

(f) 5 days

Application of normal mode functions for the improved balance in the CAFE data assimilation system and characterisation of modes of variability

Vassili Kitsios & Terry O'Kane

2nd International Conference on Seasonal to Decadal Prediction (S2D), 17th-21st, Boulder, CO, USA

OCEANS AND ATMOSPHERE www.csiro.au

CSIRO

Approach

- Will focus on the characterisation of the Madden Julian Oscillation (MJO) via a Normal Mode Functions (NMF) decomposition of JRA55, and discuss implications for Normal Mode Inialisation (NMI).
- MJO is a mode of variability resulting from coupled tropical deep convection and atmospheric dynamics.
- Use key MJO properties to identify representatives NMFs:
 - Eastward propagating
 - Dominant variance over intra-seasonal timescales: 30-90 days.
 - Tropics centric dynamics.
 - Horizontal velocity field has a dominant longitudinal wave of k = 1.
 - Dominant component of the zonal velocity is symmetric about the equator.
- Using one such mode we produce phase and conditional averages of:
 - velocity potential to illustrate atmospheric dynamics
 - outgoing longwave radiation to illustrate convection
- Acknowledge Žagar for sharing the NCAR NMF code, **MODES**.

What are Normal Mode Functions ?

- Decompose 3D (λ, ϕ, σ) velocity (u, v) and geopotential height (h) fields into horizonal and vertical scales, and mode type, using the eigensolution of the linearised primitive equations on a sphere.
- Each scale decomposed into: Balanced Component (BAL); Eastward Inertial Gravity Wave (EIG); Westward Inertial Gravity Wave (WIG).
- Vertical Structure Functions (VSF), G_m in σ coordinates.
- Longitudinal (λ) waves $e^{\mathrm{i}k\lambda}$
- Meridional (ϕ) Horizonal Structure Functions (HSF) of wind and height (U, V, H) for EIG, WIG and BAL modes.

$$\begin{bmatrix} u(\sigma,\lambda,\phi,t)\\v(\sigma,\lambda,\phi,t)\\h(\sigma,\lambda,\phi,t)\end{bmatrix} = \sum_{m=1}^{M} G_{m}(\sigma) \begin{bmatrix} \sqrt{gD_{m}} & 0 & 0\\ 0 & \sqrt{gD_{m}} & 0\\ 0 & 0 & gD_{m}\end{bmatrix} \sum_{k=-K}^{K} e^{ik\lambda}$$
$$\sum_{n=0}^{N} \sum_{p}^{\text{EIG,WIG,BAL}} \begin{bmatrix} U(\phi)\\-iV(\phi)\\H(\phi)\end{bmatrix}_{knm}^{p} \chi_{knm}^{p}(t)$$

• Complex coefficients, $\chi^p_{knm}(t),$ represent contributions of each component.

Vertical Structure Functions

- VSF given by solution of the VSF eigenvalue problem (EVP).
- VSF EVP requires only a time and horizontally averaged static stability profile in σ coordinates.
- Equivalent heights D_m (eigenvalues) are indicative of vertical scale.
- VSF $G_m(\sigma)$ (eigenvectors) have m-1 zero crossings. G_1 is the barotropic, G_2 the first baroclinic, G_3 the second baroclinic, ...
- $\bullet\,$ For large m, the VSF represent boundary layer processes.

Horizontal Structure Functions

- HSF given by solution of a HSF EVP for each equivalent height (D_m) .
- Eigenvectors give meridional dependence, with mode types (EIG, WIG, BAL) defined by symmetry properties.
- Frequency ν (eigenvalue) is indicative of temporal scale.

- Recall for MJO: k = 1; tropics centric; U is symmetric
- Only the EIG n = 0, WIG n = 0, and BAL n = 1 are tropics centric with the appropriate symmetries.
- EIG m = 23 32; BAL m = 11 22 have intra-seasonal timescales.

Energy Contribution $\chi^p_{knm}(t)\chi^{p*}_{knm}(t)$ of NMFs in JRA55

- BAL dominates for low k, IG dominate for high k
- $\bullet\,$ BAL dominates for all vertical modes m
- For (k, n) = (1, 1) BAL HSF eigenvectors have MJO-like properties:
 - BAL $\left(k,n,m\right)=\left(1,1,2\right)$ and $\left(1,1,2\right)$ local peaks in energy, but too fast
 - BAL $\left(k,n,m\right)=\left(1,1,15\right)$ has HSF eigenvalue of 46 days.
- For (k, n) = (1, 0) EIG HSF eigenvectors also have MJO-like properties:
 - EIG $\left(k,n,m\right)=\left(1,0,8\right)$ has most energy, but timescale too fast

– EIG (k, n, m) = (1, 0, 28) has HSF eigenvalue of 56 days.

