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Warm Up

Who is the founder of Facebook?

Who is the Co-founder and CEO of Twitter?

Jack Dorsey
... was a student in our department

He's also CEO and Co-founder of Square!



Career Evolution

Parallel Computing
(1985 -)

- Mobile Computing ->  Pervasive / Smart

(1995 -)

Computing (2001 -)

« HPC

- Parallel Algorithms

* Distributed Systems
 Petri Nets

* Interconnection Networks
» Task Scheduling

 Load Balancing

* Cluster Computing

* P2P Networking

* Grid / Cloud Computing
» Green Computing

* Cellular (3G/4G) Networks
* Ad hoc Networks, WLANSs
» Opportunistic Networking
» Cognitive Radios

» Wireless Mesh Networks

* Mobility Management

* Resource Management

» Wireless Internet Multimedia
» Wireless QoS and QoE

* Mobile Cloud

» Edge and Fog Computing

» Sensor Networks, loTs
* Pervasive Computing

« Situation-awareness

» Middleware Services
 Security, Privacy, Trust
« Smart Environments

» Cyber-Physical Systems
« Smart Health Care

« Smart Grid / Energy

« Smart City

* Mobile Crowd Sensing

- Computational Systems Biology (2005 -);

« Smart and Connected Communities (2016 -)

Social Networks (2007 -)




Smart Sensing > CPH - Smart Computing

Efficient Architectures, Algorithms and Protocols, Modeling,
Analysis, Optimization, Performance Evaluation, Prototype

Smart Systems and Applications
Smart City, Cyber-Physical-Human Systems (CPH),
Mobile Crowd Sensing, Internet of Things (loT)

Distributed/Mobile/Cloud/Pervasive Computing
Middleware Services and Virtualization

3G/4G/5G Wireless | Broadband, P2P,
Cellular, Mobile | Sensors, | Optical, Internet,
Ad hoc, WLANs, | Wearables, | Home/Enterprise
Cognitive Radios | loT, RFID Networks

Security, Privacy, Trust,
Reliability, Vulnerability
Human Behavior, Game
Models, Social Networks

Economics, Auction, Policy,

See Google Scholar ...
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Outline

% Sensor Networks and loT Security

» NSF Project: Pervasively Secure Infrastructures (PSl)

% Smart City and Cyber-Physical-Human Convergence
» NSF Project: Smart Grid Security

“ Mobile Crowdsensing
» Trustworthy Vehicular Crowd Sensing

** Future Directions



Era of Observation: Sensing the Physical World

Monitoring

Agriculture
: ..« Border Surveillance

: Ecosystem
Environment
Habitat _
Health, Wellbeing
Infrastructure

Ecology Envnr-onmen'r

g
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Wireless Sensors
(A miniature Cyber-Physical System)

Communication
(Wireless)
Transmission/Reception:
Broadcasting, Routing
Dissemination

Control oy
(Sensing / Actuation) L P
ata Sensing & Collection: 4
temperature, humidity, , 62
ressure, light, velocity, i &

sound, image

Computation
In-network Processing:
Fusion, Estimation,
Filtering, Aggregation

M. Di Francesco, S. K. Das, and G. Anastasi, “Data Collection in Wireless Sensor Networks with Mobile Elements: A Survey,”
ACM Transactions on Sensor Networks, 8(1), Aug 2011.




Smartphone: A Rich Sensing Platform

« By 2020, number of smartphones
Is expected to be > 8 billion

Ambient light

Proximity

Dual cameras

GPS

Accelerometer

Dual microphones

Compass

Gyroscope

R. Fakoor, M. Raj, A. Nazi, M. Francesco, S. K. Das, “An Integrated
Cloud-based Framework for Mobile Phone Sensing,” Proc. ACM
SIGCOMM Workshop on Mobile Cloud Computing, Aug 2012.

Plethoka of Sensors

—temperature, light, humidity,
motion, acceleration, GPS, ...

Multiple Wireless Interfaces

— WIiFi, Bluetooth, long range
cellular radio to connect to
external sensors

Internet Access
— high-speed 3G/4G connection
Multimedia Sensing
— Audio, video, image, text




Sensor and loT Challen

» Reliability, Security, Privacy and Trust

» How to secure against adversarial, selfish, and
malicious attacks? Prevent cascade failures?

» How to trust reported data (crowdsensing) for
robust decisions? |oT data quality and Qol?

» How to incentivize for reliable information?

ﬁ

> _Takes years to:build,
~seconds tobreakand _ .
forever to repair. .-

Sampling,
Compression

Information Theory

Interdependence and Data Analytics

» How to model interdependence and information
loss across overlapped smart spaces?

» How to analyze (multi-modal) data and design
machine learning and prediction models?

» What are the impacts of social dynamics and
human behavior on Smart Living?

Uncertainty Reasoning

Routing,
Broadcast

Probabilistic Analysis

Coverage,
Connectivity

Graphs, Optimization

Epidemic Models

Fusion,
Aggregation

Game /Auction Theory

Security,
Privacy

Online, Randomized
Algorithms

Information

Quality

Machine Learning

Trust Model

and Secure Computing (special issue on Learning and Games, Security), 9(4): 494-511, 2012.
Transactions on Mobile Computing, 8(3): 413-425, Mar 2009.
Transactions on Vehicular Technology, 66(2): 1684-1695, Feb 2017.

Crowdsensing,” IEEE Transactions on Mobile Computing, 19(1): 200-216, Jan 2020.

