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Abstract

Neural-symbolic systems combine the strengths of neural
networks and symbolic formalisms. In this paper, we in-
troduce a neural-symbolic system which combines restricted
Boltzmann machines and probabilistic semi-abstract argu-
mentation. We propose to train networks on argument la-
bellings explaining the data, so that any sampled data out-
come is associated with an argument labelling. Argument la-
bellings are integrated as constraints within restricted Boltz-
mann machines, so that the neural networks are used to learn
probabilistic dependencies amongst argument labels. Given
a dataset and an argumentation graph as prior knowledge, for
every example/case K in the dataset, we use a so-called K-
maxconsistent labelling of the graph, and an explanation of
case K refers to a K-maxconsistent labelling of the given ar-
gumentation graph. The abilities of the proposed system to
predict correct labellings were evaluated and compared with
standard machine learning techniques. Experiments revealed
that such argumentation Boltzmann machines can outperform
other classification models, especially in noisy settings.

1 Introduction
Argumentation aims at supporting rational persuasion and
deliberations in domains where defeasible conclusions are
raised on the basis of possibly partial and conflicting pieces
of information. Studies on argumentation can be traced back
to ancient times, and now comprise a focus of research in ar-
tificial intelligence (Atkinson et al. 2017) where there exists
a variety of formal models to capture diverse aspects of argu-
mentation. For instance, rule-based or logic-based argument
construction models (Besnard et al. 2014) can integrate with
formal approaches for the evaluation of acceptance statuses
of arguments, possibly at a more abstract level (Dung 1995;
Baroni, Caminada, and Giacomin 2011). Then argument
acceptance can be projected to assess statement acceptance
(Baroni, Governatori, and Riveret 2016). Typically, argu-
mentation systems either identify a single skeptical out-
come, or propose a set of credulous alternatives, possibly
without specifying any degrees of credibility.

Probabilistic methods may be used to characterise and de-
termine degrees of uncertainty attached to argument con-
struction or acceptance. And indeed, the combination of
∗The original publication is available at www.kr.org.
†Joint first authors (equal contribution).

formal argumentation and probability theory has received
increasing attention in recent years, see e.g. (Verheij et al.
2015; Hunter and Thimm 2017; Riveret et al. 2018). Chal-
lenges in probabilistic argumentation include (i) reasoning
upon the probability of argument and statement statuses (and
with no particular assumptions on probabilistic dependen-
cies), and (ii) learning the probability distribution of statuses
from examples of argument or statement statuses.

To address these challenges in probabilistic argumenta-
tion, neuro-argumentative systems stand as an appealing so-
lution. Neural networks can provide sturdy on-line learning
with the possibility of massive parallel computation to learn
and reason upon subtle probabilistic dependencies within a
compact representation. Yet, neural networks often remain
inscrutable structures of neural units unable to provide any
sort of intelligible explanations to back outcomes. In that
regard, arguments and their relationships could be used to
bring intelligible explanatory knowledge representation and
reasoning to the networks, thereby easing the communica-
tion of the learned knowledge to some agents.

Contribution. To address learning and reasoning chal-
lenges in probabilistic argumentation, as well as explain-
ability issues in Boltzmann machines (RBMs), we propose
a novel probabilistic argumentation system called neuro-
symbolic argumentation machine (NSAM). We adopt prob-
abilistic labellings in argumentation (Riveret et al. 2018),
and integrate the approach with the probabilistic neural net-
work model of RBMs to learn and reason upon distribu-
tions of argument statuses. To do so, we develop the idea
of confidence rules (Tran and d’Avila Garcez 2018): prior
argumentation knowledge is captured as an argumentation
graph, and constraints on labellings of the graph are ex-
pressed into weighted strict disjunctive normal forms (the
confidence rules) which are then incorporated into the struc-
ture of an RBM to constitute a NSAM. Given a dataset,
a NSAM is trained on argument labellings of the consid-
ered argumentation graph such that any example/case of the
dataset may be explained by an argument labelling.

Outline. In Sect. 2, the probabilistic argumentation
framework is given. In Sect. 3, we define the general prob-
lem that we attempt to address in the paper. To address the
problem, we propose NSAMs in Sect. 4 to learn distribu-
tions of labellings. The system is illustrated and evaluated
in Sect. 5, and it is related to relevant works in Sect. 6,



before concluding.

2 Argumentation Framework
We adopt the probabilistic semi-abstract argumentation
framework taken from (Riveret et al. 2018). First, a semi-
abstract argumentation framework is put forward, then the
use of ‘maxconsistent’ labellings is proposed for our pur-
poses, and the probabilistic development is exposed.
Semi-abstract argumentation. We assume a language,
such that any statement pertaining to the language can be the
conclusion of an argument; and any argument has a unique
identifier to discern arguments with equal conclusions.

Definition 1. Given a language Ψ and a set of argument
identifiers I, an argument is a tuple 〈id, φ〉 where id ∈ I
is the unique identifier of the argument and φ ∈ Ψ is the
conclusion of the argument.

Notation 1. The conclusion of an argument A = 〈id, φ〉 is
denoted con(A), i.e. con(A) = φ.

In the forthcoming probabilistic argumentation setting, an
important postulate is that the event of an argument nec-
essarily occurs along with the events of its subarguments.
In that regard, classic abstract argumentation graphs (Dung
1995) lack a subargument relation to cater for such an as-
sumption at an abstract level. To address this lacuna, we rely
on so-called semi-abstract argumentation graphs (Riveret
et al. 2018) featuring subargument and attack relations
over arguments, cf. (Cayrol and Lagasquie-Schiex 2013;
Dung and Thang 2014; Prakken 2014; Cohen et al. 2014)
for similar settings.

Definition 2. A semi-abstract argumentation graph is a tu-
ple 〈A, , Z⇒〉 where A is a set of arguments, ⊆ A × A
is a binary relation of attack, and Z⇒⊆ A × A is a binary
(direct subargument) relation of support.

