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Warm Up
Who is the founder of Facebook?

Who is the Co-founder and CEO of Twitter? 

Jack Dorsey
… was a student in our department

He’s also CEO and Co-founder of Square!



Career Evolution
Parallel Computing  Mobile Computing    Pervasive / Smart 

(1985 -) (1995 -) Computing (2001 -)

• HPC
• Parallel Algorithms
• Distributed Systems
• Petri Nets
• Interconnection Networks
• Task Scheduling
• Load Balancing 
• Cluster Computing
• P2P Networking
• Grid / Cloud Computing
• Green Computing

• Cellular (3G/4G) Networks
• Ad hoc Networks, WLANs
• Opportunistic Networking
• Cognitive Radios
• Wireless Mesh Networks
• Mobility Management
• Resource Management
• Wireless Internet Multimedia
• Wireless QoS and QoE
• Mobile Cloud
• Edge and Fog Computing

• Sensor Networks, IoTs
• Pervasive Computing
• Situation-awareness
• Middleware Services
• Security, Privacy, Trust
• Smart Environments
• Cyber-Physical Systems
• Smart Health Care
• Smart Grid / Energy
• Smart City
• Mobile Crowd Sensing

• Computational Systems Biology (2005 -); Social Networks (2007 -)
• Smart and Connected Communities (2016 -)



Wireless 
Sensors, 

Wearables, 
IoT, RFID

Broadband, P2P, 
Optical, Internet, 
Home/Enterprise 

Networks

3G/4G/5G 
Cellular, Mobile 
Ad hoc, WLANs, 
Cognitive Radios

Efficient Architectures, Algorithms and Protocols, Modeling, 
Analysis, Optimization, Performance Evaluation, Prototype

Smart Systems and Applications
Smart City, Cyber-Physical-Human Systems (CPH), 

Mobile Crowd Sensing, Internet of Things (IoT)

Distributed/Mobile/Cloud/Pervasive Computing
Middleware Services and Virtualization

Smart Sensing  CPH  Smart Computing

See Google Scholar …
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Outline

 Sensor Networks and IoT Security
 NSF Project: Pervasively Secure Infrastructures (PSI)

 Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security

 Mobile Crowdsensing
 Trustworthy Vehicular Crowd Sensing

 Future Directions



Era of Observation: Sensing the Physical World

Smart Infrastructures Credit: MO Dept. of Transportation

Credit: Arthur Sanderson at RPI
Hudson River Valley

Ecology, Environment

Monitoring
Agriculture 
Border Surveillance 
Ecosystem
Environment
Habitat 
Health, Wellbeing
Infrastructure

We live in a physical world, which we 
need to understand, serve, and control



Wireless Sensors

Control
(Sensing / Actuation)

Data Sensing & Collection: 
temperature, humidity, 
pressure, light, velocity, 

sound, image

Communication
(Wireless)

Transmission/Reception:
Broadcasting, Routing,

Dissemination

Computation
In-network Processing:

Fusion, Estimation, 
Filtering, Aggregation

(A miniature Cyber-Physical System)

M. Di Francesco, S. K. Das, and G. Anastasi, “Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey,”
ACM Transactions on Sensor Networks, 8(1), Aug 2011.



Smartphone: A Rich Sensing Platform
• By 2020, number of smartphones 

is expected to be > 8 billion

• Plethora of Sensors 
– temperature, light, humidity, 

motion, acceleration, GPS, …
• Multiple Wireless Interfaces

– WiFi, Bluetooth, long range 
cellular radio to connect to 
external sensors

• Internet Access
– high-speed 3G/4G connection

• Multimedia Sensing
– Audio, video, image, text

R. Fakoor, M. Raj, A. Nazi, M. Francesco, S. K. Das, “An Integrated
Cloud-based Framework for Mobile Phone Sensing,” Proc. ACM
SIGCOMM Workshop on Mobile Cloud Computing, Aug 2012.



Sensor and IoT Challenges
 Reliability, Security, Privacy and Trust
 How to secure against adversarial, selfish, and 

malicious attacks? Prevent cascade failures?
 How to trust reported data (crowdsensing) for 

robust decisions? IoT data quality and QoI?
 How to incentivize for reliable information?

• J.-W. Ho, M. Wright, S. K. Das, “Zone Trust: Fast Node Compromise Detection and Revocation in Sensor Networks,“ IEEE Transactions Dependable  
and Secure Computing (special issue on Learning and Games, Security), 9(4): 494-511, 2012.

• P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks,” IEEE 
Transactions on Mobile Computing, 8(3): 413-425, Mar 2009. 

• N. Marchang, R. Dutta, and S. K. Das, “A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks,” IEEE 
Transactions on Vehicular Technology, 66(2): 1684-1695, Feb 2017.

• S. Bhattacharjee, N. Ghosh, V. K. Shah and S. K. Das, “QnQ: Quality and Quantity based Unified Approach for Secure and Trustworthy Mobile 
Crowdsensing,” IEEE Transactions on Mobile Computing, 19(1): 200-216, Jan 2020.

 Interdependence and Data Analytics
 How to model interdependence and information 

loss across overlapped smart spaces?
 How to analyze (multi-modal) data and design 

machine learning and prediction models?
 What are the impacts of social dynamics and 

human behavior on Smart Living?

Sampling, 
Compression

Routing, 
Broadcast

Coverage, 
Connectivity

Security, 
Privacy

Information Theory

Uncertainty Reasoning

Probabilistic Analysis

Online, Randomized 
Algorithms

Epidemic Models

Graphs, Optimization

Game /Auction Theory

Machine Learning

Trust Model

Fusion, 
Aggregation

Information 
Quality



NSF Project (completed)
Pervasively Secure Infrastructures (PSI):  
Integrating Smart Sensing, Data Mining, 

Pervasive Networking and Community Computing



Resi-
lience

Smart 
Mobility

Smart 
Energy

Smart 
Health

Securing Sensor Networks and IoT
Goal: A multi-level security framework for IoT
and Sensor Networks to monitor, detect, prevent 
(recover from) natural and man-made disasters.
Methodology: Sensor Fusion; 
Situation-awareness; Information 
Theory; Game Theory; Epidemic 
Theory; Trust and Belief Models;
Machine Learning; Data Analytics.

