0 d2:0.17, mape:91.2, rms:2.5441


Highl697_0m 3.0 d2:0.45, mape:107.1, rms:0.8318 bias:-0.6026, r:-0.4427, obsmean:0.6654 Highl697_0m 2.0 d2:0.46, mape:121.9, rms:0.8326

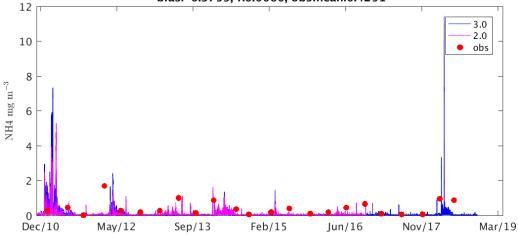
FitzCoral852_15m 3.0 d2:0.25, mape:246.1, rms:1.0254 bias:-0.2191, r:-0.2335, obsmean:0.5274
FitzCoral852_15m 2.0 d2:0.34, mape:203.5, rms:0.8421 bias:-0.2867 r:-0.1899 obsmean:0.5274

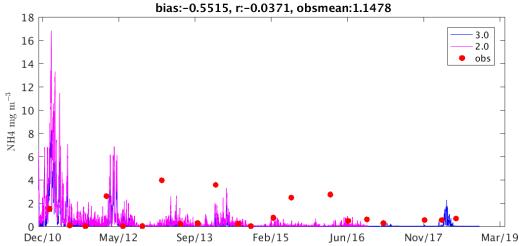


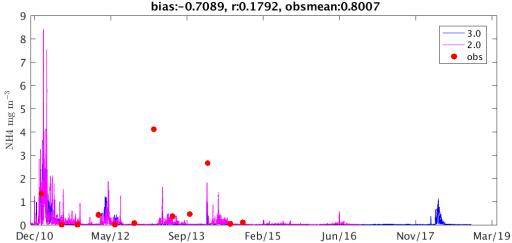
FitzCoral852_0m 3.0 d2:0.38, mape:102.3, rms:1.6010 bias:-0.8564, r:-0.1490, obsmean:0.9639 FitzCoral852_0m 2.0 d2:0.40, mape:82.5, rms:1.5815 bias:-0.9016, r:-0.1316, obsmean:0.9639

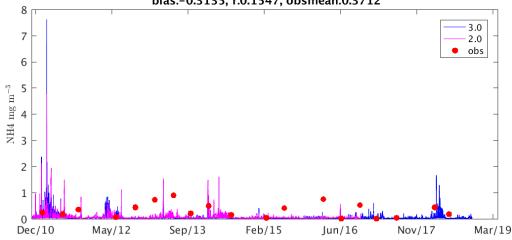


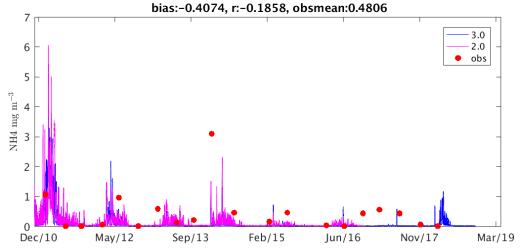
Yorkeys519_8m 3.0 d2:0.37, mape:284.1, rms:1.2314 bias:-0.6240, r:-0.0555, obsmean:0.7553 Yorkeys519_8m 2.0 d2:0.38, mape:181.6, rms:1.3230

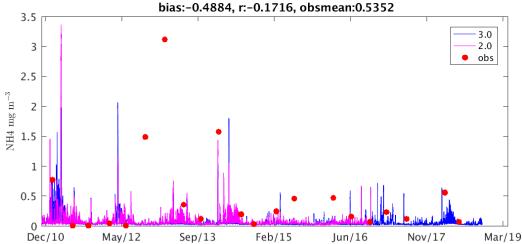

bias:-0.7446, r:-0.2606, obsmean:0.7745

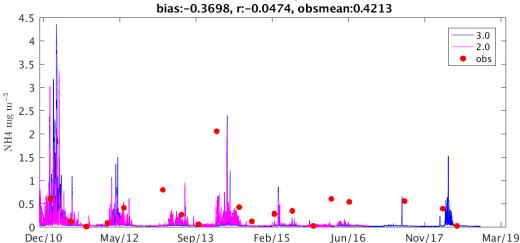

Yorkeys519_8m 3.0 d2:0.37, mape:284.1, rms:1.2314 bias:-0.6240, r:-0.0555, obsmean:0.7553 Yorkeys519_8m 2.0 d2:0.38, mape:181.6, rms:1.3230 bias:-0.7446, r:-0.2606, obsmean:0.7745

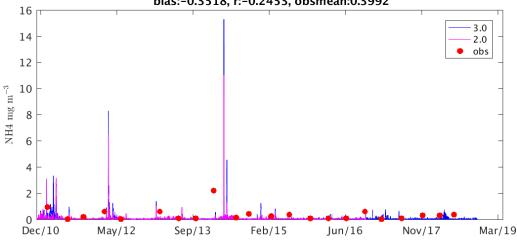

Yorkeys519_0m 3.0 d2:0.43, mape:84.5, rms:0.5556 bias:-0.3711, r:-0.0683, obsmean:0.4225 Yorkeys519_0m 2.0 d2:0.42, mape:93.7, rms:0.5498 bias:-0.3759, r:0.0060, obsmean:0.4251

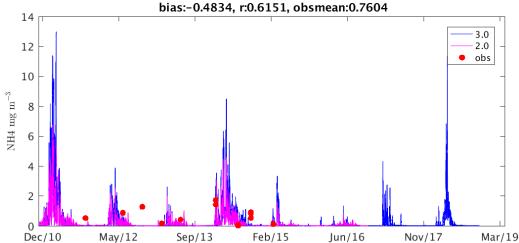

Green830_36m 3.0 d2:0.44, mape:109.7, rms:1.5635 bias:-0.7596, r:0.0206, obsmean:1.0298 Green830_36m 2.0 d2:0.39, mape:211.8, rms:1.8060

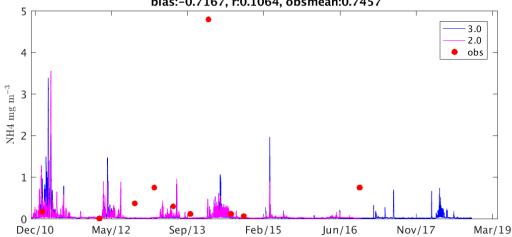

Green830_18m 3.0 d2:0.41, mape:85.3, rms:1.4584 bias:-0.7597, r:0.0662, obsmean:0.8007 Green830_18m 2.0 d2:0.40, mape:75.8, rms:1.4221 bias:-0.7089, r:0.1792, obsmean:0.8007


Green830_0m 3.0 d2:0.46, mape:376.2, rms:0.3936 bias:-0.2920, r:-0.0007, obsmean:0.3296 Green830_0m 2.0 d2:0.46, mape:533.1, rms:0.4101 bias:-0.3135, r:0.1547, obsmean:0.3712


Doublel520_18m 3.0 d2:0.38, mape:184.1, rms:0.7741 bias:-0.3811, r:0.2004, obsmean:0.4387 Doublel520_18m 2.0 d2:0.33, mape:310.0, rms:0.8726


DoubleI520_0m 3.0 d2:0.37, mape:76.4, rms:0.8572 bias:-0.4441, r:-0.0343, obsmean:0.4800 DoubleI520_0m 2.0 d2:0.39, mape:73.3, rms:0.9400 bias:-0.4884 r=0.1716 obsmean:0.5352


PortD_15m 3.0 d2:0.39, mape:81.6, rms:0.5820 bias:-0.3682, r:0.0638, obsmean:0.4063 PortD_15m 2.0 d2:0.39, mape:79.5, rms:0.6096 bias: 0.3608 m. 0.0474 obsmean:0.4313


PortD_0m 3.0 d2:0.37, mape:78.7, rms:0.5723 bias:-0.3190, r:-0.2731, obsmean:0.3559 PortD_0m 2.0 d2:0.38, mape:74.0, rms:0.6351 bias:-0.3518, r:-0.2453, obsmean:0.3992

Snap_10m 3.0 d2:0.62, mape:112.4, rms:0.6452 bias:-0.4901, r:0.7052, obsmean:0.7604 Snap_10m 2.0 d2:0.59, mape:153.0, rms:0.6650 bias:-0.4834 r0.6151 obsmean:0.7604

CapeTrib356_10m 3.0 d2:0.33, mape:81.7, rms:1.5471 bias:-0.7215, r:0.1180, obsmean:0.7457 CapeTrib356_10m 2.0 d2:0.33, mape:78.3, rms:1.5444 bias:-0.7167, r:0.1064, obsmean:0.7457

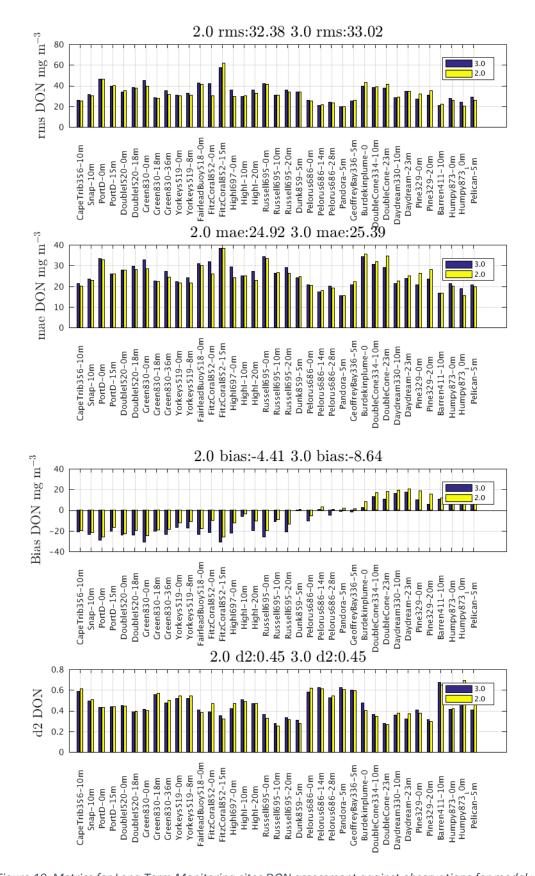
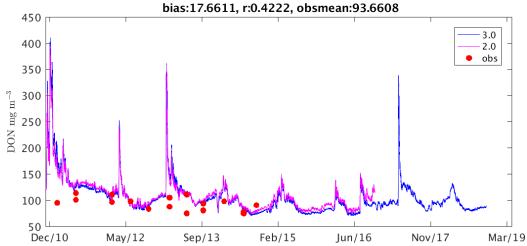
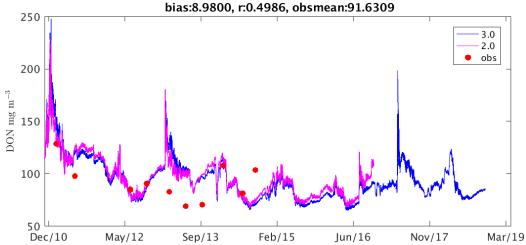
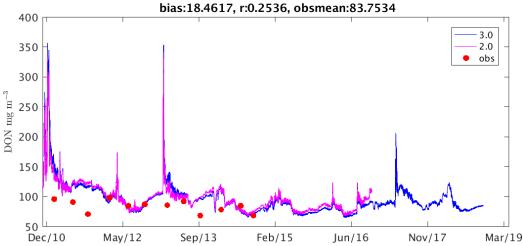
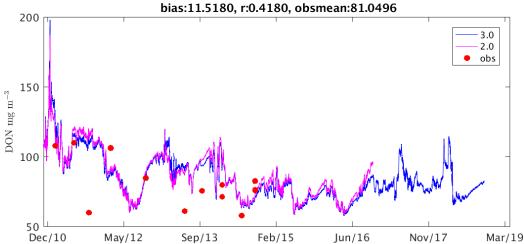
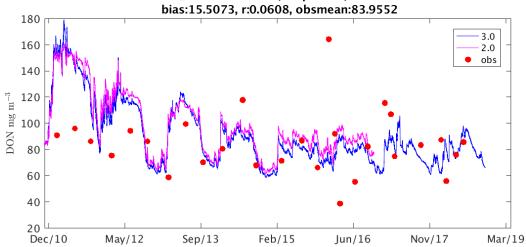
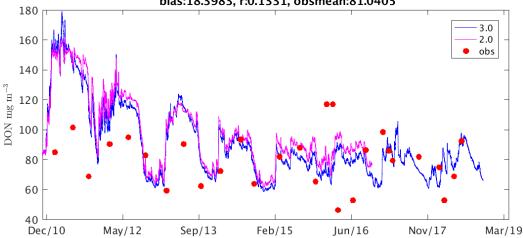




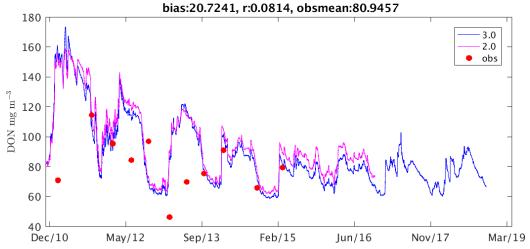
Figure 10 Metrics for Long Term Monitoring sites DON assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

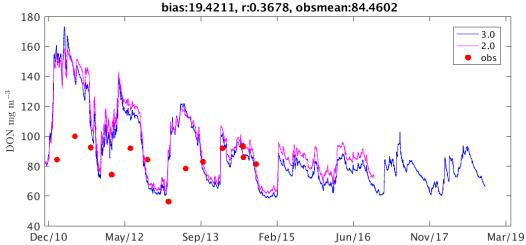

Pelican_5m 3.0 d2:0.41, mape:22.5, rms:28.8852 bias:17.3420, r:0.3556, obsmean:93.6608 Pelican_5m 2.0 d2:0.46, mape:21.7, rms:25.9921

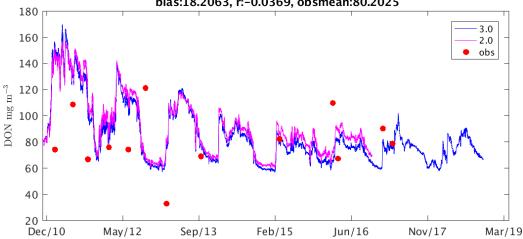

Humpy873_10m 3.0 d2:0.67, mape:22.0, rms:23.8206 bias:10.7781, r:0.4829, obsmean:91.6309 Humpy873_10m 2.0 d2:0.69, mape:18.5, rms:20.0697 bias:8 9800 r:0.4986, obsmean:91.6309


Humpy873_0m 3.0 d2:0.41, mape:26.1, rms:27.8723 bias:19.1030, r:0.3453, obsmean:83.7534 Humpy873_0m 2.0 d2:0.42, mape:24.9, rms:25.8009 bias:18.4617 r:0.2536 obsmean:83.7534

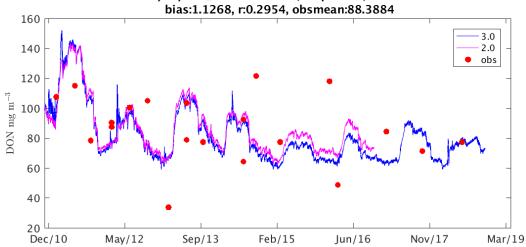

Barren411_10m 3.0 d2:0.67, mape:23.4, rms:21.0593 bias:10.4258, r:0.4532, obsmean:81.0496 Barren411_10m 2.0 d2:0.65, mape:23.7, rms:21.9006

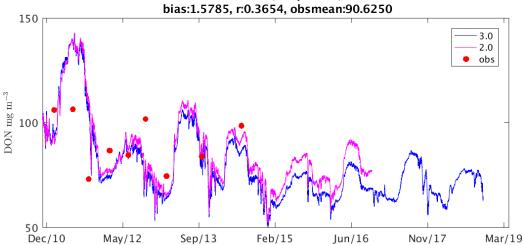

Pine329_20m 3.0 d2:0.32, mape:29.1, rms:30.6085 bias:5.7444, r:0.0798, obsmean:84.4370 Pine329_20m 2.0 d2:0.29, mape:36.8, rms:35.2578


Pine329_0m 3.0 d2:0.41, mape:27.6, rms:26.7687 bias:9.6345, r:0.1666, obsmean:80.5243 Pine329_0m 2.0 d2:0.37, mape:36.1, rms:31.9446 bias:18.3983, r:0.1331, obsmean:81.0405

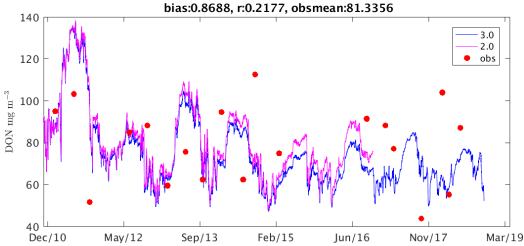

Daydream_23m 3.0 d2:0.32, mape:33.9, rms:34.3948 bias:17.1074, r:0.0127, obsmean:80.9457 Daydream_23m 2.0 d2:0.37, mape:36.1, rms:34.2327

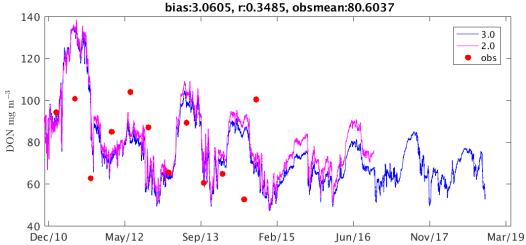
Daydream330_10m 3.0 d2:0.35, mape:26.1, rms:28.4454 bias:16.1303, r:0.3373, obsmean:84.4602 Daydream330_10m 2.0 d2:0.37, mape:27.5, rms:29.0659

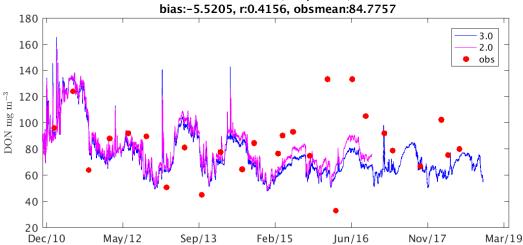

DoubleCone_23m 3.0 d2:0.28, mape:40.1, rms:37.7251 bias:10.4776, r:-0.0423, obsmean:80.8608 DoubleCone_23m 2.0 d2:0.27, mape:49.4, rms:41.0062 bias:18.2063, r:-0.0369, obsmean:80.2025

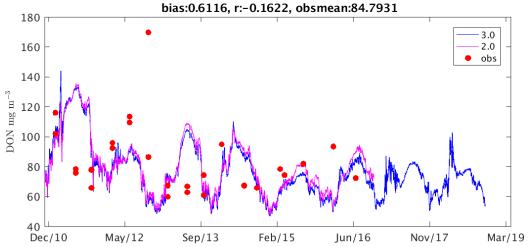

DoubleCone334_10m 3.0 d2:0.36, mape:43.1, rms:38.1129 bias:13.2573, r:0.0655, obsmean:80.0153 DoubleCone334_10m 2.0 d2:0.34, mape:46.1, rms:38.4647

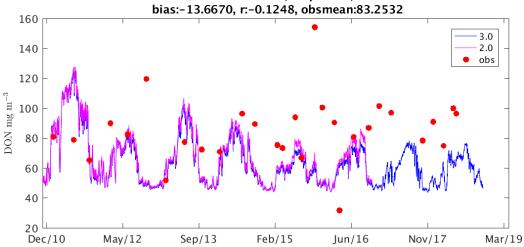
bias:16.4833, r:0.0542, obsmean:80.0153 180 3.0 160 2.0 obs 140 $\rm DON~mg~m^{-3}$ 120 100 80 60 40 20 Dec/10 May/12 Sep/13 Feb/15 Jun/16 Nov/17 Mar/19

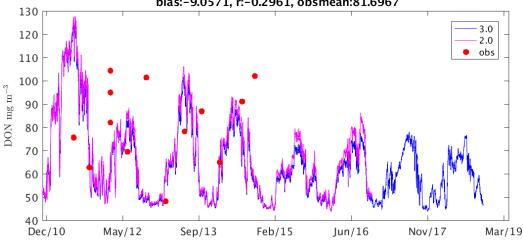

GeoffreyBay336_5m 3.0 d2:0.60, mape:26.5, rms:25.0887 bias:-1.7775, r:0.3018, obsmean:87.2797 GeoffreyBay336_5m 2.0 d2:0.59, mape:28.7, rms:25.7535

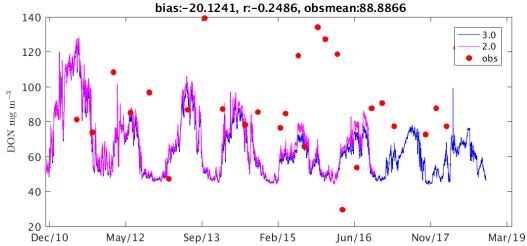

Pandora_5m 3.0 d2:0.63, mape:17.0, rms:19.3077 bias:-0.9496, r:0.4027, obsmean:90.6250 Pandora_5m 2.0 d2:0.60, mape:17.3, rms:19.5210 bias:1.5785 r:0.3654, obsmean:90.6250

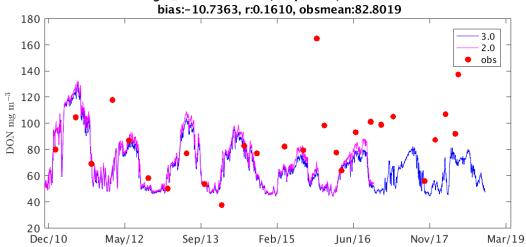

Pelorus686_28m 3.0 d2:0.53, mape:25.8, rms:23.7764 bias:-4.7773, r:0.1881, obsmean:79.6139 Pelorus686_28m 2.0 d2:0.54, mape:24.4, rms:23.1611