* J.-W. Ho, M. Wright, S. K. Das, “Zone Trust: Fast Node Compromise Detection and Revocation in Sensor Networks,“ IEEE Transactions Dependable
* P.De,Y. Liu, and S. K. Das, “An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks,” IEEE
* N. Marchang, R. Dutta, and S. K. Das, “A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks,” IEEE

» S. Bhattacharjee, N. Ghosh, V. K. Shah and S. K. Das, “QnQ: Quality and Quantity based Unified Approach for Secure and Trustworthy Mobile




NSF Project (completed)
Pervasively Secure Infrastructures (PSI):
Integrating Smart Sensing, Data Mining,

Pervasive Networking and Community Computing




Securing Sensor Networks and loT

@al: A multi-level security framework for loT
and Sensor Networks to monitor, detect, preven
(recover from) natural and man-made disasters:
Methodology: Sensor Fusion;
Situation-awareness; Information
Theory; Game Theory; Epidemic
Theory; Trust and Belief Models;
Machine Learning; Data Analytics.
Publications: TDSC’17, TMCAT,
ToSN’18, TDSC’12, TVT’17,
AdHoc’'15, AdHoc’13, TMC’08;

Infocom’19, ComsNets’19,
%artCityﬂS, BuildSys’17

Sensor
Layers

Video Tracking/Surveillance

Image Processing . .
, Blometrlc\s

—
/,

Smart Devices,

Bluetooth, WLAN

Pervasively Secure
Infrastructures (PSI)

VENTILATION
G as Sensors

g

Blast Layer

HIGH
| SECURITY

Data Fusion
Data Mining

Smart Materials Sy ’ \
Smart Sensors N \ )
Smart Structures, \ ,I
-\
\ ‘\
I‘ \
,’ LOW \ \
) SECURITY | ‘ \
! 1 \
! oe \ \
! \ S
T
Wireless Networks ' Screening Huma n Performance

PICO

Wireless Sensor
Nets (WSN), loTs

Surveillance,
Monitors

Broader Impacts:

* Critical infrastructure
protection and border
security

» Transportation (air, rail)

« Utility plants

» Public / private places

(airport, train stations,
shopping malls, parks)

/




Threats to WSNs and loT

 Attack Types
— Node Compromise
— False Data Injection
— Route Disruption

— Denial of Service (DoS)

Discredit Normal

Report

Selective False
PaCket Data
Dump

Infect
Forge Other
Command False Nodes

Routing Info

 Node Compromise
— Physically capture sensor / 1oT node
— Generate replicas
— Spread self-propagating worm
* Revealed Secrets
— Cryptographic keys, code, commands
 Enemy’s Puppeteers
— Trojans in network with full trust

- — [ Modeling |
Worm Propagation

L Detection ) (Detection

4 p

Static /Mobile Node

Replica Detection [ReVOCﬁtiOﬂ

> J

/ \ .
Static / Mobile Node | | Self-correction

- J

Compromise Detection



Multi-Level Security Framework

Highly Assured

Theoretical / Algorithmic Foundations :
Network Operations

i Epidemic Theory .
\ :==p=================y= HH ArchltecturaI\
Model Attack Process C
omponents
[(e.g., Node Compromise,]—> Control Outbreak P
Replica Spreading)
Informatlon R Detect Compromise Trust / Belief :: gty el
] Theo : —’| or Forged Data i  Model
s===== ry— c======== \(€.9., Abnormal Reports) R LA ' fiiien. Key Management
Game Theory" L Revoke Revealed Secrets Sensmg
:::::::::::::=’:::============= (BroadCaSt Confldentla|ltY) Coverage':: Secure Aggregatlon]
:Cryptography; J[ sef-Correct
------- ,:ﬁ-=-=-=-=—= eE==S=S=S=S=====2 :‘\ Tampered Data Secure ROUting
Node :: Digital :
Compromise + Watermarking | FEE DoS Defense
- - N ccssssszzzezzz=ie” | Tampered Data
or Replicatio
Uncertainty Characterized, Resource-limited Intrusion Detection
Wireless Sensor and loT Environments \ ~)

J.-W. Ho, M. Wright, and S. K. Das, “Fast Detection of Mobile Replica Node Attacks in Sensor Networks Using Sequential Hypothesis Testing,”
IEEE Transactions Mobile Computing, 10(6): 767-782, June 2011.

J.-W. Ho, M. Wright, S. K. Das, “Zone Trust: Fast Node Compromise Detection and Revocation in Sensor Networks,“ IEEE Transactions
Dependable and Secure Computing (special issue on Learning and Games, Security), 9(4): 494-511, 2012.

P. De, Y. Liu, and S. K. Das, “An Epidemic Theoretic Framework for Vulnerability Analysis of Broadcast Protocols in Wireless Sensor Networks,”
IEEE Transactions on Mobile Computing, 8(3): 413-425, Mar 2009.

N. Marchang, R. Dutta, and S. K. Das, “A Novel Approach for Efficient Usage of Intrusion Detection System in Mobile Ad Hoc Networks,” IEEE
Transactions on Vehicular Technology, 66(2): 1684-1695, Feb 2017.




Foundations of CPS Security

Control
. Theory

Handbook.en

Q N\ 4 securing Cyhg.r;PhyficaI Criticallnfrastruclure
9,4\ <N\ = N
Cyber Layer /Oép L

Computation - Ay . :
Communication \ P, Foundations and Challenges
Phys:cal
P~ Layer
Sensing,
Complex
> O Interactions

Sajal Das, Krishna Kant, Nan Zhang

Epidemic
1F')heory Das, Kant and Zhang
. Morgan Kauffman, 2012

* S. Roy, M. Xue, S. K. Das, “Security and Discoverability of Spread Dynamics in Cyber-Physical Networks,” IEEE Trans. on
Parallel and Distributed Systems (special issue CPS), 23(9): 2012.

* A. Sturaro, S. Silvestri, M. Conti, and S. K. Das, “A Realistic Model for Failure Propagation in Interdependent Cyber-Physical
Systems,” IEEE Transactions on Network Science and Engineering (Special Issue on Network Science for High-Confidence
Cyber-Physical Systems), 7(2): 817-831, 2020.




Outline

% Sensor Networks and loT Security

» NSF Project: Pervasively Secure Infrastructures (PSl)

s Smart City and Cyber-Physical-Human Convergence
» NSF Project: Smart Grid Security

“ Mobile Crowdsensing
» Trustworthy Vehicular Crowd Sensing

** Future Directions



Cyber-Physical-Human (CPH) Convergence

CPH are natural / engineered systems that integrate sensing,
communication, computing, control and human in the loop

Smart
Devices

*ﬁ?nsmg}l : ‘

CPS (macro) 9 IoT (mlcro)

‘ 'l"Fl' h .i-‘,r . v
f Vi . L % Pervasive [
Ir‘it ‘ Computing ERyemie=

. r

Control

M. Conti, S. K. Das, et al. “Looking Ahead in Pervasive Computing: Challenges and Opportunities in the Era of
Cyber-Physical Convergence. Pervasive and Mobile Computing, 8(1): 2-21, 2012.