Publications: TDSC’17, TMC’11, 
ToSN’18, TDSC’12, TVT’17, 
AdHoc’15, AdHoc’13, TMC’09, 
Infocom’19, ComsNets’19, 
SmartCity’18, BuildSys’17 

Lower 
Tier

Higher 
Tier

Wireless Sensor 
Nets (WSN), IoTsSmart Devices, 

Bluetooth, WLAN

Surveillance, 
Monitors

Grid, Cloud

LOW
SECURITY

MEDIUM
SECURITY

HIGH
SECURITY

VENTILATION
Gas Sensors

. .
Human Performance

Video Tracking/Surveillance
Image Processing

Data Fusion
Data Mining

WALLS

Blast Layer

Sensor
Layers

.
..
.

Biometrics

Smart Materials
Smart Sensors
Smart Structures

Wireless Networks
PICO

Screening

Broader Impacts:
• Critical infrastructure 

protection and border 
security

• Transportation (air, rail)
• Utility plants
• Public / private places 

(airport, train stations, 
shopping malls, parks)

Pervasively Secure 
Infrastructures (PSI)



• Attack Types
– Node Compromise
– False Data Injection
– Route Disruption
– Denial of Service (DoS)

Compromised or 
Replicated Node

Report 
False 
Data

Infect 
Other 
NodesFalse 

Routing Info

Forge 
Command

Selective 
Packet 
Dump

Discredit Normal 
Nodes

Threats to WSNs and IoT
• Node Compromise

– Physically capture sensor / IoT node
– Generate replicas
– Spread self-propagating worm

• Revealed Secrets
– Cryptographic keys, code, commands 

• Enemy’s Puppeteers
– Trojans in network with full trust

Modeling

Detection

Revocation

Self-correction

Purge

Static / Mobile Node 
Compromise Detection

Static /Mobile Node 
Replica Detection

Worm Propagation 
Detection 



Multi-Level Security Framework

Model Attack Process
(e.g., Node Compromise,

Replica Spreading)

Revoke Revealed Secrets
(Broadcast Confidentiality)

Detect Compromise 
or Forged Data 

(e.g., Abnormal Reports)

Self-Correct 
Tampered Data

Control Outbreak

Purge 
Tampered Data

Epidemic Theory

Information 
Theory

Game Theory

Digital 
Watermarking

Trust / Belief 
Model

Uncertainty Characterized, Resource-limited 
Wireless Sensor and IoT Environments

Architectural 
Components

Key Management

Secure Aggregation

Secure Routing

Highly Assured
Network Operations

Theoretical / Algorithmic Foundations

DoS Defense

Topology Control

Intrusion Detection

Cryptography

Data
Fusion

Sensing
Coverage

• J.-W. Ho, M. Wright, and S. K. Das, “Fast Detection of Mobile Replica Node Attacks in Sensor Networks Using Sequential Hypothesis Testing,” 
IEEE Transactions Mobile Computing, 10(6): 767-782, June 2011.

• J.-W. Ho, M. Wright, S. K. Das, “Zone Trust: Fast Node Compromise Detection and Revocation in Sensor Networks,“ IEEE Transactions 
Dependable  and Secure Computing (special issue on Learning and Games, Security), 9(4): 494-511, 2012.

• P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks,” 
IEEE Transactions on Mobile Computing, 8(3): 413-425, Mar 2009. 

• N. Marchang, R. Dutta, and S. K. Das, “A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks,” IEEE 
Transactions on Vehicular Technology, 66(2): 1684-1695, Feb 2017.

Node 
Compromise
or Replication



Foundations of CPS Security

Physical 
Layer 

Sensing, 
Complex 

Interactions 
and Control

Cyber Layer
Computation

Communication

Attack

Control 
Theory

Game 
Theory Graph 

Theory

Epidemic 
Theory

Attack

Das, Kant and Zhang
Morgan Kauffman, 2012 

• S. Roy, M. Xue, S. K. Das, “Security and Discoverability of Spread Dynamics in Cyber-Physical Networks,” IEEE Trans. on 
Parallel and Distributed Systems (special issue CPS), 23(9): 2012.

• A. Sturaro, S. Silvestri, M. Conti, and S. K. Das, “A Realistic Model for Failure Propagation in Interdependent Cyber-Physical 
Systems,” IEEE Transactions on Network Science and Engineering (Special Issue on Network Science for High-Confidence 
Cyber-Physical Systems), 7(2): 817-831, 2020.



Outline

 Sensor Networks and IoT Security

 NSF Project: Pervasively Secure Infrastructures (PSI)

 Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security

 Mobile Crowdsensing
 Trustworthy Vehicular Crowd Sensing

 Future Directions



Cyber-Physical-Human (CPH) Convergence

Smart 
Devices

(Sensing)

Ubiquitous Connectivity 
(Networking)

Pervasive 
ComputingIntelligent 

Control

Human in
the Loop

CPH are natural / engineered systems that integrate sensing, 
communication, computing, control and human in the loop

M. Conti, S. K. Das, et al. “Looking Ahead in Pervasive Computing: Challenges and Opportunities in the Era of  
Cyber-Physical Convergence. Pervasive and Mobile Computing, 8(1): 2-21, 2012.

Middleware 
Services

Sensing

Control
Reasoning

CPS (macro)  IoT (micro)



Cyber-Physical-Human (CPH) Convergence

Smart 
Devices

(Sensing)

Ubiquitous Connectivity 
(Networking)

Pervasive 
ComputingIntelligent 

Control

Human in
the Loop

CPH are natural / engineered systems that integrate sensing, 
communication, computing, control and human in the loop

M. Conti, S. K. Das, et al. “Looking Ahead in Pervasive Computing: Challenges and Opportunities in the Era of  
Cyber-Physical Convergence. Pervasive and Mobile Computing, 8(1): 2-21, 2012.