Notation 2. Given a semi-abstract argumentation graph
G = 〈A, , Z⇒〉, we may writeA asAG, as G, and Z⇒
as Z⇒G.

As to the terminology, a semi-abstract argumenta-
tion graph may be called a bipolar argumentation
graph/framework, as long as the support relation is under-
stood as a (direct) subargument relation, every argument
has a conclusion which is a statement, and such bipolar
graphs enjoy all upcoming (probabilistic) considerations on
semi-abstract argumentation graphs, cf. (Polberg and Hunter
2018).

Some semi-abstract argumentation graphs may not appear
‘well-formed’ since, for instance, an argument can attack an
argument without attacking its ‘super-arguments’. We con-
sider thus well-formed semi-abstract argumentation graphs.

Definition 3. A semi-abstract argumentation graph G is a
well-formed semi-abstract argumentation graph iff the re-
lation Z⇒G is acyclic and antireflexive, and if A G B, and
B Z⇒G C, then A G C.

In the remainder, we assume that all argumentation graphs
are semi-abstract and well-formed. We will also use sub-
graphs to build our probabilistic setting.

Definition 4. An argumentation graph H is a (le-
gal) subgraph of an argumentation graph G induced
by a set of arguments AH ⊆ AG iff H =
〈AH , G ∩(AH ×AH), Z⇒G ∩(AH ×AH)〉, and if A ∈
AH and (B,A) ∈Z⇒G then B ∈ AH .

Given an argumentation graph, we can specify those ar-
guments that are accepted or discarded. To do so, we la-
bel arguments as reviewed in (Baroni, Caminada, and Gia-
comin 2011), but slightly adapted to our probabilistic devel-
opment. Accordingly, we distinguish {I, O, U}-labellings and
{I, O, U, F}-labellings. In a {I, O, U}-labelling, each argument
is associated with exactly one label which is either I, O, U:
a label I (for ‘in’) means the argument is accepted while a
label O (‘out’) indicates that it is rejected. Label U marks the
argument as undecided. {I, O, U, F}-labellings integrate a la-
bel F (for ‘off’) to indicate that an argument is not expressed
(i.e. its event does not occur).
Definition 5. Let G be an argumentation graph. A {I, O, U}-
labelling ({I, O, U, F}-labelling resp.) of G is a total function
L : AG → {I, O, U} (L : AG → {I, O, U, F} resp.).
Notation 3. The set of arguments labelled l ∈ {I, O, U,
F} in a labelling L is denoted l(L) = {A | L(A) =
l}. Accordingly, a {I, O, U}-labelling L is represented as
a tuple 〈I(L), O(L), U(L)〉, and a {I, O, U, F}-labelling L
as a tuple 〈I(L), O(L), U(L), F(L)〉.

We will work with complete labellings, and match any
subgraph with complete {I, O, U, F}-labellings by ‘switching
off’ arguments outside the considered subgraph.
Definition 6. A complete {I, O, U}-labelling of an argumen-
tation graph G is a {I, O, U}-labelling such that for every
argument A in AG: A is labelled I iff all attackers of A are
O, and A is labelled O iff A has an attacker labelled I.
Definition 7. Let H be a subgraph of an argumentation
graph G. A complete {I, O, U, F}-labelling of G wrt H is
a {I, O, U, F}-labelling such that every argument inAH is la-
belled according to a complete {I, O, U}-labelling of H , ev-
ery argument in AG\AH is labelled F.
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Figure 1: An argumentation graph and one of its complete
{I,O,U, F}-labelling. Arguments A and B support argument C. Ar-
gument C attacks D, Arguments D and E attack each other.

A labelling of a set of statements is a function associating
any statement with a label. Various specifications for state-
ment labellings are possible, see e.g. (Baroni and Riveret
2019). For our ends, we consider the labelling which is per-
haps the simplest in a meaningful way, namely a bivalent
{y, n}-labelling, according to which a statement is either ac-
cepted (labelled y) or not (labelled n).

As to the terminology, a statement labelling may be called
an example or a case, and will favour the latter term in the
remainder.



Definition 8. A bivalent {y, n}-labelling (or a case) of a set
of statements S is a total function K : S → {y, n}.
If statements are labelled relatively to a particular accep-
tance argument labellings, then we have acceptance biva-
lent {y, n}-labellings, see (Baroni, Governatori, and Riveret
2016).
Definition 9. Let S be a set of statements. An accep-
tance bivalent {y, n}-labelling of S and from an argument
{I, O, U, F}-labelling L is a total function KL : S → {y, n}
such that for any φ ∈ S: KL(φ) = y iff {L(A) | con(A) =
φ} ⊇ {I}, and KL(φ) = n otherwise.
Notation 4. A {y, n}-labelling K may be represented as a
tuple 〈y(K), n(K)〉 with the obvious meaning.

Eventually, a dataset is defined as a collection of cases.
Henceforth, only finite cases and finite non-empty datasets
are considered, such that all the cases in a dataset are biva-
lent {y, n}-labellings over the same finite non-empty set of
statements.

Given a dataset and an argumentation graph, we can seek
labellings of the graph which are maximally consistent with
cases in the dataset, as proposed next.
Maxconsistent labellings. Given an argumentation graph
and a case, none of its complete {I, O, U, F}-labellings may
be consistent with the case, i.e. the case may not be
an acceptance bivalent {y, n}-labelling from any complete
{I, O, U, F}-labellings. Thus we may attempt to label the
graph to make it consistent with the case as much as pos-
sible. To do so, we will use so-called ‘maxconsistent’
{I, O, U, F}-labellings (Riveret 2020). Such labellings are ob-
tained by labelling I every argument whose conclusion is in
y(K), as long as all its subarguments are labelled I, as char-
acterised by a ‘maxconsistent characteristic function’.
Definition 10. Let K be a case and G an argumentation
graph. The maxconsistent characteristic function of G wrt
K is a function FG,K : pow(AG) → pow(AG) such that
FG,K(A) = {A | con(A) ∈ y(K), and ∀B ∈ AG : if
B Z⇒G A then B ∈ A}.
Example 1. Let G denote the argumentation graph drawn
in Fig. 1, such that con(A) = a, con(B) = b, con(C) = c,
con(D) = d, and con(E) = e. Given the case K =
〈{a, b, c, e}, {d}〉, it holds that: FG,K(∅) = {A,B,E} and
F 2
G,K(∅) = {A,B,C,E}, and F 3

