During model training and implementation, the effectiveness of bias mitigation should be evaluated and adjusted. Periodically assess bias identification processes and address any gaps. The model specification should include how and what sources of bias were identified, mitigation techniques used, and how successful mitigation was. A related performance assessment should be undertaken before model deployment.
Diverse values and cultural perspectives from multiple stakeholders and populations should be codified in mathematical models and AI system design. Model design techniques are necessarily contextual, related to the type of AI technology, the purpose and scope of the system, how users will be impacted, and so forth. However, basic steps should include incorporating input […]
Code is not the right level of abstraction at which to understand AI systems, whether is for accountability or adaptability. Instead, systems should be analyzed in terms of inputs and outputs, overall design, embedded values, and how the software system fits with the overall institution deploying it.
New stakeholders for iterative rounds of product development, training, and testing should be brought in, and beta groups for test deployments should be recruited. User groups should reflect different needs and abilities. Fresh perspectives contribute to the evaluation of both the AI system’s functionality and, importantly, its level and quality of inclusivity. New or emergent […]