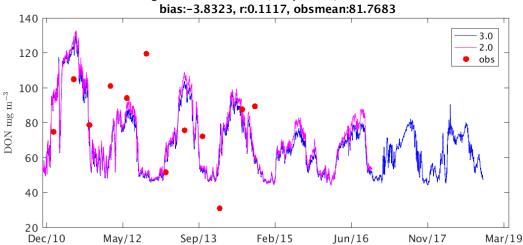

Pelorus686_14m 3.0 d2:0.62, mape:21.6, rms:20.8488 bias:0.5789, r:0.3669, obsmean:80.6037 Pelorus686_14m 2.0 d2:0.61, mape:23.0, rms:21.1986 bias:3.0605, r:0.3485, obsmean:80.6037

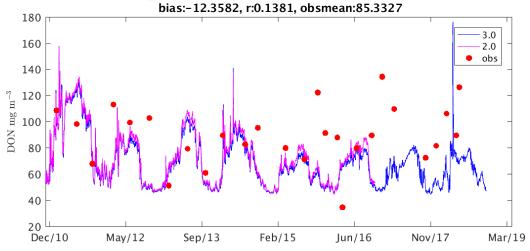

Pelorus686_0m 3.0 d2:0.58, mape:25.4, rms:25.6501 bias:-10.7214, r:0.3393, obsmean:84.2641 Pelorus686_0m 2.0 d2:0.62, mape:26.7, rms:24.8950

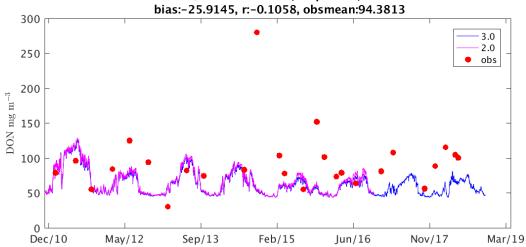

Dunk859_5m 3.0 d2:0.31, mape:27.7, rms:33.5612 bias:-0.7276, r:-0.1129, obsmean:84.7931 Dunk859_5m 2.0 d2:0.28, mape:28.7, rms:33.9572

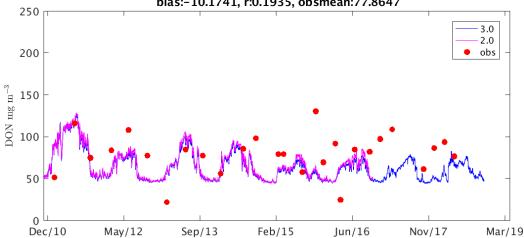

Russell695_20m 3.0 d2:0.33, mape:33.2, rms:35.5381 bias:-20.9920, r:-0.1649, obsmean:85.1977 Russell695_20m 2.0 d2:0.31, mape:31.1, rms:34.0428 bias:-13.6670, r:-0.1248 obsmean:83.2532

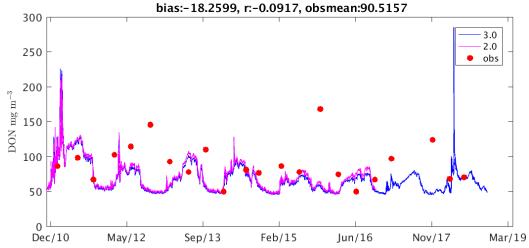

Russell695_10m 3.0 d2:0.28, mape:30.4, rms:30.8196 bias:-11.0818, r:-0.2844, obsmean:81.6967 Russell695_10m 2.0 d2:0.25, mape:31.2, rms:30.9039 bias:-9.0571, r:-0.2961, obsmean:81.6967

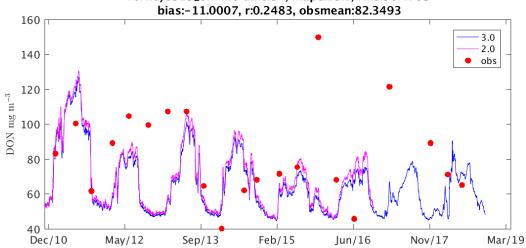

Russell695_0m 3.0 d2:0.36, mape:36.9, rms:41.8686 bias:-25.9955, r:-0.1984, obsmean:90.0550 Russell695_0m 2.0 d2:0.32, mape:37.5, rms:41.4331

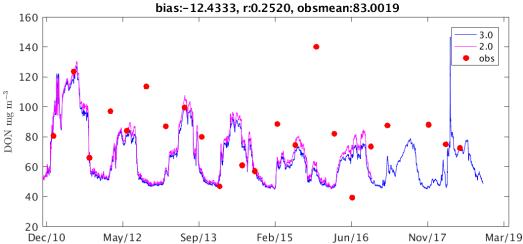

Highl_20m 3.0 d2:0.47, mape:28.8, rms:35.7884 bias:-19.9281, r:0.1298, obsmean:86.6509 Highl_20m 2.0 d2:0.47, mape:25.8, rms:32.3114 bias: 10.7363 rr0.1610 obsmean:83.8010

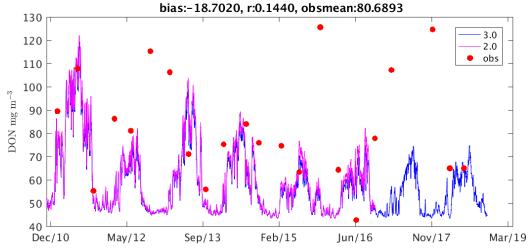

HighI_10m 3.0 d2:0.51, mape:33.5, rms:29.7411 bias:-6.4812, r:0.1271, obsmean:81.7683 HighI_10m 2.0 d2:0.49, mape:34.4, rms:30.0727 bias:-3.8323, r:0.1117, obsmean:81.7683

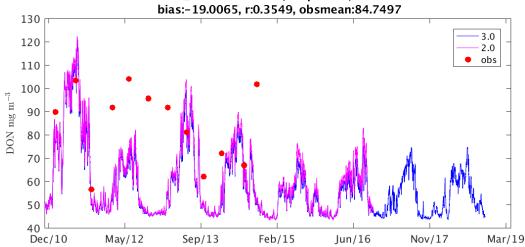

Highl697_0m 3.0 d2:0.42, mape:31.8, rms:35.4615 bias:-22.1480, r:0.0380, obsmean:89.8974 Highl697_0m 2.0 d2:0.47, mape:29.1, rms:29.2704

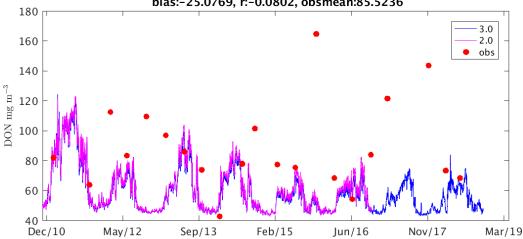

FitzCoral852_15m 3.0 d2:0.35, mape:36.0, rms:57.0856 bias:-30.8132, r:-0.0485, obsmean:94.2140 FitzCoral852_15m 2.0 d2:0.32, mape:35.7, rms:61.4915 bias:-35.9145, r=0.1058, obsmean:94.3813

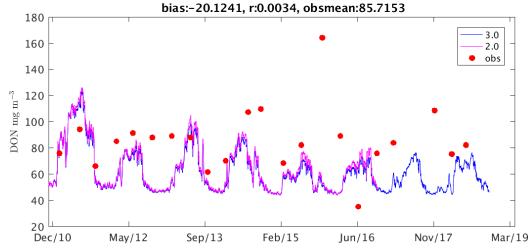

FitzCoral852_0m 3.0 d2:0.39, mape:42.1, rms:41.9004 bias:-21.4908, r:0.1234, obsmean:84.7774 FitzCoral852_0m 2.0 d2:0.47, mape:43.4, rms:30.0624 bias:-10.1741, r:0.1935, obsmean:77.8647

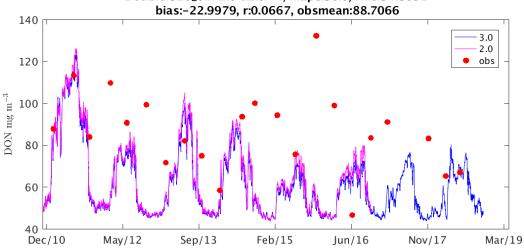

FairleadBuoy518_0m 3.0 d2:0.40, mape:29.8, rms:42.2591 bias:-23.2919, r:-0.1050, obsmean:90.4248 FairleadBuoy518_0m 2.0 d2:0.38, mape:29.4, rms:41.1393

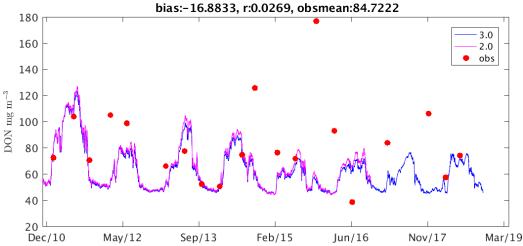

Yorkeys519_8m 3.0 d2:0.52, mape:26.8, rms:32.6685 bias:-17.1162, r:0.2130, obsmean:83.1736
Yorkeys519_8m 2.0 d2:0.54, mape:25.1, rms:30.4703

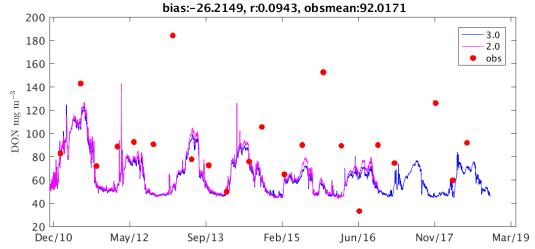

Yorkeys519_0m 3.0 d2:0.52, mape:25.9, rms:30.4519 bias:-16.8809, r:0.2419, obsmean:82.5698
Yorkeys519_0m 2.0 d2:0.54, mape:25.8, rms:30.0757

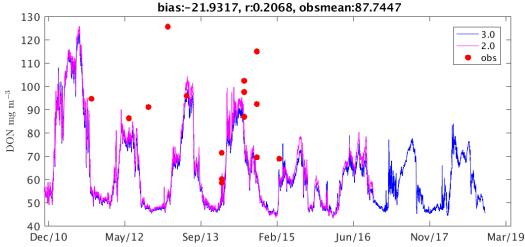

Green830_36m 3.0 d2:0.47, mape:29.4, rms:35.1923 bias:-23.6051, r:0.0640, obsmean:82.4714 Green830_36m 2.0 d2:0.50, mape:27.8, rms:31.0650

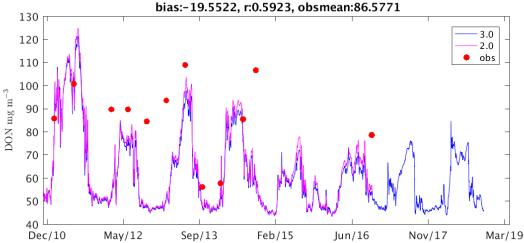

Green830_18m 3.0 d2:0.56, mape:25.3, rms:28.0720 bias:-20.5235, r:0.3623, obsmean:84.7497 Green830_18m 2.0 d2:0.56, mape:24.7, rms:27.4031 bias:-19.0065, r:0.3549, obsmean:84.7497


Green830_0m 3.0 d2:0.41, mape:32.0, rms:44.9120 bias:-31.0471, r:-0.1659, obsmean:88.6157 Green830_0m 2.0 d2:0.40, mape:29.3, rms:39.4865 bias:-25.0769, r:-0.0802, obsmean:85.5236


Doublel520_18m 3.0 d2:0.39, mape:32.7, rms:38.0161 bias:-24.1627, r:-0.0160, obsmean:86.0209 Doublel520_18m 2.0 d2:0.39, mape:31.5, rms:37.3854


DoubleI520_0m 3.0 d2:0.45, mape:30.3, rms:34.1023 bias:-24.4886, r:0.1262, obsmean:86.5055 DoubleI520_0m 2.0 d2:0.44, mape:30.0, rms:34.8091


PortD_15m 3.0 d2:0.44, mape:26.5, rms:39.4654 bias:-20.2788, r:0.0194, obsmean:83.8735 PortD_15m 2.0 d2:0.43, mape:26.3, rms:40.1281


PortD_0m 3.0 d2:0.43, mape:33.4, rms:46.2268 bias:-28.9889, r:0.0760, obsmean:91.2985 PortD_0m 2.0 d2:0.43, mape:33.1, rms:45.9492

Snap_10m 3.0 d2:0.49, mape:24.2, rms:31.1146 bias:-23.5008, r:0.1912, obsmean:87.7447 Snap_10m 2.0 d2:0.50, mape:23.2, rms:30.2273

CapeTrib356_10m 3.0 d2:0.58, mape:23.9, rms:26.0362 bias:-21.2193, r:0.5863, obsmean:86.5771 CapeTrib356_10m 2.0 d2:0.61, mape:22.4, rms:24.9533

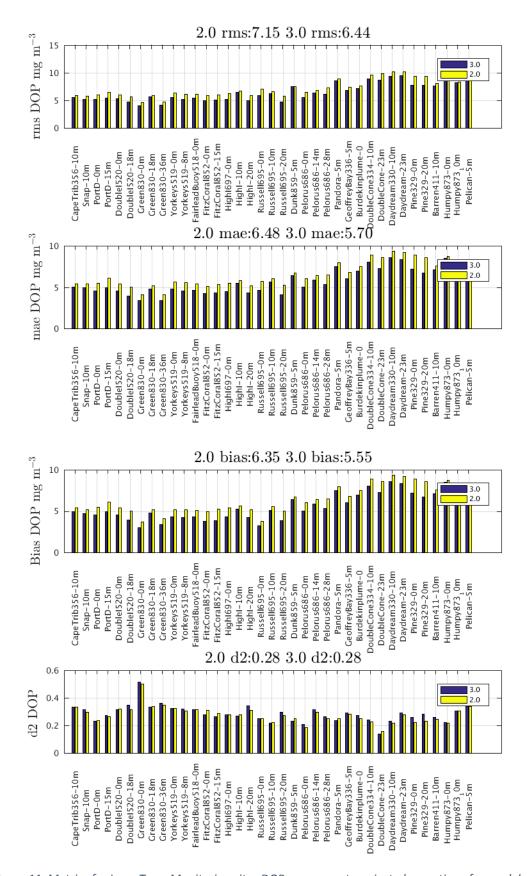
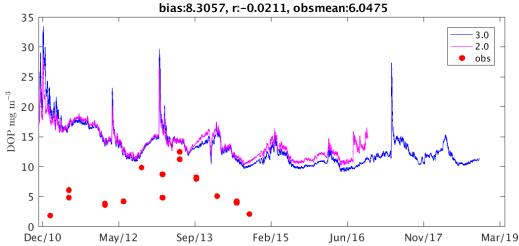
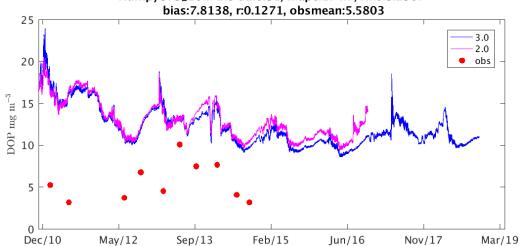
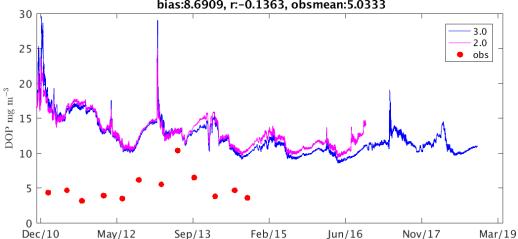
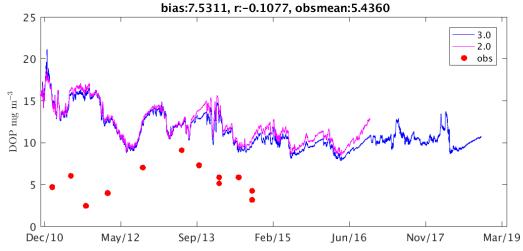
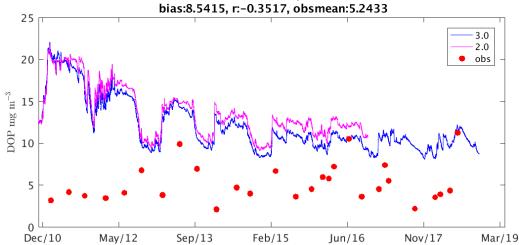
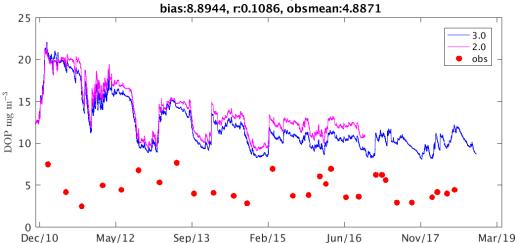




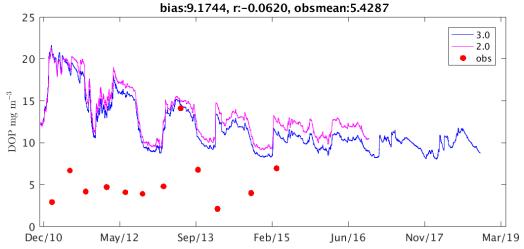
Figure 11 Metrics for Long Term Monitoring sites DOP assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square


Pelican_5m 3.0 d2:0.34, mape:213.0, rms:9.0130 bias:8.1407, r:-0.0260, obsmean:6.0475 Pelican_5m 2.0 d2:0.34, mape:214.8, rms:9.0716

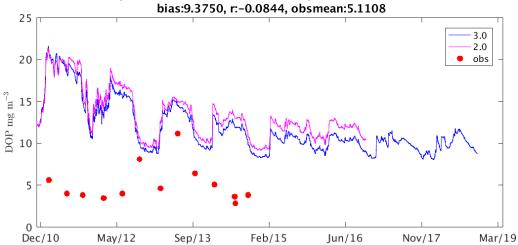

Humpy873_10m 3.0 d2:0.30, mape:170.8, rms:8.2185 bias:7.6571, r:0.1190, obsmean:5.5803 Humpy873_10m 2.0 d2:0.31, mape:174.7, rms:8.2907


Humpy873_0m 3.0 d2:0.22, mape:198.8, rms:9.0211 bias:8.4801, r:-0.0761, obsmean:5.0333 Humpy873_0m 2.0 d2:0.21, mape:204.4, rms:9.1983 bias:8.6909, r:-0.1363, obsmean:5.0333

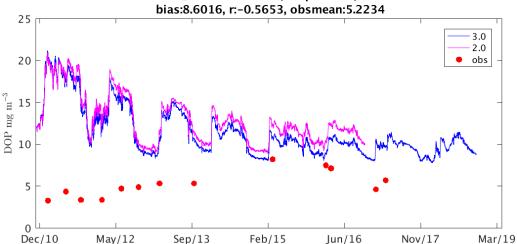

Barren411_10m 3.0 d2:0.26, mape:163.2, rms:7.6433 bias:7.0674, r:-0.0790, obsmean:5.4360 Barren411_10m 2.0 d2:0.25, mape:173.3, rms:8.0816


Pine329_20m 3.0 d2:0.28, mape:172.1, rms:7.7433 bias:6.6951, r:-0.1454, obsmean:5.2717 Pine329_20m 2.0 d2:0.23, mape:213.7, rms:9.4085

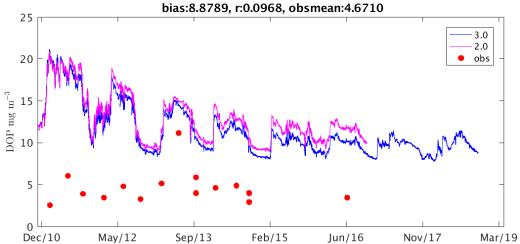
Pine329_0m 3.0 d2:0.26, mape:172.1, rms:7.6915 bias:7.1480, r:0.2294, obsmean:4.7466 Pine329_0m 2.0 d2:0.22, mape:210.9, rms:9.3560

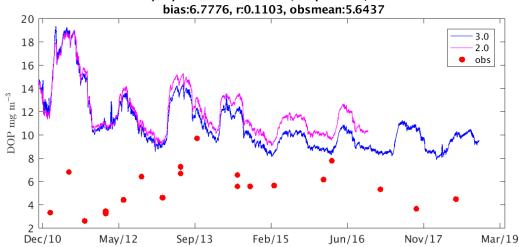


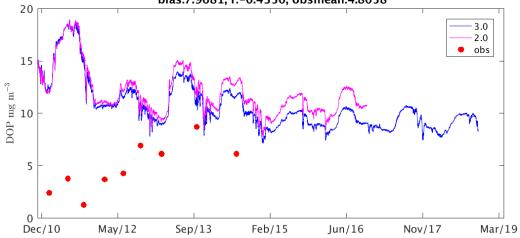
Daydream_23m 3.0 d2:0.29, mape:219.6, rms:9.4972 bias:8.3270, r:-0.0435, obsmean:5.4287 Daydream_23m 2.0 d2:0.28, mape:238.7, rms:10.1751