Cyber-Physical-Human (CPH) Convergence

CPH are natural / engineered systems that integrate sensing,
communication, computing, control and human in the loop
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CPW interactions mediated
through social networks

Data gathering
through sensors

Physical world
adaptation
through actuators

\ R W Ay
_— e M

Physical wor{d

ke % - Vi et ,
Physical World | _ i':"g" ) /" Sociallinks i
@ & “ human networks

CPS (macro) =2 loT (micro)

M. Conti, S. K. Das, et al. “Looking Ahead in Pervasive Computing: Challenges and Opportunities in the Era of
Cyber-Physical Convergence. Pervasive and Mobile Computing, 8(1): 2-21, 2012.




What is a Smart Environment?

A Smart Environment is one that is able | S& ' & | &'/ 48
to autonomously acquire and apply
knowledge about inhabitants and their
environment, and adapt to improve

experience without explicit awareness

Corollary: makes intelligent decisions in
automated, context-aware manner

- pervasive or ubiquitous computing i s

Lisd  John Wiley, 2005
DIANE J. CODK SAJAL K. DAS

Context /Situation-awareness is the key

Example Contexts:
 Mobility, Activity, Occupancy, Preferences, ...
* Desire, Behavior, Mood, Emotions, ...

* D. J.Cook and S. K. Das, “How Smart Are Our Environments? An Updated Look at State of the Art,” Pervasive and Mobile Computing, 3(2). 2007.

* A Roy, S. K. Das, and K. Basu, “A Predictive Framework for Context-aware Resource Management in Smart Homes,” IEEE Transactions on Mobile
Computing, 6(11): 1270-1283, 2007.




Smart City as a Rational Agent

* Perceives the state of an
environment via sensors and
acts on it via actuators.

» Reasons about and adapts to
inhabitants, predicts context
and makes intelligent decisions.

Sensing N

v o A (Perception) Reasoning
- @ o s ....... | = LR Perceptlon (Ratlonal Agent)

(Sensing)

(Decision
. Control) .

e D. J.Cook and S. K. Das, “How Smart Are Our Environments? An Updated Look at State of the Art,” PMC, 3(2): 2007.

* S. Roy, N. Ghosh, S. K. Das, “A Bio-inspired Data Collection Framework for Qol-aware Smart City Applications,” I[EEE PerCom, Mar 2019.

« V. K. Shah, S. Bhattacharjee, S. Silvestri, and S. K. Das, “An Effective Dynamic Spectrum Access based Network Architecture for Smart Cities,”
IEEE Annual International Smart Cities Conference, Sept 2018.

» V. Shah, B. Luciano, S. Silvestri, S. Bhattacharjee, and S. K. Das, “A Diverse Band-aware DSA Network Architecture for Delay-Tolerant Smart City
Applications,” IEEE Transactions on Network and Service Management, 17(2): 1125-1139, June 2020.




Smart Living: The Next Frontier

Climate change Environmental pollution
Loss of biodiversity Cyber attacks Energy resource depletion
Food and water shortages Resource shortages A Digital divide Matural disasters
Urbanization r:p ® ::l Population aging
c. e " R .

Common  “*-.., .-**"" How to model
Invariants? IE ___________ Interdependence?
Smart Security “1 Smart Mobility,

Healthcare Analytics Transportation
Disaster Smart Climate,
Response Sustainability
Sensing e — Navigation
Smart City, Smart Utility
Urban Planning (Energy, Water)

Human Behavior, (
Data | Social Dynamics | Knowledge

\*i Convergence )——"'q

Characteristics: Complex Systems, Heterogeneous, Large-scale, CPH, Big Data, loT

-FJ;I

Challenges: Interdependence, Robustness, Reliability, Resiliency, Security, Privacy

Conti, Passarella, and Das, “The Internet of People (IoP): A New Wave in Pervasive Computing,” PMC, 41, 2017.
Shah, Bhattacharjee, Silvestri, Das, “Designing Sustainable Smart Connected Communities,” ACM BuildSys, 2017




loT Enables Sometal Scale CPH

' Smart Water ’ isater |
r\ansportatlon Manalgement Management

loT
Middleware

Sensor/Actuator

Networks Internet SensorCloud

Security Related Grand Challenges:

— Security and Safety of People, Infrastructures, information, Assets

— Extreme Events Management (before, during, after disasters)

— Healthcare (health risks, wellbeing)

— Sustainability (air pollution & hazard monitoring, detection and mitigation)




Vulnerability in Smart City Scenario

Smart %

Transportation

Traditional
power sources

Smart

Roadside offices
unit

//‘
' /
/7 /  Power
/¢ distribution

-
4 - ”
*D = bk station
(‘@) \y* :
— —I( /i\ Smart Grid
pectrum Smart
Ser(ls?r homes Renewable System

POWET SOUrces

Spectrum * 7
l;ensor “Na o Legends:

o) o — /’7 Spectrum ey LLOW latency smartgrid data path
//7 s - sensor | = High throughput VANET data path
&L~ Spectrum access — .ow latency spectrum data path

system m———) A ttack initiation path
SpEcicuin Cooperative spectrum ( ___ =3 Attack cascade path
SEIsor sensing system




Smart City Security: Data-driven Approach

Convergent Research: Unified Frameworks and Invariants for secure
and trustworthy decisions in interdependent CPSs (Smart City, Smart
Mobility, Smart Grid / Energy, Smart Healthcare, Sustainability, Resilience).

SMART CITY

i

<=-=-rr=—wO=
<@AamzZzm
MAP>OI-Ar->mMI
moZ—rr—omom™a

[ N[ N[ V]

SECURITY & TRUSTWORTHINESS

S. Tan, D. De, W. Song and S. K. Das, “Security Advances in Smart Grid: A Data Driven Approach,”
IEEE Communications Surveys and Tutorials, 18(1): 397-422, 2017.