Middleware 
Services

Sensing

Control
Reasoning

Smart 
Devices

(Sensing)

Ubiquitous Connectivity 
(Networking)

Pervasive 
Computing

Intelligent 
Control

Human in
the Loop

Middleware 
Services

Sensing

Control
Reasoning

CPS (macro)  IoT (micro)

Smart 
Sensing

Cognitive 
Networking

Pervasive 
ComputingIntelligent 

Control

Middleware 
Services

Human in 
the Loop

Physical World

Cyber World

Human World

CPS (macro)  IoT (micro)



What is a Smart Environment?
A Smart Environment is one that is able 
to autonomously acquire and apply
knowledge about inhabitants and their 
environment, and adapt to improve 
experience without explicit awareness

Corollary: makes intelligent decisions in 
automated, context-aware manner
 pervasive or ubiquitous computing

Context /Situation-awareness is the key

Example Contexts: 
• Mobility, Activity, Occupancy, Preferences, …
• Desire, Behavior, Mood, Emotions, … 

John Wiley, 2005

• D. J. Cook and S. K. Das, “How Smart Are Our Environments?  An Updated Look at State of the Art,” Pervasive and Mobile Computing, 3(2). 2007.

• A. Roy, S. K. Das, and K. Basu, “A Predictive Framework for Context-aware Resource Management in Smart Homes,” IEEE Transactions on Mobile 
Computing, 6(11): 1270-1283, 2007. 



Smart City as a Rational Agent
• Perceives the state of an 

environment via sensors and 
acts on it via actuators.

• Reasons about and adapts to 
inhabitants, predicts context 
and makes intelligent decisions.

Reasoning 
(Rational Agent)

Sensing 
(Perception)

Action 
(Decision 
Control)

Perception
(Sensing)

Action
(Control)

Reasoning
(Analytics)

• D. J. Cook and S. K. Das, “How Smart Are Our Environments?  An Updated Look at State of the Art,” PMC, 3(2): 2007.
• S. Roy, N. Ghosh, S. K. Das, “A Bio-inspired Data Collection Framework for QoI-aware Smart City Applications,” IEEE PerCom, Mar 2019.
• V. K. Shah, S. Bhattacharjee, S. Silvestri, and S. K. Das, “An Effective Dynamic Spectrum Access based Network Architecture for Smart Cities,” 

IEEE Annual International Smart Cities Conference, Sept 2018.
• V. Shah, B. Luciano, S. Silvestri, S. Bhattacharjee, and S. K. Das, “A Diverse Band-aware DSA Network Architecture for Delay-Tolerant Smart City 

Applications,” IEEE Transactions on Network and Service Management, 17(2): 1125-1139, June 2020.



Smart Living: The Next Frontier

Common 
Invariants?

Conti, Passarella, and Das, “The Internet of People (IoP): A New Wave in Pervasive Computing,” PMC, 41, 2017.
Shah, Bhattacharjee, Silvestri, Das, “Designing Sustainable Smart Connected Communities,” ACM BuildSys, 2017 

How to model 
Interdependence?

Characteristics: Complex Systems, Heterogeneous, Large-scale, CPH, Big Data, IoT
Challenges: Interdependence, Robustness, Reliability, Resiliency, Security, Privacy

Perception
(Sensing)

Action
(Control)

Reasoning
(Analytics)

Smart and
Connected 

Communities

Security
Analytics 

Smart Mobility,
Transportation

Smart Utility 
(Energy, Water)

Smart City, 
Urban Planning

Smart Climate,
Sustainability

Disaster 
Response

Human Behavior,
Social Dynamics

Smart 
Healthcare



IoT Enables Societal-Scale CPH

Service  
Organisation 

IoT Process Management 
IoT Services 

 
 
 
 
 

Virtual 
Entity 

 
 

Se
cu

rit
y 

M
an

ag
em

en
t 

IoT
Middleware 

InternetSensor/Actuator 
Networks

Body Area 
Networks

Smart Energy 
Management

Smart Water 
ManagementSmart Healthcare Smart Transportation

Crowd Sensing

Earthquake

Disaster 
Management

IoT
Devices

What are Common Invariants? 

Security Related Grand Challenges:
– Security and Safety of People, Infrastructures, information, Assets
– Extreme Events Management (before, during, after disasters)
– Healthcare (health risks, wellbeing)
– Sustainability (air pollution & hazard monitoring, detection and mitigation)



Vulnerability in Smart City Scenario

Smart Grid 
System

Smart 
Transportation

Collaborative
Persistent

Cyber Attacks



SMART CITY
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SECURITY & TRUSTWORTHINESS 

Smart City Security: Data-driven Approach
Convergent Research: Unified Frameworks and Invariants for secure 
and trustworthy decisions in interdependent CPSs (Smart City, Smart 
Mobility, Smart Grid / Energy, Smart Healthcare, Sustainability, Resilience).

S. Tan, D. De, W. Song and S. K. Das, “Security Advances in Smart Grid: A Data Driven Approach,”
IEEE Communications Surveys and Tutorials, 18(1): 397-422, 2017.



Smart Living CPS/IoT Security
Intelligent Transportation

Smart
Living

Smart City,
Connected
Community

Data
Fog

Cloud

HPC

• Innovation Impact
• Civilian Impact 
• Economic Impact

Sense

Identify

Assess

Intervene

Evaluate

Smart Healthcare (CPS)

Data

Smart Grid / Energy (CPS)

Wireless, Sensor & IoT Networks

Data

Emergency/ Disaster
Response

Social Networks

Crowd Sensing

Data

Data



Security: The CIA Triad
Availability
Ensure information is 
readily available to 
authorized entities.
(Timely Access & Use)

Denial of Service 
(DoS), Data Omission
Jamming Attacks

False Data Injection, Data 
Falsification, Byzantine 
and Spoofing Attacks 

Integrity	
Ensure information is 
not modified, falsified 
nor manipulated.

(Accuracy of Data)

Confidentiality
Ensure information is not 
disclosed to unauthorized 
entities. 