G,K(∅) = F 2
G,K(∅). Thus, the

function FG,K has a fixed point which is the set {A,B,C,E}.
A characteristic function FG,K is monotonic, and if an

argument is included in F iG,K(∅), then it is also included
in F jG,K(∅) (i ≤ j), thus there exists a unique fixed point
A∗ = F iG,K(∅), leading us to maxconsistent {I, O, U, F}-
labellings.
Definition 11. Let K be a case, G an argumentation
graph, and A∗ = F iG,K(∅) (0 ≤ i) the fixed point of
the maxconsistent characteristic function of G wrt K. A
{I, O, U, F}-labelling L of G is maxconsistent with K (or K-
maxconsistent) iff I(L) = A∗.

Maxconsistency of a {I, O, U, F}-labelling with a case K
specifies the arguments labelled I. To address the labelling
of other arguments, we may holdK-maxconsistent complete
{I, O, U, F}-labellings.

Algorithm 1 Computation of a bivalent {y, n}-labelling
maxconsistent with a case.

1: input A case K of a set of statements S, and an argu-
mentation graph G.

2: I(L0)← ∅.
3: repeat
4: I(Li+1) ← I(Li) ∪ {A | con(A) ∈ y(K), and∀B ∈

AG : if B Z⇒ A then B ∈ I(Li)}
5: until Li = Li+1

6: y(K ′) = {φ ∈ S | ∃A ∈ I(Li), con(A) = φ}
7: return 〈y(K ′),S\y(K ′)〉.

Definition 12. Let K be a case, and G an argumentation
graph. A {I, O, U, F}-labelling L of G is a K-maxconsistent
complete {I, O, U, F}-labelling iff L is maxconsistent withK,
and L is a complete labelling of G.

We can note that, given a case, an argumentation graph
may have no complete {I, O, U, F}-labellings which are max-
consistent with the case. However, any case over a set of
statements S has an argumentation graph for which a com-
plete {I, O, U, F}-labelling is maxconsistent with the case,
e.g. any graph 〈A, , ∅〉 such that every statement in S is
the conclusion of at least one argument in A, and such that
for any argument A,B ∈ A, if con(A), con(B) ∈ y(K)
then A does not attack B (i.e. A 6 B). For our purposes,
an explanation of a case K refers to a K-maxconsistent
{I, O, U, F}-labelling of the given argumentation graph; and
if there is no K-maxconsistent {I, O, U, F}-labelling which is
complete then the argumentation graph may be revised, but
not necessarily since the case may be simply ‘corrupted’.

From any maxconsistent {I, O, U, F}-labelling, we can then
define a maxconsistent bivalent {y, n}-labelling.

Definition 13. A bivalent {y, n}-labelling K ′ of an argu-
mentation graph G is maxconsistent with a case K (or K-
maxconsistent) iff K ′ is the bivalent {y, n}-labelling from a
K-maxconsistent {I, O, U, F}-labelling L of G.

In practice, the bivalent {y, n}-labelling maxconsistent
with a case can be efficiently computed using Alg. 1. It be-
gins with an empty set of arguments labelled I (line 2). Then
an iteration begins. If an argument has a conclusion labelled
y, and all its subarguments are labelled I, then it is labelled
I (line 4). The iteration continues until no more arguments
can be labelled. The algorithm terminates by labelling y any
statement for which there exists an argument labelled I.

Probabilistic argumentation. The probability space for
probabilistic argumentation can be defined in many ways.
For our ends, we adopt the approach taken in (Riveret et al.
2018) where the sample space is a set of specific labellings
of a given argumentation graph.

Definition 14. A probabilistic labelling frame is a tuple
(G, (Ω, F, P )) such that G is an argumentation graph, and
(Ω, F, P ) is a probability space such that: the sample space
Ω is a non-empty set of (specific) labellings of G, the σ-
algebra F is the power set of Ω, i.e. F (Ω) = 2Ω, P is the
probability function from F (Ω) to [0, 1].



The proposed probabilistic setting is generic in the
sense that it can accommodate various types of labellings
such as complete {I, O, U, F}-labellings, preferred {I, O, U, F}-
labellings (not presented here) etc. Given an argumenta-
tion graph, we will focus on a sample space as the set of
{I, O, U, F}-labellings of the graph. By doing so, any case
K of a dataset can be associated with a K-maxconsistent
{I, O, U, F}-labelling which belongs to the sample space.
Again, if there is no K-maxconsistent {I, O, U, F}-labelling
of an argumentation which turns out to be complete, then
the graph may not be considered as an adequate graph and
may be consequently revised.

Over a probability space of probabilistic labelling frame
(G, (Ω, F, P )) , we can work with random variables, i.e.
functions (usually denoted by an uppercase letter as X or
Y for example) from the sample space Ω into another set of
elements. Accordingly, we introduce for any statement φ a
categorical random variable Kφ which takes value in the set
{y, n}. So the event Kφ = y is a shorthand for the outcomes
{L ∈ Ω | ∃A ∈ AG : L(A) = I, con(A) = φ}. These
random variables are called random labellings.
Notation 5.
1. We use upper boldface type to denote sets of random

labellings. So K denotes a set of random labellings
{Kφ1, . . . ,Kφn}.

2. We use lower boldface type to denote assignments to
a set of random labellings, i.e. assignments of val-
ues to the variables in the set. So given a set K =
{Kφ1, . . . ,Kφn}, a possible assignment is k = {Kφ1 =
y, . . . ,Kφn = n}.