Smart Living CPS/loT Security

] ] Emergency/ Disaster
Smart Healthcare (CPS) Intelligent Transportation Response

Temperature s » » & » A

light, microphone

Evaluate

Blood pressure @ o & & & @ & & Bhooos

Spo, GSA -1)
| .
[ ]

Intervene

Assess

L]
Accelerometer «

Smart Grld / Energy (CPS) \/‘

Cloud

g HPC Smart City, Smart
Connected

Community | | LiVing

@ Qr b - * Innovation Impact
@ e o e @ e Civilian I_mpact
Wireless, Sensor & loT Networks Social Networks |°* Economic Impact




Security: The CIA Triad

Integrity

Ensure information is
not modified, falsified

nor manipulated.
(Accuracy of Data)

False Data Injection, Data
Falsification, Byzantine
and Spoofing Attacks

3

O
N
$

SECURITY

101

do1g” CONFIDENTIALITY

Availability

Ensure information is
readily available to
authorized entities.

\ | (Timely Access & Use)

INFORMATION

Denial of Service
| (DoS), Data Omission
. | Jamming Attacks

Confidentiality

entities.

Ensure information is not
disclosed to unauthorized

(Restricted Visibility)

Phishing, Keylogging,
Wiretapping, Sniffing




Security and Trustworthiness

------------------------------------------------------------------------
.
.

------------------------------------
o
-

Defense Mechanism

|

f Threat R r R 4 )
rea Attack Attack

Landscape - Detection prm— Mitigation

\. J AN y, \. J

 Attack Types

* Attacker Strategies

* Adversarial
Objectives and
Capabilities

e Extent of Prior
Knowledge

o Attacker Utilities

Anomaly / Intrusion Detection

* Presence of Attack
» Gather Evidence (Labels / Scores)
e Consensus Correction

Trust based Models

e Translate Labels into Trust Scores

 Classification, Kernel Tricks

e [solation
e Robust Fusion

* Dependable
Decision

* Reduction of
Undetectable
Strategy space

Smart Grid: Data (Smart Meter) > False Data Injection > Mitigate via Isolation

Crowd Sensing: Data (Human Reports) - Malicious Intent - Mitigate via Dependable Decision




NSF CPS Breakthrough Project (2015-2020)

Securing Smart Grid by Understanding
Communications Infrastructure Dependencies




Securing loTs in Smart Grid

(recover from) natural and man-made disa
Methodology: Sensor Fusion;

Situation-awareness; Information
Theory; Game Theory; Epidemic
Theory; Trust and Belief Models;
Machine Learning; Data Mining.

Publications: TDSC’17, TMC;
ToSN’18, TDSC’12, TVT’17,
AdHoc’15, AdHoc’13, TMC’0
Infocom’19, ComsNets’'19,
\SmartCity'18, BuildSys'17,

Resi-
lience

P e e
Organized, A
Persistent Utility WA

~ Threats

()

2 Data Collector "+ Edge_ Threats

S o Z@f/ Services

% ©

c & Neighborhood

& 9 Q ?A\\ Megh Network

IR

c £ e =

€0

Q ‘= )HomeArea%i

Q o Network o .

v_Ener vigmt (HAN) Househord )
Service Appliances

\_Advanced Metering Infrastructure (AMI

@oal: Create a technology-enabled, multi-leve
security framework to monitor, detect, prevent

Integrity of AMI Data

* Billing, Safety

* Demand Response (DR)
* Load Forecast, Planned
Generation/Distribution

Y

- State Bad Data |
Estimation Detector

Fail | Bad Data
—» [dentification
and Removal

Phasor Measurement I l Pass /

Unit (PMU)

la,

Publications: TMC’20, \
TDSC’20, TNSE’20, TOPS,
TSG'15, CST17, SUR14,
CCS’18, CODASPY’17,
CNS’17, SmartGrid’12

Methodology: Time Series Data
Analytics; State Estimation; ML;
Anomaly Detection; Trust and
Reputation Model; Utility &
Prospect Theory; Incentives.

oal: Detect anomalies in energy consumptior
(false data injection attacks); mitigate cascade
ailure; secure and trustworthy decisions




Securing a Smart Grid
(Secure Computation between loT Devices and Energy Utility)

Energy Supplier learns only the
aggregate result w/o knowing
customers’ energy consumptions

Keeping away from threats

- Result :f2if =
t€.9., Billing Info.) 3 B

Cloud Servers Energy Supplier (Trusted)

P Energy

o P ] (Untrusted) ublic ke
loT Devices Consumption ﬁ gor encryyption)
(Smart Meters)  Data FHE = Fully secret key
Public Key is distributed |Homomorphic (for decryption)
before sending data (FHE) |Encryption | Geperated by Energy Supplier

S. Tan, D. De, W. Song and S. K. Das, “Survey of Security Advances in Smart Grid: A Data Driven Approach,”
IEEE Communications Surveys and Tutorials, 18(1): 397-422, 2017.




Demand Response / Pricing Signals

Advanced Metering Infrastructure (AMI)

Connect/Disconnect

Systems Distribution Station J

Meter Data
Management

_
Powerful, S O@ 7
Organized, \\‘ J_
Persistent oy
Adversaries Insider
Edge Threats
Data Collector - Services

Neighborhood
Mesh Network

Use of AMI Data

* Automated Billing

 Automated Demand
Response (DR)

* Load Forecast and Planned
Generation/ Distribution

2 [Smart Meter
)| loT Device

(NAN)

W Smart Meter

)Home Area
Network

(HAN)

. 3
3

.
44 9

Household
Appliances

<

Energy Management Service

Securing a Smart Grid

 Integrity of AMI data

* Protection against false
data injection

» AMI attack detection and
mitigation

 Attack and trust models

* Billing system vulnerability

S. Bhattacharjee, A. Thakur, S. Silvestri, and S. K. Das, “Statistical Security Incident Forensics against Data Falsification in
Smart Grid Advanced Metering Infrastructure,” ACM Conference on Data and Applications Security and Privacy (CODASPY),
Scottsdale, Arizona, pp. 35-45, Mar 2017. [I[EEE Trans. Dependable and Secure Computing, to appear, 2020]




Data Falsification Attacks in AMI

Actual recorded power consumption

for smart meteri at time t : Pit(aCt)

Time series of power consumption data

1 N
of N smart metersP: = [ptv"' y Py ]

Data Falsification Attack Types:

= Additive > P'; = P', (act) +§,
= Deductive> P!, = P! (act) - &,
= Camouflage: Balanced additive

and deductive attacks from
different meters.