(Restricted Visibility)

Phishing, Keylogging, 
Wiretapping, Sniffing



• Attack Types
• Attacker Strategies 
• Adversarial

Objectives and 
Capabilities

• Extent of Prior 
Knowledge

• Attacker Utilities

Anomaly / Intrusion Detection
• Presence of Attack
• Gather Evidence (Labels / Scores)
• Consensus Correction

Trust based Models
• Translate Labels into Trust Scores
• Classification, Kernel Tricks 

• Isolation

• Robust Fusion

• Dependable 
Decision

• Reduction of 
Undetectable 
Strategy space 

Threat 
Landscape

Attack 
Detection

Attack 
Mitigation

Defense Mechanism

Smart Grid: Data (Smart Meter)  False Data Injection Mitigate via Isolation
Crowd Sensing: Data (Human Reports)  Malicious Intent  Mitigate via Dependable Decision

Security and Trustworthiness



NSF CPS Breakthrough Project (2015-2020)

Securing Smart Grid by Understanding 
Communications Infrastructure Dependencies 



Resi-
lience

Smart 
Mobility

Smart 
Energy

Smart 
Health

Securing IoTs in Smart Grid
Goal: Create a technology-enabled, multi-level 
security framework to monitor, detect, prevent 
(recover from) natural and man-made disasters.
Methodology: Sensor Fusion; 
Situation-awareness; Information 
Theory; Game Theory; Epidemic 
Theory; Trust and Belief Models;
Machine Learning; Data Mining.
Publications: TDSC’17, TMC’11, 
ToSN’18, TDSC’12, TVT’17, 
AdHoc’15, AdHoc’13, TMC’09, 
Infocom’19, ComsNets’19, 
SmartCity’18, BuildSys’17, 

Goal: Detect anomalies in energy consumption 
(false data injection attacks); mitigate cascade 
failure; secure and trustworthy decisions

D
em
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d 

R
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e 
/ 

Pr
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Si
gn
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s

Household 
Appliances

Organized, 
Persistent 
Threats Insider 

ThreatsEdge 
Services

(HAN)

(NAN)

Energy Mgmt. 
Service

Smart Meter 
IoT

Advanced Metering Infrastructure (AMI)

Integrity	of	AMI	Data
• Billing,	Safety
• Demand	Response	(DR)
• Load	Forecast,	Planned	
Generation/Distribution

PMU
Data

Phasor Measurement 
Unit (PMU)

Methodology: Time Series Data 
Analytics; State Estimation; ML; 
Anomaly Detection; Trust and 
Reputation Model; Utility & 
Prospect Theory; Incentives.

Publications: TMC’20, 
TDSC’20, TNSE’20, TOPS,
TSG’15, CST17, SUR14, 
CCS’18, CODASPY’17, 
CNS’17, SmartGrid’12

Pass



IoT Devices
(Smart Meters)

Cloud Servers
(Untrusted)

Public Key is distributed 
before sending data (FHE)

Energy Supplier (Trusted)

Keeping away from threats

Generated by Energy Supplier

Energy 
Consumption 

Data

Result
(e.g., Billing Info.)

public key
(for encryption)
secret key
(for decryption)

Energy Supplier learns only the 
aggregate result w/o knowing 
customers’ energy consumptions

Securing a Smart Grid
(Secure Computation between IoT Devices and Energy Utility) 

FHE = Fully
Homomorphic
Encryption

S. Tan, D. De, W. Song and S. K. Das, “Survey of Security Advances in Smart Grid: A Data Driven Approach,”
IEEE Communications Surveys and Tutorials, 18(1): 397-422, 2017.



Advanced Metering Infrastructure (AMI)
D
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Household 
Appliances

Powerful, 
Organized, 
Persistent 
Adversaries Insider 

ThreatsEdge 
Services

(HAN)

(NAN)

Use	of	AMI	Data
• Automated	Billing
• Automated	Demand	
Response	(DR)

• Load	Forecast	and	Planned	
Generation/	Distribution

Securing	a	Smart	Grid
• Integrity	of	AMI	data	
• Protection	against	false	
data	injection

• AMI	attack	detection	and	
mitigation

• Attack	and	trust	models
• Billing	system	vulnerability	

Smart Meter
IoT Device

Energy Management Service

S. Bhattacharjee, A. Thakur, S. Silvestri, and S. K. Das, “Statistical Security Incident Forensics against Data Falsification in
Smart Grid Advanced Metering Infrastructure,” ACM Conference on Data and Applications Security and Privacy (CODASPY),
Scottsdale, Arizona, pp. 35-45, Mar 2017. [IEEE Trans. Dependable and Secure Computing, to appear, 2020]



Data Falsification Attack Types:
Additive
Deductive
Camouflage: Balanced additive 

and deductive attacks from 
different meters. 
Conflict: Uncoordinated 

additive and deductive attacks. 

Strength of the Attack:
is a false random 

bias value chosen according to 
some strategic distribution. 
ࢍ࢜ࢇࢾ (Margin of False Data) is the 
average value of ߜ௧

Actual recorded power consumption           Time series of power consumption data  
for smart meter ݅	at time ݐ : of ࡺ	smart meters:

Data Falsification Attacks in AMI

Fraction of Compromised Nodes

ൌ	࢒ࢇ࢓࣋	 	ࡺ/ࡹ
ࡹ ൌ	Number of Compromised 

Meters injecting false data

 	Isolated Adversary  1% - 5%

Organized Adversary  5%-50%

Advanced Adversary  50% + 

Margin of False Data			ሺࢍ࢜ࢇࢾሻ
Short-term Greedy  900W + 

Medium-term  400 - 900W

 Long-term Stealthy  50 - 400W

࢚࢏ࡼ ൌ ࢚࢏ࡼ	 ࢚ࢉࢇ ࢚ࢾ +
࢚࢏ࡼ ൌ ࢚࢏ࡼ	 ࢚ࢉࢇ - ࢚ࢾ

࢚࢏ࡼ ࢚ࢉࢇ

࢚ࢾ 	∈ ሼ࢔࢏࢓ࢾ, ሽ࢞ࢇ࢓ࢾ



Novel Security Forensic Framework

Anomaly 
Detection

Attack Type    
Reconstruction

Robust 
Consensus

Meter 
Specific 
Evidence

Trust 
Scoring 
Model

Trust Score
of Each 
Meter

Classification, 
Mitigation

YES

NO

Compromised    
Smart Meters

Non-
Compromised                   
Meters

• Light weight, real time anomaly detection
• Not privacy intrusive (consensus based)
• Works for various attack types
• Distinguishes legitimate vs. malicious changes
• Suitable for both isolated and organized attacks

• S. Bhattacharjee and S. K. Das, “Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure,” 
IEEE Transactions on Dependable and Secure Computing, to appear, 2020.

• S. Bhattacharjee, A. Thakur, and S. K. Das, “Towards Fast and Semi-supervised Identification of Smart Meters Launching Data
Falsification Attacks,” 13th ACM Asia Conference on Computer and Communications Security (ASIACCS), pp. 173-185, 2018.



Anomaly Detection: A Data Driven Approach

Point Anomaly: Individual data instances of detection metric is  anomalous.