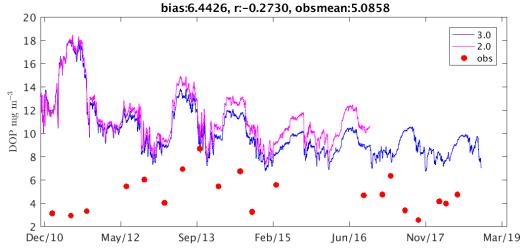


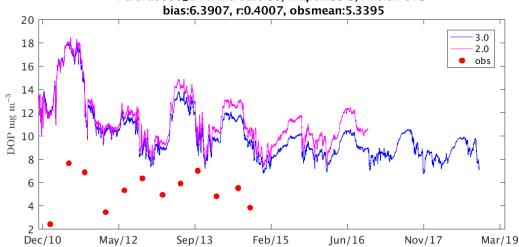
Daydream330_10m 3.0 d2:0.23, mape:204.1, rms:9.4104 bias:8.5508, r:-0.0255, obsmean:5.1108

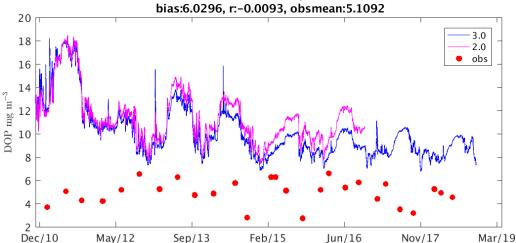

Daydream330_10m 2.0 d2:0.22, mape:223.8, rms:10.1279

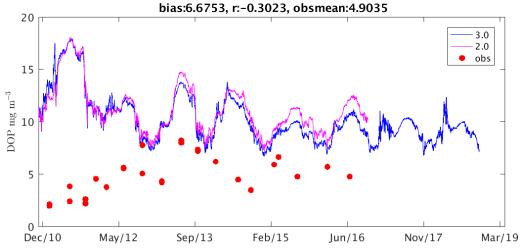

DoubleCone_23m 3.0 d2:0.14, mape:173.9, rms:8.6765 bias:7.2336, r:-0.5813, obsmean:5.2107 DoubleCone_23m 2.0 d2:0.15, mape:205.1, rms:9.7844

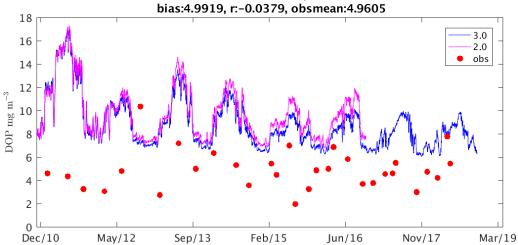

DoubleCone334_10m 3.0 d2:0.24, mape:209.7, rms:8.8998 bias:8.0449, r:0.0996, obsmean:4.6710 DoubleCone334_10m 2.0 d2:0.22, mape:229.3, rms:9.5831

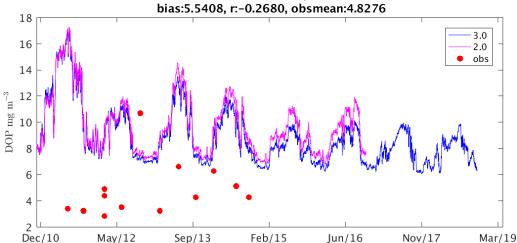

GeoffreyBay336_5m 3.0 d2:0.29, mape:135.0, rms:6.7514 bias:6.0107, r:0.0362, obsmean:5.5183 GeoffreyBay336_5m 2.0 d2:0.28, mape:147.1, rms:7.3647


Pandora_5m 3.0 d2:0.24, mape:272.9, rms:8.5729 bias:7.4558, r:-0.5241, obsmean:4.8058 Pandora_5m 2.0 d2:0.25, mape:284.1, rms:8.9209 bias:7.9681, r:-0.4350, obsmean:4.8058

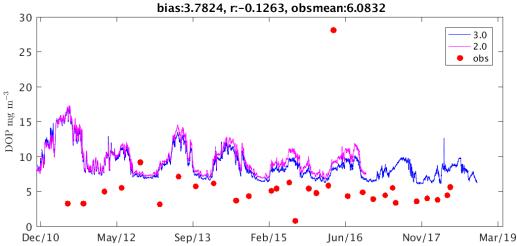

Pelorus686_28m 3.0 d2:0.26, mape:137.9, rms:6.1082 bias:5.3106, r:-0.1849, obsmean:4.7959 Pelorus686_28m 2.0 d2:0.25, mape:159.4, rms:7.2164


Pelorus686_14m 3.0 d2:0.31, mape:129.0, rms:6.2975 bias:5.8324, r:0.3558, obsmean:5.3395 Pelorus686_14m 2.0 d2:0.30, mape:139.3, rms:6.7673 bias:6.3907_r:0.4007_obsmean:5.3395

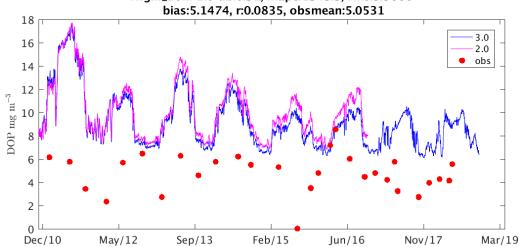

Pelorus686_0m 3.0 d2:0.21, mape:111.8, rms:5.4889 bias:4.9645, r:-0.0405, obsmean:4.9517
Pelorus686_0m 2.0 d2:0.18, mape:130.7, rms:6.4608


Dunk859_5m 3.0 d2:0.23, mape:188.2, rms:7.4690 bias:6.3852, r:-0.4461, obsmean:4.9035 Dunk859_5m 2.0 d2:0.25, mape:189.8, rms:7.5541

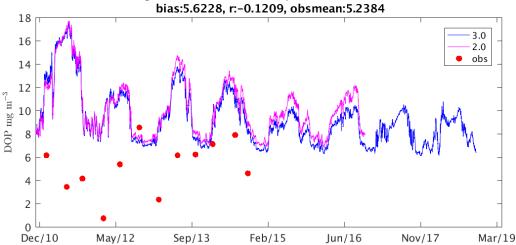
Russell695_20m 3.0 d2:0.30, mape:100.8, rms:4.6993 bias:3.8545, r:0.0036, obsmean:4.9314
Russell695_20m 2.0 d2:0.27, mape:131.2, rms:5.7848

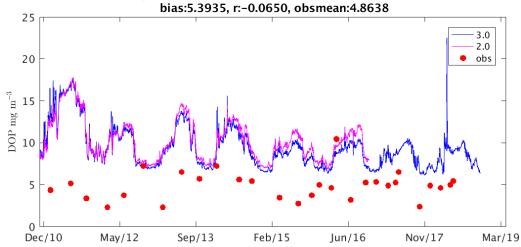


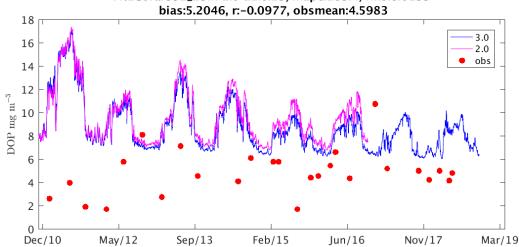
Russell695_10m 3.0 d2:0.22, mape:142.4, rms:6.2465 bias:5.0931, r:-0.2983, obsmean:4.8276 Russell695_10m 2.0 d2:0.22, mape:151.6, rms:6.6038 bias:5.5408 r:-0.2680 obsmean:4.8276



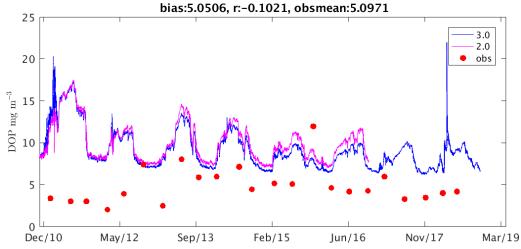
gbr4_H2p0_B3p0_Cb

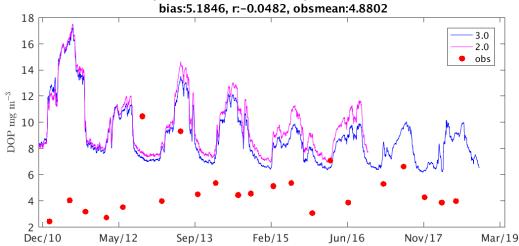

Russell695_0m 3.0 d2:0.25, mape:122.1, rms:5.9229 bias:3.1925, r:-0.0679, obsmean:5.5534 Russell695_0m 2.0 d2:0.25, mape:156.3, rms:6.9967

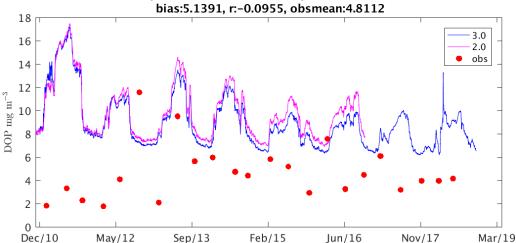

Highl_20m 3.0 d2:0.34, mape:850.6, rms:4.9356 bias:4.2532, r:0.1757, obsmean:4.8275 Highl_20m 2.0 d2:0.31, mape:1345.5, rms:5.9000 bias:5 1474 r:0.0835 obsmean:5.0531

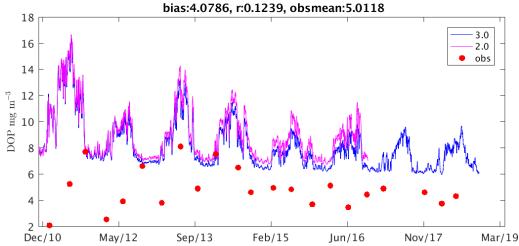

Highl_10m 3.0 d2:0.27, mape:208.5, rms:6.4048 bias:5.2198, r:-0.1601, obsmean:5.2384 Highl_10m 2.0 d2:0.27, mape:216.9, rms:6.6958

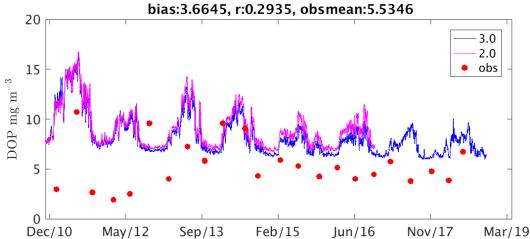
Highl697_0m 3.0 d2:0.28, mape:114.5, rms:5.1637 bias:4.3093, r:-0.0347, obsmean:4.8786 Highl697_0m 2.0 d2:0.28, mape:145.6, rms:6.2439

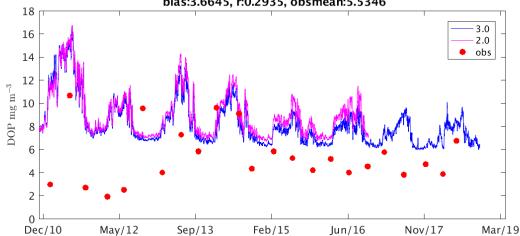

FitzCoral852_15m 3.0 d2:0.26, mape:126.2, rms:5.0385 bias:3.8499, r:-0.2404, obsmean:4.8643 FitzCoral852_15m 2.0 d2:0.29, mape:165.4, rms:6.0195

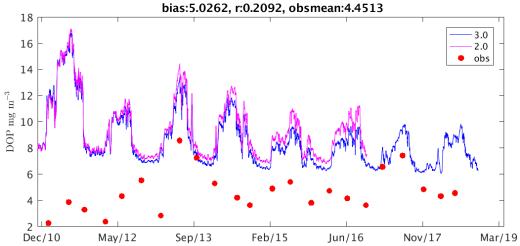

FitzCoral852_0m 3.0 d2:0.28, mape:112.0, rms:4.9749 bias:3.7631, r:-0.1698, obsmean:4.9073 FitzCoral852_0m 2.0 d2:0.31, mape:138.7, rms:5.9264

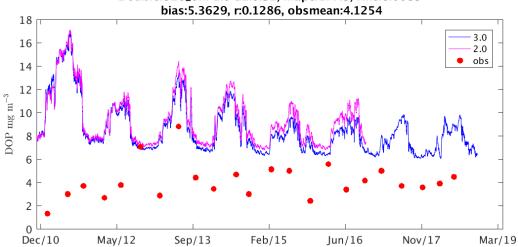

FairleadBuoy518_0m 3.0 d2:0.31, mape:126.3, rms:5.4486 bias:4.2860, r:-0.1066, obsmean:4.8941 FairleadBuoy518_0m 2.0 d2:0.31, mape:145.2, rms:6.1590

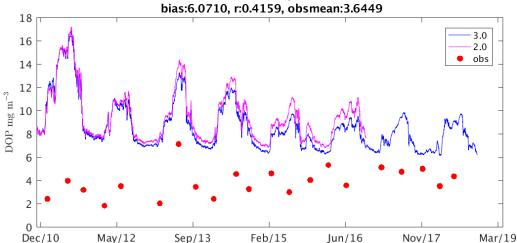

Yorkeys519_8m 3.0 d2:0.32, mape:117.7, rms:5.2190 bias:4.2313, r:-0.0351, obsmean:4.8639
Yorkeys519_8m 2.0 d2:0.30, mape:144.1, rms:6.1209 bias:5 1846 r:-0.0482 obsmean:4.8802

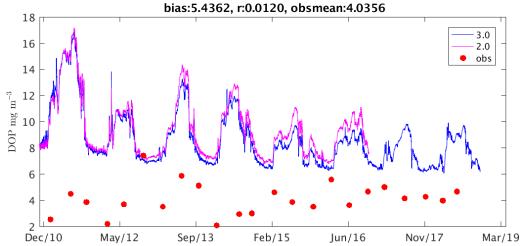

Yorkeys519_0m 3.0 d2:0.32, mape:150.2, rms:5.5450 bias:4.3322, r:-0.1136, obsmean:4.6951 Yorkeys519_0m 2.0 d2:0.32, mape:177.3, rms:6.2968

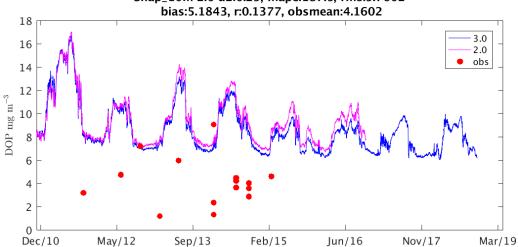

Green830_36m 3.0 d2:0.36, mape:88.0, rms:4.0952 bias:3.3700, r:0.1345, obsmean:4.8995 Green830_36m 2.0 d2:0.35, mape:105.1, rms:4.7621

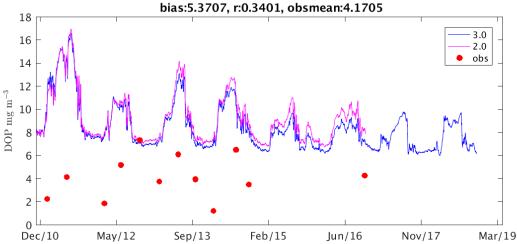

Green830_0m 3.0 d2:0.51, mape:91.0, rms:3.9868 bias:2.9716, r:0.2737, obsmean:5.4175 Green830_0m 2.0 d2:0.50, mape:109.9, rms:4.6235


Green830_0m 3.0 d2:0.51, mape:91.0, rms:3.9868 bias:2.9716, r:0.2737, obsmean:5.4175 Green830_0m 2.0 d2:0.50, mape:109.9, rms:4.6235 bias:3.6645, r:0.2935, obsmean:5.5346


Doublel520_18m 3.0 d2:0.34, mape:106.3, rms:4.7207 bias:3.9513, r:0.1004, obsmean:4.6859 Doublel520_18m 2.0 d2:0.31, mape:136.4, rms:5.6207


DoubleI520_0m 3.0 d2:0.31, mape:147.8, rms:5.2335 bias:4.5274, r:0.0605, obsmean:4.1256 DoubleI520_0m 2.0 d2:0.32, mape:177.5, rms:6.0089 bias:5 3629 r:0.1286 obsmean:4.1254


PortD_15m 3.0 d2:0.27, mape:151.3, rms:5.4406 bias:4.9602, r:0.2046, obsmean:3.8554 PortD_15m 2.0 d2:0.26, mape:191.2, rms:6.4043 bias:6.0710, r0.4150, obsmean:3.6440


PortD_0m 3.0 d2:0.23, mape:130.4, rms:5.1598 bias:4.5438, r:-0.0340, obsmean:4.1186 PortD_0m 2.0 d2:0.23, mape:159.4, rms:5.9999

Snap_10m 3.0 d2:0.32, mape:173.3, rms:5.2324 bias:4.6574, r:0.1434, obsmean:4.1602 Snap_10m 2.0 d2:0.29, mape:187.5, rms:5.7602 bias:5 1843, r:0.1377, obsmean:4.1602

CapeTrib356_10m 3.0 d2:0.33, mape:171.7, rms:5.5446 bias:4.9517, r:0.2536, obsmean:4.1705 CapeTrib356_10m 2.0 d2:0.33, mape:180.9, rms:5.8735

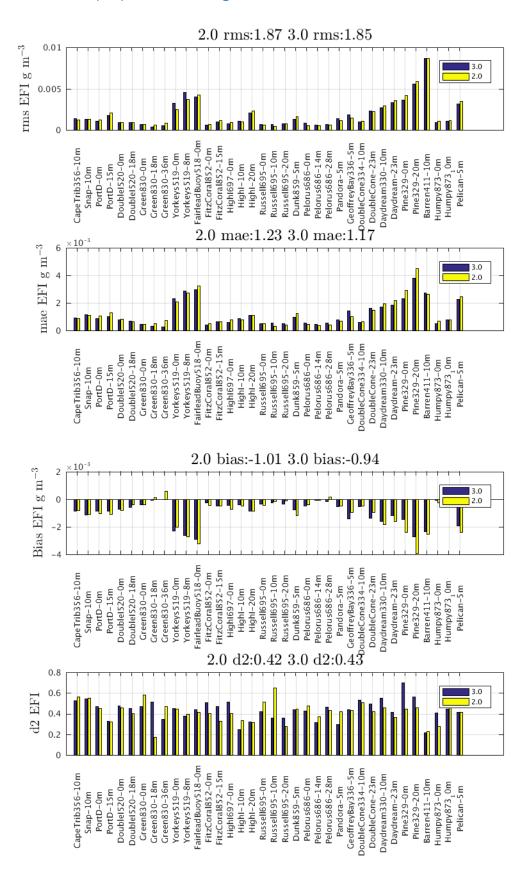
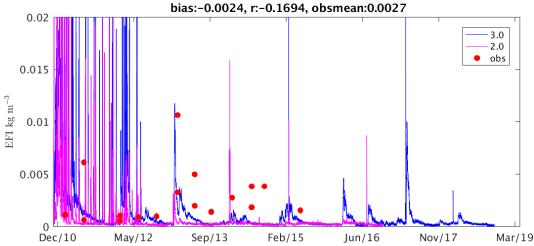
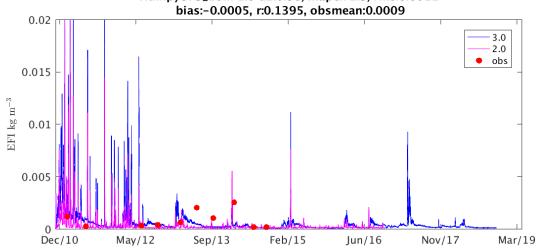
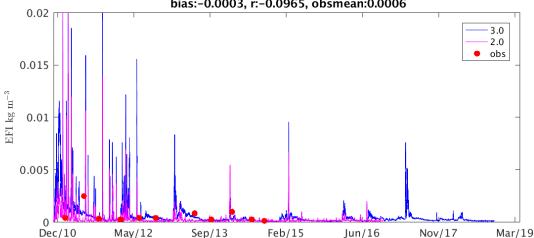
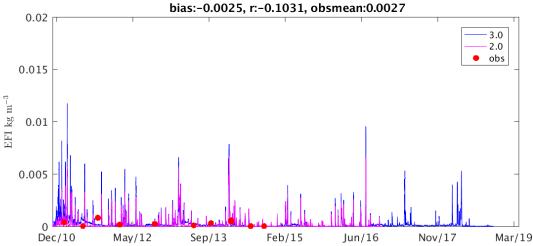
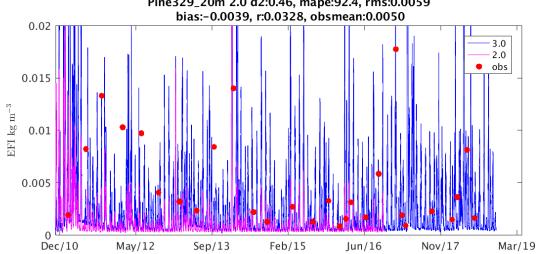
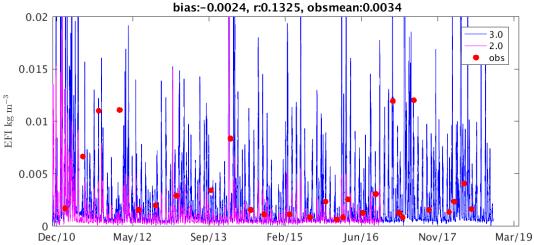




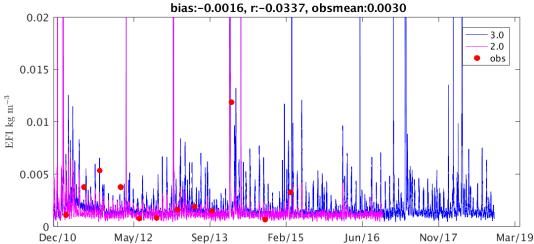
Figure 12 Metrics for Long Term Monitoring sites EFI model assessment against TSS observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