= Conflict: Uncoordinated
additive and deductive attacks.

Margin of False Data (4,,,)

» Short-term Greedy - 900W +
* Medium-term - 400 - 900W
» Long-term Stealthy - 50 - 400W

Strength of the Attack:

8¢ € {6min Omax} 1S a false random
bias value chosen according to
some strategic distribution.
0.vg (Margin of False Data) is the
average value of 6;

Fraction of Compromised Nodes

(Pmar= M/N )

= M = Number of Compromised
Meters injecting false data

= |solated Adversary 2 1% - 5%
= Organized Adversary =2 5%-50%
» Advanced Adversary - 50% +




Novel Security Forensic Framework

N

(@)
N
Anomaly Attack Type Robust Sg:;?fzc
Detection YES Reconstructio Consensus ) S

n
ompromised
. 4 A
Classification, Trust’'Score Tru_st
Mitigation of Each Scoring
8 . Meter . Model

* Light weight, real time anomaly detection

* Not privacy intrusive (consensus based)

« Works for various attack types

 Distinguishes legitimate vs. malicious changes
 Suitable for both isolated and organized attacks

Meters

« S. Bhattacharjee and S. K. Das, “Detection and Forensics against Stealthy Data Falsification in Smart Metering Infrastructure,”
IEEE Transactions on Dependable and Secure Computing, to appear, 2020.

» S. Bhattacharjee, A. Thakur, and S. K. Das, “Towards Fast and Semi-supervised Identification of Smart Meters Launching Data
Falsification Attacks,” 13" ACM Asia Conference on Computer and Communications Security (ASIACCS), pp. 173-185, 2018.




Anomaly Detection: A Data Driven Approach

 Transform the observed data into a Gaussian mixture.

Ratio of Harmonic Mean (HM) to Arithmetic Mean (AM).

« Alight weight statistical indicator for anomaly detection:
Dataset

\
Identify " _
Metric(s) or Establish Detection orensic
' Bound Crit Signature(s)
Invariants ) ounds riterion of Metric(s)
O\
Metrics based on

nature of dataset
Hlstorlcal or Testing Set ~ Security Labels or
Training Dataset State Scores

Point Anomaly: Individual data instances of detection metric is anomalous.

Collective Anomaly: Cumulative subsequence of individually non-
anomalous data instances are collectively anomalous.

Context Anomaly: Data instances violates a known attribute or law.




Nature of Data and Challenges
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.|, | Data Distribution Hourly Power Consumption

z (PH) I:> Data from Austin, Texas Micro-
§ Grid Dataset of 800 houses
-EEII

EIII e

5 Mean (2014}

E- 1600 = === Mean (2015)

=

e WEan (2016)
i
L

(=]

E0O0

_.
=
o
[=]
e

Pﬁqﬁﬂr Manﬁm

Box-Cox
Transformation

—
a3
[
=
T

I
& ooaf soof |\

FoOSET

E ooz

v

E‘.-I:ICI-Ir

Arithmetic Mean

A
400

BomE | 0 20 a0 50 80 100
%-:u.:- ! Days
Booos
g B Auto-Regressive Moving Average (ARMA),
In(P_.) Cumulative Sum of Arithmetic Mean
. Approximate Gaussian Pi = Exhibits hlgh fluctuations
« More Data on left of the mean || ®= Large Standard Deviation




Proposed Point Anomaly Detection Metric

Daily HM to AM Ratio (Q)
S 2 HM,(T)
S AM(T)
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Legitimate and Malicious Changes

» Transform the observed data into a Gaussian mixture

> A light weight statistical indicator for anomaly detection: Ratio of
Harmonic Mean (HM) to Arithmetic Mean (AM) of Gaussian mixture

HM and AM of mixture data may
change due to legitimate weather
and other contextual factors

Symmetric Change
in HM and AM under
legitimate change
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o ey
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HM vs. AM: Legitimate Data

HM and AM may change
due to data falsification too
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Asymmetric
Change in HM and
AM under attacks
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Anomaly Detection

» Drop in HM / AM

HM/AM ratio HM/AM ratio tio indicat
highly stable against drops for all types ratioin |ga s
Legitimate Changes of Data Falsification organize
falsification
» Maintain ratio as
| forgetting and
094 e ——Y cumulative
: - | weighted moving
2 osf 3 No Amack ‘ﬁ\ averages
- 0.88 ) £ 058 AGdiive Afack AN
. I — 200) - — . \ '\.""
2 e o) < ---Deguctve Atack | | > Property holds for
= 0.86 -3 I Camoufage Attack
T —— FWMA (500) > 080 8 all attack types
l . ‘ | and higher
0.82 ' ; ; ' T2 40 80 80 :
I - PP fraction of

compromised
nodes




Evidence for Meter Diagnostics

Three Approaches:

1. Entropy based Trust Model with binary evidence space (Supervised) (ACM
CODASPY 2017, IEEE TDSC’20)

2. Folded Gaussian Trust with multinomial evidence space (Semi-Supervised)
(ACM ASIACCS 2018, ACM TOPS)

3. Information Theoretic Diversity Index based Approach(Unsupervised)

(Under Review)

-olded Gaussian

Input:

= Attack Status =Y or N
= Attack Type = if “Y”

» Robust Mean = uyp

= Robust Standard
Deviation = g,z

rust Semi-Supervised Method
Folded QutpLIt

‘ Eeneear ‘ Compromised and

Trust Model Non-Compromised
Meters

» Scales well for large micro grids.
» Accuracy depends on training.

* More fine-grained approach to evidential
modeling improves accuracy.




KL-Distance based Trust Scoring and Classification

True (Historical) Proximity Distribution | | Inverse Square Root
- — |
[ 1— POeu®+ o)} 0, = 0<0,<1
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Kullback-Leibler (KL) Di L
ullback-Leibler (KL) Divergence KT'={ - it <o
1- | if W =1
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Comparison with Existing Works

Parameter Proposed | Neural ARMA Relative
Method Network [1] Model [2] Entropy [3]

False Alarm 13% 29% 33% 11%
Missed Detection 9% 24% 28% 8%

Savg 400W 400W N/A 800W

Pmal > 40% N/A N/A < 40%
Micro-grid size 5000 5000 200 200
Learning Type Semi- Supervised Supervised  Supervised

Supervised

Detection Time < 10 days 1 year 1 month 1 month

[1] Neural Network, Jokar et. al, IEEE Transactions on Smart Grid, 2016.