Collective Anomaly: Cumulative subsequence of individually non-
anomalous data instances are collectively anomalous. 

Context Anomaly: Data instances violates a known attribute or law.  

Identify    
Metric(s) or 
Invariants

Establish          
Bounds

Detection  
Criterion

Historical or 
Training Dataset

Testing Set

Forensic 
Signature(s) 
of Metric(s) 

Security 
State

Metrics based on 
nature of dataset   Labels or 

Scores

Dataset

• Transform the observed data into a Gaussian mixture.
• A light weight statistical indicator for anomaly detection: 

Ratio of Harmonic Mean (HM) to Arithmetic Mean (AM).
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n

Hourly Power Consumption 
Data from Austin, Texas Micro-
Grid Dataset of 800 houses 

Auto-Regressive Moving Average (ARMA), 
Cumulative Sum of Arithmetic Mean
 Exhibits high fluctuations
 Large Standard Deviation

Data Distribution 
ሺܲ௜ሻ

Box-Cox 
Transformation

• Approximate Gaussian ܲ௜

• More Data on left of the mean  

Nature of Data and Challenges



Proposed Point Anomaly Detection Metric

Arithmetic Mean (AM)

Harmonic Mean (HM)

Daily HM to AM Ratio (Q)

HM / AM Ratio is a Highly Stable Invariant across Datasets

Texas Dataset: Years 2014 and 2015

Irish Dataset: 
5,000 smart 
meters from 6 
Regions 
in Dublin 2010 



Legitimate and Malicious Changes

HM vs. AM: Legitimate Data HM vs. AM: Under Attacks

Symmetric Change 
in HM and AM under 
legitimate change

Asymmetric 
Change in HM and 
AM under attacks

Intuition: 

Track 
HM / AM 
Ratio

 Transform the observed data into a Gaussian mixture
 A light weight statistical indicator for anomaly detection: Ratio of 

Harmonic Mean (HM) to Arithmetic Mean (AM) of Gaussian mixture

HM and AM of mixture data may 
change due to legitimate weather 
and other contextual factors

HM  and AM may change 
due to data falsification too 



Anomaly Detection

HM/AM ratio 
highly stable against 
Legitimate Changes

HM/AM ratio 
drops for all types
of Data Falsification

 Drop in HM / AM 
ratio indicates 
organized 
falsification

 Maintain ratio as 
forgetting and 
cumulative 
weighted moving 
averages

 Property holds for 
all attack types 
and higher 
fraction of 
compromised 
nodes



Evidence for Meter Diagnostics
Three Approaches:
1. Entropy based Trust Model with binary evidence space (Supervised) (ACM 

CODASPY 2017, IEEE TDSC’20) 
2. Folded Gaussian Trust with multinomial evidence space (Semi-Supervised) 

(ACM ASIACCS 2018, ACM TOPS)
3. Information Theoretic Diversity Index based Approach(Unsupervised) 

(Under Review)

Input: 
 Attack Status = Y or N
 Attack Type = if “Y”
 Robust Mean ൌ ெோߤ	
 Robust Standard 

Deviation = ߪெோ

Folded 
Gaussian 

Trust Model

Output: 
Compromised and 
Non-Compromised 
Meters 

Folded Gaussian Trust Semi-Supervised Method

• Scales well for large micro grids. 
• Accuracy depends on training. 
• More fine-grained approach to evidential 

modeling improves accuracy.



KL-Distance based Trust Scoring and Classification

Kullback-Leibler (KL) Divergence

ሻ࢏ࢅ ||࢏ࢄሺ࢏ࡰ ൌ ૚ െ ࢘ ሺ࢔࢒	 ૚ି࢘
૚ିࢗ

	ሻ ൅࢘	࢔࢒ሺ	࢘
ࢗ
	ሻ

True (Historical) Proximity Distribution

࢏ࢄ ࢚ = ቊ			૚			૙
࢏࢖ ࢚ ∈ ሼࣆሺ࢚ሻ ∓ ሽ	ሻ࢚ሺ࣌	
܍ܛܑܟܚ܍ܐܜ۽

࢏ࢄ ࢚ = 1  probability (r) 

Observed (Current) Proximity Distribution

࢏ࢅ ࢚ 	= ቊ૚	૙
࢏࢖ ࢚ ∈ ሼ ሻ࢚ሺࡾࡹࣆ ሽ	ሻ࢚ሺࡾࡹ࣌	∓
܍ܛܑܟܚ܍ܐܜ۽

࢏ࢅ ࢚ = 1  probability (q) 

Inverse Square Root 

Generalized Linear Model

Trust Score



[1] Neural Network, Jokar et. al, IEEE Transactions on Smart Grid, 2016.
[2] ARMA (Auto Regressive Moving Average), Mashima et. Al, RAID 2012.
[3] Entropy: Bhattacharjee, Das, et. al, ACM CODASPY 2017; IEEE TMC 2020. 
Proposed Methord: Folded Gaussian Trust model

Comparison with Existing Works
Parameter Proposed 

Method
Neural
Network [1]

ARMA 
Model [2]

Relative 
Entropy [3]

False Alarm 13% 29% 33% 11%
Missed Detection 9% 24% 28% 8%

௔௩௚ߜ 400W 400W N/A 800W
௠௔௟ߩ > 40% N/A N/A < 40%

Micro-grid size 5000 5000 200 200
Learning Type Semi-

Supervised
Supervised Supervised Supervised

Detection Time < 10 days 1 year 1 month 1 month



Emulation of Attacks
• Fed real smart meter data into 

a virtual simulated AMI micro-
grid since real malicious data 
are not available.  

• Chose a subset (M) of meters 
as compromised (ߩ௠௔௟) and 
launched data falsification with 
some false data margin (ߜ௔௩௚ሻ. 

• For each ߩ௠௔௟	, experimented 
with varying subsets M and 
different starting points.

• Repeated for all ߩ௠௔௟	and ߜ௔௩௚
that got manifested according 
to various attack distributions.

Attack Distributions:
 Non-Data Order Aware: ௧ߜ is 

distributed uniformly random. 
(No prior knowledge)

 Data Order Aware: Bias vector 
elements are intelligently 
matched with ࢚࢏ࡼ ࢚ࢉࢇ . 
(Partial knowledge)

 Incremental: Increase ࢍ࢜ࢇࢾ
slightly in each time slot

 Omission: Drop the data.