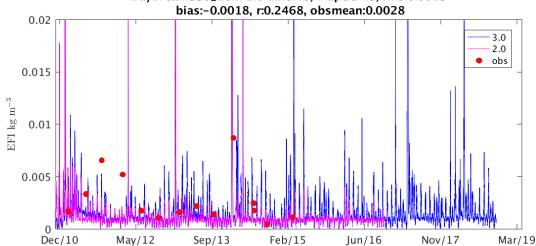

Pelican_5m 3.0 d2:0.41, mape:79.4, rms:0.0032 bias:-0.0019, r:0.0770, obsmean:0.0027 Pelican_5m 2.0 d2:0.41, mape:81.4, rms:0.0035

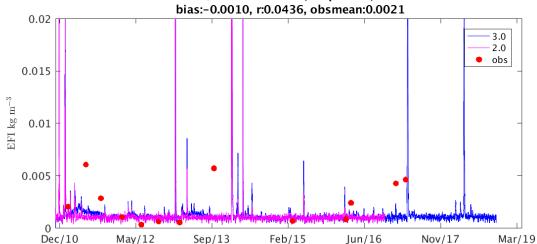

Humpy873_10m 3.0 d2:0.44, mape:85.4, rms:0.0011 bias:-0.0002, r:0.1055, obsmean:0.0009 Humpy873_10m 2.0 d2:0.50, mape:72.5, rms:0.0011 bias:-0.0005 rr0.1395 obsmean:0.0009

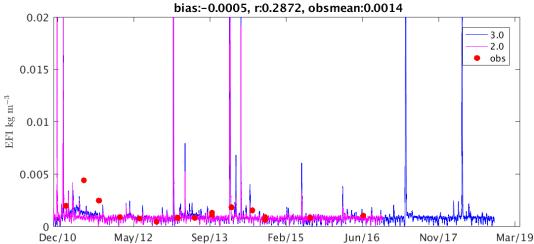

Humpy873_0m 3.0 d2:0.41, mape:91.6, rms:0.0009 bias:-0.0001, r:0.1776, obsmean:0.0006 Humpy873_0m 2.0 d2:0.28, mape:112.5, rms:0.0010 bias:-0.0003, r:-0.0965, obsmean:0.0006

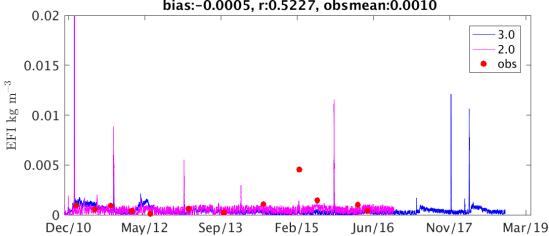

Barren411_10m 3.0 d2:0.22, mape:165.1, rms:0.0086 bias:-0.0023, r:-0.1095, obsmean:0.0027 Barren411_10m 2.0 d2:0.23, mape:75.0, rms:0.0087

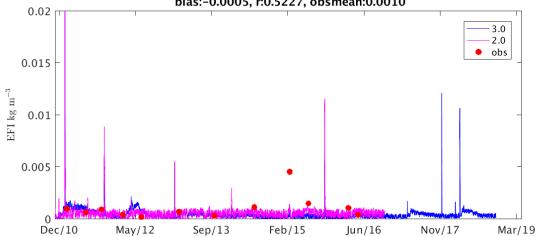

Pine329_20m 3.0 d2:0.56, mape:87.1, rms:0.0055 bias:-0.0027, r:0.2878, obsmean:0.0049 Pine329_20m 2.0 d2:0.46, mape:92.4, rms:0.0059

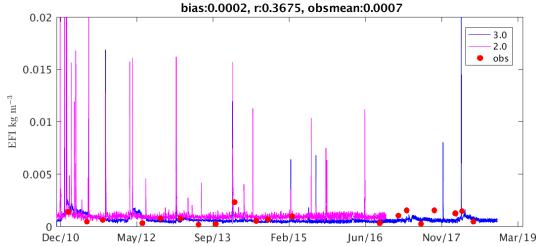

Pine329_0m 3.0 d2:0.70, mape:70.2, rms:0.0036 bias:-0.0015, r:0.5206, obsmean:0.0036 Pine329_0m 2.0 d2:0.44, mape:81.8, rms:0.0041

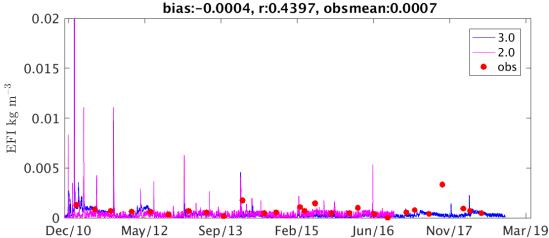

Daydream_23m 3.0 d2:0.41, mape:61.2, rms:0.0033 bias:-0.0012, r:0.1259, obsmean:0.0030 Daydream_23m 2.0 d2:0.36, mape:68.0, rms:0.0035

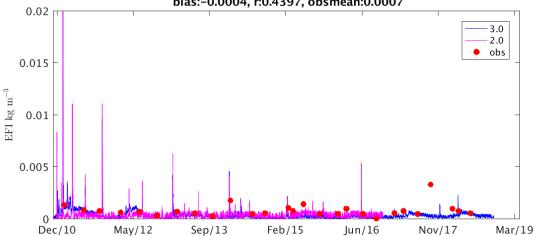

Daydream330_10m 3.0 d2:0.55, mape:47.1, rms:0.0026 bias:-0.0016, r:0.4055, obsmean:0.0028 Daydream330_10m 2.0 d2:0.46, mape:54.5, rms:0.0029

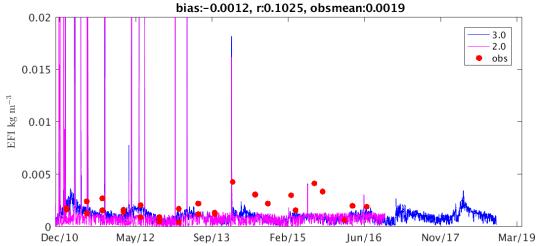

DoubleCone_23m 3.0 d2:0.49, mape:61.0, rms:0.0023 bias:-0.0014, r:0.3674, obsmean:0.0025 DoubleCone_23m 2.0 d2:0.42, mape:68.6, rms:0.0022

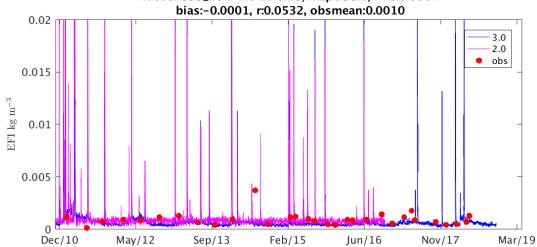

DoubleCone334_10m 3.0 d2:0.53, mape:32.8, rms:0.0010 bias:-0.0005, r:0.5558, obsmean:0.0014 DoubleCone334_10m 2.0 d2:0.51, mape:30.9, rms:0.0011

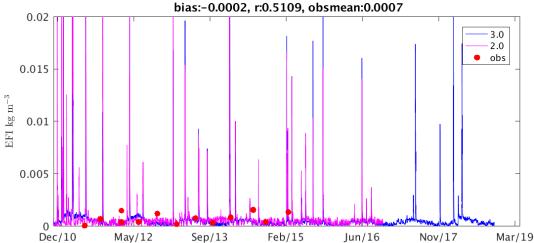

Pandora_5m 3.0 d2:0.29, mape:91.3, rms:0.0013 bias:-0.0006, r:-0.0931, obsmean:0.0010 Pandora_5m 2.0 d2:0.42, mape:78.4, rms:0.0011 bias:-0.0005, r:0.5227, obsmean:0.0010

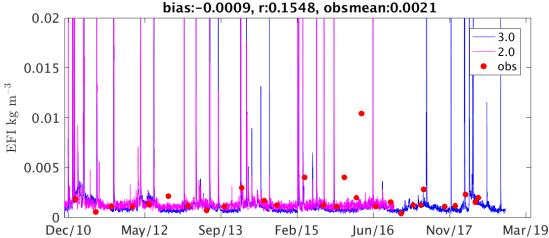

Pandora_5m 3.0 d2:0.29, mape:91.3, rms:0.0013 bias:-0.0006, r:-0.0931, obsmean:0.0010 Pandora_5m 2.0 d2:0.42, mape:78.4, rms:0.0011 bias:-0.0005, r:0.5227, obsmean:0.0010

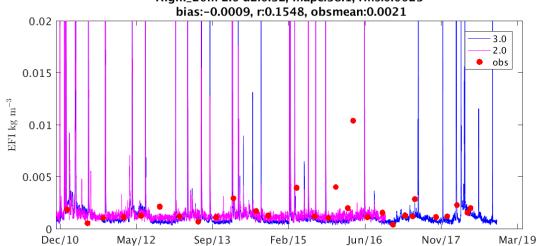

Pelorus686_28m 3.0 d2:0.46, mape:73.3, rms:0.0007 bias:-0.0002, r:0.1176, obsmean:0.0009 Pelorus686_28m 2.0 d2:0.43, mape:96.6, rms:0.0005

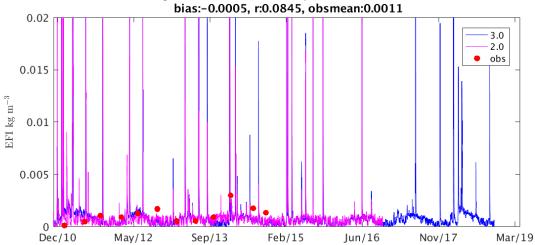

Pelorus686_0m 3.0 d2:0.42, mape:127.6, rms:0.0008 bias:-0.0005, r:0.1157, obsmean:0.0008
Pelorus686_0m 2.0 d2:0.48, mape:253.4, rms:0.0005

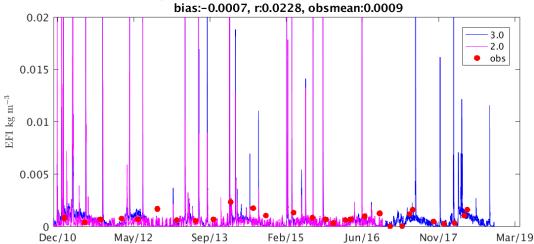

Pelorus686_0m 3.0 d2:0.42, mape:127.6, rms:0.0008 bias:-0.0005, r:0.1157, obsmean:0.0008
Pelorus686_0m 2.0 d2:0.48, mape:253.4, rms:0.0005 bias:-0.0004, r:0.4397, obsmean:0.0007

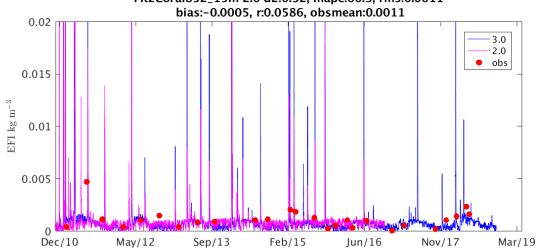

Dunk859_5m 3.0 d2:0.44, mape:44.5, rms:0.0013 bias:-0.0008, r:-0.0062, obsmean:0.0019 Dunk859_5m 2.0 d2:0.45, mape:57.5, rms:0.0016

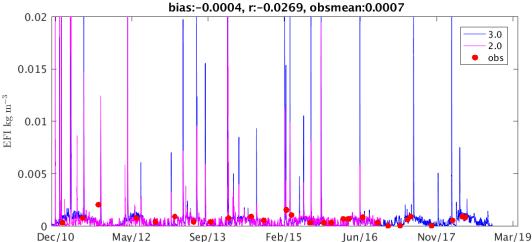

Russell695_20m 3.0 d2:0.36, mape:71.5, rms:0.0007 bias:-0.0003, r:0.0144, obsmean:0.0009 Russell695_20m 2.0 d2:0.28, mape:58.1, rms:0.0007 bias:-0.0001 r0.0532 obsmean:0.0010


Russell695_10m 3.0 d2:0.36, mape:277.0, rms:0.0006 bias:-0.0002, r:-0.1517, obsmean:0.0007 Russell695_10m 2.0 d2:0.65, mape:145.8, rms:0.0004


HighI_20m 3.0 d2:0.32, mape:48.0, rms:0.0020 bias:-0.0009, r:0.0646, obsmean:0.0019 HighI_20m 2.0 d2:0.32, mape:38.1, rms:0.0023


Highl_20m 3.0 d2:0.32, mape:48.0, rms:0.0020 bias:-0.0009, r:0.0646, obsmean:0.0019 Highl_20m 2.0 d2:0.32, mape:38.1, rms:0.0023 bias:-0.0009, r:0.1548, obsmean:0.0021


HighI_10m 3.0 d2:0.24, mape:167.1, rms:0.0010 bias:-0.0004, r:-0.2611, obsmean:0.0011 HighI_10m 2.0 d2:0.33, mape:141.6, rms:0.0009 bias: 0.0005 rm 0.045 obsmean:0.0011


Highl697_0m 3.0 d2:0.51, mape:156.0, rms:0.0007 bias:-0.0004, r:0.2283, obsmean:0.0009 Highl697_0m 2.0 d2:0.40, mape:76.1, rms:0.0009

FitzCoral852_15m 3.0 d2:0.47, mape:160.7, rms:0.0010 bias:-0.0005, r:0.4042, obsmean:0.0011 FitzCoral852_15m 2.0 d2:0.32, mape:60.3, rms:0.0011

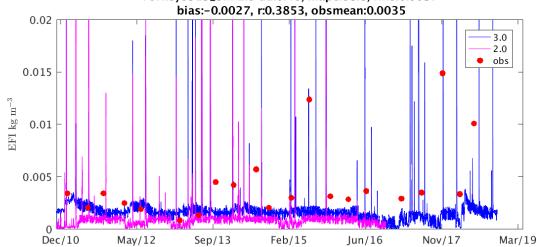
FitzCoral852_0m 3.0 d2:0.51, mape:87.5, rms:0.0006 bias:-0.0003, r:0.1662, obsmean:0.0006 FitzCoral852_0m 2.0 d2:0.40, mape:65.8, rms:0.0007

Yorkeys519_8m 3.0 d2:0.38, mape:55.0, rms:0.0045 bias:-0.0026, r:-0.1355, obsmean:0.0043 Yorkeys519_8m 2.0 d2:0.40, mape:68.8, rms:0.0037

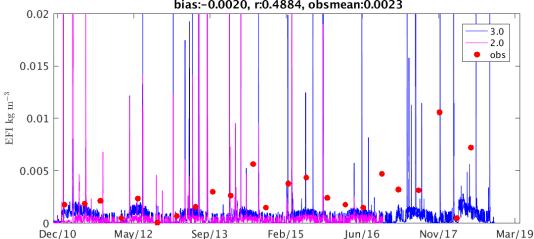
bias:-0.0027, r:0.3853, obsmean:0.0035 0.02 3.0 2.0 obs 0.015 $\rm EFI~kg~m^{-3}$ 0.01 0.005 0 Dec/10

May/12

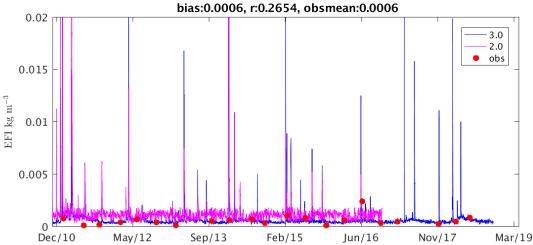
Sep/13

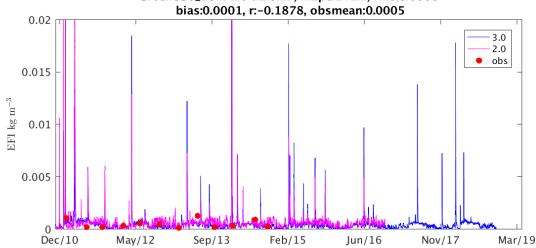

Yorkeys519_8m 3.0 d2:0.38, mape:55.0, rms:0.0045 bias:-0.0026, r:-0.1355, obsmean:0.0043 Yorkeys519_8m 2.0 d2:0.40, mape:68.8, rms:0.0037

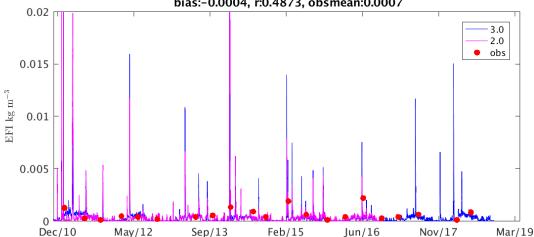
Feb/15

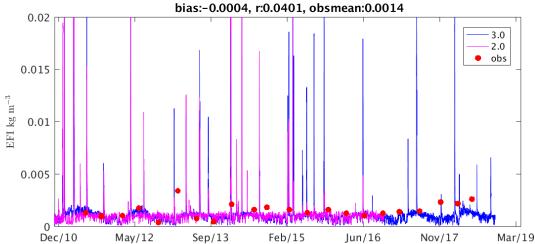

Jun/16

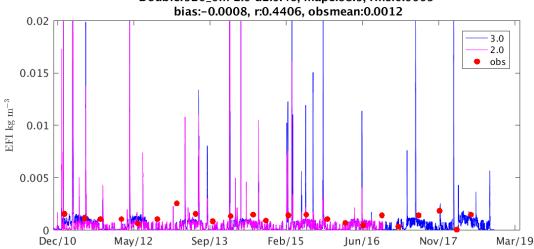
Nov/17

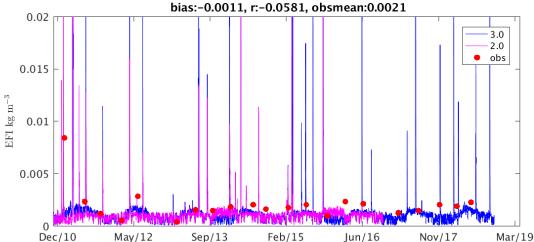

Mar/19

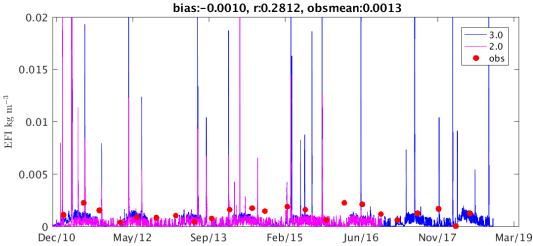

Yorkeys519_0m 3.0 d2:0.45, mape:70.4, rms:0.0032 bias:-0.0023, r:0.3135, obsmean:0.0029 Yorkeys519_0m 2.0 d2:0.44, mape:83.9, rms:0.0025 bias:-0.0020, r:0.4884, obsmean:0.0023

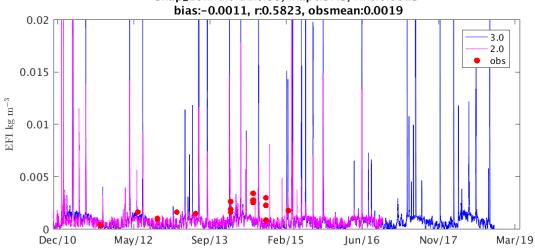

Green830_36m 3.0 d2:0.35, mape:78.1, rms:0.0005 bias:-0.0000, r:0.2181, obsmean:0.0006 Green830_36m 2.0 d2:0.47, mape:246.0, rms:0.0008


Green830_18m 3.0 d2:0.51, mape:82.5, rms:0.0004 bias:-0.0001, r:0.3274, obsmean:0.0005 Green830_18m 2.0 d2:0.17, mape:141.1, rms:0.0006 bias:0.0001, r:-0.1878, obsmean:0.0005


Green830_0m 3.0 d2:0.47, mape:67.2, rms:0.0007 bias:-0.0004, r:0.2557, obsmean:0.0006 Green830_0m 2.0 d2:0.58, mape:68.1, rms:0.0007 bias:-0.0004, r:0.4873, obsmean:0.0007


DoubleI520_18m 3.0 d2:0.45, mape:44.4, rms:0.0009 bias:-0.0006, r:0.1142, obsmean:0.0015 DoubleI520_18m 2.0 d2:0.40, mape:45.5, rms:0.0009


DoubleI520_0m 3.0 d2:0.47, mape:64.1, rms:0.0009 bias:-0.0007, r:0.3371, obsmean:0.0012 DoubleI520_0m 2.0 d2:0.46, mape:68.5, rms:0.0009 bias:-0.0008 r0.4406 obsmean:0.0012


PortD_15m 3.0 d2:0.32, mape:50.4, rms:0.0018 bias:-0.0009, r:0.1628, obsmean:0.0020 PortD_15m 2.0 d2:0.32, mape:57.7, rms:0.0021

PortD_0m 3.0 d2:0.47, mape:66.0, rms:0.0011 bias:-0.0009, r:0.2280, obsmean:0.0012 PortD_0m 2.0 d2:0.45, mape:74.2, rms:0.0012

Snap_10m 3.0 d2:0.54, mape:57.9, rms:0.0013 bias:-0.0011, r:0.5667, obsmean:0.0019 Snap_10m 2.0 d2:0.55, mape:57.3, rms:0.0013