3. An assignment k = {Kφ1 = k1, . . . ,Kφn = kn} may be
used to denote the assignment corresponding to a state-
ment labelling K (and vice-versa), such that Kφi = ki
iff K(φi) = ki. Eventually, we may simply say that
k = {Kφ1 = k1, . . . ,Kφn = kn} is an assignment of
the set of statements {φ1, . . . , φn}.
To recap, given a dataset and an argumentation graph

as prior knowledge, for every case K in a dataset, we
can build a K-maxconsistent {I, O, U, F}-labelling of the
graph. In this context, an explanation of a case K refers
to a K-maxconsistent {I, O, U, F}-labelling of the given ar-
gumentation graph; and if there is no K-maxconsistent
{I, O, U, F}-labelling which is complete then the argumenta-
tion graph may be revised. Resulting {I, O, U, F}-labellings
can be attached a probability value. As we will see soon,
these {I, O, U, F}-labellings can be used to train neural net-
works. Then bivalent {y, n}-labellings associated with sam-
pled {I, O, U, F}-labellings can be employed to evaluate pre-
dictions against the input dataset.

3 Problem Definition
Let us first consider standard binary classifiers in a proba-
bilistic setting. Given a sample space X and a set of labels
{0, 1}, we have a distribution P of pairs (x, y) where any
x ∈ X is an example and any y ∈ {0, 1} is a label. The prob-
lem addressed by a probabilistic classifier is to assign, given
a new example x ∈ X , a probability P (y | x) to every label
y ∈ {0, 1} (such that these probabilities sum to one). The

problem of a ‘hard’ classifier is to determine, given a new
example x ∈ X , its most likely label ŷ = arg max

y
P (y | x).

These problems may be adapted to our probabilistic
argumentation setting as follows.

Let S be the disjoint union of two non-empty finite sets of
statements S ′ and S ′′ (i.e. S = S ′∪S ′′ and S ′∩S ′′ = ∅).
Given:
• an empirical distribution P+ of {y, n}-labellings of S,
• an assignment k′ of S ′.
Assign\determine:
• a probability P−(k′′ | k′) (from a machine) to every

possible assignment k′′, where k′′ is an assignment of
S ′′, and such that a loss function of P+ and P− is min-
imised.

Eventually, amongst all possible {y, n}-labellings, we
may prefer to get the {y, n}-labelling corresponding to the
most likely assignment k′′:

k′′ = arg max
k′′

P−(k′′ | k′).

The loss function is left unspecified in the problem defi-
nition. For our purposes, we will use a standard Kullback-
Leibler divergence measuring the distance between P− and
P+. To minimise the divergence, we will use Boltzmann
machines for capturing a distribution P− approximating P+

within a compact graphical model maximising the entropy
of P−.

In our context and for our purposes, an argumentation
graph may be also given as prior knowledge: it may be used
to deal with noisy datasets, it may also be used to provide
some explanations for the resulting {y, n}-labellings. We
will further elaborate on that in the remainder of the paper.
Example 2. Let us suppose the argumentation graph in Fig.
1 as prior knowledge and a given dataset where the con-
clusions of the graph are labelled y or n. Given the la-
belling of statements a, b and c such that every statement
is labelled n, what is the probability of labellings of state-
ments d and e? A naive approach to answer the question
is to go through the given dataset and add up the frequen-
cies of sampled statement labellings where statements a, b
and c are labelled n. However, the size of the sample space
of a probabilistic labelling frame (G, (Ω, F, P )) is superior
or equal to |2AG |, and thus it may be computationally too
costly (in space and in time) to handle all the records. For
this reason, we are looking for a compact model from which
we can answer queries on probabilities of labellings. More-
over, the dataset may be noisy, and thus we would like to
use the argumentation graph to ‘repair’ aberrant cases, and
also mitigate overfitting. Eventually, for every statement la-
belling answered by the model, we would like to have an
explanation of it in terms of argument labellings.

4 Argumentation Machines
We now introduce our neuro-symbolic argumentation model
which is based on the graphical model of restricted Boltz-



mann machines (RBM). To encode arguments and logical
constraints into an RBM, we employ the idea of confidence
rules (Tran and d’Avila Garcez 2018).
Notation 6. In this section, to mitigate discrepancy between
notation of our argumentation setting and typical notation
for RBMs, argument identifiers are natural numbers, and
any argument 〈n, φ〉 may be denoted by its identifier n.
RBMs for argumentation. RBMs (Smolensky 1986) are a
probabilistic model which can be well suited for represent-
ing and reasoning with arguments. An RBM for argumenta-
tion has a hidden layer of latent units hj and a visible layer
of softmax groups (an), each group consisting of four units
corresponding to four possible labels/states s = {I, O, F, U}
of argument n. This RBM is characterised by an energy
function of assignments a and h of argument states and hid-
den units respectively:

Erbm(a,h) = −
∑
njs

answ
n
jshj −

∑
ns

bns a
n
s −

∑
j

djhj (1)

wherewnjs is the connection weight between visible unit s of
softmax group n to the hidden unit hj , bns is the bias for unit
s of group n, and dj is the bias for hidden unit j. Argumenta-
tion constraints are captured in such an RBM as a joint distri-
bution p(a) =

∑
h exp(−Erbm(a,h))/Z, which quan-

tify how likely is an argument labelling, and where
Z =

∑
a,h exp(−Erbm(a,h)) is the partition function.

Note that computing the partition function Z is intractable.
To avoid the intractability issue, inferences in RBMs can

be done using Gibbs sampling, i.e. by determining the states
of units in a layer given the states of the units in the other
layer. For example, let us assume that Aunk is a subset of
arguments whose labelling is unknown (we would like to
infer this labelling), and the subset Aknow = A\Aunk con-
sists of the rest of the arguments whose labelling is known.
By performing Gibbs sampling, first we assign the states of
arguments in Aunk with equal probabilities, i.e. 1/4, then
we iteratively update the states of the hidden units using
p(hj |a) = sigmoid(

∑
ns a

n
sw

n
js + dj) and the states of un-

known arguments using p(ans |h) = sigmoid(
∑
j w

n
jshj +

bns ). This process is run repeatedly as a Markov chain while
clamping the states of known arguments inAknow until con-
vergence. This inference procedure is approximate.