Cross-spectral Analysis of Candidate NMFs

- All candidate modes are tropics centric and have the appropriate symmetries.
- Only EIG (k, n, m) = (1, 0, 28) has an intra-seasonal timescale, and propagates eastward, but has low energy.
- \bullet Cross-spectral analysis identifies only slow intra-seasonal timescales are coherent between EIG $(k,n,m)\,=\,(1,0,28)$ and the more energetic modes.
- Fast Kelvin wave removed from energetic EIG (k, n, m) = (1, 0, 8).

Cross-spectral Analysis of Candidate NMFs

- All candidate modes are tropics centric and have the appropriate symmetries.
- Only EIG (k, n, m) = (1, 0, 28) has an intra-seasonal timescale, and propagates eastward, but has low energy.
- \bullet Cross-spectral analysis identifies only slow intra-seasonal timescales are coherent between EIG $(k,n,m)\,=\,(1,0,28)$ and the more energetic modes.
- Repeated for all vertical scales (*m*) with k = 1 for BAL and EIG.

• Other candidate modes highlighted in coherence output clusters.

Phase Average on Basis of EIG (k, n, m) = (1, 0, 28)

• Phase angle calculated from complex χ^p_{nmk} . Dates associated with each phase angle octant averaged. All modes contribute to phase averages.

• Velocity potential is a propagating longitudinal wave, with a vertical sign change representing upper level divergence and lower level convergence.

Phase Average on Basis of EIG (k, n, m) = (1, 0, 28)

• Phase angle calculated from complex χ^p_{nmk} . Dates associated with each phase angle octant averaged. All modes contribute to phase averages.

 OLR has a dipole pattern over the maritime continent, tracking with velocity potential of like sign.

Large and Persistent MJO Events

- Start and end of each event defined as discontinuities in phase angle of EIG (k, n, m) = (1, 0, 28).
- Persistent events have a continuous phase for longer than 270° .
- Large events have a magnitude in the upper quartile.
- \bullet Composite average magnitude is greater than background for $20~{\rm days}$ before and after day 0.
- Composite average phase angle indicates eastward propagation.

• Dates associated with each phase shift identified and averaged to produce composite fields of velocity potential and outgoing longwave radiation.

Velocity Potential at 200hPa - Wave Like

Outgoing Longwave Radiation at 200hPa - Dipole Like

Instantaneous Comparison of NMFs and WH

- Wheeler & Hendon index based on first two PCs of meridionally averaged u at 200hPa, 850hPa and OLR within $15^{\circ}S$ and $15^{\circ}N$.
- Compare to tropics centric NMFs, with MJO-like symmetries:
 - BAL(k, n, m) = (1, 1, 8): energetic, but westward, timescale too fast.
 - EIG(k, n, m) = (1, 0, 8): energetic, but timescale too fast.
 - BAL(k, n, m) = (1, 1, 15): intra-seasonal timescale, but westward.
 - $\operatorname{EIG}(k,n,m) = (1,0,28)$: intra-seasonal timescale, eastward, not energetic.
- Correlation of BAL (k, n, m) = (1, 1, 8) with WH when filtered to retain temporal scales coherent with EIG (k, n, m) = (1, 0, 28) is 0.78.

Instantaneous Comparison of NMFs and WH

- Wheeler & Hendon index based on first two PCs of meridionally averaged u at 200hPa, 850hPa and OLR within $15^{\circ}S$ and $15^{\circ}N$.
- In comparision to WH, coherence filtered $\mathsf{BAL}(k,n,m) = (1,1,8)$ mode exhibits:
 - high correlation in magnitude over the entire time series (1958-2016)
 - consistent phase propagation for a specific event (Jan 2012)
 - consistent spiralling in for a specific event in phase space

Proposed MJO Skeleton

- Nonlinear interactions of these modes generates an energetic MJO of eastward propagation and correct phase period.
- All modes have MJO-like longitudinal and meridional structure.

- Interaction strength inferred from cross-spectral analysis.
- In the future will calculate the nonlinear transfer terms explicitly.

Concluding Remarks

- NMFs decompose a 3-D atmospheric geopotential height and horizontal velocity field into scale (zonal, meridional, vertical) and mode class (BAL, EIG, WIG).
- MJO-like NMF modes and their interactions were isolated in the JRA-55.
- A skeleton physical model of the MJO was proposed.
- Implications for Normal Modes Initialisation:
 - Since the IG waves have shorter timescales, they are potentially less predictable over a multi-year period.
 - Naively one would think that filtering the IG waves would improve predictability.
 - However, the EIG waves (even of small vertical scale and low energy) are shown here to be dynamically important for the MJO.

Questions

Vertical Structure Functions

Cross-Spectral Analysis

(f) coherence output of BAL_(1,1,m) [J/kg]

Composite Averages

Horizontal Structure Functions

Phase Averages

(b) phase 2

Skeleton Physical Model

Thank You

CSIRO Oceans and Atmosphere

Vassili Kitsios

- t 0362325312
- e Vassili.Kitsios@csiro.au
- w research.csiro.au/dfp/

CSIRO Oceans and Atmosphere

Terry O'Kane

- t
- e Terrence.O'Kane@csiro.au
- w research.csiro.au/dfp/