 On-Off: Attack on specific time. 

 Persistent: Strategies that 
ensure evasion.          
(Complete knowledge)



Performance of Intrusion Detection
Average Time to Detect (TTD):
Difference in time between attack launched 
and eventual detection

Expected Time between False Alarms:

Number of False Alarms:  ࡭ࡲࣁ
Time between pair of False Alarms: 	࡭ࡲ࡮ࢀ

Impact of Undetected Attack per Hour:

Break Even Time:  
Time taken for impact revenue to equal the 
initial attack cost.  

Why not ROC curves?
• For persistent attacks that 

are undetected, there is no 
way to quantify mitigation 
benefit.

Solution: Plot ࡱሺࢇࢌࢀሻ vs. ࡵ

[Urbina et. al, CCS 2016] 

• Free from biases such as 
base rate fallacy.

Break Even Time indicates 
attractiveness of low 
margins of attack. 

[ACM CODASPY’17, IEEE TDSC’20]

Mitigation

Mitigation

Detection

	ࡵ ൌ	 ሺࢍ࢜ࢇࢾ	∗ ࡹ ∗ /૛૝	ሻ࡯	
C = electricity cost/KWH



Mitigation Performance against Persistent Attacks

Deductive Additive Y axis = impact 
($) of attacks that 
escapes detection 
for a given ࣄ

X axis = Expected 
time between 
False Alarms for 
same ࣄ in days 

• As Eሺ ௙ܶ௔) increases, the frequency 
of false alarms decreases.  

• The increase in attack’s Impact per 
unit time does not arbitrarily 
increase.

• Also true for higher ࢒ࢇ࢓࣋	. 

Illustrative Example:
• ࣄ ൌ ,௥ݏ2 ࢒ࢇ࢓࣋ ௔௩௚ߜ ,30% = ൑
80W escapes detection

• The adversary requires 5.5 yrs
to recover total cost

• Attack cost is $400/meter for 
Puerto Rico Attack on Grid 

Exp. time btw. False Alarms Exp. time btw. False Alarms



Compromised Meter Detection Results 

Classification 
scales for 5,000 
houses

Below 350W 
classification degrades

Resilience at 
high ࢒ࢇ࢓࣋

Margin of False Data



Outline

 Sensor Networks and IoT Security

 NSF Project: Pervasively Secure Infrastructures (PSI)

 Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security

 Mobile Crowdsensing
 Trustworthy Vehicular Crowd Sensing

 Future Directions



NSF JUNO2 Project (2018-2021)

STEAM: Secure and Trustworthy 
Framework for Integrated Energy and 

Mobility in Smart Connected Communities 

Missouri S&T (PI: Das)

Jointly with
Vanderbilt University, USA

Osaka University, Waseda University, Nara Institute of Technology, Japan



Resi-
lience

Smart 
Mobility

Smart 
Energy

Smart 
Health

Securing CPS and IoTs
Goal: Create a technology-enabled, multi-level 
security framework to monitor, detect, prevent 
(recover from) natural and man-made disasters.
Methodology: Sensor Fusion; 
Situation-awareness; Information 
Theory; Game Theory; Epidemic 
Theory; Trust and Belief Models;
Machine Learning; Data Mining.
Publications: TDSc’17, TMC’11, 
ToSN’18, TDSC’12, TVT’17, 
AdHoc’15, AdHoc’13, TMC’09, 
Infocom’19, ComsNets’19, 
SmartCity’18, BuildSys’17, 

Goal: Detect anomalies in energy consumption 
(false data injection attacks); mitigate cascade 
failure; secure and trustworthy decisions

Methodology: Time Series 
Analysis; State Estimation; ML; 
Anomaly Detection; Trust and 
Reputation Model; Epidemic & 
Prospect Theory; Incentives.

Publications: TMC’20, 
TDSC’20, TNSE’19, TOPS,
TSG’15, CST17, SUR14, 
CCS’18, CODASPY’17, 
CNS’17, SmartGrid’12

Human 
Mobility

Vehicular Mobility

Goal: Detect false event reporting in vehicular 
and human mobility; transport planning; air 
quality; congestion; disease spread.

Methodology: Information Theory; 
ML; Stochastic Games; Dictionary 
Compression; Crowdsensing; 
Utility Theory; Behavior Models; 
Privacy-Preserving Data Mining.

Publications: TCPS’19, 
TII’17, ToN’08, TMC’12, 
PMC’18, Entropy’15, 
WiNet’02, PerCom’15, 
SDM’18, PerCom’06, 
InfoCom’04, MobiCom’99



Crowd Sensing (CS) Architecture

Service 
Provider Consumers

Broadcast
Event

Feedback Monitoring

Report: Citizens contribute to data, alerts, notifications, etc.

(Published) Event: A summary statistic inferred from the reports (e.g. traffic jam, 
accident, road closure, weather hazard). 

Feedback Monitoring: Endorsement on the published event or Ratings  (e.g., 
Useful, Not useful, Not sure, 5 star ratings)

Reports
(Contributions)



Vehicular CPS

Cloud

`

Send 
communication 

for Jam Alert

Receive 
communication 

for Jam Alert

Action
Take Diversion

Physical 
Environment

Participatory 
Sensing

Application Network
(Analytics)

Changing traffic dynamics 
due to induced diversion

Participatory 
Sensing

Analytics
(Compute 

Node)

Analytics
(Compute 

Node)

R. P Barnwal, N. Ghosh, S. K. Ghosh, S. K. Das, “Publish or Drop Traffic Event Alerts? Quality-aware Decision
Making in Participatory Sensing Vehicular CPS,” ACM Transactions Cyber-Physical Systems, 4(1): Jan 2020.



Vehicular Crowd Sensing: Threats Landscape
Why Selfish Intent? 
• Credit‐based reward mechanism to motivate 
constant reports.

• Incentivizes degree of contribution (quantity) 
rather than quality of contributions. 

(Huge # of false  reports in Waze traffic Dataset, 
IEEE SMARTCOMP 2016)

Why Malicious Intent ?
• Create congestion (civilian impact) 
• Drain company’s revenue (economic impact)
• Strategic blockage (internal security impact) 

Reporting Behaviors:
• Honest:mostly reports true 

events.
• Selfish: intermittently generate 

true and false reports with 
certain probabilities.