Alternatively, we can make inferences by considering the
distribution of a state assignment a∗ of some arguments
given the state assignment a−∗ of other arguments.

p(a∗ | a−∗) =
exp(−F(a∗,a−∗))∑
a∗ exp(−F(a∗,a−∗))

(2)

where F(a∗,a−∗) denotes the free energy for assign-
ment (a∗,a−∗) such that F(a∗,a−∗) = −

∑
ns b

n
s a

n
s −∑

j log(1 + exp(
∑
ns a

n
sw

n
j + dj)). The distribution in (2)

can be computed analytically as the partition function has
been canceled out. However, in general, computing the dis-
tribution is exponentially expensive over the number of un-
known labelling assignments. Yet, this type of inference is
useful in the case of small number of unknown arguments.

For training, the most popular method is Contrastive Di-
vergence (Hinton 2002) which approximately maximises the

log-likelihood of the joint distribution. We call it generative
training. However, if one wants to use a deterministic train-
ing method, an option is to maximise the log-likelihood of
the conditional distribution showed in (2), see (Cherla et al.
2017). This is known as discriminative training.
Confidence rules. To encode argumentation knowledge
onto an RBM, we apply the approach of confidence rules
(Tran and d’Avila Garcez 2018) according to which a set of
confidence rules can be equivalently represented in an RBM
such that maximising satisfiability (i.e. total confidence val-
ues of the satisfied rules) is equivalent to minimising the en-
ergy function of the RBM, i.e. to maximising the probability
of an assignment.
Definition 15. A confidence rule is an if-and-only-if for-
mula of the form c : h↔

∧
t xt

∧
k ¬xk where c is a positive

real number (called confidence value), h is a positive literal
(called hypothesis), and xt and ¬xk are positive literals and
negative literals respectively.

Any propositional formula can be captured by a set of con-
fidence rules by transforming it into a strict Disjunctive Nor-
mal Form (SDNF), i.e. a formula in disjunctive normal
form which is true if, and only if, only one of its conjunctive
clauses is true. Each conjunctive clause is then enclosed into
a confidence rule by adding a hidden literal called hypothe-
sis.

Confidence rules are efficiently encoded into a RBM by
adding a hidden unit for each hypothesis along with ’con-
fidence’ connections to literals in the conjunction, with
weights c and−c for positive and negative literals in the con-
junction respectively. Similarly to the connection weights
between visible units and hidden units can be captured into
a weight matrix (wnjs), these confidence connections can be
captured into a ‘confidence weight matrix’. Finally, each
hidden unit is assigned a bias dj = c · (−n + ε), where n
is the number of positive literals in the conjunction and 0 <
ε < 1 is a real number (see Example 3 for an illustration).

The role of the confidence value c is critical: it determines
how hard or soft the constraint to be imposed. The higher
the value, the higher the probability to satisfy the constraint.
For example, a small value of c relaxes the logical constraint
by allowing non-zero probability of assignments which do
not satisfy the constraint. Eventually, optimal values can be
learned from data or can be searched heuristically (as we
will do in our experiments in Sect. 5) in order to minimise
the loss function.
Example 3. Suppose two distinct arguments m and n such
that n attacks m. The rule ‘if n is labelled I, then m is
labelled either O or F’ can be converted into a formula in
SDNF as follows: ((amO ∨ amF ) ← anI ) ∧ ¬(amO ∧ amF ) ≡
(¬anI ∧¬amO ∧¬amF )∨ (amO ∧¬amF )∨ (¬amO ∧amF ) , leading
to three confidence rules: c : h′1 ↔ ¬anI ∧ ¬amO ∧ ¬amF ,
c : h′2 ↔ amO ∧ ¬amF and c : h′3 ↔ ¬amO ∧ amF where c is a
confidence value.

The rules are then encoded into an RBM with an energy
Erul = −h′1 ·c ·(−anI −amO −amF +0.5)−h′2 ·c ·(amO −amF −
0.5)−h′3 · c · (−amO +amF −0.5) so that argument labellings
satisfying the logical rules have a higher probability than
those violating them.



Finally, we assign each hidden unit a bias. For example,
if ε = 0.5, then the rule c : h′2 ↔ amO ∧ ¬amF is associated
with a hidden unit h′2 and connection weights for (h′2 and
amO ) and (h′2 and amF ) equal to c and −c respectively, while
the bias for h′2 is c ·(−1+0.5) = −0.5 ·c. A neuro-symbolic
argumentation model with the constraint above is shown in
Fig. 2. As a RBM, it is characterised by an energy Efull =
Erbm + Erul.

Figure 2: A neuro-symbolic argumentation RBM.

Integrating argumentation knowledge. Let us now con-
sider argumentation constraints/rules which can be inte-
grated in our RBM-based argumentation model.

Notation 7. Given an argumentation graph G, and A =
〈n, α〉 an argument in AG, the set of arguments in AG at-
tacking (supporting resp.) m is denotedA mG (AZ⇒m

G resp.).
Propositions. Let G denote an argumentation graph, A =
〈n, α〉 and B = 〈m,β〉 arguments in AG, and L a (possibly
complete) {I, O, U, F}-labelling of G such that L is maxcon-
sistent with a given case. We used the following proposi-
tions, each followed by a corresponding formula in SDNF
(the right-hand side of the equivalence) where each conjunc-
tion is to be enclosed in a confidence rule.
Proposition 1 (Argumentation rule 1). If there exists an at-
tacker A of B (i.e. (A,B) ∈ G) such that A 6= B, and A
is labelled I (i.e. L(A) = I) then B is labelled either O or F

(i.e. either L(B) = O or L(B) = F).
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m /∈ A mG .
Proposition 2 (Argumentation rule 2). If there exists an at-
tacker A of B, and A is labelled U, and no attackers of B
are labelled I then B is labelled either U or F.
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with A mG = {l1, . . . , ln}.
Proposition 3 (Argumentation rule 3). If there exists a sup-
porter A of B, and A is labelled F then B is labelled F.

am
F ←

∨
n∈A Z⇒m
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G

¬an
F ) ∨ am
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Given an argumentation graphG, the encoded argumenta-
tion rules hold for any argument in the set of argumentsAG.
Consequently, they have to be instantiated wrt the given ar-
gumentation graph.