[2] ARMA (Auto Regressive Moving Average), Mashima et. Al, RAID 2012.
[3] Entropy: Bhattacharjee, Das, et. al, ACM CODASPY 2017; IEEE TMC 2020.
Proposed Methord: Folded Gaussian Trust model




Emulation of Attacks

Fed real smart meter data into
a virtual simulated AMI micro-
grid since real malicious data

are not available.

Chose a subset (M) of meters
as compromised (p,,,4;) and
launched data falsification with

some false data margin (6,,,).

For each p,,,; , experimented
with varying subsets M and
different starting points.

Repeated for all p,,4; and 6,4,

that got manifested according
to various attack distributions.

Attack Distributions:

Non-Data Order Aware: §; is
distributed uniformly random.
(No prior knowledge)

Data Order Aware: Bias vector
elements are intelligently
matched with P,(act).

(Partial knowledge)
Incremental: Increase 6,4

slightly in each time slot
Omission: Drop the data.
On-Off: Attack on specific time.

Persistent: Strategies that
ensure evasion.
(Complete knowledge)




Performance of Intrusion Detection

Average Time to Detect (TTD):

Difference in time between attack launched
and eventual detection Detection

Expected Time between False Alarms:

MFa

1 Tora
E(Tfa) = -

NrFa

Number of False Alarms: 1z,

Time between pair of False Alarms: Tgp 4

Impact of Undetected Attack per Hour:
I = (bgpg *M =+ C) /24

C = electricity cost/KWH Mitigation

Break Even Time: Mitigation
Time taken for impact revenue to equal the
initial attack cost.

Why not ROC curves?

 For persistent attacks that
are undetected, there is no
way to quantify mitigation
benefit.

Solution: Plot E(T,) vs. I

[Urbina et. al, CCS 2016]

* Free from biases such as
base rate fallacy.

Break Even Time indicates
attractiveness of low
margins of attack.

[ACM CODASPY’17, IEEE TDSC’20]




Mitigation Performance against Persistent Attacks

Deductive “|==m [Additive ||| Y @xis = impact
' R T 11 ($) of attacks that
T | escapes detection
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' Exp. time btw. False Alarms Exp. time btw. False Alarms

lllustrative Example:
* As E(T¢,) increases, the frequency k=25, Pmat = 30%, 8y <
— T ma ’

of false alarms decreases .
' 80W escapes detection

* The increase in attack’s Impact per ‘ * The adversary requires 5.5 yrs
unit time does not arbitrarily to recover total cost

NCrease. « Attack cost is $400/meter for
Puerto Rico Attack on Grid

* Also true for higher p,,41 -




Trust Value
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Outline

% Sensor Networks and loT Security

» NSF Project: Pervasively Secure Infrastructures (PSl)

% Smart City and Cyber-Physical-Human Convergence
» NSF Project: Smart Grid Security

“+ Mobile Crowdsensing
» Trustworthy Vehicular Crowd Sensing

** Future Directions



NSF JUNO2 Project (2018-2021)

STEAM: Secure and Trustworthy
Framework for Integrated Energy and
Mobility in Smart Connected Communities

Missouri S&T (PI: Das)

Jointly with
Vanderbilt University, USA
Osaka University, Waseda University, Nara Institute of Technology, Japan




Securing CPS and loTs

oal: Detect false event reporting in vehiculaﬁ
and human mobility; transport planning; air
quality; conaestion: disease spread.
Methodology: Information Theory;
ML; Stochastic Games; Dictionary
Compression; Crowdsensing;

Utility Theory; Behavior Models;
Privacy-Preserving Data Mining.

Publications: TCPS’'19,
Smart TI'7, ToN'08, TMC'12,
1: PMC’18, Entropy’15,
MObIIIty WiNet'02, PerCom’15,
SDM’18, PerCom’06,
InfoCom’04, MobiCom’'99./

@oal: Create a technology-enabled, multi-leve
security framework to monitor, detect, prevent
(recover from) natural and man-made disa :

Methodology: Sensor Fusion;

Situation-awareness; Information
Theory; Game Theory; Epidemic
Theory; Trust and Belief Models;
Machine Learning; Data Mining.

Publications: TDSc’'17, TMC’ ReSI-
ToSN'18, TDSC'12, TVT'17, :

AdHoc'15, AdHoc’ 13, TMC'0 |Ience
Infocom’19, ComsNets’'19, :
\SmartCity'18, BuildSys'17, f

Publications: TMC’20, \
TDSC’20, TNSE’19, TOPS,
TSG'15, CST17, SUR14,
CCS’18, CODASPY’17,
CNS’17, SmartGrid’12

5 I@I@f of @f@

Trajectory data ,' : Relevant data

999

M lap I’OI

Methodology: Time Series
Analysis; State Estimation; ML;
Anomaly Detection; Trust and
Reputation Model; Epidemic &
Prospect Theory; Incentives.

Human | oal: Detect anomalies in energy consumption

Mobilit oty 2.0 plet | (false data injection attacks); mitigate cascade
\_ obifity L seaess YRR ailure; secure and trustworthy decisions

' o ?
! \& Explicit P P “'.a;-’o
! eps trajectory data 1 |

1 I Al

___________________

: Sensor-based data Network-based data

Short distance Long distance




Crowd Sensing (CS) Architecture

Service
Provider

N~

m——a
./.
./.

40

Consumers

]

Report: Citizens contribute to data, alerts, notifications, etc.

(Published) Event: A summary statistic inferred from the reports (e.g. traffic jam,

accident, road closure, weather hazard).

Feedback Monitoring: Endorsement on the published event or Ratings (e.g.,

Useful, Not useful, Not sure, 5 star ratings)




Vehicular CPS

Application Network
(Analytics)

Send Receive
communication communication
for Jam Alert for Jam Alert

Analytics (;Déllar:lyt:::tse
(Compute Physical o dp
Node) Environment ode)
Particip_atory Participatory
Sensing Sensing

Action

\zke Dhersion S

R. P Barnwal, N. Ghosh, S. K. Ghosh, S. K. Das, “Publish or Drop Traffic Event Alerts? Quality-aware Decision
Making in Participatory Sensing Vehicular CPS,” ACM Transactions Cyber-Physical Systems, 4(1): Jan 2020.