1. IMOS/NRS HPLC AIMS

Chl a assessment against simulated Chl a

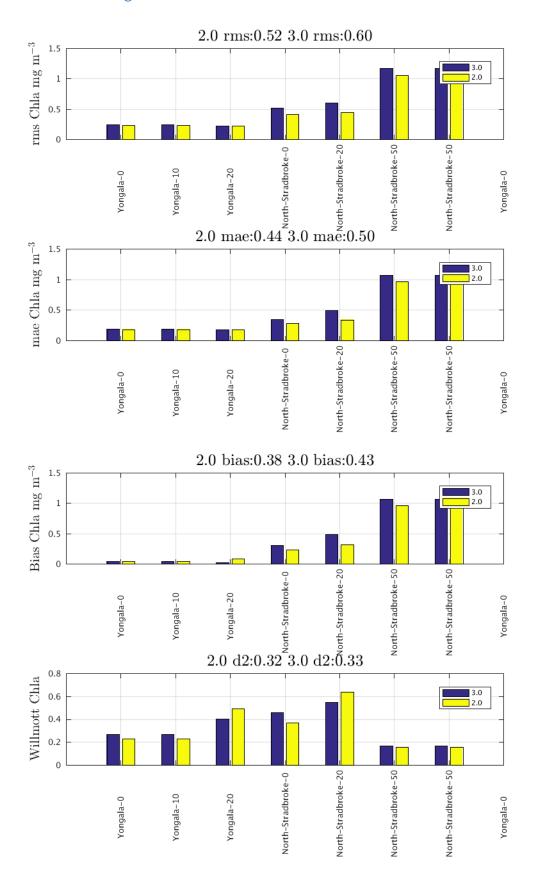
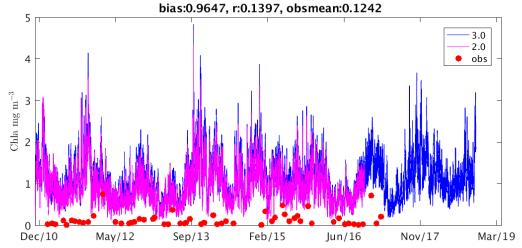
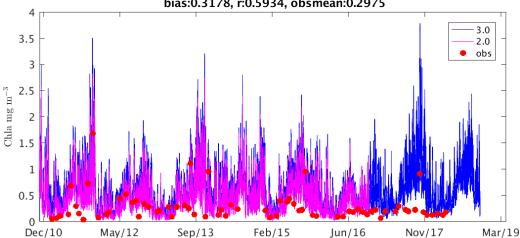
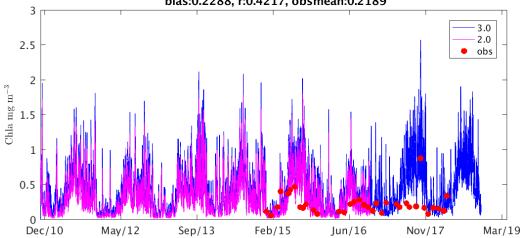
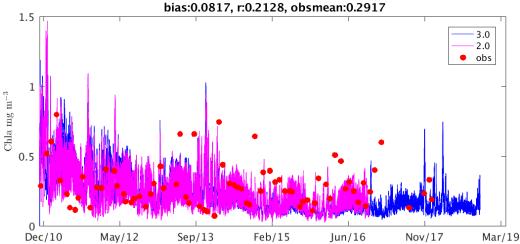
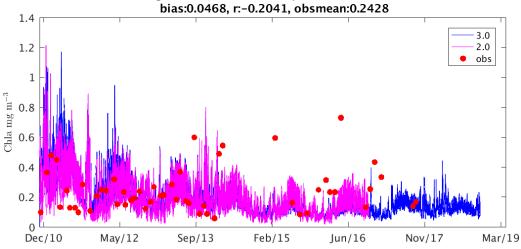




Figure 13 Metrics for IMOS NRS sites Chlorophyll assessment against observations for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square


North_Stradbroke_50 3.0 d2:0.17, mape:2287.1, rms:1.1762 bias:1.0697, r:0.2079, obsmean:0.1346 North_Stradbroke_50 2.0 d2:0.16, mape:2140.4, rms:1.0548


North_Stradbroke_20 3.0 d2:0.55, mape:296.5, rms:0.6018 bias:0.4862, r:0.6304, obsmean:0.2812 North_Stradbroke_20 2.0 d2:0.64, mape:208.7, rms:0.4469 bias:0.3178, r:0.5934, obsmean:0.2975


North_Stradbroke_0 3.0 d2:0.46, mape:165.5, rms:0.5133 bias:0.3062, r:0.6512, obsmean:0.2211 North_Stradbroke_0 2.0 d2:0.37, mape:137.6, rms:0.4160 bias:0.2288, r:0.4217, obsmean:0.2189

Yongala_20 3.0 d2:0.40, mape:76.7, rms:0.2234 bias:0.0175, r:0.0439, obsmean:0.2928 Yongala_20 2.0 d2:0.49, mape:83.6, rms:0.2215 bias:0.0817 r:0.2128 obsmean:0.2917

Yongala_10 3.0 d2:0.27, mape:102.8, rms:0.2473 bias:0.0439, r:-0.1568, obsmean:0.2450 Yongala_10 2.0 d2:0.23, mape:108.2, rms:0.2281

2. AIMS MMP sensor network

Fluorescence assessment against simulated Chl a

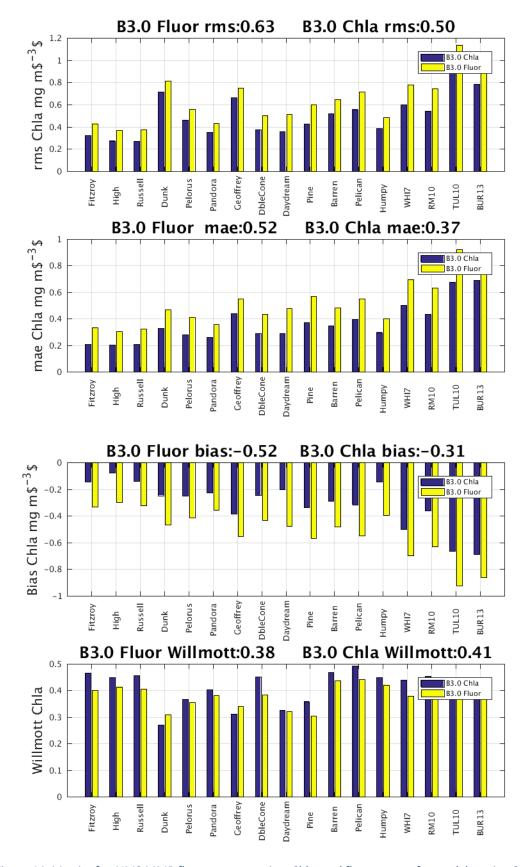
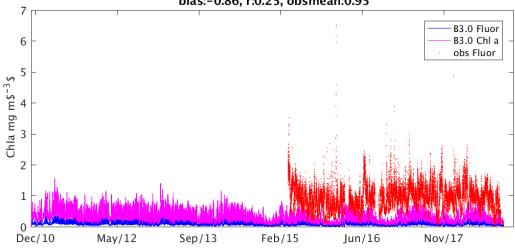
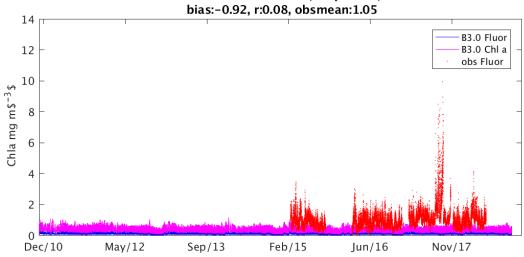
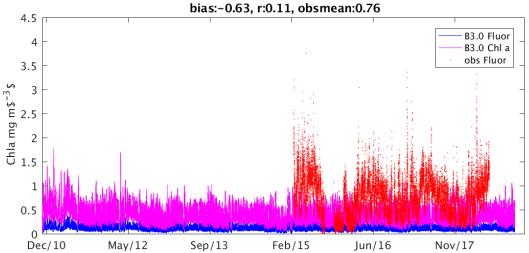
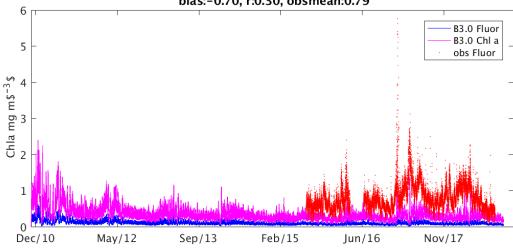
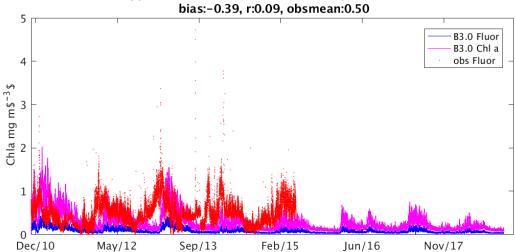
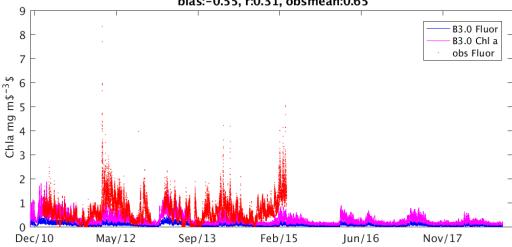




Figure 14 Metrics for AIMS MMP fluorescence against Chl a and fluorescence for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

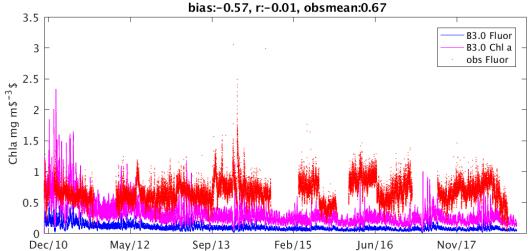

BUR13 B3.0 Chla Willmott:0.42, mape:70.1, rms:0.79 bias:-0.69, r:0.26, obsmean:0.95 BUR13 B3.0 Fluor Willmott:0.37, mape:89.8, rms:0.94 bias:-0.86, r:0.25, obsmean:0.95


TUL10 B3.0 Chla Willmott:0.39, mape:58.1, rms:0.94 bias:-0.66, r:0.09, obsmean:1.05
TUL10 B3.0 Fluor Willmott:0.37, mape:84.6, rms:1.14

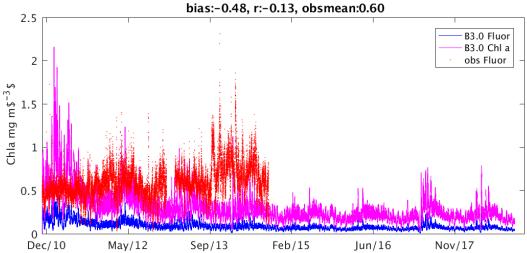

RM10 B3.0 Chla Willmott:0.45, mape:66.6, rms:0.54 bias:-0.36, r:0.14, obsmean:0.76 RM10 B3.0 Fluor Willmott:0.42, mape:79.3, rms:0.74


WHI7 B3.0 Chla Willmott:0.44, mape:59.4, rms:0.60 bias:-0.50, r:0.32, obsmean:0.79 WHI7 B3.0 Fluor Willmott:0.38, mape:86.8, rms:0.78 bias:-0.70, r:0.30, obsmean:0.79

Humpy_5m B3.0 Chla Willmott:0.45, mape:74.5, rms:0.39 bias:-0.15, r:0.10, obsmean:0.50
Humpy_5m B3.0 Fluor Willmott:0.42, mape:76.1, rms:0.49 bias:-0.39 r:0.09 obsmean:0.50


Pelican_5m B3.0 Chla Willmott:0.49, mape:82.2, rms:0.56 bias:-0.32, r:0.31, obsmean:0.65
Pelican_5m B3.0 Fluor Willmott:0.44, mape:83.0, rms:0.71 bias:-0.55, r:0.31, obsmean:0.65

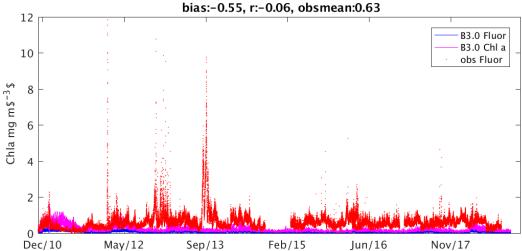
Barren_5m B3.0 Chla Willmott:0.47, mape:56.6, rms:0.52 bias:-0.29, r:0.25, obsmean:0.57 Barren_5m B3.0 Fluor Willmott:0.44, mape:77.7, rms:0.65


bias:-0.48, r:0.24, obsmean:0.57 B3.0 Fluor 3.5 B3.0 Chl a obs Fluor 3 Chla mg m\$⁻³\$ 2.5 2 1.5 1 0.5 0 Dec/10 May/12 Sep/13 Feb/15

Pine_5m B3.0 Chla Willmott:0.36, mape:53.1, rms:0.43 bias:-0.34, r:-0.01, obsmean:0.67
Pine_5m B3.0 Fluor Willmott:0.30, mape:83.6, rms:0.60

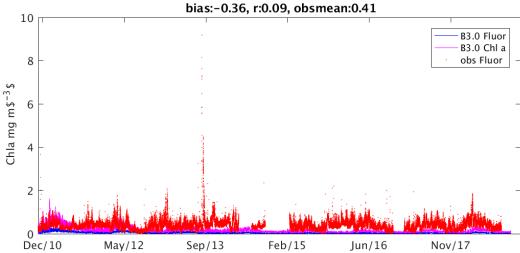
Daydream_5m B3.0 Chla Willmott:0.33, mape:47.0, rms:0.36 bias:-0.20, r:-0.14, obsmean:0.60

Daydream_5m B3.0 Fluor Willmott:0.32, mape:77.9, rms:0.52



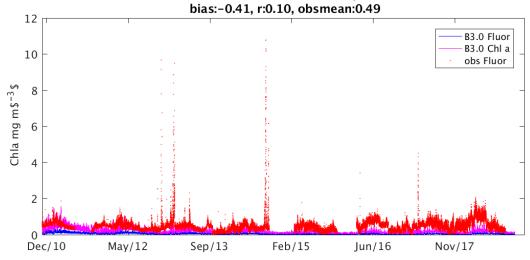
DoubleCone_5m B3.0 Chla Willmott:0.45, mape:56.5, rms:0.38 bias:-0.24, r:0.17, obsmean:0.52 DoubleCone_5m B3.0 Fluor Willmott:0.38, mape:81.4, rms:0.50

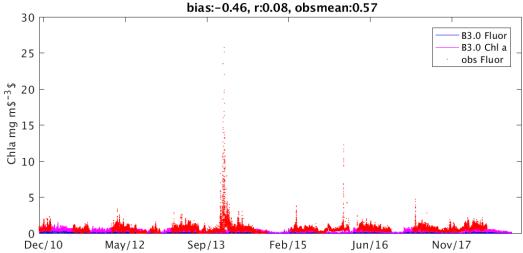
GeoffreyBay336_5m B3.0 Chla Willmott:0.31, mape:70.2, rms:0.66 bias:-0.39, r:-0.07, obsmean:0.63
GeoffreyBay336_5m B3.0 Fluor Willmott:0.34, mape:83.4, rms:0.75


Feb/15

Nov/17

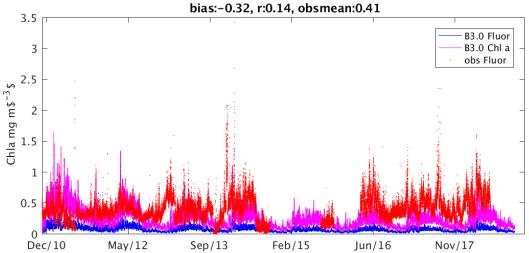
Pandora_5m B3.0 Chla Willmott:0.40, mape:59.9, rms:0.35 bias:-0.23, r:0.09, obsmean:0.41


Pandora_5m B3.0 Fluor Willmott:0.38, mape:82.5, rms:0.43

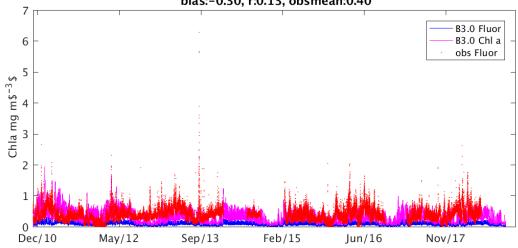

Dec/10

May/12

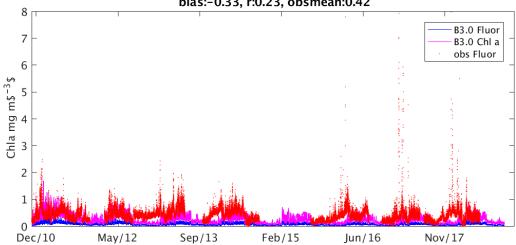
Pelorus_5m B3.0 Chla Willmott:0.37, mape:53.1, rms:0.46 bias:-0.25, r:0.11, obsmean:0.49 Pelorus_5m B3.0 Fluor Willmott:0.35, mape:80.9, rms:0.56



Dunk859_5m B3.0 Chla Willmott:0.27, mape:93.6, rms:0.72 bias:-0.25, r:0.09, obsmean:0.57 Dunk859_5m B3.0 Fluor Willmott:0.31, mape:83.3, rms:0.81



Russell_5m B3.0 Chla Willmott:0.46, mape:58.4, rms:0.27 bias:-0.14, r:0.14, obsmean:0.41


Russell_5m B3.0 Fluor Willmott:0.40, mape:77.0, rms:0.38

High_5m B3.0 Chla Willmott:0.45, mape:72.4, rms:0.27 bias:-0.08, r:0.14, obsmean:0.40 High_5m B3.0 Fluor Willmott:0.41, mape:74.6, rms:0.37 bias:-0.30, r:0.13, obsmean:0.40

Fitz_5m B3.0 Chla Willmott:0.47, mape:50.5, rms:0.32 bias:-0.15, r:0.24, obsmean:0.42 Fitz_5m B3.0 Fluor Willmott:0.40, mape:76.3, rms:0.43 bias:-0.33, r:0.23, obsmean:0.42

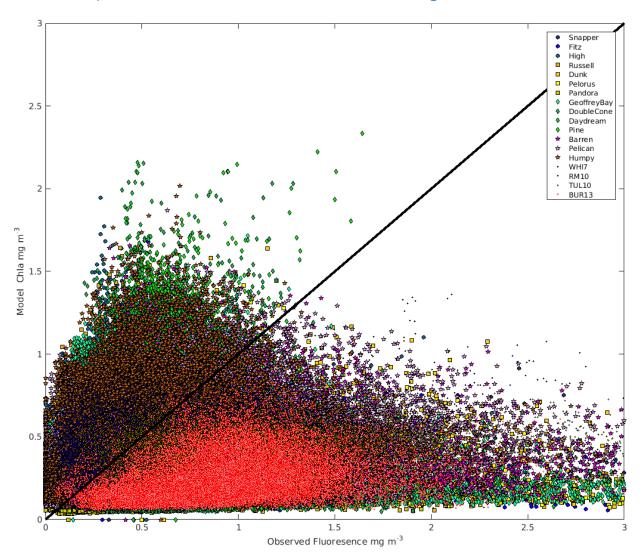


Figure 15 Scatter plot of observed Fluorescence for AIMS MMP assessment against simulated Chl a for model version 3p0

Scatter plot of individual MMP sensor network simulate Chl α against Observed fluorescence