These argumentation rules constrain the labelling of any
argument on the basis of its attackers and supporters. The
first two rules specify the labelling I or F, and U or F for an
argument given the labelling of its attackers. These rules
are not deterministic, because the labelling of an argument
is not fully determined by the labelling of its attackers and
supporters. For example, an argument with no attackers nor
supporters can be labelled labelled I or F. The last rule fur-
ther constrains an argument to be labelled F if a supporter is
labelled F, and thus it is a deterministic rule.

We have to remark that, towards completeness, other rules
may/should be considered. For example, one may consider
the following rule: if every attacker of a (non self-attacking)
argument B is labelled O or F then B is labelled either I or
F. Encoding other argumentation rules into SDNFs is left to
future investigations.

In general, encoding rules is NP-complete in the worst
case due to the complexity of converting logical constraints
into SDNFs. Fortunately, in practice the proposed argu-
mentation constraints are in the form of logical implications
whose conversion into SDNFs has linear time complexity
over the total number of literals. Argumentation rules 1, 2,
3 can be then encoded for all arguments into a confidence
weight matrix, that we may call an ‘argumentation weight
matrix’.

Proposition 4. Given an argumentation graph G, the space
complexity of the argumentation weight matrix (encoding
the argumentation rules 1, 2, 3) isO(|AG|2). The time com-
plexity of computing/generating the argumentation weight
matrix is O(|AG|2).

Proof. There are three conjunctions in the formula in DNF
corresponding to Argumentation rule 1. Thus three hidden
units are needed to encode Argumentation rule 1 into an
RBM. Similarly, the numbers of hidden units to encode ar-
gumentation rules 2 and 3 for an argumentm are 3+ |A mG |
and 2, respectively. Therefore, the overall encoding results
in an argumentation weight matrix ofO(|AG|2) elements (in
the worst case where any argument has all arguments as at-
tackers). Concerning time complexity, argumentation rules
1 and 2 for an argument m need ∝ |A mG | and ∝ |A mG |2
steps respectively to encode all literals into the RBM, while
Argumentation rule 3 needs ∝ |A Z⇒m

G | steps. Therefore, the
time complexity of the encoding is O(|AG|2).

Hence, for our purposes, the step of encoding argumentation
rules in an RBM can be performed efficiently.



5 Experimental Evaluation
Like RBMs, NSAMs can be used for various tasks. In this
paper, NSAMs are evaluated by comparing it with other
common machine learning techniques at a probabilistic clas-
sification task.

5.1 General Setting
The baseline dataset stems from 2,400 routine cases as pro-
posed in (Bench-Capon 1993) about, without quotes, a fic-
tional welfare benefit paid to pensioners to defray expenses
for visiting a spouse in hospital. The conditions to obtain a
benefit (represented by statement grant) are as follows.

1. The person should be of pensionable age (60 for a
woman, 65 for a man) (age), and

2. the person should have four out of the last five paid con-
tributions in relevant contribution years (contrib), and

3. the person should be a spouse of the patient (spouse), and
4. the person should not be absent from the UK (uk), and
5. the person should have capital resources not amounting

to more than 3, 000 (capital), and
6. if the relative is an in-patient (inPat) the hospital should

be within a certain distance (inDist); if an out-patient
(outPat), beyond that distance (outDist).

The original data (Bench-Capon 1993) is real or Boolean,
whereas our setting deals with bivalent features only. For this
reason, attribute-value pairs were mapped onto statements
as given in the above items (e.g. age stands for a person of
pensionable age). All the statements were considered to be
premises, except grant and ¬grant; and grant was the target.
Premise statements also included 52 ‘noise’ statements, i.e.
statements playing no role in the labelling of the target.

As we are interested in predicting non-deterministic out-
comes, the baseline data set was further tuned into noisy data
sets: for each noisy data set and every case of the data set,
a noise statement was labelled n with a probability pnoise,
and the welfare (target variable) was set to not granted, even
though it was granted in the baseline data, with a probability
perror. In more detail, for every case in the baseline dataset:
• for statement grant of the case, we drew a number n be-

tween 0 and 1 from a uniform distribution: if n < perror
and the statement was labelled y then the label of the state-
ment was changed to n; otherwise, the label of the state-
ment was left unchanged. If statement grant was labelled
y (n resp.) then statement ¬grant was labelled n (y resp.);

• for any noise statement of the case, we drew a number
n between 0 and 1 from a uniform distribution: if n <
pnoise then the noise statement was labelled y; else the
statement was labelled n.
For any noisy data set, any evaluation was carried out by

using 5-fold cross-validation, with each fold consisting of a
training set and a test set. We used 60% of the data samples
for training, and 40% for validation.

The prior knowledge, i.e. the conditions for a welfare ben-
efit, was captured in an argumentation graph induced from
the dataset (Riveret 2020). It is shown in Fig. 3. Each state-
ment was the conclusion of an argument, and each noise
statement was the conclusion of a ‘noise argument’ (not

B C D E F A−

A+
1

A+
2

H+G+

H−G−

con(A+
1 ) = grant; con(A+

2 ) = grant;
con(A−) = ¬grant; con(B) = age;
con(C) = contrib; con(D) = spouse;
con(E) = uk; con(F) = capital;
con(G+) = inPat; con(G−) = outPat;
con(H+) = inDist; con(H−) = outDist.