• Malicious:  collude on reporting 
the same false event type in a 
vicinity. 

Rating Behaviors: 
• Ballot stuffing: Rogue raters 

give positive ratings to false 
events.

• Bad mouthing: Rogue raters 
give false ratings to true events.

• Obfuscation stuffing: Rogue 
raters give uncertain ratings to 
false events.

Problems with Existing Models 
• Cannot embed variations in quantity of 

ratings on final trust 

• Not Null Invariant 
• Sacrifice Quality for Quantity or  vice‐versa.

(IEEE PerComWorkshop 2017, IEEE TMC 2020) 



Vehicular CPS

• System Model
– Vehicles/ Apps (called nodes) 

are networked acting as 
communication units

– VCPS nodes (cyber agent of 
human) sense events and 
share alerts with peers for 
informed decision making

– Based on sensing information, 
vehicles take decision resulting 
into change of traffic dynamics

• Vehicular sensing node / 
Adversary

– Spoofs location to report random event 
alerts to earn undue rewards: Side 
channel participation (Spoofing Attack)

– Raises false event alerts to decrease 
system reliability or gain resources: 
False Participation (Spamming Attack)

• Objectives
– Devise a framework to identify location 

spoofing, spamming nodes

– Define Quality of Contribution (QoC) 
metric for nodes’ contributions based on 
reputation history; classify as Honest, 
Liars, or Spoofers

– Expected Utility Theory (EUT) based 
decision model to filter false events



Quality and Quantity (QnQ) Framework

Quality of 
Information 
۷ܗۿ Model
(Event Trust)

Feedback 
Monitoring
(Anomaly 
Detection)

QoI – Event 
Association
Database 
(Evidence)

Rating

Counts

Reports All 

QoI’s

User – Event    
Association 
Mapping 

User Reputation 
Scoring Module
(User Trust)

Classification
(Detection)

Honest,
Selfish,

Malicious
Reputation based 
Incentives and Event 
Publishing 

Mitigate 
Incentive 
Losses

Improve
Reporting
Accuracy

Mitigation

S. Bhattacharjee, N. Ghosh, V. K. Shah, S. K. Das, “QnQ: A Reputation Model to Secure Mobile Crowdsourcing
Applications from Incentive Losses,” IEEE Conf. on Communications and Network Security (CNS), 2017. [Extended
version, IEEE Transactions on Mobile Computing, 19(1): 200‐216, Jan 2020.]



Trust and Belief Model
• How to build trust to guarantee 

reliable operations?

• Trust is extremely complex:
 How to model and quantify trust?
 How to propagate trust? 
 How to reach trust consensus?

• Build a Reputation System 
 Reliable users are rewarded and hence 

have  high reputation
 Reputation evolves dynamically with 

time – may also go down
• F. Restuccia and S. K. Das, “FIDES: A Trust-based Framework for Secure User Incentivization in Participatory Sensing,” 

IEEE Symposium on a World of Mobile Multimedia Networks (WoWMoM), June 2014.
• T. Luo, S. S. Kanhere, J. Huang, S. K. Das, and F. Wu, “Sustainable Incentives for Mobile Crowdsensing: Auctions, Lotteries, 

Trust and Reputation Systems,” IEEE Communications Magazine (special issue on Sustainable Incentive Mechanisms for 
Mobile Crowdsensing), 55(3): 68-74, Mar 2017.



Quality of Information (QoI) Model

Belief Weight 
	ሺ࣓࢈ሻ

Bࢌࢋ࢏࢒ࢋ	ሺ࢈ሻ

Dࢌࢋ࢏࢒ࢋ࢈࢙࢏	 ࢊ

U࢚࢟࢔࢏ࢇ࢚࢘ࢋࢉ࢔	ሺ࢛ሻ

Non Linear 
Dual 
Weighted 
QoI Scoring
Module

Generalized 
Linear Model 
based Classifier

Bayesian 
Estimation of 
Posterior 
Probability 
Masses

Positive, 
Negative 
Uncertain  
Rating
Counts

Expected 
Truthfulness 

Final Event 
QoI

Where:	
࢈࣓ = belief weight
࢛࣓ = uncertainty weight
	ࡺ ൌ ࢻࣁ	 ൅	ࢼࣁ ൅	ࢽࣁ ൌ total 
number of ratings received 
(evidence mass)
,ࢻࣁ ,ࢼࣁ ࢽࣁ rating counts 

Uncertainty Weight 
	ሺ࣓࢛ሻ

࢈ ൌ
݊ఈ ൅ 1
ܰ ൅ 3

࢛ ൌ
݊௨ ൅ 1
ܰ ൅ 3

• T. T. Luo, J. Huang, S. S. Kanhere, J. Zhang, and S. K. Das, “Improving IoT Data Quality in Mobile Crowdsensing: A Cross Validation
Approach,” IEEE Internet of Things Journal, 6(3): 5651-5664, June 2019.

• F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia, “Quality of Information in Mobile Crowdsensing: Survey and
Research Challenges” ACM Transactions on Sensor Networks, 13(4): 34:1-34:43, 2017.

• F. Restuccia, S. K. Das, and J. Payton, “Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges” ACM
Transactions on Sensor Networks, 12(2): Apr 2016.



Results: Attack Detection
 Three user groups classified

 Lowest group: Malicious
 Middle group: Selfish
 Top group: Honest

 Reputation unifies both 
quality and quantity

 Selfish and malicious groups 
cannot increase reputation 
with only higher participation

Classification:  Proposed Approach (Left);  D-S Reputation (Right)

 Selfish users have two groups:
 Higher true event contributions

 Higher false event contributions

 Success in Fairness as well

 Can be used for incentives

 Better than Dempster-Shafer

Classification Performance



Incentive Mechanism:
 Implemented incentive mechanism 

[Restuccia and Das, IEEE WoWMoM’14] 
with QnQ framework.

 Computed rewards for honest and 
selfish users using QnQ and Dempster‐
Shafer (D‐S) reputation models.