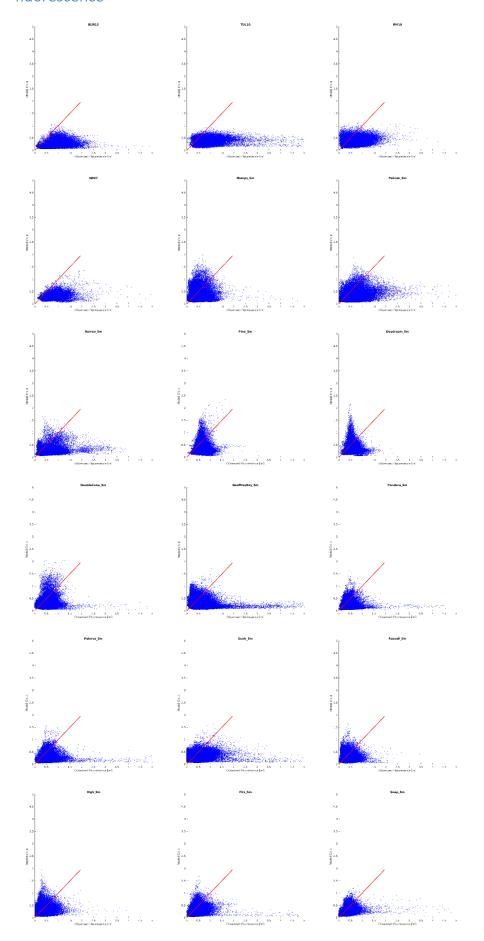
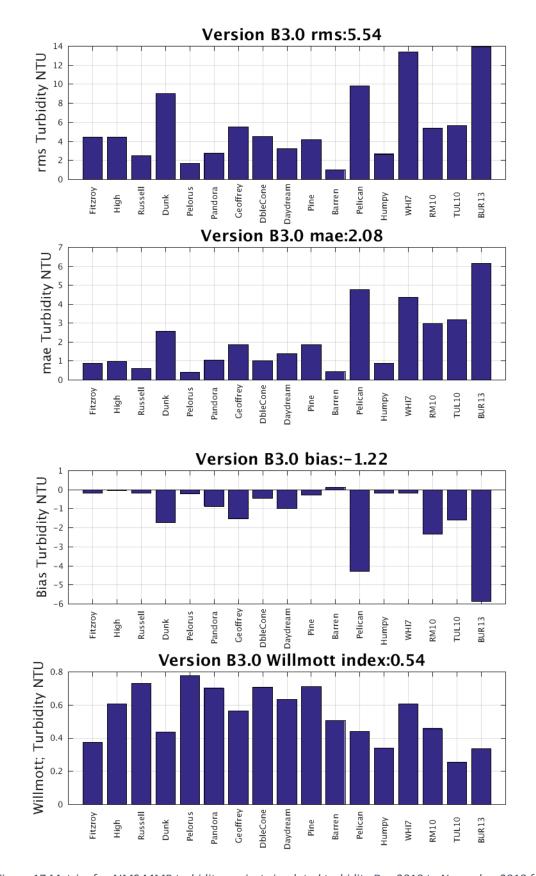
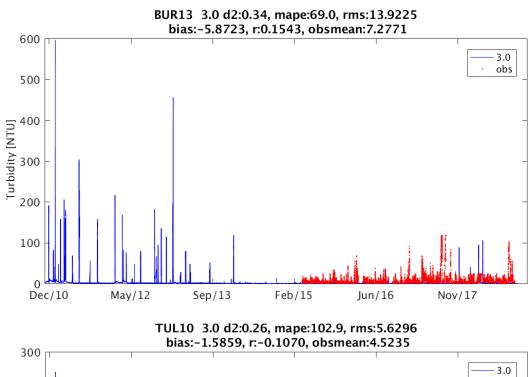
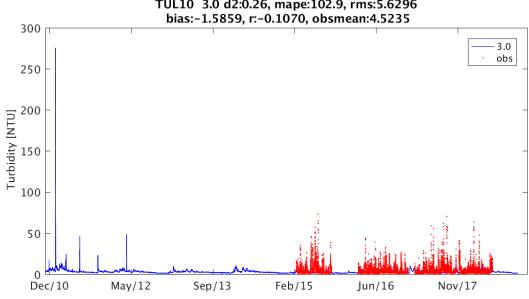
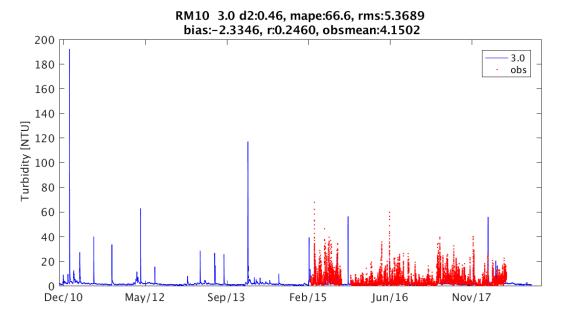
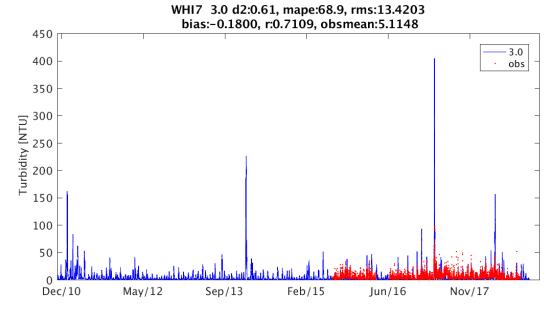
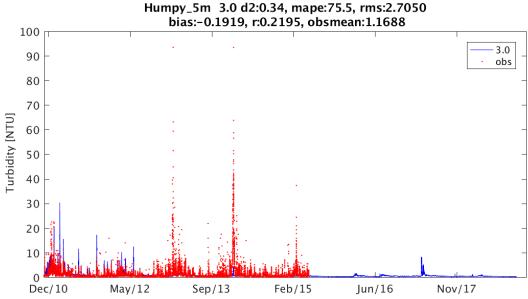
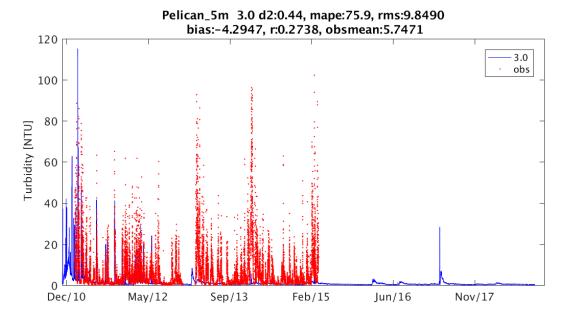
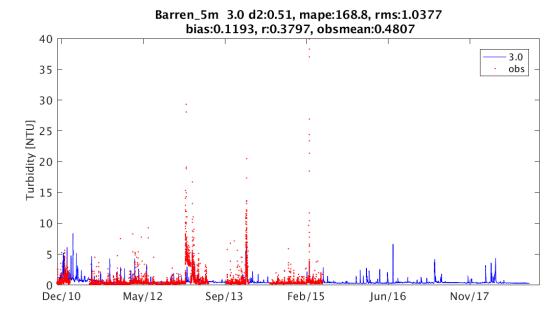


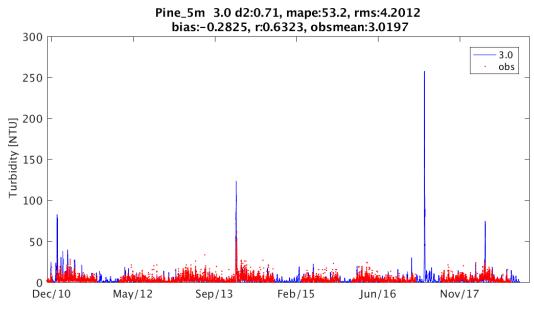
Figure 16 Scatter plot of observed Fluorescence for individual AIMS MMP assessment against simulated Chl a for model version 3p0

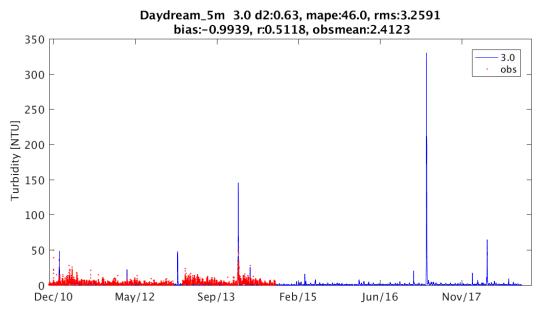






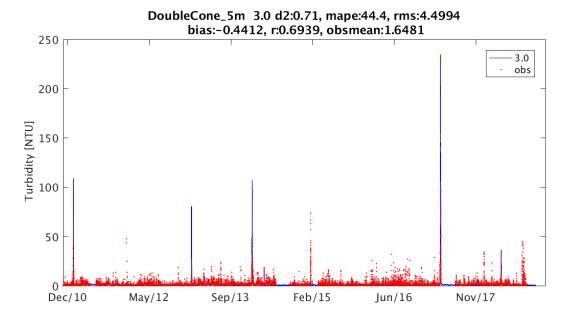

Figure 17 Metrics for AIMS MMP turbidity against simulated turbidity Dec 2010 to November 2018 for model version $3p0\ d2 = Willmott\ index\ see\ Statistical\ metric\ page\ 8.mae:mean\ absolute\ error,\ rms\ root\ mean\ square$

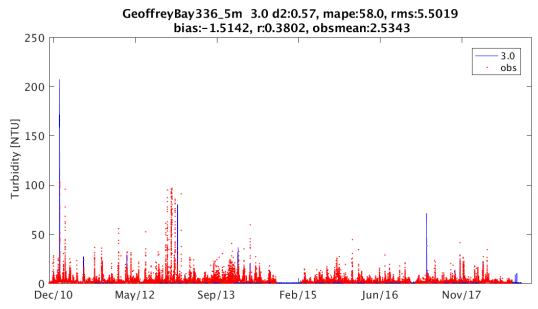


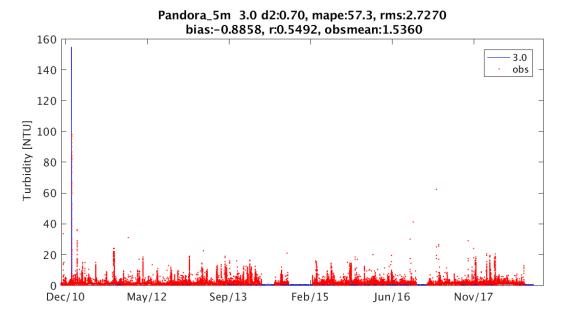


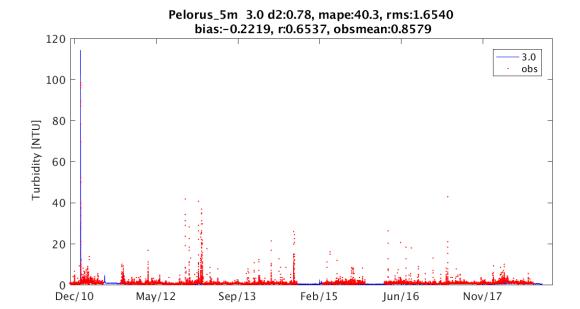


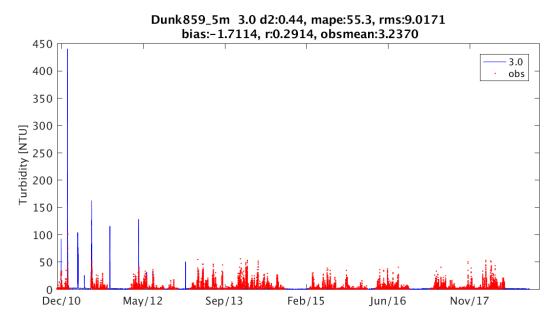


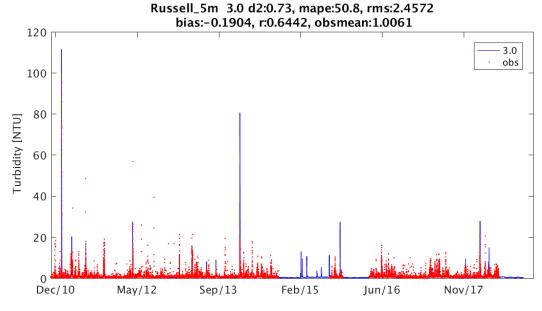


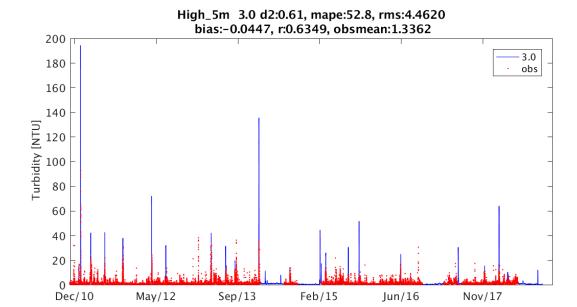


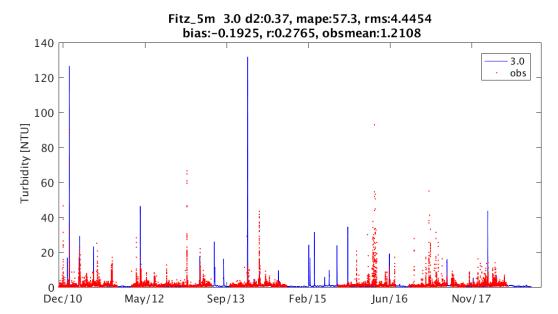


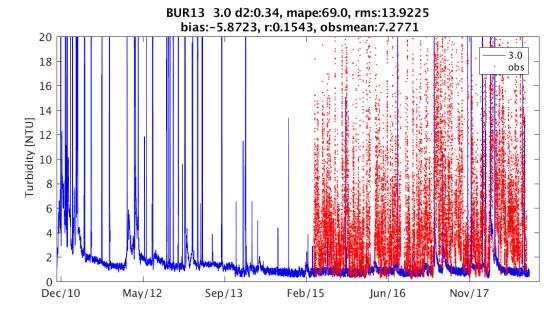


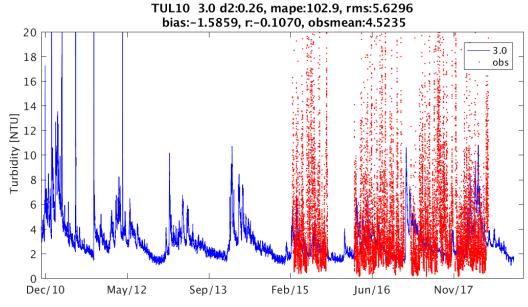


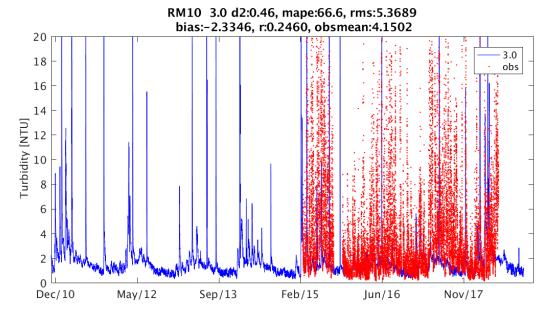


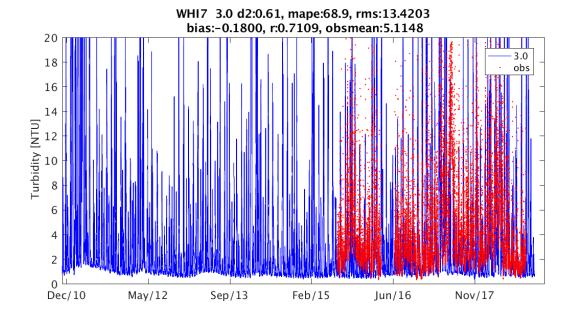


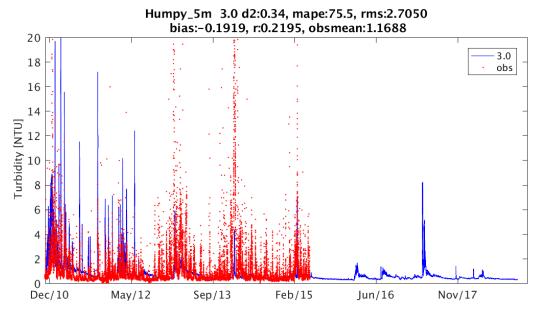


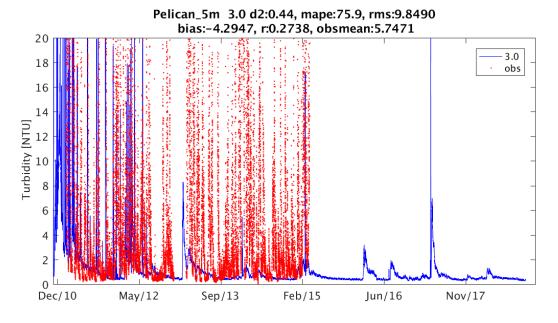


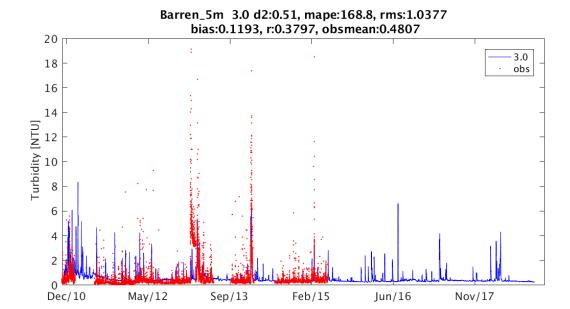


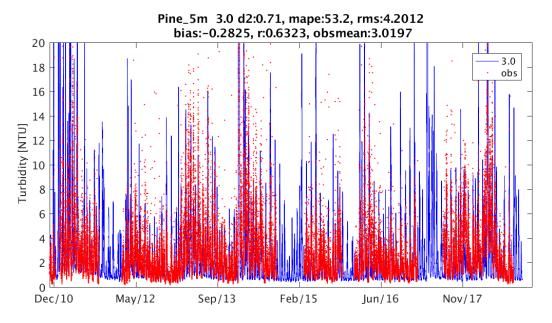


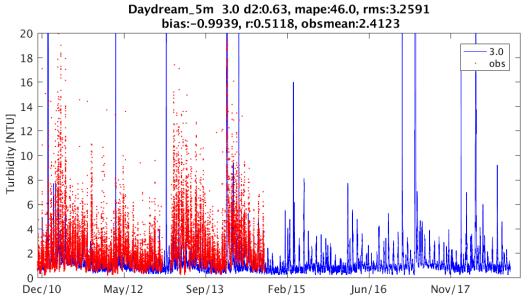


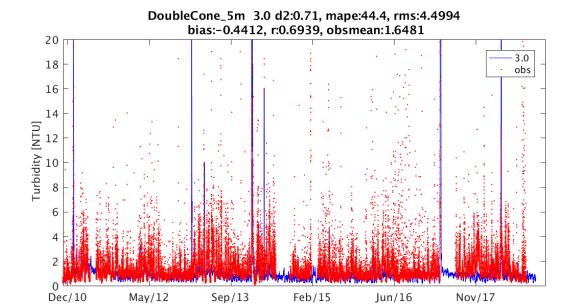


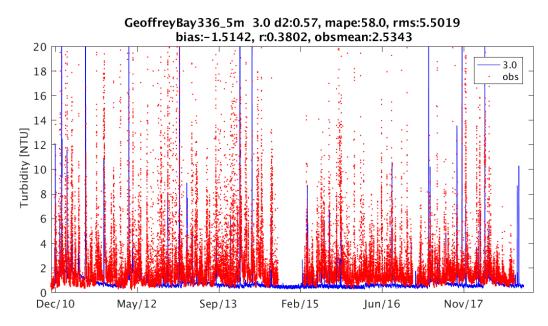


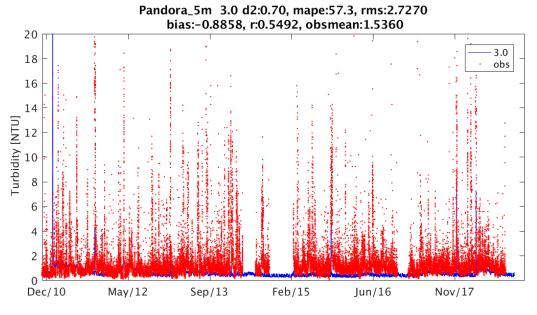


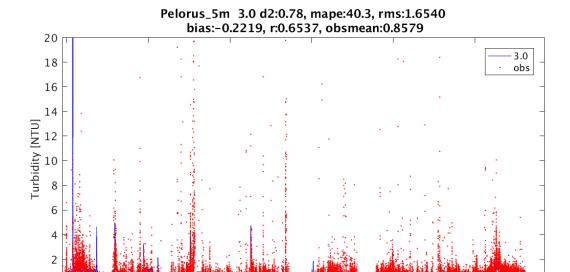


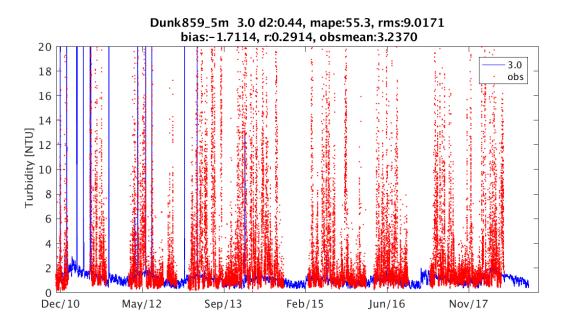


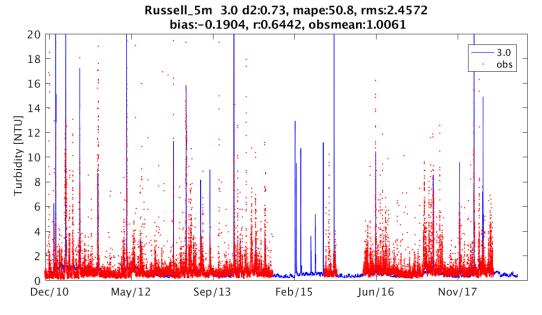






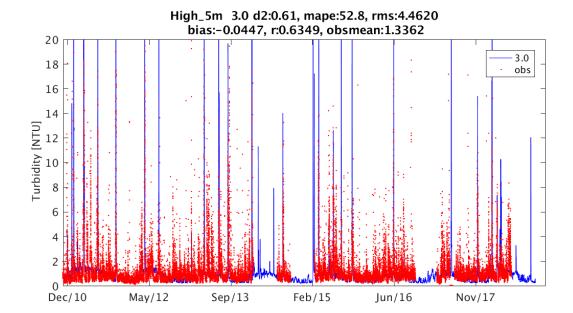


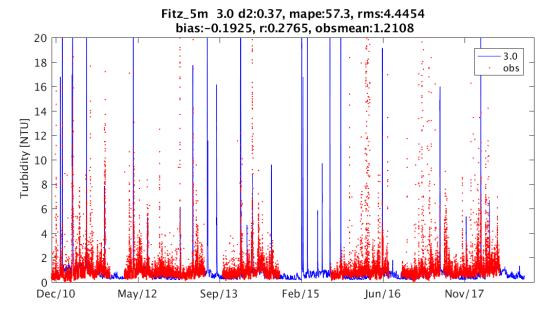




Feb/15

Jun/16


Nov/17



Dec/10

May/12

Sep/13

3. IMOS/NRS fluorescence moorings assessment with Simulated Chl *a*

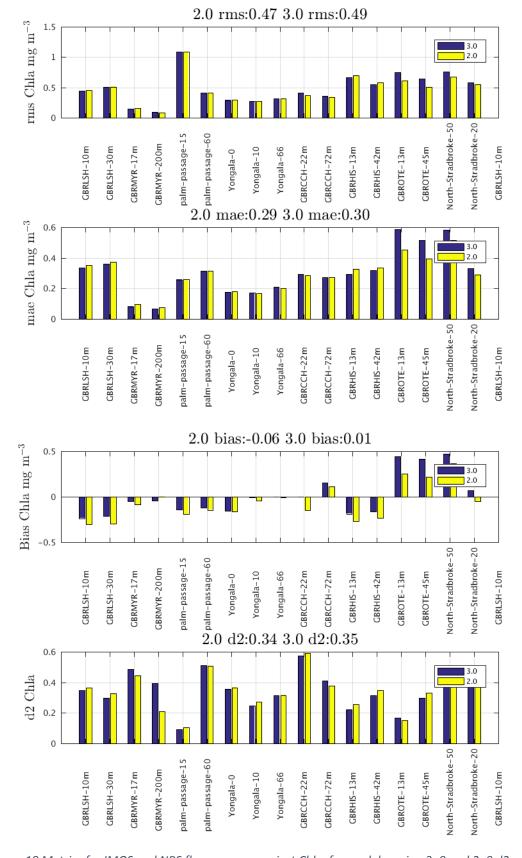
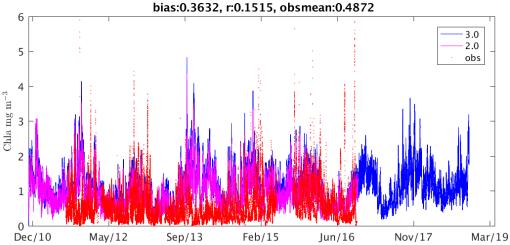
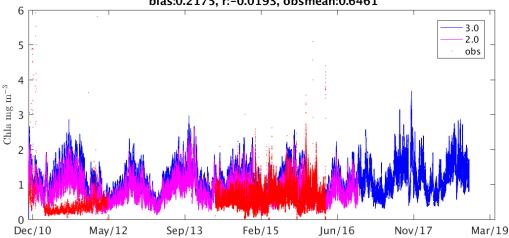
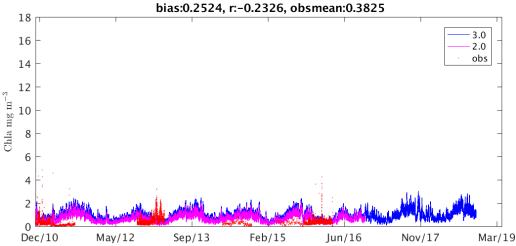
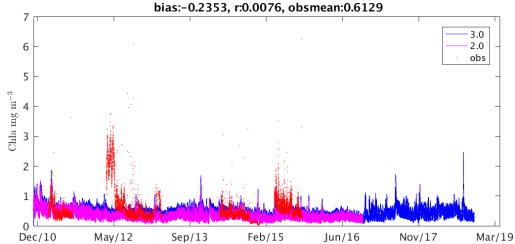