Figure 3: Argumentation graph. Attacks G+  A+
2 , H+  A+

2 ,
G−  A+

1 and H−  A+
1 are not drawn for the sake of clarity,

and noise arguments are not shown due to the lack of space.

shown in Fig. 3) such that no noise argument was involved
in any attack or support relationship.

For every case K in the dataset, we built a K-
maxconsistent {I, O, U, F}-labelling of the graph. The re-
sulting collection of {I, O, U, F}-labellings was used to train
the NSAM RBM. Then bivalent {y, n}-labellings associ-
ated with sampled {I, O, U, F}-labellings were used to eval-
uate predictions against the given test data.

We compared our argumentation model with other mod-
els trained on the cases, including standard neural net-
works (NN), restricted Boltzmann machines (RBM), logis-
tic regression (LR), linear discriminant (LD), quadratic dis-
criminant (QD), decision trees (DT) and random forests
(RF). We tested three different NSAM networks: NSAMrul,
NSAMrbm and NSAMfull. NSAMrbm is a standard RBM,
i.e. an RBM with hidden units and softmax groups trained
on the available data. NSAMrul is built from the encoded
argumentation rules only. Hence, compared to NSAMrbm,
NSAMrul relies exclusively on the argumentation rules and
the quality of such prior knowledge. NSAMfull is the com-
plete system integrating NSAMrul and NSAMrbm by train-
ing NSAMrul on the available data (similarly to Example 3).

For NSAMrbm, the training set was used for model se-
lection, i.e. for the selection of the best learning rate and
the number of hidden units. In NSAMrul, we attached a
confidence value to each argumentation rule, and all the
confidence rules induced from an argumentation rule were
associated with a shared confidence value. We then per-
formed a brute-force search for the confidence value using
the validation set (the training set was not used). For train-
ing NSAMfull we first found the best confidence values for
the encoded part by performing a brute-force search simi-
lar as for NSAMrul. Then we trained the other part (not
encoded by rules) while keeping the encoded part fixed.
NSAMrbm and NSAMrul systems (and thus their integra-
tion into NSAMfull) were trained discriminatively by max-
imising the log-likelihood of conditional distribution p(a∗ |



a−∗) from Eq. (2) where a∗ is any state assignment over
arguments A+

1 , A+
2 and A−.

5.2 Experiments
In a first stage, we made an evaluation of NSAMs when the
argumentation graph fits well the dataset, i.e. when, for or
every case K in the considered dataset, the graph has a K-
maxconsistent {I, O, U, F}-labelling which is complete.

The evaluation at this stage was carried out with a noisy
dataset where pnoise = 0.6 and perror = 0.6. We evaluated
the models with prediction accuracy, F1 score (because the
data was imbalanced), and log loss (since our NSAM model
is a probabilistic model). The results are in Table 1.

As evidenced in Table 1, NSAMs performed better than
the baselines. Among the baselines, we found that NN
with two hidden layer was the best, however, adding more
layers did not improve the results. In terms of log loss,
implemented QD and DT returned hard predictions of the
outputs instead of probabilities, therefore the log losses
in these cases were very high. Overall, we found that
NSAMfull performed better than NSAMrul which did bet-
ter than NSAMrbm. This result shows the goodness of ar-
gumentation confidence rules while keeping free weights to
refine predictions.

A reason why NSAMfull performed slightly better than
NSAMrul holds in that confidence rules do not cover all pos-
sible labelling features of the probabilistic framework. For
example, the argumentation rule 3 can enforce that an argu-
ment is labelled F when one of its subargument is labelled
F, however, the system has no confidence rules to constrain
the labelling of an argument as F when all its subarguments
are labelled I for example. In such cases, free weights have
a role to play to refine predictions.

In a second stage of the evaluation, we evaluated
NSAMfull when the argumentation graph does not fit well
the dataset, i.e. when it may have no complete {I, O, U, F}-
labellings for some cases in the dataset.

To do so, we injected a ‘swap noise’ into the training
sets of a control noisy dataset where pnoise = 0.5 and
perror = 0.3. The swap noise is measured through a proba-
bility value pswap. For any case of the training set of the
control dataset and for any statement of the case (except
statement ¬grant), we drew a number n between 0 and 1
from a uniform distribution: if n < pswap then the label of
the statement was left untouched; otherwise the label of the
statement was swapped. Hence, when the swap noise was
set at 0, all statements had their label untouched; and when
the swap noise was set at 1, all statements had their label
swapped. If statement grant was labelled y (n resp.) then
the statement ¬grant was labelled n (y resp.).

Increasing levels of noise were injected into the train-
ing sets, resulting in a decrease in performance of machine
learning models, see Fig. 4. In the case of NSAMfull, thanks
to the encoded rules, the negative effect of the swap noise
could be mitigated. For example, when the noise level was
set at 1, the accuracy of all models dropped dramatically be-
low 70% while any NSAMfull maintained its accuracy above

80%. When the noise level reached 0.7, the accuracy of
NSAMfull was at least 25% higher than the other models.

An explanation of NSAMs’ outperformance can be
sketched. A NSAM uses both rules and free weights: the
free weights are updated during the training, and at the be-
ginning of the training on noisy data, such noise can start
to affect the performance; however, right at the beginning,
with the rules as constraints, the effect is less severe be-
cause the rules can counterbalance aberrant updates of free
weights. Furthermore, in the training phase, if there is noth-
ing useful to learn (the performance on a validation set does
not increase or starts to decrease), then the training can be
stopped (this is called early stopping). Accordingly, with
higher noise, the training was stopped sooner to prevent a
decrease of performances due to aberrant updates of the free
weights. The combination of the use of confidence rules and
early stopping resulted in NSAMs’ outperformance for pre-
diction purposes.

Figure 4: Effect of swap noise.

