

A geologist's guide to the comparison of hyperspectral satellite sensors for geological mapping

Jo Miles, Morgan Williams, Carsten Laukamp, Heta Lampinen, Shane Mule, Ian Lau CSIRO Mineral Resources

Geologists using hyperspectral data

Aims

Compare PRISMA, EnMAP, and EMIT imagery

Demonstrate reproducibility and integration

Improve accessibility for geologists

Electromagnetic (EM) spectrum

active minerals

hyperspectral technologies

Approach

Hyperspectral satellite sensor comparison

PRISMA

Italian Space Agency (ASI)

EnMAP

German Aerospace Center/ GeoForschungsZentrum (DLR/GFZ) **EMIT**

NASA/JPL

Pixel size (m)	30x30	30x30	60x60
Swath (km)	30	30	75
VNIR range SWIR range (nm)	400 — 1010 (66B) 920 — 2500 (174B)	400 – 1000 (90B) 920 – 2450 (132B)	381 – 2493 (258B)
Spectral resolution (nm)	<14	<12	<9

https://www.enmap.org/

Data processing workflow

- Pre-processing conducted by data providers
- Processing levels used as input for processing mineral maps:

PRISMA: L2D

• EnMap: L2A

EMIT: L2A

- Cross-track illumination correction required for PRISMA and EMIT
- PRISMA VNIR-SWIR cubes have to be stacked
- After that, hyperspectral imagery from all three sensor are treated in the same way:
 - Continuum removal on spectral subset
 - Band math and masking
 - Mosaicking

Multi-sensor comparison, Gascoyne

Understand variations in sensor configurations and corresponding data

Targeting diagnostic absorption features

Mapping Al-sheet silicates (ASai)

Multi-sensor result comparison

- Reprojected into the same coordinate system
- · Spatially resampled
- 90th percentile used as a threshold to a stretch range of 2.05 – 2.40
- Boolean 'And' operation combined images, and summed pixels above this threshold
- Calculated the % of matching pixels

ASai maps – multi-sensor confusion matrix

- Consistency in high-abundance features
- Discrepancies occur at lowabundance features, likely associated with sensor-specific SNR

e.g. EnMAP high ASai zones show 70% likeness to that of PRISMA

(acquired at different times)

Ground validation

- EnMAP satellite overpass during field sampling
 - Reflectance of soil, bedrock and regolith with handheld TerraSpec ASD and Spectral Evolution oreXpert (VNIR-SWIR)
 - Mineral ID with portable Agilent FTIR (SWIR-MIR-TIR)
- Geochemistry: Bruker Titan S1 pXRF
 - Work towards quantitative mineral maps

white reference (WR)
rt point for continual data collection
try & mineralogy sample

Implications for the geologist

- Integration potential of hyperspectral sensors
- Applications in the geosciences and mineral exploration
- Building trust in the techniques, and improving accessibility for geologists

CSIRO Mineral Resources at IGARSS

- Hyperspectral exploration for Li-pegmatites in Angola: Partial Least Squares Regression (PLSR) modelling – Lampinen et al. > Tuesday session TU4.P5.1
- Mapping minerals across the Pilbara Craton using geoscience-tuned satellite hyperspectral imagery – Laukamp et al. > Tuesday session TU4.P5.3
- Towards mapping the Australian continent with the next generation of hyperspectral satellite imagery Laukamp et al. > Thursday session TH4.PT5.1

Thank you

Jo Miles
jo.miles@csiro.au
CSIRO Mineral Resources
Perth, Wadjuk Noongar