Vehicular Crowd Sensing: Threats Landscape

Why Selfish Intent?

* Credit-based reward mechanism to motivate
constant reports.

* Incentivizes degree of contribution (quantity)
rather than quality of contributions.

(Huge # of false reports in Waze traffic Dataset,

|IEEE SMARTCOMP 2016)

Why Malicious Intent ?

* Create congestion (civilian impact)

* Drain company’s revenue (economic impact)
» Strategic blockage (internal security impact)

Reporting Behaviors:

e Honest: mostly reports true
events.

* Selfish: intermittently generate
true and false reports with
certain probabilities.

* Malicious: collude on reporting
the same false event type in a
vicinity.

Problems with Existing Models
* Cannot embed variations in quantity of
ratings on final trust

* Not Null Invariant

e Sacrifice Quality for Quantity or vice-versa.

(IEEE PerCom Workshop 2017, IEEE TMC 2020)

Rating Behaviors:

» Ballot stuffing: Rogue raters
give positive ratings to false
events.

e Bad mouthing: Rogue raters
give false ratings to true events.

e Obfuscation stuffing: Rogue
raters give uncertain ratings to
false events.




Vehicular CPS

Urban Area

* Vehicular sensing node /
Adversary

— Spoofs location to report random event
alerts to earn undue rewards: Side
channel participation (Spoofing Attack)

suogb‘ag Buisuasg

— Raises false event alerts to decrease

system reliability or gain resources:
& LiarSpooe & v O v souncary False Participation (Spamming Attack)

« System Model

— Vehicles/ Apps (called nodes) || ° Objectives

are netW_Ol’k?d acti_ng as — Devise a framework to identify location
communication units spoofing, spamming nodes
— VCPS nodes (cyber agent of — Define Quality of Contribution (QoC)

human) sense events and
share alerts with peers for
informed decision making

metric for nodes’ contributions based on
reputation history; classify as Honest,
Liars, or Spoofers

— Expected Utility Theory (EUT) based
decision model to filter false events

— Based on sensing information,
vehicles take decision resulting
into change of traffic dynamics




Quality and Quantity (QnQ) Framework

:> (Anomal > Information > ek
Y TCounts”| (Qol) Model Qol’s atabase
Detection) (Event Trust) (Ewdgn;e)
Mitigate Improve User Reputation
Incentive - User — Event .
T - Reporting Association ||:> Scoring Module
Mapping (User Trust)

Honest,
Selfish,
Malicious

Classification
(Detection)

Reputation based

Incentives and Event <:|

Publishing Mitigation

S. Bhattacharjee, N. Ghosh, V. K. Shah, S. K. Das, “QnQ: A Reputation Model to Secure Mobile Crowdsourcing
Applications from Incentive Losses,” IEEE Conf. on Communications and Network Security (CNS), 2017. [Extended
version, |EEE Transactions on Mobile Computing, 19(1): 200-216, Jan 2020.]




Trust and Belief Model

How to build trust to guarantee
reliable operations?

Trust is extremely complex:
v" How to model and quantify trust?
v" How to propagate trust?
v How to reach trust consensus?

Build a Reputation System

v" Reliable users are rewarded and hence
have high reputation

v" Reputation evolves dynamically with
time — may also go down

Reputation of Attackers

=
(=]

=
el

=
T

=
(]

i)

Takes years to bunld X

~seconds to break and
forever to repair.

1500 2000 2500 3000
Time {5}

1000

* F. Restuccia and S. K. Das, “FIDES: A Trust-based Framework for Secure User Incentivization in Participatory Sensing,”
IEEE Symposium on a World of Mobile Multimedia Networks (WoWMoM), June 2014.

* T.Luo, S. S. Kanhere, J. Huang, S. K. Das, and F. Wu, “Sustainable Incentives for Mobile Crowdsensing: Auctions, Lotteries,
Trust and Reputation Systems,” IEEE Communications Magazine (special issue on Sustainable Incentive Mechanisms for

Mobile Crowdsensing), 55(3): 68-74, Mar 2017.




Quality of Information (Qol) Model

Belief (b)

Disbelief (d)

Uncertainty (u)

Positive, Bayesian

Negative Estimation of

Uncfertaln Posterior

Rating Probability

Counts—— | pmasses
Where:

wp, = belief weight

w,, = uncertainty weight

N = nq+ ng + n, = total
number of ratings received
(evidence mass)

Na» Mg, M, rating counts

_ngt+1
~ N+3
_ny+1
“TNt3

Final Event

Qol <—

Non Linear
Dual
Weighted
Qol Scoring
Module

Belief Weight
(wp)

Expected
Truthfulness

Generalized
Linear Model
based Classifier

Uncertainty Weight

(@y)

 T.T. Luo, J. Huang, S. S. Kanhere, J. Zhang, and S. K. Das, “Improving loT Data Quality in Mobile Crowdsensing: A Cross Validation
Approach,” IEEE Internet of Things Journal, 6(3): 5651-5664, June 2019.

* F. Restuccia, N. Ghosh, S. Bhattacharjee, S. K. Das, and T. Melodia, “Quality of Information in Mobile Crowdsensing: Survey and
Research Challenges” ACM Transactions on Sensor Networks, 13(4): 34:1-34:43, 2017.

* F. Restuccia, S. K. Das, and J. Payton, “Incentive Mechanisms for Participatory Sensing: Survey and Research Challenges” ACM
Transactions on Sensor Networks, 12(2): Apr 2016.