Finally, as NSAMs are trained on argument labellings in-
stead of statement labellings, predictions can be explained in
NSAMs by looking at argument labellings. For example, let
us suppose a NSAM which determines that the grant is not
accorded in a case where the amount of capital resources is
more than 3,000. Why? Referring to Fig. 3, in that case, we
can understand that argument D is labelled F in any complete
{I, O, U, F}-labelling which is maxconsistent with the case
(and this argument label is clamped to the machine). Conse-
quently, we have that arguments A+

1 and A+
2 are labelled F,

and thus statement grant is labelled n. This graph labelling
explains why the grant has not been accorded. Such an op-
eration can be performed for any (predicted) statement la-
bellings, and thus argument labellings can be put forward to
explain cases and related predictions.

6 Related Work
The work relates to research regarding neuro-symbolic sys-
tems (d’Avila Garcez, Lamb, and Gabbay 2009), and neuro-



accuracy F1 log loss
NN1layer 80.07± 0.17 57.44± 0.70 0.36172± 0.00135
NN2layers 80.16± 0.24 57.3± 0.45 0.36001± 0.00089
RBM 79.20± 0.48 53.77± 1.01 0.36525± 0.00442
LG 78.54± 0.00 58.77± 0.00 0.36273± 0.00000
LD 78.96± 0.00 53.94± 0.00 0.38460± 0.00000
QD 70.83± 0.00 64.52± 0.00 9.34930± 0.00000
DT 75.84± 0.21 61.73± 0.37 8.41461± 0.09637
RF 76.97± 0.31 58.28± 0.42 0.47724± 0.01842

NSAMrul 80.79± 0.00 65.72± 0.00 0.33924± 0.00000
NSAMrbm 80.45± 0.23 59.52± 0.25 0.35394± 0.00115
NSAMfull 81.15± 0.11 65.86± 0.21 0.33142± 0.00388

Table 1: Results significant with 95% confidence interval.

symbolic argumentation systems have been investigated
previously in (d’Avila Garcez, Gabbay, and Lamb 2014;
Riveret et al. 2015a; Riveret et al. 2015b). Different from
other neuro-symbolic approaches (d’Avila Garcez, Gabbay,
and Lamb 2014; Evans and Grefenstette 2018; Cohen, Yang,
and Mazaitis 2017) which employ variants of feed-forward
neural networks for Horn clauses, we use RBMs with confi-
dence rules to support probabilistic reasoning on more com-
plex logical formulas. Also, with confidence rules, we can
encode our proposed argumentation rules onto an RBM, in-
stead of learning from positive and negative assignments as
in Logic Tensor Nets (Serafini and d’Avila Garcez 2016;
Donadello, Serafini, and d’Avila Garcez 2017). Compared
to neuro-symbolic undertakings in argumentation which
have used RBMs in (Riveret et al. 2015a; Riveret et al.
2015b), our work is essentially different in that argumenta-
tion knowledge and argument labelling constraints are here
incorporated within the network.

Besides neuro-symbolic argumentation systems, various
systems have been investigated to determine the probability
of some argument statuses given the statuses of some other
arguments or premises, with respect to sundry probabilistic
settings (often with no learning abilities), see e.g. (Riveret
et al. 2007; Fazzinga, Flesca, and Parisi 2016; Potyka 2019;
Mantadelis and Bistarelli 2020). Usually such works have
strong assumptions on probabilistic dependencies (typically
arguments are assumed to be probabilistically independent)
while we do not rely on such assumptions thanks to the prob-
abilistic graphical model of RBMs.

Beyond argumentation systems, logics and principled
probabilistic approaches along with machine learning have
been largely studied to learn from uncertain knowledge
and to perform inferences with this knowledge (Getoor and
Taskar 2007). Probabilistic dependencies amongst logical
statements are typically correlated by design to logical de-
pendencies, see e.g. (Richardson and Domingos 2006),
whereas, in our approach, such an assumption is relaxed.
In addition, by using an argumentation framework, we aim
at paving the way to the use of fined-grained acceptance la-
bellings (Baroni and Riveret 2019) for systems combining
logics and principled probabilistic approaches.

The work reported here can be naturally located in the
field of explainable artificial intelligence where the results

of the solutions are meant to be intelligible by the con-
cerned human agents. Arguably, the question ‘What is a
good explanation?’ remains quite elusive, see diverse con-
ceptions in philosophy e.g. (Hempel and Oppenheim 1948;
Lipton 2016; Bechtel and Abrahamsen 2005), psychology
(Keil 2005; Lombrozol 2006) or (explainable) artificial in-
telligence (Lipton 2016; Freitas 2014; Doshi-Velez and Kim
2017; Doran, Schulz, and Besold 2017). Our assumption is
that argumentation graphs and associated labellings can be
used to bring intelligible explanatory knowledge representa-
tion and reasoning to neural networks.

7 Conclusion
We have proposed neural networks which are trained on data
explanations understood as argumentation graph labellings,
so that any outcome is associated with an explanation.

The approach has been applied to a novel neuro-symbolic
model where neural networks are RBMs and the symbolic
formalism relies on probabilistic semi-abstract argumenta-
tion. Any dataset is conceived as a collection of statement
labellings of an argumentation graph (the prior knowledge).
Then, in place of training on statement labellings, the net-
work is trained on corresponding argument labellings of the
graph. Hence, instead of training the network on given data,
we have proposed to train the network on explanations seen
as argument labellings of a graph. Then we have proposed
to incorporate labelling constraints into the machines, so that
the sampling space of argument labellings is constrained.

Eventually, experiments have revealed that such argumen-
tation Boltzmann machines can outperform other standard
classification models, especially in noisy settings.

The proposed system is not without defaults. In particu-
lar, as mentioned earlier, the proposed argument labelling
semantics clearly explain when an argument is labelled F

when one of its subargument is labelled F, however, the sys-
tem provides no logical explanations for a F-labelled argu-
ment for which all its subarguments are labelled I. Further-
more, due to the limitations of the framework of confidence
rules in terms of strict DNF, we did not encode some pos-
sible constraints from labelling semantics. Encoding such
other constraints is left to future research, and it would be
interesting to investigate whether corresponding confidence
rules could further improve prediction results.
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