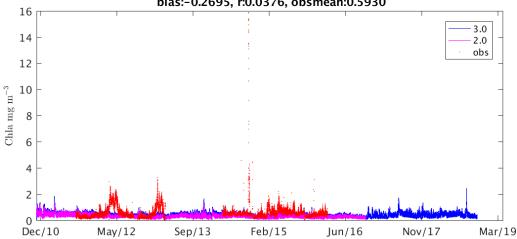
Figure 18 Metrics for IMOS and NRS fluorescence against Chl a for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

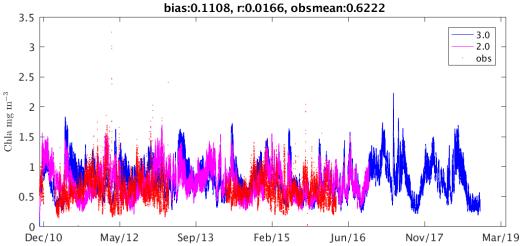

North_Stradbroke_20 3.0 d2:0.45, mape:129.4, rms:0.5768 bias:0.0702, r:0.2402, obsmean:0.4530 North_Stradbroke_20 2.0 d2:0.44, mape:98.8, rms:0.5501

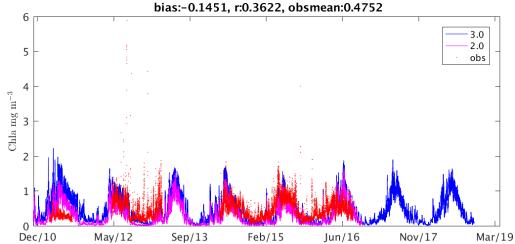
bias:-0.0500, r:0.2529, obsmean:0.4530 30 3.0 2.0 25 obs 20 $\mathrm{Chla}\;\mathrm{mg}\;\mathrm{m}^{-3}$ 15 10 5 0 Dec/10 May/12 Sep/13 Feb/15 Jun/16 Nov/17 Mar/19

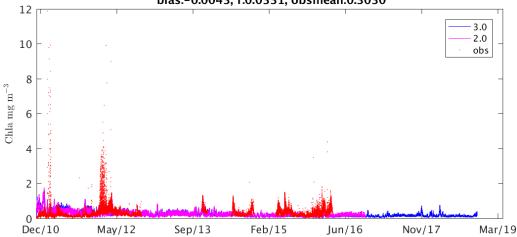

North_Stradbroke_50 3.0 d2:0.42, mape:301.7, rms:0.7567 bias:0.4732, r:0.1829, obsmean:0.4872
North_Stradbroke_50 2.0 d2:0.42, mape:266.1, rms:0.6750

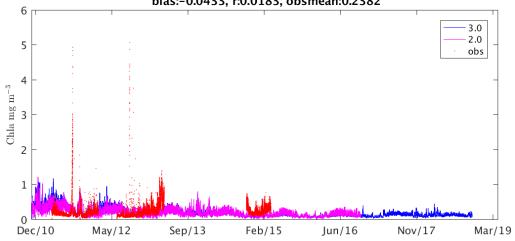

GBROTE_45m 3.0 d2:0.30, mape:125.5, rms:0.6452 bias:0.4133, r:-0.0315, obsmean:0.6461 GBROTE_45m 2.0 d2:0.33, mape:94.0, rms:0.5041 bias:0.2175, r:-0.0193, obsmean:0.6461

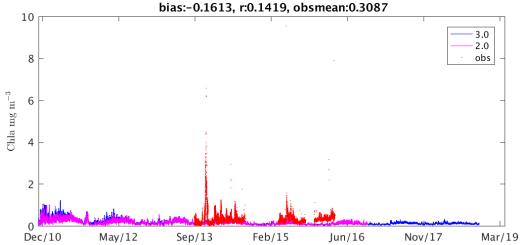

GBROTE_13m 3.0 d2:0.17, mape:303.9, rms:0.7526 bias:0.4410, r:-0.2350, obsmean:0.3825 GBROTE_13m 2.0 d2:0.15, mape:224.1, rms:0.6145

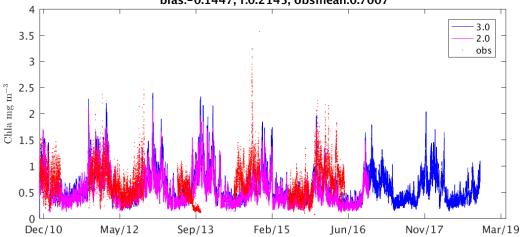

GBRHIS_42m 3.0 d2:0.32, mape:59.9, rms:0.5507 bias:-0.1605, r:0.0432, obsmean:0.6129 GBRHIS_42m 2.0 d2:0.35, mape:54.9, rms:0.5798 bias:-0.2353 r0.0076, obsmean:0.6129

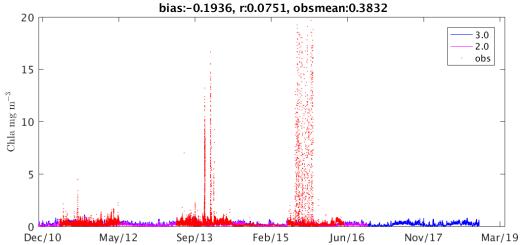

GBRHIS_13m 3.0 d2:0.22, mape:47.9, rms:0.6678 bias:-0.1870, r:0.0568, obsmean:0.5930 GBRHIS_13m 2.0 d2:0.26, mape:48.4, rms:0.6954 bias:-0.2695, r:0.0376, obsmean:0.5930

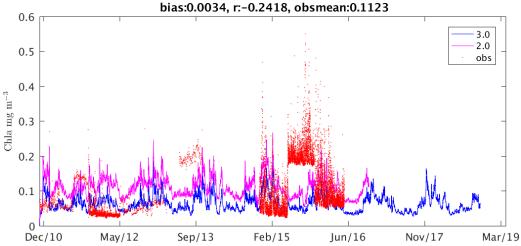

GBRCCH_72m 3.0 d2:0.41, mape:54.3, rms:0.3552 bias:0.1563, r:0.0914, obsmean:0.6222 GBRCCH_72m 2.0 d2:0.38, mape:55.6, rms:0.3431

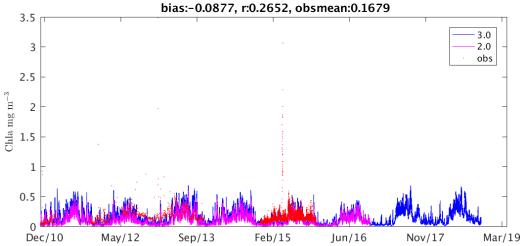

GBRCCH_22m 3.0 d2:0.57, mape:73.1, rms:0.4084 bias:-0.0009, r:0.3270, obsmean:0.4752 GBRCCH_22m 2.0 d2:0.59, mape:67.4, rms:0.3693

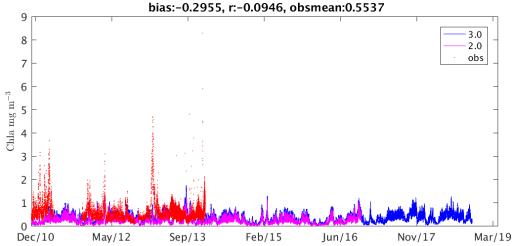

Yongala_26 3.0 d2:0.31, mape:93.7, rms:0.3211 bias:-0.0001, r:0.0065, obsmean:0.3030 Yongala_26 2.0 d2:0.32, mape:88.0, rms:0.3181 bias:-0.0043, r:0.0331, obsmean:0.3030


Yongala_10 3.0 d2:0.25, mape:84.2, rms:0.2741 bias:-0.0103, r:0.0050, obsmean:0.2382 Yongala_10 2.0 d2:0.27, mape:79.2, rms:0.2704 bias:-0.0433, r:0.0183, obsmean:0.2382


Yongala_0 3.0 d2:0.35, mape:51.2, rms:0.2904 bias:-0.1563, r:0.1742, obsmean:0.3087 Yongala_0 2.0 d2:0.37, mape:52.2, rms:0.2970 bias:-0.1613, r0.1419, obsmean:0.3087


palm_passage_60 3.0 d2:0.51, mape:60.7, rms:0.4143 bias:-0.1187, r:0.2124, obsmean:0.7007 palm_passage_60 2.0 d2:0.51, mape:58.3, rms:0.4087 bias:-0.1447, r:0.2145, obsmean:0.7007




GBRMYR_200m 3.0 d2:0.40, mape:59.4, rms:0.0931 bias:-0.0440, r:-0.1409, obsmean:0.1123 GBRMYR_200m 2.0 d2:0.21, mape:102.3, rms:0.0888 bias:0.0034, r:-0.2418, obsmean:0.1123

GBRMYR_17m 3.0 d2:0.49, mape:47.3, rms:0.1464 bias:-0.0480, r:0.2613, obsmean:0.1679 GBRMYR_17m 2.0 d2:0.45, mape:58.0, rms:0.1573

GBRLSH_30m 3.0 d2:0.30, mape:66.0, rms:0.5020 bias:-0.2140, r:-0.1121, obsmean:0.5537 GBRLSH_30m 2.0 d2:0.33, mape:64.9, rms:0.5123 bias:-0.2955 r:-0.0946 obsmean:0.5537

4. National Reference Station (NRS) moorings (Yongala and NSI)

Simulated NOx assessment against observations

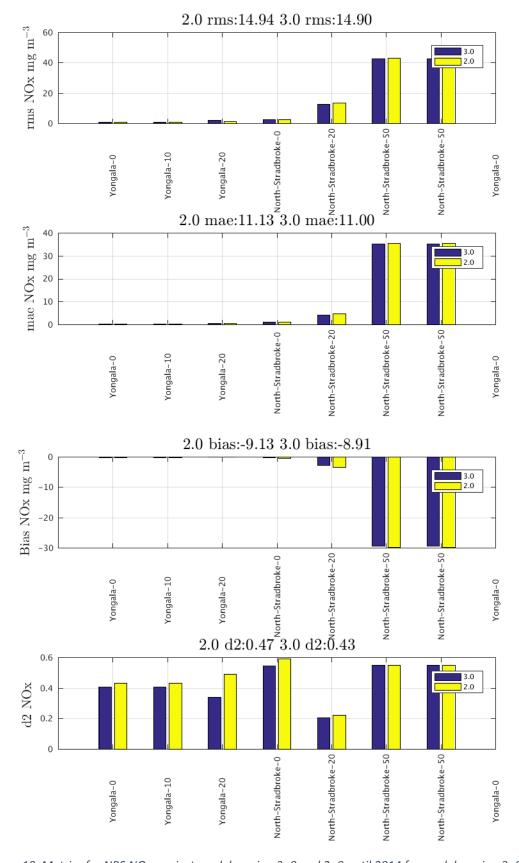
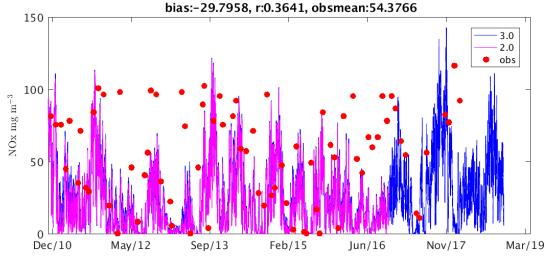
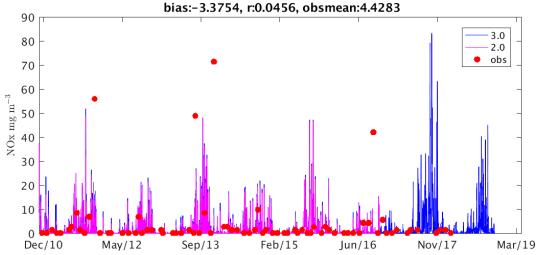
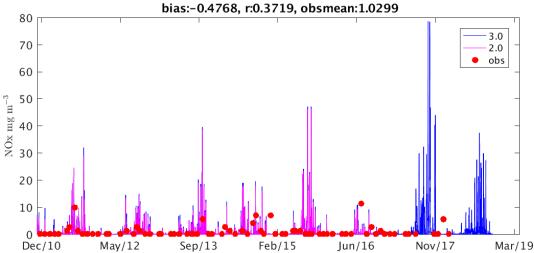
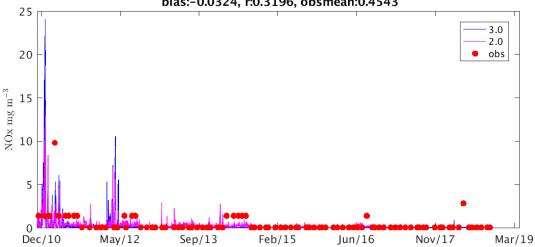
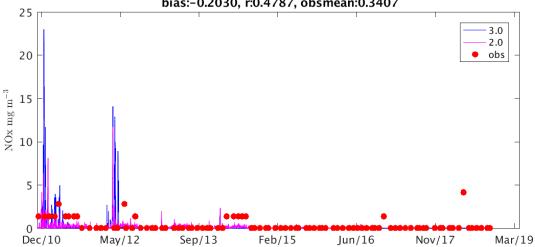




Figure 19 Metrics for NRS NOx against model version 3p0 and 2p0 until 2014 for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

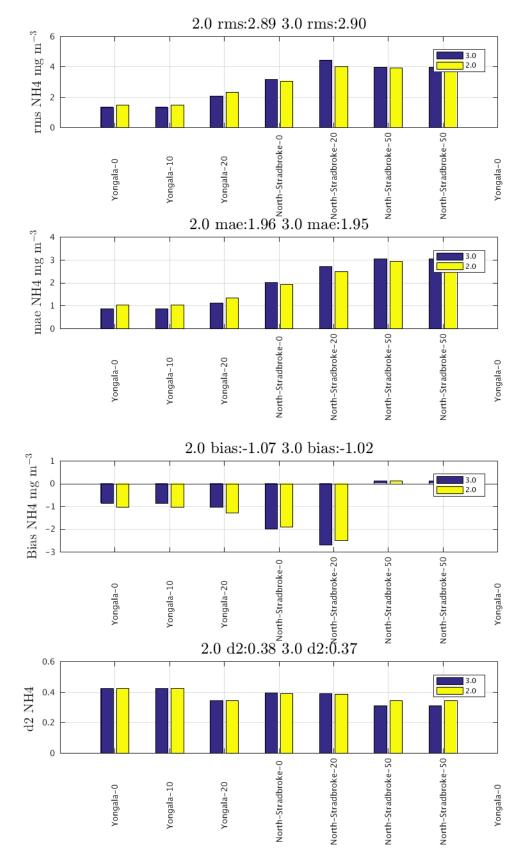
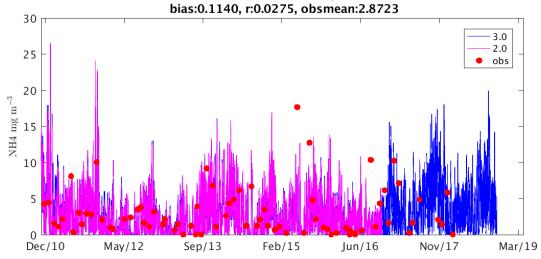

North_Stradbroke_50 3.0 d2:0.55, mape:116.2, rms:42.8284 bias:-29.3199, r:0.3570, obsmean:56.3039 North_Stradbroke_50 2.0 d2:0.55, mape:120.1, rms:42.9826

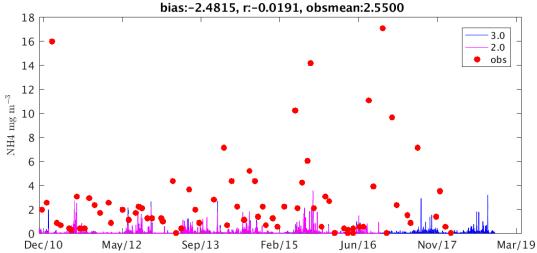

North_Stradbroke_20 3.0 d2:0.21, mape:96.0, rms:12.5846 bias:-2.8284, r:0.0675, obsmean:3.9712 North_Stradbroke_20 2.0 d2:0.22, mape:100.4, rms:13.6062


North_Stradbroke_0 3.0 d2:0.54, mape:96.3, rms:2.5793 bias:-0.3079, r:0.3055, obsmean:0.9751 North_Stradbroke_0 2.0 d2:0.59, mape:84.9, rms:2.4294

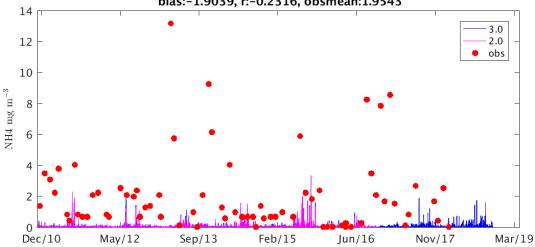
Yongala_20 3.0 d2:0.34, mape:148.2, rms:1.9444 bias:-0.0721, r:0.2131, obsmean:0.3716 Yongala_20 2.0 d2:0.49, mape:92.6, rms:1.2867 bias:-0.0324, r:0.3196, obsmean:0.4543

Yongala_10 3.0 d2:0.41, mape:90.3, rms:0.7520 bias:-0.2569, r:0.2792, obsmean:0.3144 Yongala_10 2.0 d2:0.43, mape:80.9, rms:0.6571 bias:-0.2030, r:0.4787, obsmean:0.3407

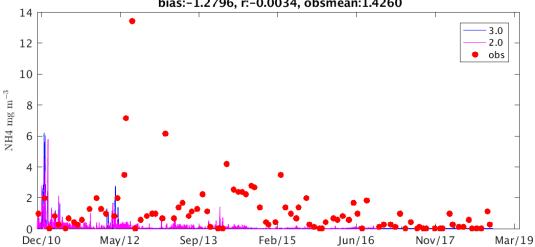



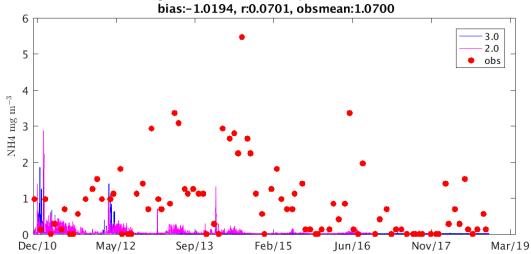

Figure 20 Metrics for NRS NH4 for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