Key Observations:
 Rewards for honest users comparable
 For selfish users: mean incentive is 

more than 50% less than D‐S 
 Prevents loss of revenue due to rogue 

reporting. 
 Improves reliability 

Results: Attack Mitigation

T. Luo, S. S. Kanhere, S. K. Das, and H.‐P. Tan, “Incentive Mechanism Design for Heterogeneous Crowdsourcing Using
All‐Pay Contests,” IEEE Transactions on Mobile Computing, 15(9): 2234‐2246, 2016.
T. Luo, S. K. Das, H.‐P. Tan, and L. Xia, “Incentive Mechanism Design for Crowdsourcing: An All‐Pay Auction Approach,”
ACM Transactions on Intelligent Systems and Technology, 7(3): 1‐26, 2016.

Honest

Selfish



Vehicular CPS: The SAFE Framework
SAFE = Spoofed and False Report Eradicator



Experimental Evaluation
• Experimental evaluation of the SAFE framework is based on 

– Synthetic Data: Vehicular node mobility traces, event generation and 
report contribution simulated using R tools

– Real Data: Real taxi-mounted smartphone app-generated GPS traces 
of 289 taxicabs across different regions of Rome (from CRAWDAD)

• Performance metrics:
– F1 score (F measure): Harmonic average of precision and recall for 

classification of rogue or genuine reporting nodes

– Success/ Error rate: Decision making accuracy to publish the true 
event reports and drop the false event reports 

• Comparison with state-of-the-art methods: FJOS (FIDES trust 
model) and HGOM (Gompertz function based model).



Experimental Results

Relative performance of SAFE using Real dataset

Relative performance of SAFE using Synthetic dataset



Results

• Spoofing and False reporting are genuine problems in VCPS and can be 
measured using the concept of Quality of Contributions (QoC).

• SAFE framework is more effective for classification of rogue and genuine 
reporting nodes in VCPS (with false and spoofing report generators).

• Two-level EUT-based decision making model gives high success rate 
and low error rates even when genuine nodes are in minority (40 - 45%)

Performance of Expected Utility Theory (EUT) based decision model



Resi-
lience

Smart 
Mobility

Smart 
Energy

Smart 
Health

Securing CPS and IoTs
Goal: Create a technology-enabled, multi-level 
security framework to monitor, detect, prevent 
(recover from) natural and man-made disasters.
Methodology: Sensor Fusion; 
Situation-awareness; Information 
Theory; Game Theory; Epidemic 
Theory; Trust and Belief Models;
Machine Learning; Data Mining.
Publications: TDSc’17, TMC’11, 
ToSN’18, TDSC’12, TVT’17, 
AdHoc’15, AdHoc’13, TMC’09, 
Infocom’19, ComsNets’19, 
SmartCity’18, BuildSys’17, 

Goal: Detect anomalies in energy consumption 
(false data injection attacks); mitigate cascade 
failure; secure and trustworthy decisions

Methodology: Time Series 
Analysis; State Estimation; ML; 
Anomaly Detection; Trust and 
Reputation Model; Epidemic & 
Prospect Theory; Incentives.

Publications: TMC’20, 
TDSC’20, TNSE’19, TOPS,
TSG’15, CST17, SUR14, 
CCS’18, CODASPY’17, 
CNS’17, SmartGrid’12

Goal: Predict human and vehicular mobility; 
detect false event reporting; transport planning; 
congestion; air quality; disease spread.

Methodology: Information Theory; 
ML; Stochastic Games; Dictionary 
Compression; Crowdsensing; 
Utility Theory; Behavior Models; 
Privacy-Preserving Data Mining.

Publications: TCPS’20, 
TII’17, ToN’08, TMC’12, 
PMC’18, Entropy’15, 
WiNet’02, PerCom’15, 
SDM’18, PerCom’06, 
InfoCom’04, MobiCom’99

Goal: Cognitive / physical health monitoring; 
wellness management; dementia detection; 
fine-grain activity recognition under uncertainty.  

Methodology: Privacy-aware 
Data Fusion; Deep Learning; 
Dynamic Bayesian Networks; 
Uncertainty Reasoning; Sensor 
Analytics; QoI-aware Inference.

Publications: TMC’19, 
TMC’18, TSC’18, PMC’17, 
ToN’16, SMC’16, TMC’12, 
Computer’18, BSN15, 
PerCom’19, SmartComp’16



Outline

 Sensor Networks and IoT Security

 NSF Project: Pervasively Secure Infrastructures (PSI)

 Smart City and Cyber-Physical-Human Convergence
 NSF Project: Smart Grid Security

 Mobile Crowdsensing
 Trustworthy Vehicular Crowd Sensing

 Future Directions



Sensing, Reasoning and Control

Personal 
Sensing

Public 
Sensing

Social 
Sensing

People-Centric Sensing

Smart Sensing

Contol
(Actions)

Sensing 
(Perception)

Reasoning 
(Agent)

Emergency Response

Smart Health Care

Situation‐
Awareness: 
Humans as 
sensors 
feed multi‐
modal data 
streams

Sense

Identify

Assess

Intervene

Evaluate

Smart        Living

Social Informatics 



Securing a Smart City

Figure of 
Merit?

Uncertainty 
Reasoning

Stochastic 
Optimization

Game
Theory

Information
Theory

Dynamic 
Control

Impact Spread
Dynamics

Interdependence and    
Uncertainty related to: 

• Complexity and Scale
• Security & Privacy in 

Multiple Smart Spaces
• Human Behavior and 

Social Dynamics 
• Mobility-Energy-Health
• AI, ML, Data Analytics
• Decision Making
• Full System Modeling 



IEEE SMARTCOMP 2020
Big Data  IoT Security Workshop
www.smart-comp.org

Bologna, Italy, Sep 14-17, 2020
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Das, Kant, Zhang (2012)

2012

2019

Principles of
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Systems
An Interdisciplinary Approach

Sandip Roy
Sajal K. Das 

Cambridge University Press

2020

22nd International Conference 
on Distributed Computing and 
Networking (ICDCN 2021)
Jan 5-8, 2021 (www.icdcn.org)
Nara, Japan (Deadline July 17)



“A teacher can never truly teach unless he is still learning
himself. A lamp can never light another lamp unless it
continues to burn its own flame. The teacher who has come
to the end of his subject, who has no living traffic with his
knowledge but merely repeats his lesson to his students, can
only load their minds, he cannot quicken them”.

Rabindranath Tagore (1861-1941)
Indian Poet, Nobel Laureate (1913)

Epilogue

“Imagination is more important than knowledge.” – Albert Einstein (1879-1955) 
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