Results: Attack Detection

Classification Performance = Three user groups classified

Honeste ®

> Lowest group: Malicious
> Middle group: Selfish
> Top group: Honest

= Reputation unifies both
quality and quantity

= Selfish and malicious groups
cannot increase reputation
with only higher participation

> Selfish users have two groups:
< Higher true event contributions

Score

< Higher false event contributions

Malicious Users o Malicious Users  © < Success in Fairness as well
I?IBIﬁSh Hsers . Selfish Users o
' onest Users - Honest Users = . : :
0100 200 @00 400 500 600 7o -ImMEREIE =0l * Can be used for incentives
User ID User ID > Better than Dempster-Shafer

Classification: Proposed Approach (Left); D-S Reputation (Right)



Results: Attack Mitigation

Incentive Mechanism:

g 2° —
% Implemented incentive mechanism g g;: T
[Restuccia and Das, IEEE WoWMoM’14] ?Jg_ 5]
with QnQ framework. ® lg
< Computed rewards for honest and % 14|
selfish users using QnQ and Dempster- 9 1-?: -
Shafer (D-S) reputation models. = 08l —! Honest
Key Observations: -O'E QnQ Dempster-Shafer
< Rewards for honest users comparable 3 g-i-
< For selfish users: mean incentive is ; 2-3-
more than 50% less than D-S > 18l
O 16f
< Prevents loss of revenue due to rogue % 1.4}
reporting. 8 121 1
L = o0al Selfish
< Improves reliability h g-g ——
' QnQ Dempster-Shafer

T. Luo, S. S. Kanhere, S. K. Das, and H.-P. Tan, “Incentive Mechanism Design for Heterogeneous Crowdsourcing Using
All-Pay Contests,” IEEE Transactions on Mobile Computing, 15(9): 2234-2246, 2016.

T. Luo, S. K. Das, H.-P. Tan, and L. Xia, “Incentive Mechanism Design for Crowdsourcing: An All-Pay Auction Approach,”
ACM Transactions on Intelligent Systems and Technology, 7(3): 1-26, 2016.




Vehicular CPS: The SAFE Framework

SAFE = Spoofed and False Report Eradicator

—— e —————

™ QoC and
~*  Reputation

Scoring
'\ & =
Decision
Proposed Framework| Model
(SAFE)

,___XZ _______
N

Published
e e 5y Event
e 7 : i i VCPS
= < Compute/

i Control Unit

B s o s g

e



Experimental Evaluation

Experimental evaluation of the SAFE framework is based on

— Synthetic Data: Vehicular node mobility traces, event generation and
report contribution simulated using R tools

— Real Data: Real taxi-mounted smartphone app-generated GPS traces
of 289 taxicabs across different regions of Rome (from CRAWDAD)
Performance metrics:

— F1 score (F measure): Harmonic average of precision and recall for
classification of rogue or genuine reporting nodes

— Success/ Error rate: Decision making accuracy to publish the true
event reports and drop the false event reports

Comparison with state-of-the-art methods: FJOS (FIDES trust
model) and HGOM (Gompertz function based model).
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Success/ Error Rate

Results
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Performance of Expected Utility Theory (EUT) based decision model

Spoofing and False reporting are genuine problems in VCPS and can be
measured using the concept of Quality of Contributions (QoC).

SAFE framework is more effective for classification of rogue and genuine
reporting nodes in VCPS (with false and spoofing report generators).

Two-level EUT-based decision making model gives high success rate
and low error rates even when genuine nodes are in minority (40 - 45%)




Securing CPS and loTs

@oal: Create a technology-enabled, multi-leve
security framework to monitor, detect, prevent
(recover from) natural and man-made disa
Methodology: Sensor Fusion;
Situation-awareness; Information
Theory; Game Theory; Epidemic
Theory; Trust and Belief Models;
Machine Learning; Data Mining.

Publications: TDSc'17, TMC’
ToSN’18, TDSC’12, TVT’17,
AdHoc’15, AdHoc’13, TMC’0
Infocom’19, ComsNets’'19,
\SmartCity'18, BuildSys'17,

Resi-
lience

/Publications: TMC'19,
TMC’18, TSC’18, PMC’17,
ToN’16, SMC’16, TMC’12,
Computer’18, BSN15,
PerCom’19, SmartComp’16

Methodology: Privacy-aware
Data Fusion; Deep Learning;
Dynamic Bayesian Networks;
Uncertainty Reasoning; Sensor
Analytics; Qol-aware Inference.

Goal: Cognitive / physical health monitoring;}J

wellness management; dementia detection;
\@e-grain activity recognition under uncertainty.

o
Lﬁlse data injection attacks); mitigate cascade

oal: Predict human and vehicular mobility;\
detect false event reporting; transport planning
congestion; air aualitv: disease spread.

Methodology: Information Theory;
ML; Stochastic Games; Dictionary
Compression; Crowdsensing;
Utility Theory; Behavior Models;
Privacy-Preserving Data Mining.
Publications: TCPS’20,
TI'17, ToN’08, TMC’12,
PMC’18, Entropy’15,
WiNet'02, PerCom’15,
SDM’18, PerCom’06,
InfoCom'04, MobiCom'99 /

Smart
Mobility

Publications: TMC’20, \
TDSC’20, TNSE’19, TOPS,
TSG'15, CST17, SUR14,
CCS’18, CODASPY’17,
CNS’17, SmartGrid’12

Methodology: Time Series
Analysis; State Estimation; ML;
Anomaly Detection; Trust and
Reputation Model; Epidemic &
Prospect Theory; Incentives.

al: Detect anomalies in energy consumption

ailure; secure and trustworthy decisions




Outline

* Sensor Networks and loT Security

» NSF Project: Pervasively Secure Infrastructures (PSl)

< Smart City and Cyber-Physical-Human Convergence
» NSF Project: Smart Grid Security

“* Mobile Crowdsensing
» Trustworthy Vehicular Crowd Sensing

s Future Directions



Sensing, Reasoning and Control

Smart Sensing
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Securlng a Smart City

Interdependence and
Uncertainty related to:

« Complexity and Scale

« Security & Privacy in
Multiple Smart Spaces

« Human Behavior and
Social Dynamics
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Epilogue

“A teacher can never truly teach unless he is still learning
himself. A lamp can never light another lamp unless it
continues to burn its own flame. The teacher who has come
to the end of his subject, who has no living traffic with his
knowledge but merely repeats his lesson to his students, can
only load their minds, he cannot quicken them”.

Rabindranath Tagore (1861-1941)
Indian Poet, Nobel Laureate (1913)

“Imagination is more important than knowledge.” — Albert Einstein (1879-1955)
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