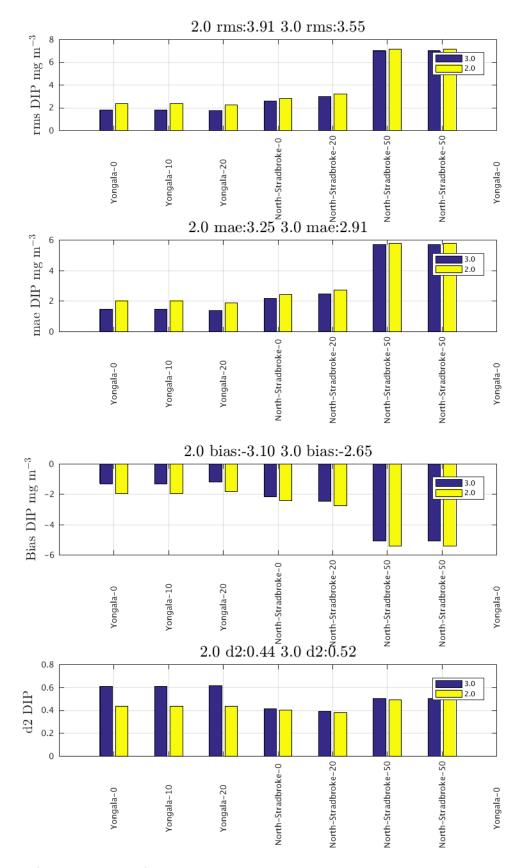
North_Stradbroke_50 3.0 d2:0.31, mape:168.9, rms:3.9650 bias:0.1315, r:-0.0367, obsmean:3.0019 North_Stradbroke_50 2.0 d2:0.34, mape:164.3, rms:3.9159



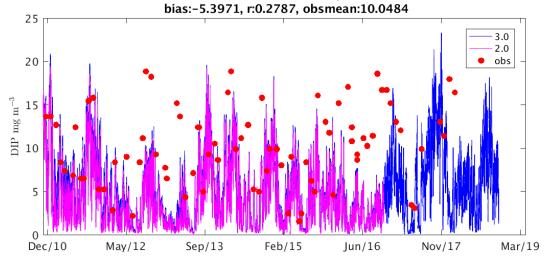
North_Stradbroke_20 3.0 d2:0.39, mape:94.1, rms:4.4470 bias:-2.7033, r:-0.0254, obsmean:2.7669

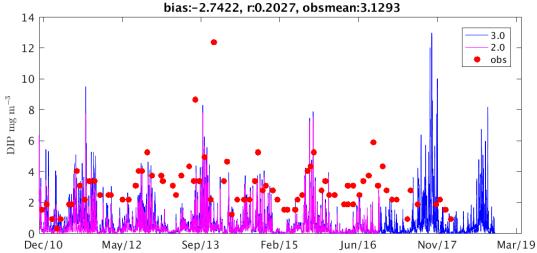

North_Stradbroke_20 2.0 d2:0.38, mape:93.5, rms:3.9994 bias:-2 4815 r:-0.0191 obsmean:2.5500


North_Stradbroke_0 3.0 d2:0.39, mape:93.1, rms:3.1746 bias:-1.9830, r:-0.2707, obsmean:2.0403 North_Stradbroke_0 2.0 d2:0.39, mape:94.4, rms:3.0627 bias:-1.9039, r:-0.2316, obsmean:1.9543



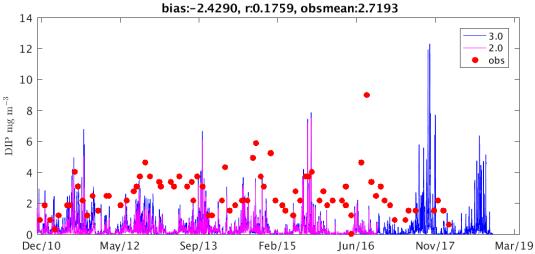
Yongala_20 3.0 d2:0.34, mape:98.7, rms:2.0681 bias:-1.0401, r:0.0360, obsmean:1.1307 Yongala_20 2.0 d2:0.34, mape:90.8, rms:2.3246 bias:-1.2796, r:-0.0034, obsmean:1.4260


Yongala_10 3.0 d2:0.42, mape:94.8, rms:1.3301 bias:-0.8479, r:0.0321, obsmean:0.8710 Yongala_10 2.0 d2:0.43, mape:92.8, rms:1.4893 bias:-1.0194 r:0.0701 obsmean:1.0700

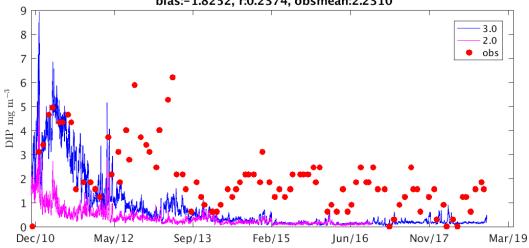


Metrics for IMOS NRS DIP for model version 3p0 and 2p0 d2 = Willmott index see Statistical metric page 8.mae:mean absolute error, rms root mean square

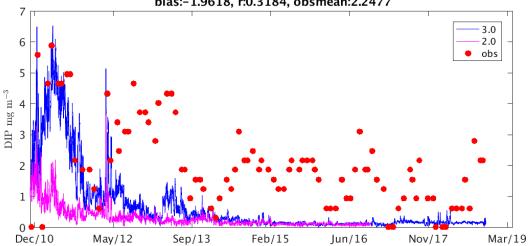
North_Stradbroke_50 3.0 d2:0.50, mape:55.7, rms:7.0137 bias:-5.0577, r:0.2643, obsmean:10.3234 North_Stradbroke_50 2.0 d2:0.49, mape:58.1, rms:7.1660



North_Stradbroke_20 3.0 d2:0.39, mape:80.4, rms:2.9800 bias:-2.4585, r:0.1857, obsmean:2.9916
North_Stradbroke_20 2.0 d2:0.38, mape:86.5, rms:3.2297



North_Stradbroke_0 3.0 d2:0.41, mape:82.3, rms:2.5701 bias:-2.1489, r:0.1245, obsmean:2.5681


North_Stradbroke_0 2.0 d2:0.40, mape:87.5, rms:2.7917

Yongala_20 3.0 d2:0.61, mape:71.1, rms:1.7303 bias:-1.1670, r:0.4977, obsmean:1.9564 Yongala_20 2.0 d2:0.44, mape:80.8, rms:2.2524 bias:-1.8252, r:0.2374, obsmean:2.2310

Yongala_10 3.0 d2:0.61, mape:76.3, rms:1.7752 bias:-1.3186, r:0.5422, obsmean:1.9659 Yongala_10 2.0 d2:0.44, mape:87.0, rms:2.3687 bias:-1.9618, r:0.3184, obsmean:2.2477

5. Carbon chemistry

Map Wakmatha transect for Carbon Chemistry

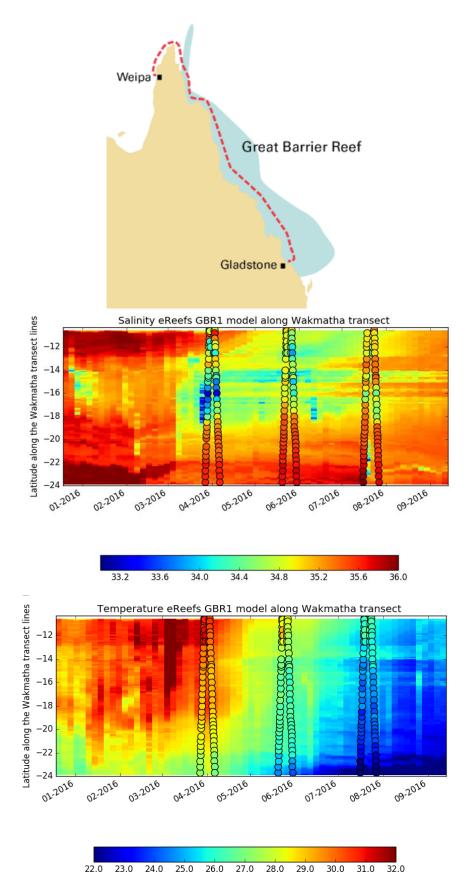
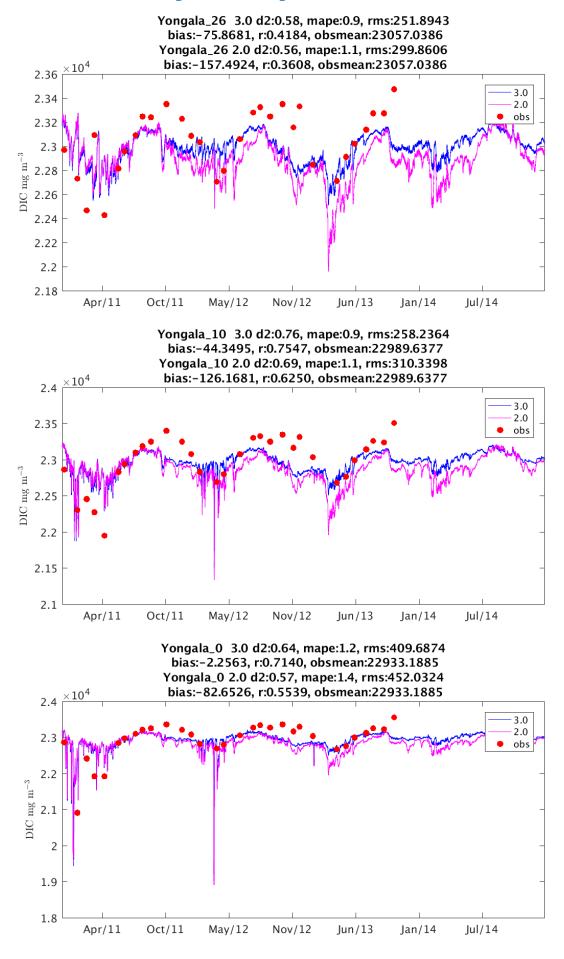
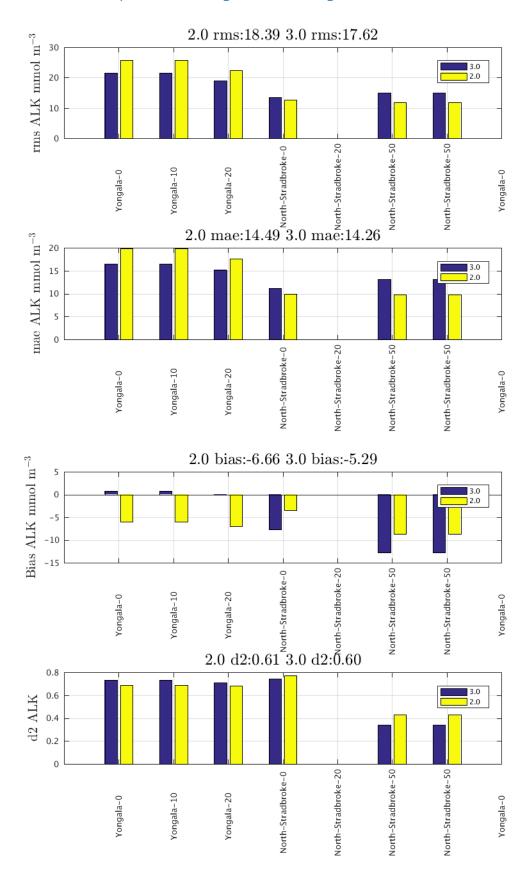
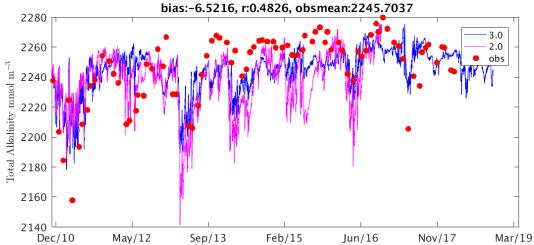
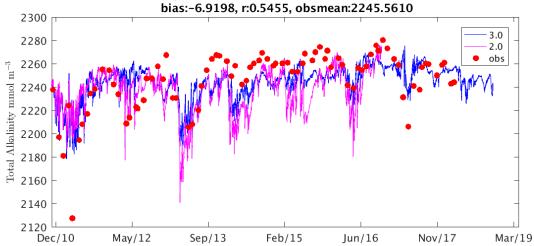
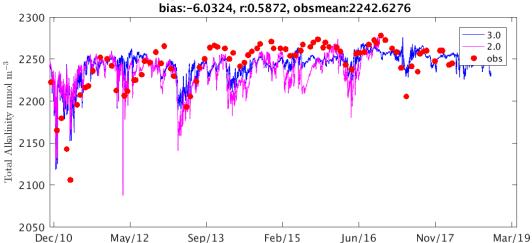
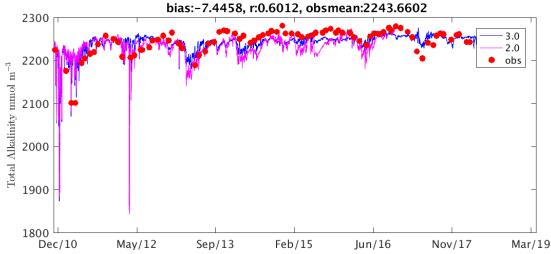
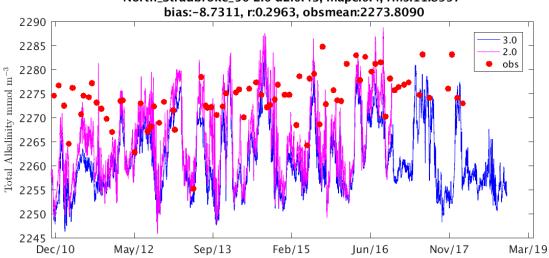





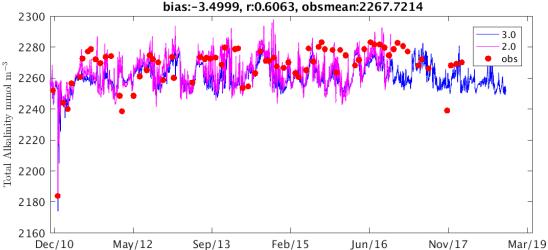
Figure Wakmatha transect showing hydrodynamic data for temperature and salinity comparison with simulated temperature and salinity for GBR1 (see page 160 for Wakmatha transect line for Carbon chemistry assessment of Wakmatha transect line)

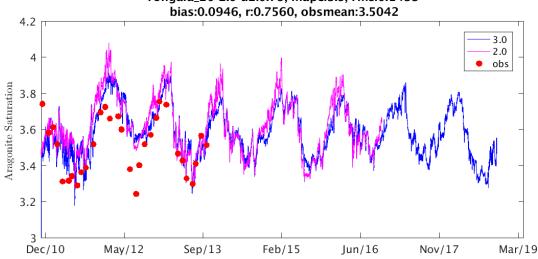


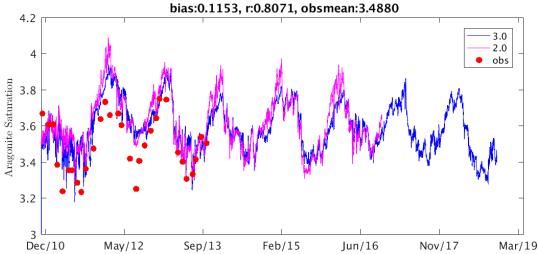

Yongala_26 3.0 d2:0.69, mape:0.7, rms:18.3375 bias:0.0641, r:0.5781, obsmean:2246.9869 Yongala_26 2.0 d2:0.65, mape:0.8, rms:21.7963


Yongala_20 3.0 d2:0.71, mape:0.7, rms:19.0163 bias:-0.0493, r:0.6262, obsmean:2246.6614 Yongala_20 2.0 d2:0.68, mape:0.8, rms:22.3538

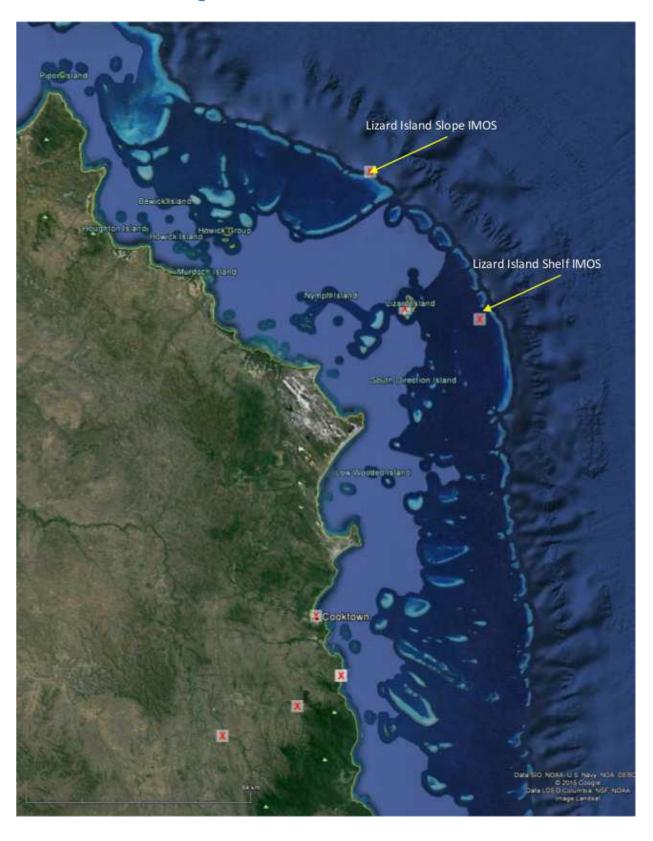

Yongala_10 3.0 d2:0.73, mape:0.7, rms:21.5717 bias:0.8170, r:0.7043, obsmean:2244.2514 Yongala_10 2.0 d2:0.69, mape:0.9, rms:25.7781 bias:-6.0324 r:0.5872 obsmean:2242.6276

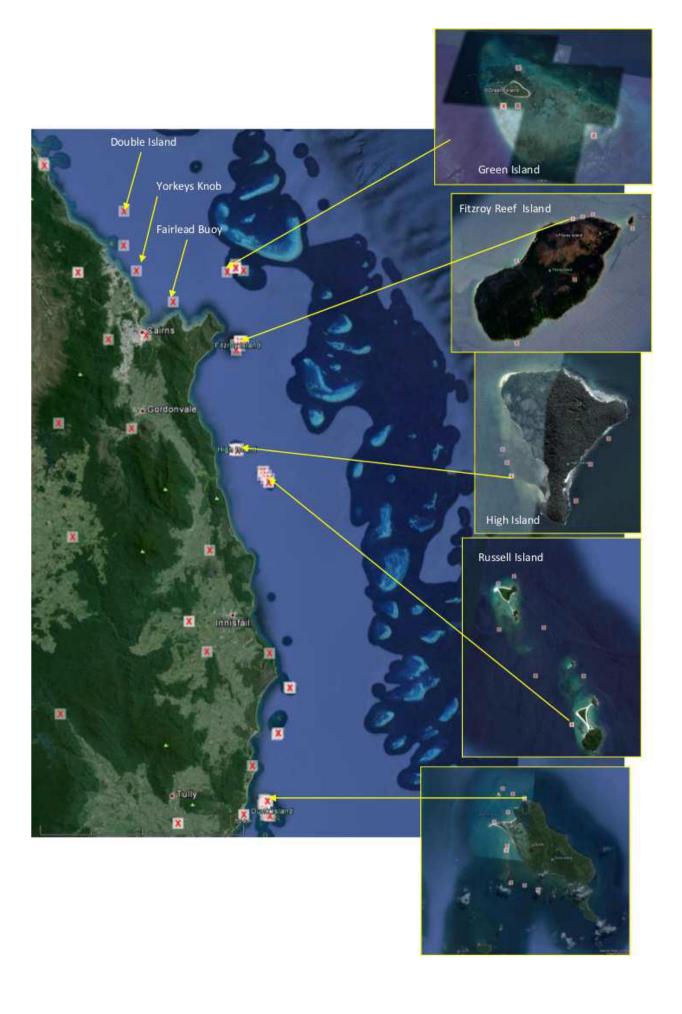

Yongala_0 3.0 d2:0.73, mape:0.8, rms:22.8977 bias:-0.4962, r:0.7074, obsmean:2244.9720 Yongala_0 2.0 d2:0.69, mape:0.9, rms:27.2858

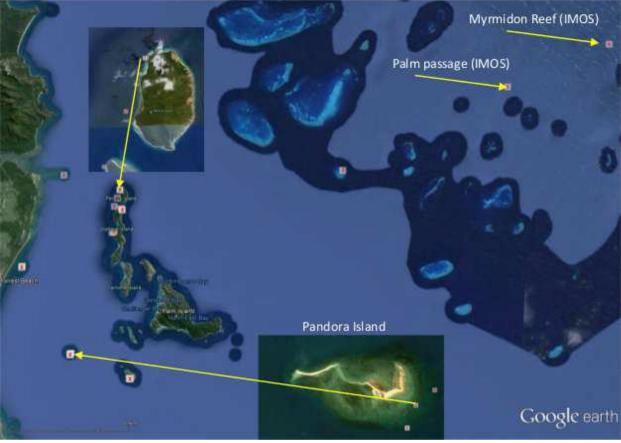

North_Stradbroke_50 3.0 d2:0.34, mape:0.6, rms:15.0199 bias:-12.8018, r:0.2477, obsmean:2274.2339 North_Stradbroke_50 2.0 d2:0.43, mape:0.4, rms:11.8997 bias:-8.7311, r:0.2963, obsmean:2273.8090


North_Stradbroke_0 3.0 d2:0.74, mape:0.5, rms:13.5100 bias:-7.7162, r:0.6444, obsmean:2268.0755
North_Stradbroke_0 2.0 d2:0.77, mape:0.4, rms:12.6298 bias:-3.4999, r:0.6063, obsmean:2267.7214

Yongala_20 3.0 d2:0.80, mape:3.1, rms:0.1338 bias:0.0666, r:0.7046, obsmean:3.5042 Yongala_20 2.0 d2:0.79, mape:3.5, rms:0.1433 bias:0.0946, r:0.7560, obsmean:3.5042




Yongala_10 3.0 d2:0.80, mape:3.3, rms:0.1377 bias:0.0909, r:0.7704, obsmean:3.4880 Yongala_10 2.0 d2:0.79, mape:3.8, rms:0.1515


6. Satellite images of MMP NRS and LTM sites

